
WebEvo: Taming Web Application Evolution via Detecting
Semantic Structure Changes

Fei Shao
Department of Computer and Data

Sciences
Case Western Reserve University

United States of America
fxs128@case.edu

Rui Xu
Department of Computer and Data

Sciences
Case Western Reserve University

United States of America
rxx100@case.edu

Wasif Haque
Department of Computer Science
University of Texas at Dallas
United States of America
wah180000@utdallas.edu

Jingwei Xu
School of Electronic Engineering and

Computer Science
Peking University

China

Ying Zhang
School of Electronic Engineering and

Computer Science
Peking University

China
zhangying06@sei.pku.edu.cn

Wei Yang
Department of Computer Science
University of Texas at Dallas
United States of America
wei.yang@utdallas.edu

Yanfang Ye
Department of Computer and Data

Sciences
Case Western Reserve University

United States of America
yanfang.ye@case.edu

Xusheng Xiao
Department of Computer and Data

Sciences
Case Western Reserve University

United States of America
xusheng.xiao@case.edu

ABSTRACT

The development of Web technology and the beginning of the Big
Data era have led to the development of technologies for extracting
data from websites, such as information retrieval (IR) and robotic
process automation (RPA) tools. As websites are constantly evolv-
ing, to prevent these tools from functioning improperly due to web-
site evolution, it is important to monitor the changes in websites
and report them to the developers and testers. Existing monitoring
tools mainly use DOM-tree based techniques to detect changes in
the new web pages. However, these monitoring tools incorrectly re-
port content-based changes (i.e., web content refreshed every time
a web page is retrieved) as the changes that will adversely affect
the performance of the IR and RPA tools. This results in false warn-
ings since the IR and RPA tools typically consider these changes
as expected and retrieve dynamic data from them. Moreover, these
monitoring tools cannot identify GUI widget evolution (e.g., moving
a button), and thus cannot help the IR and RPA tools adapt to the
evolved widgets (e.g., automatic repair of locators for the evolved
widgets). To address the limitations of the existing monitoring tools,
we propose an approach, WebEvo, that leverages historic pages

Xusheng Xiao is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464800

to identify the DOM elements whose changes are content-based
changes, which can be safely ignored when reporting changes in
the new web pages. Furthermore, to identify refactoring changes
that preserve semantics and appearances of GUI widgets, WebEvo
adapts computer vision (CV) techniques to identify the mappings of
the GUI widgets from the old web page to the new web page on an
element-by-element basis. Empirical evaluations on 13 real-world
websites from 9 popular categories demonstrate the superiority of
WebEvo over the existing DOM-tree based detection or whole-page
visual comparison in terms of both effectiveness and efficiency.

CCS CONCEPTS

• Software and its engineering → Software evolution; Soft-
ware testing and debugging.

KEYWORDS

Web Application Evolution; DOM-Tree Analysis; Computer Vision

ACM Reference Format:

Fei Shao, Rui Xu, Wasif Haque, Jingwei Xu, Ying Zhang, Wei Yang, Yanfang
Ye, and Xusheng Xiao. 2021. WebEvo: Taming Web Application Evolution
via Detecting Semantic Structure Changes. In Proceedings of the 30th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

’21), July 11–17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3460319.3464800

1 INTRODUCTION

With the development of web technology and the beginning of the
Big Data era, websites have become increasingly rich with various
types of content, which has led to the development of technologies
for extracting data from websites. Several Information Retrieval (IR)

https://doi.org/10.1145/3460319.3464800
https://doi.org/10.1145/3460319.3464800

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

tools are constantly reading data from web pages and using them
to power different applications. These tools depend on the location
of the data to be extracted on a given web page. The common
positioning techniques for elements in web pages include XPath
(XML Path Language) positioning [45], CSS (Cascading Style Sheets)
selector positioning [46], and other simple positioning techniques
based on different attributes. In web applications, the elements on
the web pages are often changed due to requirements change or
get displaced due to insertion or deletion of other elements. Such
changes can cause these positioning techniques to fail to locate the
elements to extract data from.

Besides IR tools, robotic process automation (RPA) tools [43] that
leverage automated scripts to automate the tasks in the Graphical
User Interface (GUI)s of applications are also gaining attentions
from industry [1, 44], and web application testing tools [6] also use
automated scripts to verify the proper functioning of web applica-
tions. The automated scripts used by web testing and RPA automate
manual operations performed on the web application’s GUI, such
as sending click events, filling in and submitting forms. Despite
their popularity, such automated tasks and tests are prone to fail-
ure due to simple structural changes in a web page. Researchers
have identified web element locators to be the main reason for
the failure of test scripts [18, 41]. Due to changes in a web page
structure, elements on a web page can move to different locations
within the page or get deleted, which can cause task failures, where
the automated tasks fail to deliver their expected results, and test

breakages - where the tests raise exceptions that do not reflect the
presence of a bug.

As addressing these web application evolution issues by manual
maintenance is labor-intensive and time consuming, it is important
to develop monitoring tools that can automatically identify the
website changes that can potentially stop IR tools and test scripts
from functioning properly. Existingmonitoring tools [18, 22]mainly
adopt DOM-tree based techniques, which detects website changes
by analyzing the differences in the DOM structures of the new and
the old web pages. Considering only the differences in the DOM
of web pages makes the techniques susceptible to high number of
false positives, since IR and RPA tools expect some DOM elements
to be constantly changed (e.g., changes of weather values) and
extract the content from these elements as the new data. Besides
DOM-tree based techniques, the state-of-the-art web test repair
tool Vista’s [41] also leverages computer vision (CV) techniques
to identify changed elements that preserve their appearances in
new web pages, and repair test scripts to use the updated locators
of the changed elements. However, their adopted template-based
matching technique [28, 38] compares the screenshots of whole
web pages, which is also prone to false positives since the precision
of the technique is greatly affected by background colors and the
appearance of other web elements that are close to the changed
elements.

Towards developing an automated tool for detecting changes in
websites, we identify two technical challenges.
• ① The first challenge is determining the type of changes that can
cause IR and RPA tools to break and identifying the changes on
a web page. We observe that there are two types of web page
changes - content-based changes and semantic structure changes.

We define content-based changes as DOM elements whose con-
tent being constantly updated based on what a web server de-
livers to the client browser, such as stock prices, weathers, and
advertisements. This type of changes are represented as DOM
subtrees rooted in some unchanged elements (e.g., the <div> that
holds the weathers). As IR and RPA tools typically locate these
changes using the unchanged elements, content-based changes
usually do not cause task failures. As opposed to content-based
changes, semantic structure changes refer to element changes
that alter the underlying structure of a web page. Such changes
to a web page or parts of a web page are the root cause of ele-
ment locators failing to find new locations of modified or deleted
elements. An illustrated example is in Section 2.

• ② The second challenge relates to using CV techniques to per-
form visual analysis on the web elements. Sometimes an evolved
web page may move a link to a different location (e.g., moving
to another <div> element) or change the structure and attributes
of a textbox (e.g., updating the name attribute) but preserves
its semantics and appearance. Such changes often result in the
changes of the locators for these elements. It is important to map
these changed elements to the original elements in the old web
pages, so that IR and RPA tools that operate on the original ele-
ments can be automatically fixed by using the mappings. As the
structures of the changed elements and the original elements are
generally different, DOM-tree based techniques often consider
the changed elements as new elements and cannot find the cor-
rect mappings. For example, an element that changes its tag from
<p> to <div> but keeps other attributes intact (i.e., preserving
semantics and appearance) will be identified by DOM-tree based
techniques as a new element, producing a false positive and a
false negative (i.e., not able to detect the tag update).
To address the above challenges, we propose WebEvo, an au-

tomated web monitoring tool that detects DOM elements with
semantic structure changes. WebEvo first generates candidates for
changed elements by comparing the DOM trees of old and new web
pages, including identifying new, updated, and deleted elements. To
address the challenge ①, WebEvo leverages historic web pages of
the old web page to identify the elements whose text and images are
different across historic web pages as content-based changes. The
content-based changes are then filtered from the candidate changed
elements. To address the challenge ②, rather than analyzing the
screenshots of whole web pages, WebEvo obtains the screenshots
of the changed elements and combines both text similarities and
image similarities to identify the mappings between the elements
in the old and new web pages. In this way, our fine-grained analy-
sis that compares the screenshots on an element-by-element basis
minimizes the noises brought by background images and nearby
elements, and the combination of text similarity and image simi-
larity can correctly create mappings even if many elements in the
new web page have similar appearances.

