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Foundation models (FMs) have become the backbone of intelligent systems. Collaborative development of
FMs enables multiple teams to fine-tune different aspects of an FM simultaneously. However, conflicts in
model updates across teams, particularly when modifying overlapping parameters, pose significant challenges
to maintaining model performance. To address these challenges, in this paper, we proposeMedusa, a novel
framework designed to support collaborative FM development by managing model branches and introducing
a structured system of parameter ownership. Medusa tracks fine-tuning efforts as separate branches, similar to
Git, allowing developers to work on different tasks without destabilizing the base model. Instead of passively
merging parameters from already fine-tuned models, Medusa proactively controls the merging process
through our novel algorithm for assigning ownership of parameters by generating merging-aware masks to
guide the fine-tuning process, ensuring that only specific branches can modify designated parameters.Medusa
approximates the optimal assignment even as model complexity increases, ensuring scalability in large models.
To investigate the efficacy of Medusa, we conduct extensive evaluations on five datasets and three models
fine-tuned by three popular techniques, and compare our approach against six state-of-the-art approaches for
post-training model merging. The evaluation results show that Medusa substantially and generally improves
the effectiveness of collaborative model development, across different models, fine-tuning techniques, and
datasets. Specifically, with automated parameter ownership assignment and masked fine-tuning, Medusa
outperforms post-training model-merging approaches by improving model performance after merging by
3.19% absolute points. Ablation studies further demonstrate the efficacy of the algorithms inMedusa.

CCS Concepts: • Software and its engineering→ Software development methods; Collaboration in

software development; Software version control; Software configuration management and version

control systems; • Computing methodologies→Multi-task learning.
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1 Introduction

As the core foundation to build numerous complex intelligent software systems such as machine
translation [10, 55, 71, 90], embodied agents [38, 69, 74–76, 78, 95], and programming assistants [9,
11, 46, 80, 88, 108], foundation models [4, 24, 77, 89] (FMs) must have comprehensive capabilities
(denoted as skills), which come from different training data as shown in Figure 1. Similar to
developing any large-scale software [3, 36, 81, 102], in the development of FMs, a collaborative
approach is essential [77]. The sheer scale of computational resources required to train these models
with heterogeneous data [4, 89] makes it necessary for development to be a team effort, whether
within proprietary teams [68, 89] or across contributors in the open-source community [99].

One of the most significant advantages of collaborative development for FMs is that it allows
for incremental updates [14] and improvements in a decentralized way [51, 77, 83]. Instead of
discarding older models and building entirely new ones, developers can update or enhance specific
parts of a model in parallel with others’ efforts. This decentralized approach means that multiple
teams can simultaneously improve the model’s different capabilities, reducing the need for extensive
computational resources and centralized training processes [68, 89]. The model, as a result, can
evolve gradually, incorporating new capabilities while retaining and improving upon existing ones.
This approach of continuous refinement ensures that the model remains up-to-date without the
inefficiencies associated with a full-scale redevelopment.
A key concept in collaborative development is to view tasks as compositions of different skills,

rather than isolated functions. For example, Figure 1 shows the task of paraphrasing the sentence,
“She walk to the market every day and buy some vegetables, she really like the fresh air.” This
task involves multiple subtasks: grammar correction (e.g., changing “walk” to “walks” and “like” to
“likes”), entity relations (e.g., recognizing the link between “she” and “market”), logical reasoning
(e.g., inferring that the reason she walks to the market is that she enjoys the fresh air), and common
knowledge about daily activities. Instead of finetuning/retraining an FM from scratch to handle the
entire paraphrasing task, different previously finetuned models specializing in these subtasks are
already available—one for grammar correction, one for entity recognition, and another for logical
reasoning. By combining these parallel efforts, a more advanced version of the FM can emerge,
capable of performing complex, multi-skill tasks more effectively. Such collaborative development is
in great need for building versatile and intelligent systems that address the complexity of real-world
problems.

Despite being desirable, achieving such collaborative FM development can be challenging due to
conflicts in model updates across different teams. When multiple teams simultaneously fine-tune
different aspects of an FM, they may inadvertently modify overlapping parameters [35, 41, 42, 105],
resulting in conflicts [105] that can degrade the model’s performance [42, 105]. As shown in Figure 2,
these conflicts typically arise when multiple branches update the same layers or parameters of the
model, making manual resolution time-consuming and error-prone.
Collaborative FM development framework. To address the challenges and apply established
software engineering principles [29, 62, 91] to FM development, we propose Medusa, the first
framework specifically designed to support collaborative FM development by managing the model
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Fig. 1. (a) Traditional deep-learningmodels are task-specific, and traditional deep-learningmodel development

is a one-shot effort. The developers first collect a dataset for a task, train a model (e.g., CNN, BERT, GNN,

depending on specific tasks) from scratch, and deploy the model for the dedicated task. (b) Foundation

Models (FMs) are expected to perform more complicated tasks with a single model (usually in the Transformer

