
Property Inference Attacks on Fully Connected Neural Networks
using Permutation Invariant Representations

Karan Ganju
∗

University of Illinois at

Urbana-Champaign, USA

kganju2@illinois.edu

Qi Wang
∗

University of Illinois at

Urbana-Champaign, USA

qiwang11@illinois.edu

Wei Yang

University of Texas at Dallas, USA

wei.yang@utdallas.edu

Carl A. Gunter

University of Illinois at

Urbana-Champaign, USA

cgunter@illinois.edu

Nikita Borisov

University of Illinois at

Urbana-Champaign, USA

nikita@illinois.edu

ABSTRACT
With the growing adoption of machine learning, sharing of learned

models is becoming popular. However, in addition to the prediction

properties the model producer aims to share, there is also a risk that

the model consumer can infer other properties of the training data
the model producer did not intend to share. In this paper, we focus

on the inference of global properties of the training data, such as

the environment in which the data was produced, or the fraction

of the data that comes from a certain class, as applied to white-box

Fully Connected Neural Networks (FCNNs).

Because of their complexity and inscrutability, FCNNs have a

particularly high risk of leaking unexpected information about their

training sets; at the same time, this complexity makes extracting

this information challenging. We develop techniques that reduce

this complexity by noting that FCNNs are invariant under permu-

tation of nodes in each layer. We develop our techniques using

representations that capture this invariance and simplify the in-

formation extraction task. We evaluate our techniques on several

synthetic and standard benchmark datasets and show that they are

very effective at inferring various data properties.

We also perform two case studies to demonstrate the impact

of our attack. In the first case study we show that a classifier that

recognizes smiling faces also leaks information about the relative

attractiveness of the individuals in its training set. In the second

case study we show that a classifier that recognizes Bitcoin mining

from performance counters also leaks information about whether

the classifier was trained on logs from machines that were patched

for the Meltdown and Spectre attacks.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and privacy ar-
chitectures; • Computing methodologies→ Neural networks;
∗
The two lead authors contributed equally and are ordered alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243834

KEYWORDS
neural networks, property inference, permutation equivalence

ACM Reference Format:
Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov. 2018.

Property Inference Attacks on Fully Connected Neural Networks using

Permutation Invariant Representations. In CCS ’18: 2018 ACM SIGSAC Con-
ference on Computer & Communications Security Oct. 15–19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

3243734.3243834

1 INTRODUCTION
Machine learning (ML) has gained widespread adoption in a large

number of application areas. The development of good ML models,

however, requires significant investment in both computing time

and human effort to tune and optimize models. Additionally, access

to large training datasets is needed, particularly for the popular

but data-intensive neural network (NN) models. This motivates

the creation of online markets where ML models are shared and

traded [2, 6, 8, 14] for collaboration and profit. The datasets on

which these models are trained can often be sensitive, giving rise to

an important question: how much information about the training

data do the models reveal?

Recent research has identified a number of potential attacks

to reveal information about the training data. Model inversion at-

tacks [15, 16, 49] output some of the possible training data samples

that an ML model could have been trained on. Membership in-

ference attacks [38, 49] predict whether a data sample was in the

model’s training dataset. These attacks focus on the privacy of in-
dividual records in the dataset, and thus may be good candidates

for protection using differentially-private mechanisms [1]; e.g., pro-

tection from membership inference is a direct consequence of the

differential privacy guarantees.

We focus instead on the inference of sensitive global properties
of the training dataset since ML models may extract properties

that the model producer did not intend to share. As a motivation,

consider a malware classifier model trained on the execution traces

of malicious and benign software. An adversary may wish to use

this model to learn properties of the testing environment in order

to evade detection or identify vulnerabilities. The testing environ-

ment would impact all of the traces and thus can be viewed as a

property of the entire training dataset, rather than an individual

https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834

record. As another example, recent research has identified under-

representation of certain classes of people, such as women and

minorities, in various training datasets, and corresponding dispar-

ities in the performance of common classifiers across classes [7].

We therefore share interest in inferring whether the dataset used to

train a model had a higher or lower representation of a particular

class, which is again a global property of the dataset.

This type of property inference attack was first formulated by

Ateniese et al. [5]. The attack involves training a meta-classifier to
classify the target classifier depending on whether it has a property

P or not. To do this, the adversary creates a set of shadow classi-
fiers, or proxy classifiers, trained on the same task as the target

classifier; each classifier is trained on a dataset similar to that of

the target classifier but constructed explicitly to either have or not

have the property P . The parameters of the shadow classifiers are

then used to train the meta-classifier. Ateniese et al. demonstrated

this attack against Hidden Markov Models (HMMs) and Support

Vector Machine (SVM) classifiers, and also showed that differen-

tial privacy mechanisms offering record-level privacy are not an

effective countermeasure to property inference.

However, their approach does not work well in practice when

applied to deep neural networks, which have recently become one

of the most popular ML models. We conjecture that the complex-

ity of such models, which typically have more than thousands

of parameters, make it challenging to train a meta-classifier. We

therefore investigate different feature representations to reduce the

complexity of the meta-classification task.

In this paper, we first focus on fully connected neural networks

(FCNNs). Our key insight is that FCNNs are invariant under the

permutation of nodes when represented using matrices
1
: applying

an arbitrary permutation to each hidden layer of a FCNN and ad-

justing the weights correspondingly results in an equivalent FCNN.

Furthermore, the number of such equivalent networks grows super-

exponentially in the number of nodes. This invariance property is

challenging for a meta-classifier to learn, particularly given the lim-

its on the number of shadow classifiers one can produce, as training

each classifier incurs high computational costs. We develop two

techniques to address this problem. Our first technique arranges

the FCNN into a canonical form, so that all equivalent permutations

of a FCNN produce the same feature representation. Our second

technique represents each layer of a FCNN as a set, rather than

as an ordered vector, and leverages the DeepSets architecture [50]

to develop a meta-classifier over the sets. In addition to capturing

permutation invariance, the set-based representation significantly

reduces the number of parameters in the meta-classifier, making it

easier to train.

We evaluate our techniques on several standard benchmark

datasets (e.g., MNIST [22] and CelebA [26]) and show that they are

very effective at inferring various data properties. Especially, the

accuracy of our set-based approach (85%–100% for different tasks)

greatly improves that of the baseline (55%–77%), has low memory

overhead, and requires many fewer shadow classifiers to train. For

a smile detection classifier trained on the popular CelebA dataset,

we are able to detect if the model was trained on a disproportionate

sample of attractive individuals with close to perfect accuracy (99%)

while the baseline approach—training a meta-classifier directly on

1
We discuss our investigation of representing FCNNs using graphs in Section 8.

raw shadow classifier parameters—is not as effective (67%). Like-

wise, for the cryptocurrency mining detector trained on a dataset

of hardware performance counters for different program runs, our

best approach is able to predict whether the dataset consisted of a

system vulnerable to the Meltdown [24] and Spectre [21] attacks

with a good accuracy (88%). By contrast, the baseline performs only

slightly better than chance (57%).

Our contributions can this be summarized as follows:

• We identify node permutations as a key issue limiting the

effectiveness of existing property inference systems on fully

connected neural networks represented using matrices.

• We propose two permutation invariant strategies as a way

to address these limitations.

• We evaluate these strategies for several datasets and proper-

ties. These evaluations show substantial improvements in

accuracy compared to existing techniques.

The paper is organized into ten sections. Following this intro-

duction, we provide some general background in Section 2 and

formulate a problem statement in Section 3. The baseline strategy

for property inference is given in section 4. We introduce the key

property of permutation equivalence in Section 5 and our property

inference algorithms in Section 6. We then provide evaluation and

discussion in Sections 7 and 8. We end with sections on related

work and conclusions.

2 BACKGROUND
In this section, we first give some background knowledge of neural

networks. Then, we introduce the concept of DeepSets, which is

used in the design of one of our approaches. Following that, we

describe hardware performance counters, which are used in one of

our case studies.

2.1 Neural Networks
Neural networks have become popular models for a variety of ML

tasks. A neural network is composed of multiple layers of computa-

tional units that process or transform the output of the preceding

layer to produce input for the next layer. The first computational

layer receives input from an additional input layer and the last layer

is known as the output layer. The layers between the input layer

and the output layer are often called hidden layers. The output y of

the neural network f , for input x , can be formally written as:

y = f (x) = F |f |(F |f |−1(. . . F2(F1(x))))

where Fi represents a transformation function and | f | is the num-

ber of computational layers (hidden layers and the output layer) in

the neural network. Note that we use the notation |S | consistently
to refer to the number of elements in a collection S . For example,

when applied to a neural network, it denotes the number of lay-

ers, whereas when applied to a layer, it denotes the number of

computational units in the layer.