WebEvo is evaluated on 13 real-world websites from 9 popular
categories [2–4]. For each website, we choose a target web page, an
evolved page, and three history pages to detect changed elements.
Our results show that WebEvo is highly effective in detecting
the changed elements, achieving an average precision of 0.91, an
average recall of 0.79, and an average 𝐹1 score of 0.84. We also

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 1: A new link in www.w3schools.com

Figure 2: New social links in www.imdb.com

compare WebEvo against a DOM-tree based technique [18, 22] and
Vista [41], the state-of-the-art visual test repair tool. The results
show that WebEvo is significantly more effective than the DOM-
tree based technique, which achieves a 𝐹1 score of 0.50. For the
comparison with Vista, we compare the detection precision for
only the deleted and the updated elements, excluding the added
elements. This is because Vista finds the matched elements in the
new web pages for the elements in the old web pages, and thus
Vista cannot detect added elements in the new web pages. The
comparison results show that Vista achieves a 𝐹1 score of 0.39,
which is much worse than WebEvo’s 𝐹1 score (0.84). Such results
demonstrate the superiority of WebEvo over the state-of-the-art
techniques. Finally, we also compare the runtime performance of
WebEvo and Vista, and the results show that WebEvo’s analysis
time is averagely 42.01% less than Vista’s. This shows that Vista’s
visual search on the whole web page requires significantly more
time than WebEvo’s element-wise visual search. The tool and the
results are available publicly at the project website [39].

Our paper makes the following contributions:
• WebEvo is thefirst technique that filters content-based changes
and detects only semantic structure changes for evolving web
pages.

• WebEvo includes a novel technique that analyzes historic web
pages to detect content-based changes.

• WebEvo includes a novel semantics-based technique that com-
bines both text similarity and image similarity to create mappings
for the changed elements in new web pages.

• We curate a valuable dataset from 13 popular web pages with
the ground truth of changed elements [39], which can help the
community to replicate our research and support future research.

• We conduct an empirical evaluation of WebEvo on the 13 pop-
ular websites in identifying changed elements, demonstrating
the superiority over the state-of-the-art techniques, DOM-based
detection and Vista, in terms of detection accuracy and runtime
performance.

2 MOTIVATING EXAMPLE

In this section, we present several examples that motivate the design
of WebEvo to detect semantic structure changes, filter content-
based changes, and identify mappings in new web pages using
semantics-based visual search.
DOM-based Evolution. Browsers adopt the HTML Document
Object Model (DOM) to organize and render the Graphic User
Interfaces (GUIs) of web pages. DOM is based on XML, which rep-
resent GUI objects (e.g., buttons, hyper links, and text labels) as
XML elements and the relationships among these elements as a
tree (i.e., the hierarchy of XML elements). Based on the DOM hi-
erarchy, XPath is used to find the location of any element on a
webpage. As web application evolves, the changes of the GUIs will
be reflected by the changes in DOM elements and the added/delet-
ed/updated web elements can be identified by analyzing the DOM
tree of the web pages. For example, in Figure 1, the old web page
of www.w3schools.com at the top contains three hyper links in the
banner, where the last link is “EXAMPLES” and its XPath locator
is /html/body/div[4]/div/a[3]; the new web page at the bottom
adds a new hyper link called “EXERCISES”, and its XPath locator is
/html/body/div[4]/div/a[4]. Consider another example web page
of www.imdb.com shown in Figure 2. As shown in the highlighted
areas, the new web page contains more social links, which use
more images to represent the new links. While more links are used,
the XPath for the web element that holds these links remains un-
changed, being /html/body/div[3]/div/div[1]/div[2]/div[2]/ul/li[4].
Semantic Structure Changes. In web pages, many web elements
are updated constantly due to different purposes such as weather,
stock market indicator, news and advertisements. These changes
usually are simple content-based changes, such as news headlines,
articles and images being updated, which preserve the semantic
structures of the web pages and thus will not cause problems for
RPA tools or test scripts. On the other hand, there are changes that
can alter the semantics expressed by certain parts of a web page.
We refer to this type of changes as semantic structure changes.

Figure 4(a) shows the yahoo finance website from March, 2013,
and Figure 4(b) shows the same web page from a few days later,
where the contents - headlines, images, exchange rates - have
changed but the semantic structure of the web page has remained
the same. The content-based changes are highlighted within green
rectangles. Finally, Figure 4(c) shows the evolved web page from
November, 2013, with the currency ticker moving to the top of
the page and being displayed horizontally (shown within the red
rectangles), changing the semantics expressed by that part of the
web page. Due to this change, a tool monitoring stock prices or
exchange rates from the web page may no longer function as in-
tended. Therefore, it is important to detect web element changes
that change the semantic structure of a web page.
Mapping Elements in New Web Pages. Instead of DOM-based
updates, the evolution of web elements may cause the locators
of some elements used by RPA tools to be changed. As the DOM
structures of these elements can be very different in new web pages,
existing techniques [41] adapt CV techniques to detect similar im-
ages for detecting such changes. However, considering only im-
ages may not be sufficient. For example, in Figure 3, the “LEARN
W3.CSS” section in www.w3cschools.com has a new text content,

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

Figure 3: Mapping elements to the evolved page of

www.w3schools.com

(a) Web page showing news headlines and a

real-time stock price / currency ticker

(b) Same web page showing changed content

(green rectangles) but same overall structure

(c) Evolved web page showing semantic struc-

ture changes (red rectangle)

Figure 4: Content-based and semantic structure changes on

a website

and the “LEARN PHP” section changes the display of the text con-
tent from two lines to one line. If only image similarity is used to
detect these changes, the changes will be considered as two new
web elements are added, instead of one updated element (i.e., the

“LEARN W3.CSS” section), resulting in inaccurate detection. This
inspired us to consider a synergy approach that first compares the
text similarity followed by image similarity comparison, which
could significantly improve the accuracy of finding the mappings
for the changed web elements.

3 DESIGN OF WEBEVO

3.1 Overview

We illustrate the overview of WebEvo in Figure 5. Our approach
consists of twomainmodules, namely, the Semantic Structure Change

Detectionmodule and the Semantic Visual Searchmodule. In the first
module, using old and new versions of a web page as inputs, we de-
tect all changed web elements, then filter out content-based changes
and output semantic structure changes. This module first performs
DOM-tree based Change Detection by comparing the DOM trees of
two pages to find content-based changes and structural changes.
Then the detected changes are further pruned via our History-based
Semantic Structure Change Detection technique to output only se-
mantic structure changes. Finally, these detected changes are used
as input to our semantics-based visual search module, which per-
forms element-wise semantics comparison through both text and
image similarities to identify whether any elements in the new web
pages can be mapped to the changed elements in the old web pages.
Based on these detected changed elements, WebEvo provides the
suggestions for making appropriate code modification for IR and
RPA tools.

3.2 Semantic Structure Change Detection

Our goal is to find semantic structure changes occurring between
different versions of a web page as shown in Figure 4. WebEvo per-
forms a two-step detection: DOM-tree Based Change Detection and
History-based Semantic Structure Change Detection. The first step
identifies corresponding subtrees between two versions of a web
page to detect content-based changes and DOM-structure changes
by comparing web element attributes. To filter out content-based
changes, the second step utilizes a novel history-based technique to
prune the content-based changes from the output of the previous
step to preserve only semantic structure changes.

According to the functions of web pages, we divide them into
two categories: content display category and content submission

category. For both types of web pages, we extract the DOM tree
of a old and new versions of a web page using the HTMLCleaner
tool. The two DOM trees and the part to be detected in the form of
XPath are given to the DOM-tree based change detection module
as input.