Architecture), which involves multiple perspectives (i.e., skills). To enhance different skills, FM development

requires training the FM on different datasets dedicated to different skills.

branches with the assignment of model parameter ownership. Figure 3 presents the design and
workflow of Medusa for collaborative model development across three stages: model branching,
parameter ownership assignment, and collaborative merging for FM updates.
Model branching.Medusa tracks the model updates of different finetuning efforts as separate model
branches, similar to Git branches [86] for collaborative software engineering. Model branches allow
developers to improve different aspects of an FM simultaneously, with each branch focused on
specific functional (e.g., domain-specific tasks) or non-functional (e.g., mitigating jailbreaking)
requirements, datasets, or environments. This branching structure enables parallel collaboration
across teams while keeping the base model stable. Changes made in a model branch can be
selectively merged back into the base FM once they have been validated, enabling iterative and
modular development across different branches. Such branching structure design allows specialized
improvements or task-specific fine-tuning to occur independently, reducing the risk of regressions
or unintended behavior in the base FM.
Parameter ownership assignment.Tomitigate conflicts of simultaneousmodel parameter updates [105]
across different branches, Medusa introduces a structured system of parameter ownership. Instead
of allowing unrestricted modification across all branches, Medusa assigns exclusive ownership
of specific subsets of parameters (e.g., neurons [49], attention heads [92]) to designated branches.
This assignment ensures that only the branch with assigned ownership can modify its allocated
parameters, preventing concurrent updates across multiple branches. For example, one branch
may own the parameters in earlier layers of a neural network, focusing on improving low-level
feature extraction, while another branch may manage parameters in later layers to enhance task-
specific outputs. By clearly assigning which branches have authority over particular sections of
the model, this approach reduces the likelihood of conflicts during collaborative development. If
ownership must be shared or transferred,Medusa provides mechanisms for conflict resolution,
such as weighted averaging [103, 113] and performance-based prioritization [40, 67].
Collaborative merging for FM updates. Medusa provides a collaborative merging process, based on
the three-way merging algorithm [85, 86] used by version control systems, to integrate updates from
multiple branches into a single FM.Medusa takes the base FM, the fine-tuned version from branch
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Fig. 2. (a) The datasets to enhance an FM’s different skills usually expand time after time, and different

datasets get ready for training the FM in an unpredictable order, making collaborative FM development a

desirable solution. (b) Different datasets update model parameters in different directions, leading to conflicts

between FMs trained on separate datasets and resulting in resource wastage or degraded model performance.

A, and the modified version from branch B as inputs. First, Medusa computes the parameter-wise
differences between the base FM and the versions from both branches. For parameters that have
been modified by both branches, Medusa identifies conflicts where the values differ. Medusa
automatically handles the conflicts with weighted averaging algorithms [103, 113] to blend the
updates from the two branches. Non-conflicting parameters are merged automatically into the final
FM.
Novel algorithms for automated parameter ownership assignment. To optimize the workflow
of Medusa, we propose a novel algorithm GPA for parameter ownership assignment. While the
optimal assignment of model parameter ownership is NP-hard (formulated as a mixed-integer linear
programming problem [101]), GPA provides an efficient, data-driven alternative. By leveraging the
gradients generated during model training, the algorithm identifies which parameters are most
sensitive to specific datasets or tasks. By analyzing the magnitude and direction of the gradients
across different branches,GPA assigns ownership of parameters to branches based on their influence
on task-specific performance, ensuring that each branch primarily controls the parameters most
critical to its objectives. By using gradient analysis,Medusa can efficiently approximate the optimal
parameter ownership assignment even for large, fine-tuned models handling diverse tasks without
significant computational overhead.
To evaluate the effectiveness and generalization of Medusa, we conduct extensive evaluations

against six state-of-the-art model merging approaches [40, 103, 105, 109, 113]. We fine-tune three
popular pretrained models (T5-Base with 220 million parameters, T5-Large with 770 million param-
eters, and T0-3B with 3 billion parameters) on five standard NLP tasks [16, 19, 65]. To evaluate the
generalization of Medusa across fine-tuning techniques, we fine-tune models with both parameter-
efficient fine-tuning (i.e., LoRA [37] and IA3 [53]) and full fine-tuning techniques. To investigate
the flexibility and adaptability of Medusa, we conduct experiments in full and partial collaborative
model development settings, where either all developers or only a subset useMedusa while the
others opt out due to privacy and security concerns [23, 44].
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Fig. 3. Inspired by the established collaborative software development process, we proposeMedusa to support

collaborative FM development on (1) model branching to track collaborators’ modification simultaneously,

and (2) model parameter ownership to avoid parameter update redundancy and conflicts.Medusa (1) controls

the model parameter ownership in each model branch, (2) assigns masks to freeze the gradient descent and

value updates of parameters not owned by each branch, and (3) merges the models developed in different

branches to obtain a merged FM, enhanced by different skills without parameter update conflicts.