The type of transformation function or the corresponding type

of layer employed in a neural network depends on the type of the

task. Convolutional layers are often employed for image processing

while recurrent layers have been traditionally employed for process-

ing text. The most commonly used layers are fully connected layers

which are composed of multiple computational units called per-

ceptrons (or neurons) [36], each possessing a multiplicative weight

and an additive bias. Each perceptron transforms the output from

the preceding layer with a weighted linear summation followed by

applying a non-linear activation function. For the ith perceptron in

the t th layer, its output oti is:

oti = γ
(
wt
i∗ · o

t−1 + bti

)
where ot−1 is the output of the preceding layer, wt

i∗ ∈ R
|ot−1 |

is

the weight vector of the perceptron, bti ∈ R
1
is its bias and γ is the

non-linear activation function. The layer output ot is then given as:

ot =
(
ot
1
,ot

2
, . . . ,ot

|ot |

)
Figure 2a shows an example of a two-layer fully connected neural

network which takes in 2 inputs. The network has 1 hidden layer

consisting of 2 nodes and an output layer consisting of a single

node. The biases are not shown in the figure for simplicity. The

output of neuron n1
2
for input x = (x1,x2), in this case, would be:

o1
2
= γ

(
w1

21
x1 +w

1

22
x2 + b

1

2

)
All the weights and biases, along with other learned units, are the

parameters of the neural network. The variables which determine

the network structure (e.g., number of hidden units) and the vari-

ables which determine how the network is trained (e.g., learning

rate) are called hyperparameters.
Given a training dataset, in order to train the model f (i.e., find

the optimal set of parameters for the model so that it produces

meaningful output), the neural network tries to minimize a loss

function which penalizes the mismatches between true labels and

predicted labels produced by f . The choice of loss function depends

on the type of the problem, the architecture of the model and other

contextual settings. For example, binary cross entropy is a common

loss function for 2-way classification while mean squared error

is common for regression tasks. Given a loss function, stochastic

gradient descent (SGD) [35] and its variants are commonly used to

reduce the loss and consequently optimize the objective function.

2.2 DeepSets
DeepSets [50] is a neural network architecture proposed for ma-

chine learning tasks defined on sets. The architecture enforces the

following requirement for any function f to be defined on a set X .

Property 2.1. A function f acting on sets must be permutation
invariant to the order of objects in the set; i.e., f (x1,x2, . . . ,xn) =
f (xσ (1),xσ (2), . . . ,xσ (n)) for any permutation σ .

In order to learn such a function using neural networks, the

architecture is broken down into two neural networks, or func-

tions, ϕ and ρ. The ϕ function is used to obtain an element-level

representation (or processed feature) while the ρ function is used

to obtain a final prediction (or output) for the set. For any set X , all

the element-level feature vectors, obtained by passing the elements

through the ϕ function, are summed to form a set-level feature

vector, which is fed as input to the ρ function to obtain the final

output y. Stated formally,

y = f (X) = ρ

(∑
x ∈X

ϕ(x)

)

The proposed functional representation is invariant to permuta-

tions because of the unweighted summation being applied between

the ρ and ϕ functions. As an example of its utility, consider a set

of digits X and a function f which obtains the squared sum of

digits inX . Then, f can be decomposed in the aforementioned form

with functions ϕ(x) = x2 and ρ(x) = x . DeepSets has been shown

to perform well on difficult set-based tasks such as finding words

similar to a set of given words or finding the sum of digits for a set

of given digit images.

An important point to note is thatϕ only deals with each element

in the set instead of the entire set and ρ only deals with the sum of

the processed features of each element. Because of this, the architec-

ture has many fewer parameters, making it highly computationally

efficient and easier to train compared to the other architectures.

2.3 Hardware Performance Counters
In computers, hardware performance counters (HPCs) are a set

of special-purpose registers built into modern microprocessors

to store the counts of hardware events within computer systems.

The counters include counts of executed instructions, page faults,

context switches, cache misses, etc. In Linux, perf [48] is a tool for

using the performance counters subsystem.

Hardware performance counters could record and represent

the runtime behavior and characteristics of the programs being

executed. Therefore, advanced users can use those counters to

conduct low-level performance analysis or tuning. HPCs have been

demonstrated to be useful in detecting malware [11, 47], cache-

based side-channel attacks [10] and cryptomining behavior [41] in

clouds and enterprises.

3 PROBLEM STATEMENT
Consider a model producer, who trains a fully connected neural

network f on a training set D for some classification task. After

training the model, the producer releases the model to the public

or shares it to certain model consumers. This allows the model

consumers of f to use it to make predictions without training

their own model. In this paper, we want to answer the following

question: Given only the model f , can an adversary, in this case the
model consumer, infer some properties of the training set D the model
producer did not intend to share.

We assume the adversary has white-box knowledge (i.e., full

knowledge of the parameters and architecture) of the target model

f . This assumption is reasonable and quite common nowadays [5,

25, 39]. There are many online platforms [8, 14, 45] where models

are shared openly, including their parameters, thereby providing

white-box access. In some cases, the model producers offer the

models to the model consumers in the form of software executa-

bles [3, 4]. However, it is often possible to extract the classifier

through reverse engineering or dynamic analysis techniques [23],

in which case the consumer effectively gets white-box access (at

the cost of some reversing effort). Sometimes the producers ex-

pose their models through ML-as-a-service interfaces, exposing

an API for users to query for predictions, without allowing the

user to download the model itself [2, 6, 17, 28]. This is a classic

example of a black-box model. For such cases, it has been demon-

strated that adversaries can efficiently extract target models with

near-perfect fidelity for popular model classes, including neural

networks [31, 43]. We consider the process of converting black-box

access to white-box access to be out of our current scope.

We also assume the adversary cannot tamper with the training

of the target model or the data collection process that created its

training dataset. That is, we do not consider integrity attacks on

the target model or its training dataset. In particular, the adversary

cannot encode information into the model during the training to

pass along the target property covertly [39].

Note that while much of previous work has focused on the possi-

bility of leaking information about individual records that constitute

the training dataset, we focus on unintended global properties of

the training set instead. In some cases, such as our cryptomining

case study discussed in Section 7.5, the individual execution record

of a cryptomining sample may not be sensitive, but properties of

the testing environment may include confidential information that

the model producer may not intend to release.

Our techniques assume that the model consumer, acting as an

adversary and trying to learn more about the training data than the

producer intends, is able to find data of its own suitable for training

meta-classifiers. Instances where this is not the case would require

other methods of attack [18, 38].

4 PROPERTY INFERENCE ATTACK
STRATEGY

Property inference exploits the idea that ML models trained on

similar datasets using similar training methods will represent sim-

ilar functions. The similarity of these functions should reflect in

the trained models as some common inherent patterns of their

parameters. The objective of the adversary is to recognize these

patterns within the target model to reveal some property which

the model producer might not have desired to release. To do this,

the adversary needs a classifier, which we call a meta-classifier,
to recognize this pattern. This meta-classifier is trained using a

technique known as “shadow training” [5, 38], where the adversary

trains multiple proxy shadow classifiers to build the training set for

the meta-classifier.

In Figure 1, we show an attack strategy for property inference

based on the strategy proposed in [5]. Let ftarget be the target

model, (f1, . . . , fk) be the set of k shadow classifiers and (P1, P2) be
the properties the adversary is interested in distinguishing between.

As an example, for a facial image dataset, P1 could mean that the

dataset is disproportionate towards males with a ratio of 2:1 while

P2 could mean that the dataset has an equal ratio of males and

females. Likewise, for the MNIST dataset, P1 could mean that the

images were noisy while P2 could mean that they were not. Since

we focus in this paper only on binary class property inference, we

henceforth denote P1 as P and P2 as P . While P2 is not exactly the

negation of P1 in all cases, it can be considered the alternative choice
of the meta-classifier as opposed to predicting P1 (or P). Regardless,

we do highlight what P and P mean in all of our experiments in

Table 1. Following this, we write P ≈ f if a model f has been

trained using a dataset or process which follows P . Otherwise, we

write P ≈ f .
The first step in this attack is to obtain the training data for the

k shadow classifiers. In order to do this, the adversary generates

a set of datasets D = (D1, . . . ,Dk) where half of them follow the

property P and half of them do not. These datasets could be obtained

by sampling from a larger dataset or simply by obtaining more

data. Note that the adversary could also want to infer a property

about the training method instead, such as the hyperparameters or

information about the data preprocessing steps. In that case, the

adversary generates a set of hyperparameters or training conditions,

half with the property and half without, which are used to train

the shadow classifiers.

The next step is to train each shadow classifier fi on its corre-

sponding dataset Di . While doing this, the adversary should try to

minimize the number of unknowns. This means that the adversary

must try to create as similar a training environment as possible to

that of the target classifier. Since our threat model assumes white-

box model access, the adversary already knows the architecture

of the target classifier and should use the same architecture for

the shadow classifiers. Additionally, while it is not important for

the shadow classifier to be trained to the exact level of accuracy

as the target classifier, it should be trained to a reasonably good

performance. This has to be done so that its parameters, which are

usually randomly initialized, now capture meaningful information

about the dataset or hyperparameters to help the adversary draw

inferences from them.

After training the set of shadow classifiers, the adversary obtains

the feature representation Fi for each of the shadow classifier fi
to build the meta-training set, i.e., the training set for the meta-

classifier. As an example, the feature representation of a logistic

regression model could be a vector containing the coefficients of

the features in the decision function and the bias. Ateniese et al. [5]

used the emission and transition probabilities of each node in an

HMM separately as a data sample for the meta-classifier. For an

SVMmodel, they used each support vector of the shadow classifiers

as a data sample. Theywere able to get multiple feature vectors from

a shadow classifier because the dimensionality of the probabilities

associated with all nodes in an HMM or the coordinates associated

with all support vectors in an SVM model is the same. Hence, it is

simpler to use each of these components as a single data point. In the

case of neural networks, however, two nodes from different layers

have a good chance of having different numbers of parameters,

making it impossible to use each node as a feature for the meta-

classifier. As a result, we take all the parameters of a neural network

as the feature representation for the shadow classifier.