3.2.1 DOM-tree Based Change detection. This module detects whe-
ther a part of the web page has changed by comparing the attributes
and the structure of the corresponding DOM-trees. Given two DOM
trees 𝑇 and 𝑇 ′, to determine how the structure of 𝑇 has changed
with respect to 𝑇 ′, WebEvo adapts the idea of Levenshtein Edit

Distance [37] to identify the minimum element changes that can
convert 𝑇 to 𝑇 ′, where an element change can be adding, deleting,
or updating a node. The definitions for adding and deleting changes
are straightforward: When an element 𝑒 in 𝑇 cannot be found in
𝑇 ′, 𝑒 is considered as a deleting change; when an element 𝑒 ′ in

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

DOM Tree based
Change Detection

History based Semantic Structure
Change Detection

Semantic Structure
Change Detection

Semantics-based
Visual Search

Changes with
MappingsEvolving Web Pages

Old New

<h1> <h2>

<div>

<a> <p>

 <a>
p

div

a h1

div

pp h2 h3

<div> <div> <div>
<a><h1> <p>

Figure 5: Overview of WebEvo

Algorithm 1: DOM-Tree Comparison
Input: DOM-Tree 𝑡 , DOM-Tree 𝑡 ′
Output: Changed Elements 𝐶𝑑

1 𝑒 = 𝑡 .𝑔𝑒𝑡 (”/𝑏𝑜𝑑𝑦”), 𝑒 ′ = 𝑡 ′.𝑔𝑒𝑡 (”/𝑏𝑜𝑑𝑦”),𝐶𝑑 = [];
2 𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 (𝑒, 𝑒 ′,𝐶𝑑);
3 return C_d;
4 Function 𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 (𝑁𝑜𝑑𝑒𝑒, 𝑁𝑜𝑑𝑒𝑒 ′,𝐶𝑑)
5 𝑚𝑎𝑝 = 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡 (𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑒 ′.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛);
6 for 𝑝𝑎𝑖𝑟 ∈𝑚𝑎𝑝.𝑢𝑝𝑑𝑎𝑡𝑒𝑠 do

7 𝐶𝑑 .𝑎𝑑𝑑 (𝑝𝑎𝑖𝑟,′𝑢𝑝𝑑𝑎𝑡𝑒 ′);// identified updated

changes

8 𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 (𝑝𝑎𝑖𝑟 [0], 𝑝𝑎𝑖𝑟 [1],𝐶𝑑);// recursive checks

9 𝐶𝑑 .𝑎𝑑𝑑 (𝑚𝑎𝑝.𝑎𝑑𝑑𝑠,′ 𝑎𝑑𝑑 ′), 𝑐 .𝑎𝑑𝑑 (𝑚𝑎𝑝.𝑑𝑒𝑙𝑒𝑡𝑒𝑠,′ 𝑑𝑒𝑙𝑒𝑡𝑒 ′);

𝑇 ′ cannot be found in 𝑇 , 𝑒 ′ is considered as an adding change.
Detecting update changes requires more checks on the attributes,
since an updated element that has the same ID attributes (i.e., id)
and is dissimilar to the element in the old web page (i.e., preserving
only a few attributes) usually represents new semantics, very likely
to causes RPA tools or test scripts to fail. Based on the empirical
observations, when an element is updated in the new web page, its
ID attributes (i.e., id, class, and tag) are often preserved1, and most
of its child nodes are still the same. Thus, WebEvo considers an
element 𝑒 as a candidate for an update change only if it can find
another element that shares 𝑒’s ID attributes and have similar child
nodes; otherwise, 𝑒 is considered a deleted node that cannot be
found in the new web page.

Algorithm 1 shows how WebEvo compares two DOM trees 𝑇
and 𝑇 ′. WebEvo first extracts the body elements (i.e., 𝑒 and 𝑒 ′)
from both the trees, and uses the recursive function 𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 to
compute the changes for the subtrees rooted at 𝑒 and 𝑒 ′ (Lines 1-3).
𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 computes the minimum changes that can convert the
child elements of 𝑒 to the child elements of 𝑒 ′ using the Levenshtein
Edit Distance. Here, a child node of 𝑒 is considered to be identical
with a child node of 𝑒 ′ if one of three ID attributes (id, class, and
tag) of 𝑒 and 𝑒 ′ have identical values. By applying the edit distance
algorithm based on this change definition, WebEvo identifies the
matched nodes from the child nodes of 𝑒 to the child nodes 𝑒 ′. For
each pair (𝑛, 𝑛′) of the matched nodes, if (1) 𝑛 and 𝑛′ has only
one ID attribute that has the same values and (2) the tag names of
𝑛’s child nodes and 𝑛′’s child nodes have more than 30% different

1In our evaluation dataset, ∼ 98% of the updated elements preserve the ID attributes.

values, then 𝑛 and 𝑛′ are considered not similar enough, and a
corresponding adding or a deleting change is reported. Otherwise,
an update change is reported for the attributes of 𝑛 and 𝑛′ if any
(Line 7), and a recursive call of 𝑇𝑟𝑒𝑒𝐷𝑖 𝑓 𝑓 is invoked to identify
changes of the child nodes of 𝑛 and 𝑛′ (Line 8). For certain child
nodes of 𝑒 , if WebEvo fails to find the matched nodes from 𝑒 ′’s child
nodes, WebEvo reports these child nodes of 𝑒 as adding changes
and deleting changes correspondingly (Line 9).

3.2.2 History-Based Semantic Structure Change Detection. Due to
the constantly evolving dynamic web content, the DOM-tree based
change detection alone cannot differentiate between content-based
changes and semantic structure changes, and its detection results
𝐶𝑑 contains both content-based and semantic structural changes.
Thus, we design the history-based semantic structure change to
detect the content-based changes (𝐶𝑐) and output only semantic
structure changes (𝐶𝑑 −𝐶𝑐).

Differentiating content-based changes from semantic structure
changes is a challenging task. The indicators of semantic structure
are different from one web page to another. For example, in Fig-
ure 4(a), both the Strings “Name” and “+0.10%” are text elements
in DOM. But the change from “Name” to “Code” is regarded as a
semantic structure change of the web page (because the type of
information under “Name” is different from the type of informa-
tion under “Price”), while the change from “+0.10%” to “-0.02%” is
considered as a content-based change.

To address this challenge, we leverage an important insight that
the history of the web page can reflect which elements of the web
page present the structural information. Specifically, the structural
elements of a web page usually remain unchanged across multiple
versions of the web page within a relatively short time span (e.g.,
one or two days). For example, Figure 4(a) and Figure 4(b) show two
versions of a web page. The structural elements such as “Currencies”
and “Name” remain unchanged while content elements such as cur-
rency exchange rates change frequently. Based on this information,
this module is able to detect the elements whose contents (i.e., text
and images) change constantly across historic pages.

Algorithm 2 shows the details on detecting content-based changes
using historic web pages. The algorithm receives the DOM tree of a
web page 𝑡 and the DOM trees of its historic web pages 𝐻 as input,
and compares 𝑡 with each DOM tree ℎ from𝐻 . The algorithm starts
the comparison from the body elements of 𝑡 and ℎ (Lines 1-3). It
invokes the function 𝑓 𝑖𝑛𝑑𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠 to find all the matched
nodes from 𝑡 and ℎ (Line 4): for each pair of matched nodes, the two
subtrees rooted at the matched nodes must have the same structure

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

Algorithm 2: Detecting Content-based Changes
Input: DOM-Tree 𝑡 , Historic DOM-Trees 𝐻
Output: Content-based Changes 𝐶𝑐

1 𝑒 = 𝑡 .𝑔𝑒𝑡 (”/𝑏𝑜𝑑𝑦”);
2 for ℎ ∈ 𝐻 do

3 𝑒 ′ = ℎ.𝑔𝑒𝑡 (”/𝑏𝑜𝑑𝑦”);
4 𝑃,𝑈 = 𝑓 𝑖𝑛𝑑𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠 (𝑒, 𝑒 ′);
5 𝐶𝑐 .𝑎𝑑𝑑𝐴𝑙𝑙 (𝑈);// record unmatched nodes

6 for 𝑝 ∈ 𝑃 do

7 𝑓 𝑖𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 (𝑝 [0], 𝑝 [1],𝐶𝑐); // recursive search

8 return 𝐶𝑐 ;

Figure 6: Candidate elements added to max heap

and all nodes should have the same tag names. For the unmatched
nodes in 𝑡 , they are considered as content-based changes (Line 5).
For each pair of matched nodes, the algorithm invokes the func-
tion 𝑓 𝑖𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 to check whether the matched nodes have the
same texts and the same image urls; if not, a content-based change
is reported (Line 7). Note that 𝑓 𝑖𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 performs the search
recursively on the child nodes of each matched nodes as well.

