Property Inference Attacks on Deep Neural Networks using Permutation Invariant Representations

Abstract

With the growing adoption of machine learning, sharing of learned models is becoming popular. However, in addition to the prediction properties the model producer aims to share, there is also a risk that the model consumer can infer other properties of the training data the model producer did not intend to share. In this paper, we focus on the inference of global properties of the training data, such as the environment in which the data was produced, or the fraction of the data that comes from a certain class, as applied to white-box Fully Connected Neural Networks (FCNNs).

Publication
In the ACM Conference on Computer and Communications Security.
Date
Links