Finally, the adversary builds the meta-training set Dmeta =
(F1,F2, . . . ,Fk) for the meta-classifier, where each sample is la-

beled correspondingly as either P or P . The adversary can train this

meta-classifier using any popular training algorithm. Upon obtain-

ing the trained meta-classifier, the adversary can feed it Ftarget ,
the feature representation of ftarget , as the input and predict the

existence of the target property from the target model. In Appen-

dix A, we show the algorithm to build the meta-classifier to help

summarize the attack process.

The previous work was able to perform this attack successfully

against HMMs and SVMs. To investigate whether the attack also

works with neural networks, we start with a neural network trained

on the MNIST dataset (more details about the dataset can be found

in Section 7.1). The target classifier is a fully connected neural

network to predict the digit from a handwritten digit image. We

want to infer the following property P from the target classifier:

...

Shadow
Training Set 1

...

Shadow
Classifer 1

Shadow
Classifier k

train

feature
extraction

feature
extraction

Meta-training Set

Meta-Classifier
train

Target Model

feature
extraction

predict

...

Shadow
Training Set k

train

Figure 1: The workflow of the property inference attack.

whether the classifier was trained on images with noise. Noise is often
added to the input to help regularize an ML model, i.e., prevent it

from overfitting. We use a vector of all the parameters of a neural

network as its feature representation and another neural network

as the meta-classifier to perform the attack. However, the meta-

classifier is only able to get an accuracy of 58% in predicting the

property, which is just slightly better than making a random guess.

We also try using each parameter of a neural network as a feature

vector, but this performs as bad as random guesses in all cases. In

the next section, we discuss one major factor that, we hypothesize,

accounts for this bad performance.

5 PERMUTATION EQUIVALENCE
As discussed above, one could use a flattened vector of all param-

eters (i.e., weights and biases) as the feature representation for a

fully connected neural network. This feature representation forms

our baseline for comparison and, as shown in Section 7, this repre-

sentation does not perform as well in practice. We hypothesize that

one of the reasons for this is the existence of permutation equivalent
neural networks that a flattened feature vector representation does

not address. In order to define this equivalence, we first define a

specific kind of permutation of nodes (or neurons) within a layer.

We consider a fully connected neural network, f , as a collection
of layers, excluding the input layer, with h |f | as the output layer.

f =
(
h1,h2, . . . ,h |f |

)
Each layer, ht , is a collection of neurons.

ht =
(
nt
1
,nt

2
, . . . ,nt

|ht |

)
Each neuron nti has an associated bias bti and a set of weightswt

i∗
connecting it to the neurons in hidden layer ht−1. The weightsw

t
i∗

are given as:

wt
i∗ =

(
wt
i1,w

t
i2, . . . ,w

t
i |ht−1 |

)
wherewt

i j represents the weight connecting the noden
t
i to the node

nt−1j . We denote a permutation function σ acting on a vector of ele-

mentsX = (x1,x2, . . . ,xk) gives the output (xσ (1),xσ (2), . . . ,xσ (k)).
For simplicity of notation, we represent the output of the permuta-

tion on X as σ (X).
Now, we define a node permutation, on the hidden layer ht as

the transformation on the layer such that its nodes are reordered

by a permutation σ , while keeping connected weights intact. This

means that the layer ht is now replaced by σ (ht) and the weights

of each node nt+1i of layer ht+1 are now replaced by σ (wt+1
i∗). Note

that a node permutation cannot be performed on the output layer.

The key property of interest, here, is that a node permutation on a

hidden layer of a neural network f does not change the outputs of
the neural network. We state this formally with the following:

Proposition 5.1 (Permutation Eqivalence). Consider a neu-
ral network f and a new neural network f ′ obtained from f by a
series of node permutations on its hidden layers. Then, for every input
x , we have f (x) = f ′(x).

In this case, we say that f ′ is a permutation equivalent of f . We

(a) Neural network f1 (b) Neural network f2

Figure 2: An example of permutation equivalent neural networks.
The neural network f2 is obtained by shifting neuron n1

1
and neuron

n1

3
in f1.

provide the proof for this in Appendix B. As an illustration, note

that the two neural networks in Figure 2 perform the same function

but the neurons in the hidden layer have been rearranged. For a

hidden layer, ht , having |ht | nodes, it has |ht |! valid permutations.

This means that for a neural network with k hidden layers hav-

ing |h1 |, |h2 |, . . . , |hk | nodes consecutively, there will be a total of∏k
i=1 |hi |! permutation equivalents including itself. If permutation

equivalence is not taken into account, all of these equivalent neural
networks have different flattened representations making it difficult

for a naive meta-classifier to learn useful patterns from them.

In order to confirm that these equivalents are found in the wild,

i.e., they can be obtained using existing popular optimization tech-

niques, we ran a simple experiment. We trained a neural network

which takes a single number as input and predicts if the input is

positive or negative. Apart from the single output node, it has a

hidden layer with 2 nodes. We trained 50,000 such neural networks

on this task using SGD and observed their weights. We noticed that

the distribution of weights connected to the first hidden node is

−4 −3 −2 −1 0 1 2 3 4

wx

−4

−3

−2

−1

0

1

2

3

4
w
y

Figure 3: A heatmap showing the symmetry of wx and wy , the
weights of the two hidden nodes in a neural network trained to pre-
dict if its input is positive. We plot the weights in 50,000 such neu-
ral networks. A darker spot indicates higher occurrence of points
in that bin.

very similar to the distribution of weights connected to the second

hidden node. To visualize this, we plot the weights connecting the

two hidden nodes to the single input, saywx andwy , on a 2D space

as shown in Figure 3. Note that the plot is symmetric along the

Y = X line. This means that for each weight pair (wx ,wy), there
is also a pair (wy ,wx) in the plot. This example highlights the in-

tuition behind the existence of permutation equivalents in neural

networks.

As a vector keeps the order of its elements, the flattened vector

feature representation of a neural network will inherently keep an

order of the neurons. However, the neurons in each layer should

have no order preference. Inspired by the ideas of handling elements

permutation in data structure, we propose two approaches to deal

with node permutation equivalence in neural networks: one is

based on sorting neurons in each layer and the other is based on

treating a layer as a set of neurons. As the results shown in Section 7,
both of our approaches shows improvements in the effectiveness

of the inference tasks. For some inference tasks, our set-based

approach could even achieve near-perfect accuracy. Those results

also empirically demonstrate that node permutation equivalence is

one major reason for the ineffectiveness of the original approach

when applied to neural networks.

6 OUR APPROACH
In this section, we describe our approaches to help themeta-classifier

tackle permutation equivalence in neural networks.

6.1 Neuron Sorting
The task of inferring properties on permutation equivalents could be

compared to computer vision tasks on rotated images. For example,

a facial recognition model that does not take rotation of faces into

account could be looking at an eye where it expects to see an ear,

and consequently do a poor job in recognizing the person. Hence,

this problem has to be addressed to achieve a good performance. A

common approach to deal with this is to first align the images in a

canonical pose, e.g., align the face so that it is somewhat parallel to

the image edges. This is often employed as a pre-processing step

before feeding the image into the learning algorithm and helps in

improving the performance. Inspired by this technique, we propose

to do awaywith permutation equivalents by bringing all the shadow

classifiers to a canonical form, such that different permutation

equivalents of the same classifier have the same canonical form.

Just as this helps facial recognition models perform better by not

having to worry about sideways oriented faces, this should also

help our meta-classifier perform better as it no longer has to deal

with learning the same concepts for all equivalents.

We know, by Proposition 5.1, that we can perform node permu-

tations on the hidden layers of a fully connected neural network

without changing the function that it represents. Hence, we can

apply a permutation that imposes a canonical ordering (or sorting)

for each of the hidden layers of the neural network, ensuring that

all permutation equivalents have the same representation. We use

the magnitude of the sum of all the weights of a node as the metric

for sorting; other metrics are possible but we found that this one

works best in practice. As an illustration, in Figure 4, we show a

network in a canonical form and one of its permutation equivalents.

Algorithm 1 summarizes this approach which takes in a classifier

f and returns its sorted feature representation F . Essentially, for

each hidden layer, we compute a metric for each of its nodes. Next,

we find a permutation that sorts these metrics. This is the job

of the argsort function in line 6 of the algorithm. We apply this

permutation as a node permutation to the same layer and add its

sorted flattened weights and biases to F . The flatten function used

in line 10 and 11, as its suggests, obtains a linear vector of weights

and biases from the sorted layer. Then, we move on to the next

layer and repeat these steps. In this manner, we obtain a sorted

canonical form of the classifier by sorting each layer individually.

One advantage of this approach is that, after sorting, the fea-

ture representation of the neural network is still a flattened vector.

This allows the technique to be used with generic machine learn-

ing algorithms, such as decision trees or neural networks, as the

meta-classifier. In this case, the sorting method serves as a simple

preprocessing step that enhances the effectiveness of the attack.

4.0

-0.5

3.0

1.0
2.0

-1.0

0.3

2.4

-0.8

(a) Neural network f1

3.0

1.0

4.0

-0.5
2.0

-1.0

2.4

0.3

-0.8

(b) Neural network f2

Figure 4: The two neural networks are permutation equivalent. f2 is
the canonical form of the two neural networks which is sorted by
the magnitude of the sum of weights in descending order.