Finally, WebEvo combines the information from the steps of
text analysis and graphical element analysis as features to map the
old web page and the new web page. Using the features, WebEvo
computes the similarity scores between two elements of a web page.
Based on the similarity scores, the elements having the highest
similarity are chosen for internal structure analysis to identify
content-based changes.

3.3 Semantics-based Visual Search

As illustrated in Section 2, changed elements may update their loca-
tions in the web pages but preserve their semantics and appearance.
If these elements are not correctly identified, they will be consid-
ered as deleted elements in the old web page and new elements in
the new web page, losing the opportunities to fix IR and RPA tools.
To address this problem, WebEvo computes both text similarity
and image similarity of the elements in both the old and the new
web pages to identify such changed elements.
Semantics-Based Element Mapping. Algorithm 3 shows the al-
gorithm for semantics-based visual search. The algorithm accepts
as input, 𝐶𝑠 , the output from the semantic structure change detec-
tion module (i.e.,𝐶𝑠 = 𝐶𝑐 −𝐶𝑑). For each detected changed element
𝑒 , the algorithm aims to find an element in the candidate elements

Algorithm 3: Semantics-based Element Mapping
Input: Target Element 𝑒 , Candidate Elements 𝐶𝑠
Output:Matched Element 𝑒 ′

1 if 𝑒 has text then

2 𝐶 ′
𝑠 = max heap;

3 for Candidate Element 𝑒 ′ ∈ 𝐶𝑠 do

4 𝑒 ′.𝑡𝑒𝑥𝑡𝑆𝑖𝑚 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑇𝑒𝑥𝑡 (𝑒.𝑡𝑒𝑥𝑡, 𝑒 ′.𝑡𝑒𝑥𝑡) ;
5 𝐶 ′

𝑠 .𝑎𝑑𝑑 (𝑒 ′); // sort based on 𝑒′.𝑡𝑒𝑥𝑡𝑆𝑖𝑚

6 while 𝐶 ′
𝑠 is not empty do

7 𝑒 ′ = 𝐶 ′
𝑠 .𝑝𝑜𝑝 () ;

8 𝑠𝑖𝑚 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝐼𝑚𝑎𝑔𝑒 (𝑒, 𝑒 ′) ;
9 if 𝑠𝑖𝑚 == 𝑡𝑟𝑢𝑒 then

10 return 𝑒 ′;
11 else

12 for Candidate Element 𝑒 ′ ∈ 𝐶𝑠 do

13 𝑠𝑖𝑚 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝐼𝑚𝑎𝑔𝑒 (𝑒, 𝑒 ′) ;
14 if 𝑠𝑖𝑚 == 𝑡𝑟𝑢𝑒 then

15 return 𝑒 ′;

𝐶𝑠 in the new web page that has similar content as 𝑒’s content.
The candidate elements are obtained from all the elements in the
new web page, such as <div>, <h1> and <p>. As a web element may
or may not have text content (Line 1), the algorithm first checks
whether the element has text content, and directly computes image
similarity for the elements without text content (Lines 11-15). Next,
the algorithm computes the text similarity using Levenshtein Edit

Distance [37] for each candidate element and sort them using a max
heap (Lines 3-5). While synonyms based on Wordnet [19] may be
used, they are less effective when an element’s text contains phrases
or sentences, while Levenshtein distance is effective in detecting
simple word updates and even sentence updates. The text similarity
ensures that the algorithm prioritizes the elements with higher
text similarities when comparing image similarity. For example, in
Figure 6, the target web element is on the left, which is the “LEARN
SQL” section, and two candidate elements are shown on the right.
The text similarity between the target element and the “Candidate
1” is 0.77, and the similarity for the “Candidate 2” is 0.33. Thus,
“Candidate 1” will have a higher priority for image comparison.
Finally, the algorithm pops the candidate elements from the max
heap, and computes image similarity to detect matching element
that has high content similarity (Lines 6-10).
Image Similarity of Element Screenshots. The image similarity
between elements can be influenced by many factors, such as size,
background color and other elements in the web pages. Existing
techniques, such as Vista [41], takes the screenshot of the entire
web page and applies template matching [42] for finding similar
elements. However, such techniques are easily affected by back-
ground colors and the images of other elements that are close to the
candidate elements. To address this problem, our algorithm takes
the screenshots of the elements for computing image similarity,
rather than using template matching to search the screenshot of
the whole web page. Algorithm 4 shows the detailed steps of the
image similarity computation.

Given two elements 𝑒 and 𝑒 ′, the image similarity is mainly com-
puted using image hashing techniques that compute hash values for

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Details of the websites used in the evaluations

Website Category # Elements LOC

Collected Date

History Pages Target Page Evolved Page

www.w3schools.com Education 571 814 01/11/2016-01/13/2016 01/14/2016 11/01/2019
www.foodnetwork.com Food and Drink 1,465 5,657 10/27/2018-10/29/2018 11/01/2018 11/04/2019
music.douban.com Arts and Entertainment 1,925 2,299 02/11/2014-03/09/2014 02/08/2014 02/07/2019
beijing.douban.com Travel 1,509 2,353 10/10/2017-10/25/2017 10/03/2017 10/07/2019
book.douban.com Education 2,622 3,691 08/26/2016-08/29/2016 08/19/2016 08/05/2019
movie.douban.com Arts and Entertainment 1,583 1,799 10/07/2014-10/22/2014 11/15/2014 11/08/2019
www.amazon.com E commerce and Shopping 2,796 1,802 08/01/2017-08/03/2017 08/04/2017 08/06/2020
www.apple.com Computers Electronics and Technology 535 581 02/06/2018-02/08/2018 02/09/2018 08/07/2020

www.classdojo.com Education 615 126 06/01/2017-06/03/2017 06/05/2017 07/22/2020
www.homedepot.com Business 910 2,173 07/12/2019-07/14/2019 07/15/2019 08/04/2020
www.linkedin.com Community and Society 622 43 08/12/2019-08/14/2019 08/15/2019 08/17/2020
www.usps.com Community and Society 817 2,586 08/05/2018-08/07/2018 08/08/2018 08/08/2020
www.xfinity.com Internet 771 1,405 08/01/2018-08/03/2018 08/04/2018 08/04/2020

Total 16,741 25,329 - - -

Algorithm 4: Image Similarity
Input: Element 𝑒 , Element 𝑒 ′
Output: true/false

1 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑔𝑒𝑡𝑃𝑖𝑐𝑆𝑖𝑚(𝑒, 𝑒 ′); ;
2 if 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 then

3 return true; // return if original images can match

4 else

5 greyScale(e); // convert e to greyscale

6 greyScale(e’); // convert e’ to greyscale

7 𝑔𝑟𝑒𝑦 = 𝑔𝑒𝑡𝑃𝑖𝑐𝑆𝑖𝑚(𝑒, 𝑒 ′);
8 if 𝑔𝑟𝑒𝑦 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 then

9 return true; // if images can match after greyscale

10 else

11 invertColor(e’); // invert the colors of e’

12 if 𝑔𝑒𝑡𝑃𝑖𝑐𝑆𝑖𝑚(𝑒, 𝑒 ′) >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 then

13 return true; // images can match after inversion

14 return false;// cases above all fails

the pixels, convert the hash values into bit sequences, and compare
the similarity of the bit sequences [23, 27] (Line 1). If the similarity
is above the threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 , then a matching element is found
(Lines 2-3). If not, then the algorithm applies image mutation and
recompute the similarities (Lines 4-14). The reason is that images in
web pages may involve updates on colors, WebEvo adopts existing
image mutation techniques, i.e., grey scale conversion (Lines 5-10)
and color inversion [42] (Lines 11-13), to mitigate the color evolu-
tion problem. For some elements, grey scale conversion may not
be effective to improve similarity computation. As these elements
use black and grey colors, grey scale conversion will not help. To
address this problem, WebEvo applies color inversion (Line 11) to
invert the colors of the element and compute the similarity on the
mutated image.

4 EVALUATION

We implement WebEvo upon Selenium [6] to locate web elements
and take screenshots of web elements, and upon OpenCV [42] to
mutate the collected screenshots and compute image similarity. The

versions of the Google Chrome browser and the Chrome Driver [9]
used for the semantics-based visual search module are 90.0.4430.93
and 90.0.4430.24, respectively. The evaluations are conducted on
a Macbook Pro with a Dual-Core Intel Core i5 processor (2.3GHz)
and 16 GB RAM.

We evaluate WebEvo on the web pages of 13 real-world web
applications for identifying changed elements. Specifically, we aim
to answer the following research questions:
• RQ1: How effective is WebEvo in identifying changed elements

in web pages, compared to the state-of-the-art visual web repair

approach, Vista [41]?

• RQ2: How effective can the changed content identification and

semantics-based visual search be in improving WebEvo’s effec-

tiveness?

• RQ3: What is the runtime performance of WebEvo, compared to

Vista?

• RQ4: How effective is WebEvo in detecting changed elements that

affect RPA and IR tools?

4.1 Subjects and Evaluation Setup

We collect popular web pages from the representative web applica-
tions in most popular categories [2–4] (e.g., e-commerce, entertain-
ment, business, and job) as our evaluation subjects. These websites
provide daily services to meet various needs of users and have great
values for RPA tools to automate the process in these websites. For
each chosen web applications, we aim to collect a target page, an
evolved page, and three historic pages to detect changed elements.
We downloaded these web pages fromWayback Machine [7], which
archives the historic web pages of popular websites. Note that we
included only the complete web pages in our evaluations, as incom-
plete web pages with missing images will introduce noises to the
visual search module. To ensure that the collected web pages will
have substantial amount of changed elements for evaluations, we
select web applications to collect web pages based on two rules.
First, the web applications should be popular and their web pages
should contain a large number of elements. This will rule out sim-
ple web pages with a few web elements such as www.google.com.
Second, for the web pages on different dates, there should be at
least 20 changed elements that belong to different element types

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

Table 2: Evaluation results of WebEvo and Vista

Website

Changed Elements WebEvo Vista
∗

Add Delete Update Total Found Prec. Rec. F1 Found Prec. Rec. F1
www.w3schools.com 68 20 84 172 147 0.96 0.82 0.88 87 0.37 0.31 0.34
www.foodnetwork.com 8 5 19 32 26 0.92 0.75 0.83 21 0.19 0.17 0.18
music.douban.com 40 18 12 70 58 0.95 0.79 0.86 23 0.43 0.33 0.37
beijing.douban.com 5 6 16 27 22 0.82 0.67 0.74 13 0.85 0.50 0.63
book.douban.com 15 12 14 41 35 0.91 0.78 0.84 19 0.53 0.38 0.44
movie.douban.com 22 10 16 48 43 0.95 0.85 0.90 16 0.81 0.50 0.62
www.amazon.com 71 19 39 129 97 0.95 0.71 0.81 25 0.32 0.14 0.19
www.apple.com 14 5 23 42 37 0.95 0.83 0.89 22 0.27 0.21 0.24

www.classdojo.com 4 11 12 27 20 0.90 0.67 0.77 20 0.55 0.48 0.51
www.homedepot.com 25 25 13 63 57 0.93 0.84 0.88 25 0.84 0.55 0.66
www.linkedin.com 16 9 25 50 51 0.88 0.86 0.87 30 0.53 0.47 0.50
www.usps.com 33 28 19 80 81 0.83 0.84 0.83 40 0.38 0.32 0.35
www.xfinity.com 18 11 22 51 45 0.91 0.80 0.85 26 0.08 0.06 0.07

Average 26 14 24 64 55 0.91 0.79 0.84 28 0.47 0.34 0.39
∗ Results of Vista consider only deleted and updated elements since Vista cannot handle added elements.

(e.g., <h> and <div>). As redesigning a whole web site requires
users to spend more efforts in using the new web site, web sites do
not tend to revamp the whole web site within a short period, but
adopt a lightweight and progressive approach to upgrade the web
sites [5, 8]. Thus, for each web site, we choose a target web page
at a date and an evolved web page at a later date, and the average
differences between these two dates are more than 2 years to ensure
that there are enough changed elements between the target web
page and the evolved web page.

In total, we obtain 13 websites whose changed elements are
above 20. For each web page, we used Chrome browser’s extension
GoFullPage [10] to capture the screenshot of the whole page, which
can be used for changed element detection. Table 1 shows the details
of the web applications and the collected web pages for the real-
world dataset. Column “Website” shows the web sites from which
we collect the web pages and Column “Category” shows which
popular categories the web sites belong to. Column “# Elements”
shows the number of web elements (e.g., <h> and <div>) for a page
and Column “LOC” shows the lines of HTML code in the page.
Column “Collected Date” shows the dates for the collected history
pages, target pages, and the evolved pages.
Ground Truth of The Changed Elements. For each web page
of the collected web application, we perform a two-step inspection:
a○ we first applied the DOM-tree based detection of WebEvo on
both the target weg pages and the evolved web pages to identify
the changed elements, and then manually inspected both the DOM
trees of the target and the evolved web pages using the browser’s
inspector tool to confirm whether the changed elements are indeed
changed in the new web page. We excluded the popped up elements
as Selenium cannot capture their screenshots, and thus they cannot
be analyzed by the visual search module. b○ as the DOM-tree based
detection may miss some changed elements, we further render
the target and the evolved web pages and manually inspect each
element of the target web page to confirmwhether they are changed
in the new web page. By combining the results of a○ and b○, we can
obtain the ground truth of the changed elements for each collected
web application.

Evaluation Metrics. To measure the effectiveness of WebEvo,
we compute the precision, recall, and 𝐹1 values for the detected
changed elements. A changed element can be a new element, a
deleted element, or an updated element. For each reported detected
changed element, we manually compare it with the ground truth to
confirm whether it is a true positive (TP); otherwise, it is considered
as a false positive (FP). In particular, for a changed element, we
also verify the detected mapping; if the mapping is incorrect, we
will consider it as a FP. If an element does not change and WebEvo
does not report it as an changed element, then it is considered as a
true negative (TN); otherwise, if an element changes and WebEvo
misses it, it is considered as false negative (FN). Based on these
values, we compute the precision using 𝑇𝑃

𝑇𝑃+𝐹𝑃 , the recall using
𝑇𝑃

𝑇𝑃+𝐹𝑁 , and the 𝐹1 score using 2 ∗ 𝑝𝑟𝑒𝑐∗𝑟𝑒𝑐
𝑝𝑟𝑒𝑐+𝑟𝑒𝑐 .

4.2 RQ1 Overall Effectiveness

We compared WebEvo with DOM-tree based detection, and Vista
[41], a state-of-the-art visual web repair approach that automati-
cally fixes web tests by finding changed elements. We implemented
a DOM-tree based detection tool based on the algorithm described
in Section 3.2.1. This detection tool adopts the same idea as the
existing work [18, 22], which compares the attributes and the struc-
tures of DOM trees to detect changed elements. As Vista provides
a released tool, we directly used it for comparison. We applied the
DOM-tree based detection tool, Vista, and WebEvo on the 13 web-
sites and compare their effectiveness. We compare WebEvo with
the DOM-tree based detection tool in detecting the added, detected,
and updated elements. Note that Vista receives a locator (i.e., an
XPath) in the target web page as input and cannot effectively detect
new elements in the evolved page, since the locators of the new ele-
ments only exist in the evolved web page. Also, Vista cannot detect
content-based changes as it lacks the capabilities to analyze historic
web pages. For fair comparison, we compare WebEvo with Vista
in detecting only the deleted and the updated elements without the
detected content-based changes.