6.2 Using Set-based Representation
We can also solve this task through a more intelligent design of the

meta-classifier instead. In order to motivate this design, we first

highlight the difference between a vector and a set: a vector has a

specific ordering of its elements while a set may or may not have

an ordering. Thus, while a vector may have multiple permutations

Algorithm 1: Neuron Sorting

Input: A neural network f , a metric functionM

Output: Sorted feature representation F

1 F ← []

2 for t ← 1 to | f | − 1 do
3 metrics← []
4 for i ← 1 to |ht | do
5 metrics← metrics | |M(nti); // Get metrics to sort layer

6 σ ← argsort(metrics)
7 h′t ← σ (ht); // Sort layer ht
8 for j ← 1 to |ht+1 | do
9 wt+1

j∗ ← σ (wt+1
j∗); // Permute next layer weights

10 F ← F || flatten(h′t)

11 F ← F || flatten(h |f |)

12 return F

...

...

Flattening ...

...

...

...

Node
Processing

Layer
Summation

Concatenation

Prediction

...

...... ...

...

...

Figure 5: The workflow showing how the meta-classifier processes
and learns the set-based representation of a neural network using
the DeepSets architecture.

of itself, an unordered set will not. Henceforth, we refer only to

unordered sets as they are of interest to us. Now, taking advantage

of this, we propose to represent a neural network layer, not as a

flattened vector of nodes, but instead, as a set of neurons.
2
We

could then represent a neural network f as an ordered collection of

fully connected layers, where each layer is represented as a set of

neurons. Take the neural networks in Figure 4 as an example. Both

of them could be represented as a list of two sets (since we do not

consider the input layer). The first set contains the three neurons

2
Note that it should technically be amultiset instead. The techniquewe use is applicable

to multisets. Additionally, the parameters of a neural network are generally high-

precision numbers which means that the likelihood of duplicates is low.

in the hidden layer (i.e., n1
1
, n1

2
and n1

3
) and the second set contains

the single neuron in the output layer (i.e., n2
1
). The key point to

note here is that all permutations of any layer will have the same

set-based representation, which is crucial to address permutation

equivalents.

However, this representation has no merit if it cannot be used

to perform property inference. Generic machine learning classi-

fiers rarely operate out of vector-based input representations and

cannot effectively interpret and process this set-based representa-

tion. In order to process this representation, we need a specialized

meta-classifier that can compute and learn functions on sets. For

this, we employ the DeepSets architecture formulation [50]. The

architecture learns a function of the following form, for a set X :

ρ

(∑
x ∈X

ϕ(x)

)
Recall from Section 2.2, the ϕ function computes an element-level

representation for an element x . These element-level representa-

tions are summed to obtain the set-level representation, which is

passed through the ρ network to get a prediction. The same func-

tion ϕ is applied to each element in the set and the summation is

unweighted. This allows the function to be permutation invariant

and thus is suitable for our task.

In Figure 5, we highlight the workflow of using this specialized

meta-classifier to process and learn our set-based representation

of the shadow classifier. For a neural network f which has | f | − 1
hidden layers and one output layer, the set-based representation

of f will correspondingly have | f | sets. The tth set, for instance,

represents layer ht and will comprise of |ht | elements, i.e., the

number of neurons in layer ht . As we have | f | sets, we will have
| f | ϕ networks correspondingly for each layer or set. Since the

ρ network is used for the final prediction after obtaining the set-

based representation (after summation), we do not use | f | different
ρ networks but a single larger ρ network that operates on the

set-level representation of all the layers. We use fully connected

networks for ϕt and ρ.
In essence, the process in Figure 5 can be broken down in the

following manner. First, for each nodenti in each layerht , we flatten
its weights and biases to a vector. Next, we feed this vector to the

corresponding ϕt network for the layer to obtain its node-level

representation N t
i . We call this step node processing. Note here that

Figure 5 shows that the inputs for ϕ2 and ϕ |f | not only include the

flattened weights and biases of the nodes but also the concatenated

node-level representations of the previous layer. Hence, each ϕt ,
except for ϕ1, takes as input, for node n

t
i , the weightsw

t
i∗, the bias

bti and the context N t−1
where

N t−1 = (N t−1
1
,N t−1

2
, . . . ,N t−1

|ht−1 |
)

This is done so that along with the weights and bias, which capture

the function performed locally by the neuron, there is also some

context for what the node is performing with respect to its inputs.

For example, a neuron computing the sum of sums of selected

inputs, which it obtains through preceding layers, and another neu-

ron obtaining the sum of differences of selected inputs, which it

obtains through preceding layers. Both the neurons locally perform

the same function (i.e., summation) but they operate under differ-

ent contexts. Hence, we provide the node representations N t−1
to

capture this context of the input provided to the neuron being pro-

cessed. The node processing step is followed by layer summation,
where the node representations for each neuron are summed to

obtain a layer representation Lt :

Lt =
∑
i

N t
i

Finally, these layer representations are concatenated and fed as

input to the ρ network for prediction, which in our context is P or

P for the input classifier.

The pseudocode in Algorithm 2 summarizes this set-based ap-

proach. As the results show in Section 7, this simple but innovative

design performs much better than the baseline, has low memory

overhead and requires many fewer shadow classifiers to train.

Algorithm 2: Process and learn the set-based representation.

Input: A neural network f , function ϕt for each layer ht ,
function ρ

Output: P or P
1 F ← []

2 N 0 ← []

3 for t ← 1 to | f | do
4 N t ← []

5 for i ← 1 to |ht | do
6 N t ← N t | | ϕt (w

t
i∗,b

t
i ,N

t−1); // Get node features

7 Lt ←
∑
i N

t
i ; // Obtain layer features

8 F ← F || Lt ; // Obtain classifier features

9 return ρ(F); // Use F to predict P/ P

7 EVALUATION
In this section, we first describe the datasets, target models and

target properties. We then present the results of our techniques

both in effectiveness and efficiency. In the end, we use two case

studies to demonstrate the impact of our attack.

7.1 Datasets
US Census Income. The US Census Income Dataset [12] contains

census data extracted from the 1994 and 1995 population surveys

conducted by the U.S. Census Bureau. This dataset includes 299,285

records with 41 demographic and employment related attributes

such as race, gender, education, occupation, marital status and

citizenship. The classification task is to predict whether a person

earns over $50,000 a year based on the census attributes.

MNIST. The MNIST dataset [22] is a widely used digit recognition

dataset. The dataset contains 70,000 handwritten digits with 60,000

samples used for training and 10,000 samples for testing. Each data

sample is a 28x28 greyscale image which is size-normalized so that

the digits are centered in the images. The classification is a 10-way

classification task to recognize the digit shown in the image.

CelebFaces Attributes (CelebA). CelebA [26] is a large-scale face

attributes dataset with more than 200K celebrity images, each with

40 binary attribute annotations such as age (young or old), gen-

der, whether the person is wearing a hat, whether the person has

wavy hair, etc. Each image has a size of 218x178 pixels. We use

this dataset for two classification tasks. One classification task is

to detect whether the person is smiling and the other task is to

determine the gender of the person.

Hardware Performance Counters (HPCs). Following the data collec-

tion techniques developed by Tahir et al. [41], we created our own

hardware performance counters datasets which are used to train

a model to detect if cryptocurrency mining application is running

on the system. We used perf with a sampling rate of 2 seconds to

profile 15 cryptocurrency mining applications and 19 non-mining

applications from the Rodinia [9] and Parboil [40] benchmark suites.

All the applications we used are listed in Appendix C. The hardware

performance counters data for the applications was collected from

a desktop with Intel Core 2 CPU (2.40GHz) running Ubuntu 14.04.

For each application, we collected 1500 profiling samples. Each

profiling sample contains the values for the same 22 performance

counters as used by Tahir et al., such as counts of CPU clock cy-

cles and executed instructions.
3
Overall, each generated dataset

contains 36,000 records with 22 attributes.

7.2 Experiment Setup
In the evaluation, we compare our neuron sorting approach (Sorting)
and set-based representation approach (Set-Based) to the Baseline
approach which uses a flattened vector feature representation. We

conducted our experiments on a desktop with Intel Xeon E5-1603

(2.8GHz) CPU and 16GB RAM. The operating system is Ubuntu

16.04. We train all the neural network models using PyTorch [34]

on an NVIDIA GeForce GTX 960 GPU. We show the settings of our

experiments in Table 1.

Target Models. We train target models for different classification

tasks on the datasets described in Section 7.1. For models trained

on the HPCs dataset and the US Census dataset, we use neural

networks having 3 hidden layers of sizes 32, 16 and 8. For theMNIST

dataset, we use neural networks having 3 hidden layers of sizes 128,

32 and 16. For the CelebA dataset, we make use of a pre-trained

network, called FaceNet [37], to generate image representations or

embeddings of size 512. With FaceNet, we train our own set of fully

connected neural networks with 2 hidden layers of sizes 64 and

16, which take as input the embedding instead of the image pixel

values. Note that we hold the weights of the pre-trained FaceNet

model to be fixed while training our models; i.e., we directly use

the embeddings generated by the FaceNet model without updating

its weights. In training all our target models, we use the Adam [19]

optimizer, ReLu as the activation function, a learning rate of 0.001,

a weight decay of 0.01 and 40 maximum epochs of training.