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: Effectiveness results of WebEvo’s techniques

Website

DOM-based Detection # Content-based WebEvo w/o visual search

Found Prec. Rec. F1 Changes Found Prec. Rec. F1
www.w3schools.com 229 0.46 0.78 0.58 24 205 0.52 0.78 0.62
www.foodnetwork.com 162 0.12 0.71 0.21 135 27 0.74 0.71 0.72
music.douban.com 106 0.45 0.76 0.57 45 61 0.79 0.76 0.77
beijing.douban.com 119 0.06 0.44 0.11 96 23 0.30 0.44 0.36
book.douban.com 72 0.39 0.76 0.52 29 43 0.65 0.76 0.70
movie.douban.com 165 0.19 0.82 0.31 111 54 0.56 0.81 0.66
www.amazon.com 149 0.60 0.71 0.65 29 120 0.75 0.71 0.73
www.apple.com 58 0.36 0.75 0.49 11 47 0.43 0.74 0.54

www.classdojo.com 21 0.43 0.50 0.46 0 21 0.43 0.50 0.46
www.homedepot.com 68 0.62 0.81 0.70 6 62 0.68 0.81 0.74
www.linkedin.com 68 0.37 0.78 0.50 4 64 0.39 0.78 0.52
www.usps.com 97 0.58 0.81 0.68 12 85 0.64 0.81 0.72
www.xfinity.com 73 0.56 0.80 0.66 17 56 0.68 0.79 0.73

Average 107 0.40 0.73 0.50 40 67 0.58 0.72 0.64

Figure 7: Top navigation bar in the changed page

Figure 8: Incorrect mapping for the “Web Certificate” ele-

ment

Comparison with DOM-based Detection. Table 3 shows the
comparison results of WebEvo and the DOM-tree based detection
tool, and Table 2 shows the comparison results of WebEvo and
Vista. Overall, WebEvo effectively identifies changed elements in
the websites with high precision (0.91), recall (0.79), and 𝐹1 values
(0.84), while the DOM-tree based detection tool achieves low pre-
cision (0.40), recall (0.73), and 𝐹1 values (0.50). That is, WebEvo
achieves a significant improvement (68.0% for 𝐹1 score) over the
DOM-tree based detection tool. These results demonstrate that by

combining DOM-tree based detection and semantics-based visual
search, WebEvo effectively identifies not only new or deleted ele-
ments, but also updated elements that have property or location
changes.
Comparison with Vista. Compared with Vista, we can see that
WebEvo is able to achieve 0.91 precision while Vista achieves only
a 0.47 precision on the deleted and updated elements. On average,
Vista achieves a 𝐹1 score of 0.39, which is significantly worse than
WebEvo (0.84). The main reason is that Vista considers only the
screenshots when doing visual search, while WebEvo considers
both text content and image content. For example, Figure 7 shows
the top navigation bar of “w3cschool”, where the appearances of
texts in the navigator bar are changed in the new web page. As all
the menu items in the navigator bar share the similar looks, Vista
fails to find any matched element. When WebEvo is applied on
this example, WebEvo considers both text and image similarities,
and is able to correctly identify the changed element (i.e., correctly
mapping the “TUTORIALS” menu items in the new web page).
FPs and FNs. Next, we describe scenarios whereWebEvo produces
false positives and false negatives. The main reason for the false
positives is that when there are multiple similar web elements in the
evolved page, WebEvo may identify an incorrect mapping for the
target element. Figure 8 shows an example evolved web page that
contains two similar “Web Certificate” elements. When WebEvo
is applied to detect the mapping for the “Web Certificate” element
in the target page, it incorrectly identifies the “Web Certificate”
element at the bottom due to their same text contents and similar
appearances. The false negatives are mainly caused by the changed
elements that have no text content and changed the appearance
substantially. For example, in Figure 1, the logo of “w3school” is
an image web element without text property in the target page.
However, the logo in the evolved web page has been changed to a
text element with a newCSS style. Since the “w3school” element has
no text content, WebEvo directly computes the image similarity
and fails to identify the changed element. Similarly, Vista also
fails to detect such mapping due to the appearance change of the
element.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

Table 4: Runtime Performance (seconds)

Web App WebEvo Vista

www.w3schools.com 17.40 67.94
www.foodnetwork.com 52.50 52.90
music.douban.com 33.46 35.87
beijing.douban.com 63.15 107.95
book.douban.com 96.36 122.50
movie.douban.com 71.18 72.62
www.amazon.com 55.75 73.87
www.apple.com 12.77 46.02

www.classdojo.com 16.80 77.71
www.homedepot.com 20.00 43.47
www.linkedin.com 12.17 43.69
www.usps.com 13.95 62.59
www.xfinity.com 16.07 23.80

Average 37.04 63.92

4.3 RQ2 WebEvo’s Novel Techniques

To evaluate the effectiveness of changed element detection and
semantics-based visual search, we compare the detected changed
elements for the web pages with and without using the semantics-
based visual search. The results are shown in Table 3. Column “#
Changed Elements” shows the number of changed element for each
target page of the web applications. Column “WebEvo w/o visual
search” shows the precision, recall, and 𝐹1 values without using
semantics-based visual search. As we can see, the precision, recall,
and 𝐹1 values drop to 0.58, 0.72, and 0.64 without using semantics-
based visual search. That is, semantics-based visual search achieves
31.3% improvement for the 𝐹1 score, which is a substantial improve-
ment. Also, on average there are 40 detected content-based changes
for each web page, which are related to weather, advertisement,
news, and so on. Without filtering these content-based changes,
the precision of the detected changed elements will further drop to
0.40 from 0.58, which demonstrates the effectiveness of detecting
content-based changes.

4.4 RQ3 Runtime Performance

We measure the runtime performance of WebEvo and compare
with Vista. As DOM-tree based analysis and history-based seman-
tic structure change detection require only a few seconds to run,
we mainly compare the runtime performance of both tools’ visual
analysis. Table 4 shows the average analysis time for each changed
element in our evaluations. On average, to finish the analysis, We-
bEvo requires 42.01% less time than Vista (37.04𝑠 v.s. 63.92𝑠). Also,
WebEvo is more efficient than Vista in every website. This shows
that applying CV techniques to compare whole web pages require
significantly more time than element-by-element comparison.

4.5 RQ4 Detecting RPA and IR Breakages

We evaluate the effectiveness WebEvo to detect web change ele-
ments that can prevent RPA and IR bots from executing their tasks.
For different types of elements, we base our evaluation on determin-
ing the percentage of changed elements that are detected. Table 5
lists 11 websites where we found element changes through manual
inspection that could break RPA and IR tools. For each website,

Figure 9: Change Detection that is not granular enough

we noted how many element changes were detected by WebEvo
for each element type that were changed, categorized by breakage
type. Combining all the changed elements across all the websites
with RPA breakages, WebEvo detected 65% of the changes. For
IR breakages, WebEvo detected 100% of the changes. Most unde-
tected changes can be attributed to WebEvo’s detection not being
granular enough. One such example is shown in Fig 9, where two
<a> elements (within red rectangles) have changed, but instead of
detecting those two changes, WebEvo reports the container <div>
(green rectangle) element as changed.

5 DISCUSSION

Content-based Changes. WebEvo detects content-based changes
by checking the texts and images across historic web pages. Our
evaluation shows the effectiveness of the detection and how it
reduces the false positives of WebEvo. However, it is possible
that some websites rename image files, give the same file names to
different images, or use same texts for a couple of days in the content
retrieved from web servers, which will cause WebEvo to produce
false positives and false negatives. Even though we mitigate such
issue by collecting historic web pages within a period, this issue
can be further addressed by employing CV techniques to further
compare the image similarity and checking more attributes when
the text remains the same. Alternatively, if we can obtain the server
code, which is not the assumption for this work, we may perform
static analysis to identify elements whose contents are constantly
changed based on the server output.
Semantics-based Visual Search. Our semantics-based visual sea-
rch adopts the string similarity based on the Levenshtein distance
and the image similarity based on fingerprint to identify the map-
pings for changed elements in new web pages. While the evalua-
tions show promising results for this approach, the string similarity
may miss synonyms that have low string similarity but high seman-
tic similarity. This may be improved by combining string similarity
with semantic similarity such as sentence similarity [11, 26] or se-
mantic patterns [36, 40, 48]. WebEvo computes image similarity by
hashing images into bit sequences and computing the similarities of
the bit sequences [23, 27]. This may not always produce desirable
results due to the limitations of the hashing functions and may be
improved by using object recognition such as SIFT/FAST [28, 29, 38].
Additionally, the synergy of string similarity and image similarity
adopted byWebEvomay be replaced with deep learning techniques
that model the joint semantics of text and images [14, 21, 25, 47].
Threats to Validity. The main internal threat comes from the
mistakes wemaymake during the labelling of the changed elements
for each website used in our evaluations. To reduce the threat, each

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 5: Performance of WebEvo in detecting RPA and IR breakages

Website Breakage Type Changed Element(s) Number of Changes
(Per Element)

Number of Detected Changes
(Per Element)

www.amazon.com RPA <a> 4 2
www.classdojo.com RPA <div> / <a> 1 / 2 1 / 0
www.xfinity.com RPA <div> 4 4
www.usps.com RPA <div> / <a> / 3 / 1 / 1 3 / 1 / 1

music.douban.com RPA <div> 6 2
www.homedepot.com RPA <div> 1 1
www.foodnetwork.com RPA 4 2
beijing.douban.com RPA <a> 6 3
www.linkedin.com RPA <section>/ <div> 1 / 3 1 / 2
movie.douban.com IR <div> 4 4
book.douban.com IR <div> 1 1

changed element was verified by at least two authors. We further
checked theHTML code, andwhenwewere not surewhich changed
elements caused the UI changes we used tools (e.g., the browser
inspector tool of Google Chrome) to identify the corresponding
UI parts for the changed elements. There are two main external
threats to validity. First, we recognized the need to tailor WebEvo
to different types of web pages to obtain effective outcomes. Thus,
we choose the representative websites in most popular categories
and make sure that the old and the new web pages have non-trivial
changes in terms of changed elements. Second, WebEvo performs
comparison on the pre-defined attributes or tags to detect changed
elements, which works well given that HTML rarely introduces
new types of elements. WebEvo can be easily extended to support
more types of web elements by expanding the pre-defined lists of
the attributes and tags.

6 RELATEDWORK

Web Test Repair. WATER [18] runs a web test, collects the DOM
properties about the test breakages, and computes the similarity
of the DOM properties for web elements to repair the tests. Built
upon WATER, WATERFALL [22] repairs test breakages in the in-
termediate minor versions between two major releases of a web
application. By using CV techniques, Vista [41] achieves better per-
formance than WATER in repairing web tests. While WebEvo also
uses CV techniques, WebEvo uses a finer grained visual informa-
tion (i.e., the screenshot of an element versus the screenshot of the
whole web page) and text semantics to improve the visual search
of web elements, and our evaluations have shown the superiority
of WebEvo over Vista.
Web Application Repair. Besides changes due to web application
evolution, there are other unexpected changes of web elements
that may cause problems. Mahajan et al. [31] propose automated
repair techniques to address presentation changes when using dif-
ferent browsers. Their later work [12, 30, 32] also propose repair
techniques to address mobile-friendly problems and international-
ization problems in web applications. Cassius [35] and its extension
VizAssert [34] provide an extensible framework for reasoning about
web pages’ layout and can be used to repair faulty CSS in web ap-
plications. While these repair techniques are related to WebEvo
in terms of detecting inconsistent web elements across different

web pages, WebEvo focuses on detecting changed elements (i.e.,
new, deleted, and updated elements) and these techniques focus on
the same web elements that have unexpected presentations under
different settings.
CVTechniques for Software Engineering Tasks. REMAUI [33]
adapts CV techniques for reverse engineering UIs of mobile apps.
Sikuli [15, 50] identifies and controls UI components for automating
UI testing via image recognition. WebDiff [17] and XPERT [16]
identify visual differences using CV techniques, aim to detect cross
browser rendering issues. IconIntent [49] collects a set of icons
that represent sensitive data and uses CV techniques to determine
whether the icons used by UI widgets are similar to the collected
sensitive icons in Android apps. Besides CV techniques, WebEvo
analyses web pages collected at different timestamps to identify
changed contents, and further applies text similarity to choose
candidate web element for finding the mappings across different
versions of the web pages.
DOMTree-basedWeb App Analysis. The DOM structure-based
methods typically parse the target and the evolved web page into
a DOM tree and then uses an algorithm to calculate the similarity
between the trees to find the subtree in the evolved version of the
DOM tree that is closest to the target subtree structure of the tar-
get version. Flesca et. al. proposed a subtree similarity comparison
approach using a bipartite graph based maximum matching algo-
rithm [20]. A node signature comparison algorithm to find textual
changes in the DOM trees of the target and evolved web pages
is presented in [24]. However, the general complexity of the tree
similarity calculation method is relatively high and the overall per-
formance is not high under the trend of increasingly complicated
web pages. The results obtained based on only DOM information
are also not accurate.
Machine Learning-basedWebAppAnalysis. Machine learning
based approaches extract the characteristics of web pages by ana-
lyzing a large number of web pages to classify various web pages.
Each category of web pages is considered to have a similar data
extraction method. Through this machine learning method, when
the page changes, only a new analysis of the new version of the web
page is required to automatically generate a new data extraction
tool. Borgolte et. al. presented an approach combining DOM-based
comparison and clustering techniques to detect relevant changes

ISSTA ’21, July 11–17, 2021, Virtual, Denmark F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao

on web pages [13]. However, machine learning approaches requires
the support of a large amount of data and has high requirements
on the computational power of the device.

7 CONCLUSION

We have presented a novel framework, WebEvo, for monitoring
web element changes that can break IR tools and web test scripts.
Our tool performs DOM-based comparison between old and new
versions of a web page and carries out novel non-content change de-
tection using semantic and graphical analysis to filter out irrelevant
changes and finally, a novel semantics-based visual search tech-
nique is used to refine the detected changes. We showed WebEvo’s
practicality by evaluating our approach on datasets constructed
from popular real-world websites and demonstrating substantially
better detection and runtime performances. We also showed how
WebEvo can detect breakages for IR and RPA tools.

ACKNOWLEDGMENTS

Xusheng Xiao’s work is partially supported by the National Sci-
ence Foundation under the grants CCF-2046953 and CNS-2028748.
Yanfang Ye’s work is partially supported by the National Science
Foundation under the grants IIS-2027127, IIS-2040144, IIS-1951504,
CNS-2034470, CNS-1940859, CNS-1814825, and OAC-1940855, the
DoJ/NIJ under the grant NIJ 2018-75-CX-0032. Ying Zhang’s work is
supported by the National Key Research and Development Program
of China. Xusheng Xiao is the corresponding author.

REFERENCES

[1] 2020. IBM Robotic Process Automation as a Service with WDG Automation.
https://www.ibm.com/products/robotic-process-automation.

[2] 2020. Most Popular Types of Websites. https://www.hostgator.com/blog/popular-
types-websites-create/.

[3] 2020. Most Popular Types of Websites.
https://www.websitebuilderexpert.com/designing-websites/types-of-websites/.

[4] 2020. Most Popular Types of Websites. http://www.webyurt.com/popular-types-
of-websites.

[5] 2020. Poor Sales? Maybe You Need a Website Redesign: Here’s How.
https://www.crazyegg.com/blog/website-redesign-tips/.

[6] 2020. Selenium. https://www.selenium.dev/.
[7] 2020. Wayback Machine. https://archive.org/web/.
[8] 2020. Why redesigns don’t make users happy. https://uxplanet.org/why-

redesigns-dont-make-users-happy-f1b29cc940ce.
[9] 2021. Chrome Driver. https://chromedriver.chromium.org/downloads.
[10] 2021. GoFullPage. https://gofullpage.com/.
[11] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. 2008. The evaluation

of sentence similarity measures. In Proceedings of the International Conference on

Data Warehousing and Knowledge Discovery (DaWaK). 305–316. https://doi.org/
10.1007/978-3-540-85836-2_29

[12] Abdulmajeed Alameer, Paul Chiou, andWilliam G.J. Halfond. 2019. Efficiently Re-
pairing Internationalization Presentation Failures by Solving Layout Constraints.
In Proceedings of the IEEE International Conference on Software Testing, Verification,
and Validation (ICST). 172–182. https://doi.org/10.1109/ICST.2019.00026

[13] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. 2014. Relevant change
detection: a framework for the precise extraction of modified and novel web-
based content as a filtering technique for analysis engines. In Proceedings of the

International Conference on World Wide Web (WWW). 595–598. https://doi.org/
10.1145/2567948.2578039

[14] Matthew Browne and Saeed Shiry Ghidary. 2003. Convolutional Neural Networks
for Image Processing: An Application in Robot Vision. (2003), 641–652. https:
//doi.org/10.1007/978-3-540-24581-0_55

[15] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2010. GUI testing using
computer vision. In Proceedings of the International Conference on Human Factors

in Computing Systems (CHI). 1535–1544. https://doi.org/10.1145/1753326.1753555
[16] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2014. X-PERT:

a web application testing tool for cross-browser inconsistency detection. In
Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA). 417–420. https://doi.org/10.1145/2610384.2628057

[17] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:
Automated identification of cross-browser issues in web applications. In Proceed-

ings of the IEEE International Conference on Software Maintenance (ICSM). 1–10.
https://doi.org/10.1109/ICSM.2010.5609723

[18] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. 2011.
WATER: Web Application TEst Repair. In Proceedings of the First International

Workshop on End-to-End Test Script Engineering (ETSE). 24–29. https://doi.org/10.
1145/2002931.2002935