Target Properties. In Table 1, we describe the target properties we

want to infer from the target models. For the target models trained

on the US Census dataset, the target properties are the disproportion

of data samples with some specific attribute values (e.g., gender and

race). Similarly, for the CelebA dataset, the target properties are

the disproportion of the data samples with some facial attributes.

For the MNIST dataset, we want to infer whether the target model

was trained using noisy images. To create the noisy images, we

add a random brightness jitter to each image. For the HPCs dataset,

we want to infer whether the target model was trained on data

3
Four performance counters are not supported by our system: stalled-cycles-frontend,

stalled-cycles-backend, L1-dcache-prefetch-misses and LLC-prefetches.

Table 1: The settings for each experiment, describing the dataset and classification task of the target model, and the target property.

Experiment Dataset Target Classifier Task Target Property (P) Target Property (P)

P 1

Census US Census Binary income prediction Higher proportion of Women (65% W) Original distribution (38% W)

P 2

Census US Census Binary income prediction Higher proportion of Low Income (80% LI) Original distribution (50.0% LI)

P 3

Census US Census Binary income prediction No whites in the dataset Original distribution (87% Wh)

P 1

MNIST MNIST 10-way digit classification Noisy images (with random brightness jitter) Original images

P 1

CelebA CelebA Smile prediction Higher proportion of Attractive faces (68% A) Original distribution (51% A)

P 2

CelebA CelebA Smile prediction Higher proportion of Older faces (37% O) Original distribution (23% O)

P 3

CelebA CelebA Smile prediction Higher proportion of Males (59% M) Original distribution (42% M)

P 4

CelebA CelebA Gender classification Higher proportion of Attractive faces (68% A) Original distribution (51% A)

P 5

CelebA CelebA Gender classification Higher proportion of Older faces (37% O) Original distribution (23% O)

P 1

HPCs HPCs Mining activity detection Data from Meltdown&Spectre vulnerable machine Data from patched machine

collected from a machine vulnerable to the Meltdown and Spectre

attacks or a machine which had been patched.

7.3 Attack Effectiveness

Table 2: Accuracy of the property inference attack using different
approaches in each experiment.

Experiment Baseline (%) Sorting (%) Set-Based (%)

P 1

Census 55.0 89.0 97.0

P 2

Census 63.0 85.0 100.0

P 3

Census 93.0 100.0 100.0

P 1

MNIST 58.0 65.0 85.0

P 1

CelebA 67.7 80.2 99.8

P 2

CelebA 77.2 91.2 100.0

P 3

CelebA 77.2 90.8 100.0

P 4

CelebA 73.0 77.5 99.2

P 5

CelebA 74.6 84.7 98.8

P 1

HPCs 57.0 72.0 88.0

For each experiment in Table 1, we train a set of neural network

models that could reveal the target property and a equal-sized

set of models that do not. In each experiment, we generate 4,096

models (2,048 with P and 2,048 with P) as the training set and 512

models (256 with P and 256 with P) as the test set. Note that, in
real life, a model is useful to be shared or released only if it has

reasonable quality. Thus, we only generate models which have

reasonable performance for their classification tasks. For example,

in our experiments, we generate models with more than 90% test

accuracy for the MNIST dataset
4
and models with more than 90%

test accuracy for both classes on the HPCs dataset.

Since the attacker’s goal is to determine whether a given target

model could reveal a property or not (i.e., a binary prediction), a use-

ful meta-classifier should have an accuracy higher than 50%, which

is a random guess. In Table 2, we show the accuracy of different ap-

proaches to infer the target property in each experiment. As we can

4
Since we focus on FCNNs, we train FCNNs on the MNIST dataset to demonstrate

our attack. Better test accuracy on the dataset can be achieved with other type of ML

models.

see from the table, the inference tasks have varying difficulties for

the meta-classifier. Except for the P3Census experiment, the Baseline

approach performs badly on most of the experiments, ranging from

55% to 77% in accuracy. Our Sorting approach always outperforms

the Baseline approach, demonstrating that permutation equiva-

lence is an important source of complexity for the meta-classifier.

We can also see that our Set-Based approach performs even bet-

ter, with a very high accuracy (ranging from 85% to 100%), and a

significant improvement over the baseline, from 55% to 97% in the

P1Census experiment. We believe the excellent performance of the

Set-Based approach can also be attributed to the smaller number of

parameters in the meta-classifier, which make the classifier easier

to train.

In our evaluation, we found that the precision and recall for

each experiment are very similar to the accuracy results. Thus, we

omit the results for precision and recall in Table 2. We do show

the precision and recall results for the P1HPCs experiment and the

P1CelebA experiment in Section 7.5 and Section 7.6.

7.4 Attack Efficiency
In this section, we evaluate the efficiency of the approaches along

two different aspects.

Size of the Meta-training Dataset. As described in Section 4, to

train a meta-classifier, we first need to train a set of shadow classi-

fiers to build a training dataset for the meta-classifier. In Figure 6,

we show the accuracy of the meta-classifier while varying the size

of the meta-training dataset. We can see that our Set-Based ap-

proach can train a meta-classifier with high accuracy using far less

training data than the other two approaches. The Sorting approach

and the Baseline approaches require 2 to 7 times more data than the

Set-Based approach to train a meta-classifier to its highest accuracy.

In inferring properties from large target models, the Set-Based ap-

proach can save much time both in training the shadow classifiers

and in training the meta-classifier.

Number of Meta-classifier Parameters. In Table 3, we show the

number of parameters in the meta-classifiers trained using differ-

ent architectures. For the Baseline and the Sorting approach, the

meta-classifier (Vector) is a neural network which takes the vec-

tor representation as the input. Thus, the parameters are all the

parameters in the neural network. For the Set-Based approach,

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

A
c
c
u
ra

c
y

Meta-training Set Size

Baseline
Sorting

Set-based

(a) Meta-classifier accuracy in P 1

MNIST.

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

A
c
c
u
ra

c
y

Meta-training Set Size

Baseline
Sorting

Set-based

(b) Meta-classifier accuracy in P 2

CelebA.

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

A
c
c
u
ra

c
y

Meta-training Set Size

Baseline
Sorting

Set-based

(c) Meta-classifier accuracy in P 1

HPCs.

Figure 6: The accuracy of the meta-classifier with varying size of the meta-training dataset.

the meta-classifier (Set-Based) uses the DeepSets architecture. The
number of parameters for this meta-classifier is the sum of the

parameters of all the ϕt networks and the ρ network as described

in Section 6.2.

Table 3: A comparison of the number of meta-classifier parameters.

Meta-Classifier Type Census MNIST HPCs CelebA

Vector 1.3M 435.7M 1.0M 35.3M
Set-Based 29.9K 270.7K 29.7K 80.8K

As we can see from Table 3, the meta-classifier for the Set-Based

approach is two or three orders of magnitude smaller in the number

of parameters than the other two approaches. When training meta-

classifiers, the Set-Based approach requires much less memory and

training time than the Sorting approach and the Baseline approach.

7.5 Case study: Inferring Vulnerabilities
In this section, we use the hardware performance counters dataset

as a case study to demonstrate how an attacker can use our approach

to effectively infer potential vulnerabilities of the neural network

model producer.

Hardware performance counters have been used to detect covert

cryptomining in clouds and enterprises [41]. Suppose an enterprise

trains their covert cryptomining detector using neural networks

on the HPCs data collected from their machines, which do not

have patches for the Meltdown and Spectre vulnerabilities applied.

Since these patches have a notable performance impact, we would

expect this fact to affect the performance counter data (indeed,

performance counters have been proposed to detect Meltdown and

Spectre attacks [33, 44]) and thus influence the trained model. The

enterprise may share their covert cryptomining detector with other

parties. An adversary who gets the access to the model could ana-

lyze it to infer whether the company’s machines are vulnerable to

Meltdown and Spectre or not. With such information, the adversary

could perform follow-up attacks against the enterprise.

To demonstrate this attack, we first create a HPCs dataset (un-
patched) as described in Section 7.1 on a machine that is vulnerable

to Meltdown and Spectre (i.e., the operating system of the machine

has not installed the patches for Meltdown and Spectre). The op-

erating system running on the machine is Ubuntu 14.04. Then we

create another HPCs dataset (patched) on the same machine after

the patches have been installed. We train 2048 cryptomining detec-

tors on the unpatched HPCs dataset and another 2048 detectors on

the patched dataset. Thus, we have the ground truth about the vul-

nerability of the training machine. We train meta-classifiers using

different approaches and compare their effectiveness. As shown

in Table 2, the Baseline approach only has 57% accuracy in pre-

dicting whether the model producer’s machine is vulnerable to

Meltdown and Spectre. Our Set-Based approach, however, achieves

88% accuracy in inferring the vulnerabilities. We show the results

of precision and recall in Table 4.

Table 4: Precision and recall results of different approaches in ex-
periment P 1

HPCs. P.: Precision; R.: Recall.