[19] Christiane Fellbaum (Ed.). 1998. WordNet An Electronic Lexical Database . MIT
Press. https://doi.org/10.1017/S0142716401221079

[20] Sergio Flesca, Filippo Furfaro, and Elio Masciari. 2001. Monitoring Web infor-
mation changes. In Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC). 421–425. https://doi.org/10.1109/
ITCC.2001.918833

[21] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. https://doi.org/10.1007/s10710-017-9314-z

[22] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016. WATERFALL:
an incremental approach for repairing record-replay tests of web applications.
In Proceedings of the ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE). 751–762. https://doi.org/10.1145/2950290.2950294
[23] Wei Jiang, Guihua Er, Qionghai Dai, and Jinwei Gu. 2006. Similarity-based online

feature selection in content-based image retrieval. IEEE Transactions on Image

Processing (TIP) 15, 3 (2006), 702–712. https://doi.org/10.1109/TIP.2005.863105
[24] HP Khandagale and PP Halkarnikar. 2010. A novel approach for web page change

detection system. International Journal of Computer Theory and Engineering

(IJCTE) 2, 3 (2010), 364–368. https://doi.org/10.7763/IJCTE.2010.V2.168
[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539
[26] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley Crockett.

2006. Sentence similarity based on semantic nets and corpus statistics. IEEE
transactions on knowledge and data engineering (TKDE) 18, 8 (2006), 1138–1150.
https://doi.org/10.1109/TKDE.2006.130

[27] Fuhui Long, Hongjiang Zhang, and David Dagan Feng. 2003. Fundamentals

of Content-Based Image Retrieval. Springer Berlin Heidelberg, 1–26. https:
//doi.org/10.1007/978-3-662-05300-3_1

[28] David G. Lowe. 1999. Object Recognition from Local Scale-Invariant Features. In
Proceedings of the International Conference on Computer Vision (ICCV). 1150–1157.
https://doi.org/10.1109/ICCV.1999.790410

[29] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision (IJCV) 60, 2 (2004), 91–110. https:
//doi.org/10.1023/B:VISI.0000029664.99615.94

[30] Sonal Mahajan, Negarsadat Abolhasani, Phil McMinn, and William G.J. Halfond.
2018. Automated Repair of Mobile Friendly Problems inWeb Pages. In Proceedings
of the International Conference on Software Engineering (ICSE). 140–150. https:
//doi.org/10.1145/3180155.3180262

[31] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.
2017. Automated Repair of Layout Cross Browser Issues Using Search-Based
Techniques. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA). 249–260. https://doi.org/10.1145/3092703.3092726
[32] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.

2018. Automated Repair of Internationalization Failures Using Style Similarity
Clustering and Search-Based Techniques. In Proceedings of the International

Conference on Software Testing, Validation and Verification (ICST). 215–226. https:
//doi.org/10.1109/ICST.2018.00030

[33] Tuan A. Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with REMAUI. In Proceedings of the International

Conference on Automated Software Engineering (ASE). 248–259. https://doi.org/
10.1109/ASE.2015.32

[34] Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib
Kamil. 2018. Verifying That Web Pages Have Accessible Layout. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). 1–14. https://doi.org/10.1145/3192366.3192407
[35] Pavel Panchekha and Emina Torlak. 2016. Automated reasoning for web page

layout. In Proceedings of the ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, (OOPSLA). 181–194.
https://doi.org/10.1145/2983990.2984010

[36] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring Method Specifications from Natural Language API De-
scriptions. In Proceedings of the International Conference on Software Engineering

(ICSE). 815–825. https://doi.org/10.1109/ICSE.2012.6227137
[37] Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit distance. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 20, 5 (1998),
522–532. https://doi.org/10.1109/34.682181

[38] Edward Rosten, Reid B. Porter, and Tom Drummond. 2010. Faster and Better: A
Machine Learning Approach to Corner Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI) 32, 1 (2010), 105–119. https://doi.org/
10.1109/TPAMI.2008.275

https://doi.org/10.1007/978-3-540-85836-2_29
https://doi.org/10.1007/978-3-540-85836-2_29
https://doi.org/10.1109/ICST.2019.00026
https://doi.org/10.1145/2567948.2578039
https://doi.org/10.1145/2567948.2578039
https://doi.org/10.1007/978-3-540-24581-0_55
https://doi.org/10.1007/978-3-540-24581-0_55
https://doi.org/10.1145/1753326.1753555
https://doi.org/10.1145/2610384.2628057
https://doi.org/10.1109/ICSM.2010.5609723
https://doi.org/10.1145/2002931.2002935
https://doi.org/10.1145/2002931.2002935
https://doi.org/10.1017/S0142716401221079
https://doi.org/10.1109/ITCC.2001.918833
https://doi.org/10.1109/ITCC.2001.918833
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1145/2950290.2950294
https://doi.org/10.1109/TIP.2005.863105
https://doi.org/10.7763/IJCTE.2010.V2.168
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TKDE.2006.130
https://doi.org/10.1007/978-3-662-05300-3_1
https://doi.org/10.1007/978-3-662-05300-3_1
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/3180155.3180262
https://doi.org/10.1145/3180155.3180262
https://doi.org/10.1145/3092703.3092726
https://doi.org/10.1109/ICST.2018.00030
https://doi.org/10.1109/ICST.2018.00030
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1145/3192366.3192407
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1109/34.682181
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/TPAMI.2008.275

WebEvo: Taming Web Application Evolution via Detecting Semantic Structure Changes ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[39] Fei Shao and Xusheng Xiao. 2021. WebEvo Project Website.
https://github.com/webevoexp/webevo.

[40] John Slankas, Xusheng Xiao, Laurie A. Williams, and Tao Xie. 2014. Relation
extraction for inferring access control rules from natural language artifacts. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).
366–375. https://doi.org/10.1145/2664243.2664280

[41] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web Test
Repair. In Proceedings of the ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).
503–514. https://doi.org/10.1145/3236024.3236063

[42] OpenCV team. 2017. OpenCV. http://opencv.org/.
[43] AIMDek Technologies. 2019. Robotic Process Automation.

https://medium.com/@AIMDekTech/evolution-of-robotic-process-automation-
the-path-to-cognitive-rpa-c3bd52c8b865.

[44] UiPath. 2020. UiPath: Robotic Process Automation.
https://www.uipath.com/rpa/robotic-process-automation.

[45] w3c. 2017. XML Path Language (XPath). https://www.w3.org/TR/2017/REC-
xpath-31-20170321/.

[46] w3c. 2020. Cascading Style Sheets. https://www.w3.org/Style/CSS/.

[47] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan Xu,
Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, and Jian Lu. 2019. DeepIntent:
Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in
Mobile Apps. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS). 2421–2436. https://doi.org/10.1145/3319535.
3363193

[48] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. 2012. Auto-
mated extraction of security policies from natural-language software documents.
In Proceedings of the International Symposium on the Foundations of Software

Engineering (FSE). 12. https://doi.org/10.1145/2393596.2393608
[49] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.

IconIntent: Automatic Identification of Sensitive UI Widgets based on Icon Clas-
sification for Android Apps. In Proceedings of the International Conference on

Software Engineering (ICSE). 257–268. https://doi.org/10.1109/ICSE.2019.00041
[50] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: using GUI

screenshots for search and automation. In Proceedings of the Annual ACM Sym-

posium on User Interface Software and Technology (UIST). 183–192. https:
//doi.org/10.1145/1622176.1622213

https://doi.org/10.1145/2664243.2664280
https://doi.org/10.1145/3236024.3236063
https://doi.org/10.1145/3319535.3363193
https://doi.org/10.1145/3319535.3363193
https://doi.org/10.1145/2393596.2393608
https://doi.org/10.1109/ICSE.2019.00041
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213

	Abstract
	1 Introduction
	2 Motivating Example
	3 Design of WebEvo
	3.1 Overview
	3.2 Semantic Structure Change Detection
	3.3 Semantics-based Visual Search

	4 Evaluation
	4.1 Subjects and Evaluation Setup
	4.2 RQ1 Overall Effectiveness
	4.3 RQ2 WebEvo's Novel Techniques
	4.4 RQ3 Runtime Performance
	4.5 RQ4 Detecting RPA and IR Breakages

	5 Discussion
	6 Related Work
	7 Conclusion
	References