Baseline Sorting Set-Based
P R P R P R

Vulnerable 0.56 0.58 0.71 0.70 0.88 0.87

Not Vulnerable 0.57 0.55 0.71 0.71 0.89 0.90

If the model producer of the cryptomining detector releases

the data collection settings (e.g., CPU type and operating system)

along with the model, then the attacker can just collect his HPCs

dataset using the same configuration. Otherwise, the attacker can

enumerate possible configurations and create HPCs dataset for

each of the configuration. But this is still manageable as there are

limited type of active CPUs and OSes in the market. To simulate this

scenario, we create another HPCs dataset from another machine

with the same configuration as the one used in Section 7.1 to train

the shadow classifiers. The accuracies of the three approaches are

shown in Table 5. Our Set-Based approach can still achieve very

high accuracy (86%).

Table 5: Accuracy of the property inference attack on non-
overlapping datasets.

Experiment Baseline (%) Sorting (%) Set-Based (%)

P 1

HPCs 56.0 71.0 86.0

P 1

CelebA 62.7 73.4 96.3

7.6 Case study: Inferring Training Data
Distribution

The distribution of the training data, in some cases, is also confi-

dential information. For example, a classifier producer could infer

certain hidden distribution of their competitor’s training data to

uncover the secret “sauce” to build more effective classifiers [5].

One can also infer the training data distribution from the released

model to check if it confirms with the model producer’s claim about

the training set. In this section, we demonstrate how our approach

can improve the effectiveness in discovering disproportionate data

distributions for neural networks trained for more complex classifi-

cation tasks.

Face attribute prediction (e.g., smile detection or gender classifi-

cation) is a common machine learning task. In this case study, we

consider a model producer who releases their neural network mod-

els for smile detection and for gender classification. As described

in Table 1, these models are trained on datasets that either have

higher proportions of attractive faces or older faces. We evaluate the

effectiveness of different approaches in discovering such disparities.

However, facial attribute prediction is a very complex task which

requires a large set of face images and a large convolutional neu-

ral network to achieve good performance. Training such models

from scratch requires a large amount of computational resources

while the trained models often give very small, if any, performance

boosts over the existing pre-trained models. For this reason, it is

now a common technique to leverage pre-trained models, such as

the Facenet model [37] or the Deepface model [42], to train one’s

customized classification tasks. In this case study, we consider a

model producer who uses pre-trained models to create their models

for smile detection and gender classification.

As described in Section 7.2, we train the target models using a

pre-trained FaceNet model with its weights held fixed and use the

512-dimensional embeddings generated from it to train a 3-layer

neural network. We train the shadow classifiers using the same

structure and we use the parameters in the 3-layer neural network

as the feature representation in our evaluation. As shown in Table 2,

even though the Baseline approach has reasonable performance

(around 75% accuracy), our Set-Based approach always achieves

near-perfect accuracy in discovering the changed proportions in

the training dataset. We show the results of precision and recall

in Table 6. Besides, as shown in Figure 6, our Set-Based approach

achieves near-perfect accuracy while requiring only about 1/3 as

many shadow classifiers as the Baseline approach. This would save

a great amount of time and resources in performing the inference

tasks as compared with the Baseline approach. Our results show

that our approach is very effective even when the adversary is

privy only to some of the layer’s parameters and knowledge of the

underlying pre-trained network used by the model producer. We

also simulate the scenario in which the adversary only has part of

the CelebA dataset that is non-overlapping with the dataset used by

the model producer. Similarly, as shown in Table 5, our Set-Based

approach can still achieve very high accuracy.

It is interesting to note that disproportionate ratios in seemingly

unrelated attributes such as attractiveness are embedded and can

be discovered with such accuracy in neural network models trained

to classify a person’s gender or detect whether a person is smiling.

Table 6: Precision and recall results of different approaches in ex-
periment P 1

CelebA. P.: Precision; R.: Recall.

Baseline Sorting Set-Based
P R P R P R

Attractive 0.66 0.72 0.83 0.76 1.00 0.99

Unattractive 0.69 0.63 0.78 0.84 0.99 1.00

8 DISCUSSION
8.1 Limitations and Future Work
Other Types of Neural Networks. In this paper, we mainly focus on

fully connected networks. However, fully connected (FC) layers are

widely used in all sorts of neural networks such as convolutional

neural networks. In Section 7.6, we show that we can perform

property inference just using the FC layers trained on the output of

a pre-trained convolutional model. We believe it is possible to apply

our approach to other types of neural networks and to find some

forms of equivalents in other types of computational layers. We

plan to investigate property inference attacks against other types

of computational layers in future work.

Overfitting. As studied in [38], overfitting is a major factor that

causes a model to be vulnerable to membership inference attacks.

However, it is not clear whether overfitting of target classifiers has

any role in the property inference attack. In our case, as discussed

in Section 7.3, all our trained models have good generalizability, as

measured by the accuracy on the test sets. We plan to study the

relationship between overfitting and property inference in more

detail in the future.

Membership Inference. Membership inference and property infer-

ence are two different but related problems. One may propose to

use membership inference to infer all the members in the training

dataset and then use them to infer the properties. However, cur-

rent state of art for membership inference usually only finds some

members with a relatively high degree of uncertainty. It is also not

practical to infer all the members in a large dataset such as CelebA.

Property inference, instead, focuses on the property directly. We

plan to study the relationship between membership inference and

property inference in future work.

Multi-label or Regression based Properties. We currently only study

binary-class property inference. However, a more powerful attack

would entail predicting from multiple classes, such as inferring

which operating system a model provider of a mining detector is

using, or performing a regression task, such as predicting the ratio

of genders used to train a smile detector. Our preliminary results

show promise for our approach to be extended for multi-class and

regression tasks but we leave detailed analysis for future work.

Generating Training Data for Shadow Models. To train the meta-

classifier, the attacker first needs training data to train the shadow

classifiers. Although generating the training data is not the focus of

this work, there are many existing approaches to facilitate the gen-

eration of training data. For example, if the attacker does not have

access to similar training dataset (e.g., public accessible datasets like

CelebA) or knowledge of the dataset generation technique, he could

generate synthetic training data for the target model using model-

based synthesis [38]. We leave experiments using this technique of

data generation for future work.

8.2 Alternative Approaches
In addition to neuron sorting and set-based representation, we also

briefly investigate several other alternative approaches. We discuss

some of our exploration of these alternative approaches.

Augmentation. In machine learning, data augmentation is a com-

mon strategy for improving generalizability of ML models. The

training dataset is expanded with new data points generated using

deterministic or randomized transformations. For example, data

augmentation for images could be achieved by adding rotated or

noisy images to the dataset. Similarly, in our case, to deal with

node permutation equivalence, we could generate different permu-

tation equivalents to augment the meta-classifier training dataset so

that it generalizes across these equivalents. However, we find that

this approach does not work well in practice. It only has marginal

improvement over the baseline approach. One reason is that, as

discussed in Section 5, the number of permutation equivalents is

superexponential and it is therefore impractical to generate all the

permuted versions of the classifiers to cover the huge search space.

Graph-based Representation. As we can see from Figure 2 and

Figure 5, a neural network is often visualized as a graph. Thus, it

is more intuitive to represent a neural network as a graph where

all neurons from all layers (including the input and output layer)

are treated as nodes with directed edges pointing to the nodes in

the next layer. The weight of the edge between two nodes in the

graph is derived from the weights connecting the two correspond-

ing neurons in the neural network. Similar to the case for set-based

representations, the meta-classifier needs to be able to process

and interpret the proposed graph structure. We experimented with

building a meta-classifier using the Graph Convolutional Network

(GCN) proposed by Kipf et al. [20]. However, we find this approach

has mixed performance: it worked well for a few selected infer-

ence tasks and had poor performance for others. Additionally, it

takes much more time and resources to train the meta-classifier

compared to our other proposed approaches. We believe that the

poor performance for the inference tasks is because the GCN archi-

tecture does not address permutation equivalents directly which

take the form of isomorphisms in the graph-based representation.

GCNs may also be a poor fit for this task as they were designed for

analysis of social networks, which have a much sparser and less

regular structure than deep neural networks.

Accuracy-based Classification. It is reasonable to expect that a

classifier trained on a dataset with property P will have a better

performance on test datasets that also have property P compared

to those that have property P (indeed, this is a frequently voiced

concern regarding the fairness of machine learning algorithms

trained on biased data sets). This suggests that a strategy to infer a

property of the training dataset by analyzing the target classifier’s

performance on test datasets that variously have and do not have

the property P . One advantage of such strategy would be that it

could be applied in a black-box setting. To investigate this, we

trained 2048 classifiers on the noisy version of the MNIST data

set and 2048 on the clean version (as described in Section 7.1). We

then evaluated the performance of each classifier on a clean and a

noisy test set, plotting the results in Figure 7. We can observe that

there is a slight trend for classifiers trained with a property P to

0.940 0.945 0.950 0.955 0.960 0.965
Accuracy on noisy MNIST images

0.940

0.945

0.950

0.955

0.960

0.965

Ac
cu

ra
cy

 o
n
cle

ar
 M

NI
ST

 im
ag

es

Classifier trained on noisy MNIST
Classifier trained on clean MNIST

Figure 7: Comparing the accuracy on noisy (x axis) and clean (y axis)
test sets of classifiers trained on noisy (red) or clean (blue) training
sets.While there is a slight trend for classifiers trained on clean data
to perform marginally better on clean data, and vice versa, there is
no strong separation between the two types of classifier.

perform better on property P ; however, the difference between the

two distributions is very marginal.

To further investigate how well this method could be used for

property inference, we trained a k-nearest neighbor (kNN) meta-

classifier using these 4096 2-dimensional points as a labeled training

set. We then trained 256 more classifiers each on noisy and clean

MNIST training sets, respectively, and evaluated the performance

of the kNN meta-classifier at property inference. We repeated the

same experiment with several properties, comparing the results

to our Sorting and Set-Based approaches. The results, shown in

Table 7, show that the accuracy-based kNN classifier does not even

consistently outperform the baseline, and in general performsworse

than either of our approaches. It is possible, however, that the

accuracy of a classifier on sets with and without a property could

be a useful additional input to a classifier that also uses the model

parameters; we plan to study this in future work.

Table 7: Accuracy of the property inference attack using kNN on
classifier accuracies compared to other approaches.

Experiment Baseline (%) Sorting (%) Set-Based (%) kNN (%)

P 1

Census 55.0 89.0 97.0 60.0

P 2

Census 63.0 85.0 100.0 84.0

P 3

Census 93.0 100.0 100.0 75.0

P 1

MNIST 58.0 65.0 85.0 56.0

8.3 Possible Defenses
Property inference attacks leverage the similarity in models’ pa-

rameters to predict if a target model could reveal some property.

To defend against such an attack, the model producer could manip-

ulate the parameters of the model directly or indirectly to make it

“different” from the shadow models that an attacker uses to train

the meta-classifier. We discuss possible defenses against property

inference attacks which are based on this principle.

Using Node Multiplicative Transformations. One of our observa-

tions is that, for a neuron with an activation function of ReLU or

LeakyReLU, multiplying the weights and bias of the neuron by

some constant and dividing the weights connecting it to the next

layer by the same constant will result in the same output of the

neural network. Thus, we could randomly pick some neurons in

each layer and then perform this transformation using a random

constant to each of the selected neurons. We tested this idea with

the CelebA dataset. The results show that the attack accuracy of

our approaches decreases as we increase the fraction of perturbed

neurons. However, this defense can only be used by deep neural

networks that use ReLU or LeakyReLU as activation function.

Adding Noisy Data to the Training Set. Another possible approach

to defend against this attack is to add some noisy data to the training

set. The model producer could add noise by flipping the labels

of some training samples. This will affect the model parameters

which increases the difficulty of the property inference task. In our

HPCs dataset experiment, we randomly flipped the labels of 5% of

the training data for the target classifiers. While this caused the

test accuracy of the target classifiers to drop to 90%, the inference

accuracy of our set-based approach dropped significantly from 88%

to 73%. However, this defense is unlikely to be deployed by model

producers as adding noisy data might hamper the effectiveness and

consequently, the utility of the model.

Encoding Arbitrary Information. Deep neural networks have huge

capacity for “memorizing” arbitrary information [51]. Song et al. [39]

show that they are able to encode a significant amount of infor-

mation about the training set in a neural network model while

maintaining the model’s quality and generalizability. The attack

involves updating the model parameters to remember this extra

information. While the attack followed a different setting than ours,

we think it could be employed instead as a potential defense against

our attack. Model producers could use their techniques to encode

some arbitrary information in the model, making the parameters

look different from those of the shadow classifiers, possibly ham-

pering the meta-classification task.

9 RELATEDWORK
Assorted inference attacks have previously been launched on ma-

chine learning models with varying degrees of success. Ateniese

et al. [5] first proposed the concept of a property inference attack,

which they demonstrated against SVM and HMM models. Our

experiments show that the direct application of their techniques

does not succeed when using neural networks, but our methods

for permutation invariant representations make the attack effective

in practice. Apart from property inference, there are a number of

other privacy threats against ML models.

Membership inference attacks against ML models aim to infer

whether a specific data record was in or out of the target model’s

training dataset. Similar to our attack strategy, Shokri et al. [38]

train multiple shadow models to help train an attack classifier,

which ultimately is used to perform membership inference for the

target model. Hayes et al. [18] use generative adversarial networks

to perform membership inference attacks against generative mod-

els. However, membership inference focuses on the privacy of an

individual record, while the concept of information leakage in our

work is more general. It concerns any type of confidential informa-

tion revealed about the training dataset beyond the predictions the

model is intended to perform.

Model inversion attacks aim to infer the missing information

for a data record using an ML model and known incomplete infor-

mation about the data record. Fredrikson et al. [16] invert a linear

regression model to infer patients’ genomic markers given their

corresponding output from the model and auxiliary demographic

information about them. In their following work [15], they invert

decision trees and neural networks using predicted confidence val-

ues to leak confidential information about a data record. Similar

to the membership inference attacks, this type of attack also fo-

cuses on individual records. Recent work by Yeom et al. [49] show

that membership inference attacks and model inversion attacks are

deeply related and are both sensitive to overfitting of target models.

Model extraction attacks seek to obtain the parameters of a

black-box ML model given the outputs it predicts for a chosen set

of inputs. Tramèr et al. [43] demonstrate that they can successfully

extract popular model types including logistic regressions, SVMs,

and deep neural networks, against production MLaaS providers. Oh

et al. [31] show that they can successfully reverse-engineer internal

information such as the architecture and hyperparameters of black-

box neural network models. These attacks can be a stepping stone

for our attack. For example, an adversary could usemodel extraction

to obtain a near-equivalent model of the target black-box model,

then perform property inference on the white-box model to infer

confidential properties. Wang et al. [46] propose a framework to

steal the hyperparameters in the objective functions of different

machine learning algorithms including neural networks. If we treat

the hyperparameter for a neural network, such as mini-batch size,

as a property of the training process, our approach can also be used

to infer the hyperparameter.

Beyond data inference, MLmodels have been shown to be subject

to a variety of other attacks, such as, adversarial attacks on object

detectors [27] or classifiers [13, 29, 30, 32], malicious algorithms

which discreetly memorize the training data samples [39], and

malicious classifiers which mislead the classifier to misbehave in

presence of an input trigger [25]. Our property inference attack on

deep neural networks adds to this growing set of risks that users of

machine learning must consider.

10 CONCLUSION
We considered the problem of a property inference attack on fully

connected neural network models, and developed a new concept—

permutation invariance—to address the complexity of this task.

Specifically, we developed two approaches leveraging permutation

invariance, neuron sorting and set-based representation, to infer

global properties of the training datasets that the model producer

did not intend to share.We showed that our approaches are effective

at inferring various data properties on several real-world datasets.

We also showed the practical impact of our work through two case

studies: identifying whether machines used to train a cryptomining

detector model were patched for a vulnerability, and detecting

unbalanced training dataset distributions.

We also identified a number of directions for future work, in-

cluding extending our work to neural network layers that are

not fully connected, performing multi-class and regression meta-

classification tasks, and developing countermeasures to the prop-

erty inference attacks. We also believe that the permutation in-

variance property may have other applications beyond property

inference, perhaps in quality assurance of FCNN models.

ACKNOWLEDGEMENTS
This work was supported in part by NSF CNS 13-30491, NSF CNS

14-08944, and DOE 0E0000780. The views expressed are those of

the authors only. We appreciated valuable insights from our CCS

reviewers and our shepherd, Giuseppe Ateniese.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 308–318. https://doi.org/10.1145/

2976749.2978318

[2] Amazon. 2018. Machine Learning at AWS. Retrieved August 15, 2018 from

https://aws.amazon.com/machine-learning/

[3] Android Developers. 2018. Android Neural Networks API. Retrieved August 15,

2018 from https://developer.android.com/ndk/guides/neuralnetworks/

[4] Apple Inc. 2018. Core ML. Retrieved August 15, 2018 from https://developer.

apple.com/documentation/coreml

[5] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani,

Domenico Vitali, and Giovanni Felici. 2015. Hacking smart machines with

smarter ones: How to extract meaningful data from machine learning classifiers.

International Journal of Security and Networks 10, 3 (2015), 137–150.
[6] BigML Inc. 2018. BigML. Retrieved August 15, 2018 from https://bigml.com/

[7] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy

Disparities in Commercial Gender Classification. In Proceedings of the 1st Confer-
ence on Fairness, Accountability and Transparency (Proceedings of Machine Learn-
ing Research), Sorelle A. Friedler and Christo Wilson (Eds.), Vol. 81. PMLR, New

York, NY, USA, 77–91. http://proceedings.mlr.press/v81/buolamwini18a.html

[8] Caffe. 2018. Caffe Model Zoo. Retrieved August 15, 2018 from http://caffe.

berkeleyvision.org/model_zoo.html

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous

computing. In IEEE International Symposium onWorkload Characterization (IISWC
2009). 44–54.

[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of

cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162–1174.

[11] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,

Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of online

malware detection with performance counters. In ACM SIGARCH Computer
Architecture News, Vol. 41. ACM, 559–570.

[12] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml

[13] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul

Prakash, Amir Rahmati, and Dawn Song. 2017. Robust physical-world attacks on

machine learning models. arXiv preprint arXiv:1707.08945 (2017).
[14] Eric Florenzano. 2016. Gadientzoo. Retrieved August 15, 2018 from https:

//www.gradientzoo.com/

[15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1322–1333.

[16] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas

Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing. In USENIX Security Symposium. 17–32.

[17] Google Cloud. 2018. Cloud Machine Learning Engine. Retrieved August 15,

2018 from https://cloud.google.com/ml-engine/

[18] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. 2017.

LOGAN: evaluating privacy leakage of generative models using generative ad-

versarial networks. arXiv preprint arXiv:1705.07663 (2017).
[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

40th IEEE Symposium on Security and Privacy (S&P’19).
[22] Yann LeCun, Corinna Cortes, and Christopher J Burges. 2018. The MNIST

database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

[23] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic reverse en-

gineering of data structures from binary execution. In Proceedings of the 11th
Annual Information Security Symposium. CERIAS-Purdue University, 5.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In 27th USENIX Security Symposium (USENIX Security 18).
[25] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang

Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In 25nd
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-221, 2018. The Internet Society.

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2018. Large-scale

CelebFaces Attributes (CelebA) Dataset. Retrieved August 15, 2018 from

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[27] Jiajun Lu, Hussein Sibai, and Evan Fabry. 2017. Adversarial Examples that Fool

Detectors. arXiv preprint arXiv:1712.02494 (2017).
[28] Microsoft. 2018. Azure Machine Learning. Retrieved August 15, 2018 from

https://azure.microsoft.com/en-us/services/machine-learning-studio/

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. 2017. Universal adversarial perturbations. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[30] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.

Deepfool: a simple and accurate method to fool deep neural networks. In Pro-
ceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[31] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. 2018. Towards

Reverse-Engineering Black-Box Neural Networks. International Conference on
Learning Representations (2018).

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 506–519.

[33] Cody Pierce. 2018. Detecting Spectre And Meltdown Us-

ing Hardware Performance Counters. Retrieved August

15, 2018 from https://www.endgame.com/blog/technical-blog/

detecting-spectre-and-meltdown-using-hardware-performance-counters

[34] PyTorch core team. 2018. Pytorch. Retrieved August 15, 2018 from http:

//pytorch.org/

[35] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.

The annals of mathematical statistics (1951), 400–407.
[36] F. Rosenblatt. 1958. The Perceptron: A Probabilistic Model for Information

Storage and Organization in The Brain. Psychological Review (1958), 65–386.

[37] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A

unified embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 815–823.

[38] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In IEEE Symposium
on Security and Privacy (SP). IEEE, 3–18.

[39] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Machine

Learning Models that Remember Too Much. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 587–601.

[40] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised

benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

[41] Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mohammad Ahmad, Carl

Gunter, Fareed Zaffar, Matthew Caesar, and Nikita Borisov. 2017. Mining on

Someone Else’s Dime: Mitigating Covert Mining Operations in Clouds and Enter-

prises. In International Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 287–310.

[42] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701–1708.

[43] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing Machine Learning Models via Prediction APIs. In USENIX Security
Symposium. 601–618.

[44] Trend Micro. 2018. Detecting Attacks that Exploit Meltdown and

Spectre with Performance Counters. Retrieved August 15, 2018

from https://blog.trendmicro.com/trendlabs-security-intelligence/

detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/

[45] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:

networked science in machine learning. CoRR abs/1407.7722 (2014).

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://aws.amazon.com/machine-learning/
https://developer.android.com/ndk/guides/neuralnetworks/
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://bigml.com/
http://proceedings.mlr.press/v81/buolamwini18a.html
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
http://archive.ics.uci.edu/ml
https://www.gradientzoo.com/
https://www.gradientzoo.com/
https://cloud.google.com/ml-engine/
http://yann.lecun.com/exdb/mnist/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://www.endgame.com/blog/technical-blog/detecting-spectre-and-meltdown-using-hardware-performance-counters
https://www.endgame.com/blog/technical-blog/detecting-spectre-and-meltdown-using-hardware-performance-counters
http://pytorch.org/
http://pytorch.org/
https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/
https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/

[46] Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing Hyperparameters in

Machine Learning. In 2018 IEEE Symposium on Security and Privacy (SP).
[47] Xueyang Wang and Ramesh Karri. 2013. Numchecker: Detecting kernel control-

flow modifying rootkits by using hardware performance counters. In Proceedings
of the 50th Annual Design Automation Conference. ACM, 79.

[48] Perf Wiki. 2018. Linux profiling with performance counters. Retrieved August

15, 2018 from https://perf.wiki.kernel.org/index.php/Main_Page

[49] Samuel Yeom, Matt Fredrikson, and Somesh Jha. 2017. The Unintended Con-

sequences of Overfitting: Training Data Inference Attacks. arXiv preprint
arXiv:1709.01604 (2017).

[50] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in Neural
Information Processing Systems. 3394–3404.

[51] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

2017. Understanding deep learning requires rethinking generalization. In 5th
International Conference on Learning Representations (ICLR).

A META-TRAINING ALGORITHM
In Algorithm 3, we show our algorithm to train the meta-classifier.

Algorithm 3: Training of the meta-classifier.

Input: An array of training sets D, an array of labels l , an
array of training configurations E

Output: The trained meta-classifier

1 DMC ← {∅}

2 for i ← 1 to |D| do
3 fi ← train(Di ,Ei)

4 Fi ← getFeatureRepresentation(fi)

5 DMC ← DMC ∪ {Fi , li }

6 MC ← train(DMC)

7 returnMC

B PROOF OF PERMUTATION EQUIVALENCE
We first describe the notations we use for the proof. For simplicity,

we denote the output computed by a node nti on input x as nti (x).
Likewise, we denote the output computed by layer ht as ht (x). That
is:

ht (x) = (n
t
1
(x),nt

2
(x), . . . ,nt

|ht |
(x))

Now, a node permutation on layer ht involves permutation of the

neurons in layer ht to obtain σ (ht) and permuting the weights of

each neuron in layer ht+1 so the weights of node nt+1i are now

σ (wt+1
i∗). For ease of notation, we denote the outputs of this trans-

formed layer σ (ht) for input x to be σ (ht)(x) and likewise, we de-

note the output of the neuron nt+1i after permutation of its weights

to be σ (nt+1i)
In order to prove Proposition 5.1, it would suffice to show the

following: For any node permutation applied on layer ht , the output
of layer ht+1 remains unchanged for any input x . Since node permu-

tation does not affect any of the layers before ht , we can consider

the input to ht to be the same regardless of the permutation. Ad-

ditionally, since node permutation does not affect the layers after

ht+1, we can rest assured that the output of the neural network

remains the same as long as the output of layer ht+1 remains un-

changed. As the order of nodes in layer ht+1 does not change after
node permutation, we only need to prove that the output of every

node in layer ht+1 remains unchanged for any input x .
Hence, we need to prove that, for all x ,

nt+1i (ht (x)) = σ (nt+1i)(σ (ht (x)))

It can be proved with the following equations:

nt+1i (ht (x)) = γ (w
t+1
i∗ · ht (x) + b

t+1
i)

= γ ((
∑
j
wt+1
i j ntj (x)) + b

t+1
i)

= γ ((
∑
j
wt+1
iσ (j)n

t
σ (j)(x)) + b

t+1
i)

= σ (nt+1i)(σ (ht)(x))

C HARDWARE PERFORMANCE COUNTERS
DATASETS

In Table 8, we list the cryptocurrency mining applications we pro-

filed in creating our hardware performance counters datasets. In

total, we profiled 13 different cryptocurrencies with 13 different

proof-of-work (PoW) algorithms.

Table 8: The cryptocurrency mining applications we profiled along
with their PoW algorithms.

Cryptocurrency Proof-of-Work Algorithm
Litecoin Scrypt

Bitcoin SHA256

Bytecoin CryptoNight

Dashcoin CryptoNight

QuazarCoin CryptoNight

VertCoin Lyra2rev2

FeatherCoin Neoscrypt

Dashcoin X11

Auroracoin Qubit

Myridacoin Yescrypt

Digibyte Skein

Digibyte Myr-gr

Groestlcoin Groestl

Maxcoin Keccak

Zcoin Lyra2z

In Table 9, we list the non-mining applications we profiled in

creating our hardware performance counters datasets.

https://perf.wiki.kernel.org/index.php/Main_Page

Table 9: Non-mining applications we profiled along with the bench-
mark suite they belong to.

Application Benchmark
stencil Parboil

tpacf Parboil

lbm Parboil

cutcp Parboil

histo Parboil

mri-q Parboil

backprop Rodinia

euler3d_cpu Rodinia

particle_filter Rodinia

pathfinder Rodinia

datagen Rodinia

heartwall Rodinia

kmeans Rodinia

lavaMD Rodinia

leukocyte Rodinia

lud_omp Rodinia

srad_v1 Rodinia

srad_v2 Rodinia

sc_omp Rodinia

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Networks
	2.2 DeepSets
	2.3 Hardware Performance Counters

	3 Problem Statement
	4 Property Inference Attack Strategy
	5 Permutation Equivalence
	6 Our Approach
	6.1 Neuron Sorting
	6.2 Using Set-based Representation

	7 Evaluation
	7.1 Datasets
	7.2 Experiment Setup
	7.3 Attack Effectiveness
	7.4 Attack Efficiency
	7.5 Case study: Inferring Vulnerabilities
	7.6 Case study: Inferring Training Data Distribution

	8 Discussion
	8.1 Limitations and Future Work
	8.2 Alternative Approaches
	8.3 Possible Defenses

	9 Related work
	10 Conclusion
	References
	A Meta-training Algorithm
	B Proof of Permutation Equivalence
	C Hardware Performance Counters Datasets