Findings. Our extensive evaluations reveal three major findings. First, adopting Medusa for
collaborative FM development substantially improves merged models’ performance, even when not
all branches adoptMedusa. With the awareness of controlling the fine-tuning process,Medusa
substantially outperforms state-of-the-art model merging approaches, improving the absolute
performance of merged models on average by 8.66% if all model developers use Medusa and
by 2.83% if one developer uses Medusa while the others do not. However, the merged models’
performance improves as a higher percentage of branches adopt Medusa for model development.
Second, the mergeability of models seems to be primarily influenced by the number of trainable
parameters but not relevant to fine-tuning techniques. As long as the number of trainable parameters
is sufficiently large,Medusa improves the performance of merged models across all fine-tuning
techniques, ranging from full fine-tuning to parameter-efficient fine-tuning. Third, there exist
non-mergeable scenarios where the parameter updates from different branches conflict heavily,
making merging an undesirable solution, further emphasizing the importance of pre-development
scheduling instead of post-development conflict resolution.

In summary, this paper makes the following main contributions:

• A collaborative development framework of FMs.We design and implement a framework
namedMedusa to support the collaborative development of FMs, inspired by the established
software engineering processes. The implementation of Medusa is publicly available [73].

• Novel algorithms for automated parameter ownership assignment.We design novel
algorithms to automate and optimize the assignment of model parameter ownership in
Medusa to minimize conflicts between different model branches.

• Empirical findings. We conduct extensive evaluations on five datasets with three popular
models and three fine-tuning techniques to demonstrate the effectiveness and generalization
of Medusa, opening up a new research direction on deriving engineering principles for FM
development.

2 Background

In this section, we begin by introducing the basics of modern practices in FM development. We
then formulate the problem of collaborative FM development.
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2.1 FM Development

Modern FMs [4] are typically trained on large, unlabeled datasets [7]. When applied to domain-
specific downstream tasks [30, 60, 72, 104] or enhancing specific aspects of FMs [68], a common
approach is to further fine-tune [21, 72] these models using labeled datasets. For example, OpenAI’s
GPT-3.5, one of the most widely used FMs, allows developers to fine-tune it on their private datasets
via API access [66], enabling the creation of more specialized and task-specific models.

However, despite advancements in parameter-efficient fine-tuning techniques [37, 53], the process
remains challenging. Fine-tuning an FM can be computationally expensive [54], requiring significant
storage and processing resources. Moreover, fine-tuned models often struggle to integrate new
information dynamically [4], limiting their ability to continuously improve performance without
retraining from scratch.

To meet the need to update FMs with newly acquired knowledge, such as dynamically obtained
labeled datasets, a common approach is to fine-tune a model based on new data [14]. However, this
approach often results in the creation of unnecessary model duplicates [105] and can be impractical
due to data privacy concerns [23, 44], as the process may require sharing sensitive information or
storing multiple versions of the model.
2.2 Collaborative FM Development

To address the aforementioned limitations, we draw inspiration from traditional software engi-
neering practices [29, 62, 91]. Specifically, we propose a collaborative FM development framework,
analogous to the traditional collaborative software engineering [85, 86]. We first introduce and
define key components related to our proposed framework for FM development and then describe
the advantages of our framework.
Key components of our framework. Our framework includes three main concepts: base model,
model branch, and model merging.

Definition 2.1 (Base model). A base model 𝐵 refers to a pretrained FM that has been trained on
an unlabeled dataset but has not yet been fine-tuned on any labeled dataset for specific tasks to
enhance certain skills.

Definition 2.2 (Model branch). A model branch 𝑏 is denoted as a tuple (𝐵, 𝛿), where 𝐵 represents
the base model that has been fine-tuned for a specific downstream task, and 𝛿 denotes the task-
specific parameters.

Definition 2.3 (Model merging). The model merging process can be represented as a function,
O(𝑏1, 𝑏2), which takes two model branches as input and outputs a new, merged model branch. The
model in the resulting merged branch should at least preserve the performance of the original
models on their respective tasks or exhibit improved generalization across a broader range of tasks
or domains.

Advantages of our collaborative FM development framework. Our proposed collaborative FM
development framework provides an efficient way for developers to work in parallel while ensuring
data integrity and minimizing conflicts in model parameter updates. This approach facilitates
collaboration even when different teams are working with private datasets.

First, the framework ensures data integrity throughout the development process. For example, if
Team A and Team B are working on an FM but have private datasets that they cannot share, they
can still collaborate without compromising data privacy. Each team develops its own branch of the
model, fine-tuning it using their private dataset. The key to avoiding conflicts lies in the structured
system of parameter ownership, where each branch has exclusive control over its designated model
parameters. By preventing simultaneous modifications to the same parameters, this approach
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guarantees that each team’s contributions are integrated smoothly. As a result, the branches can be
merged into a unified model that effectively handles tasks from both teams, while preserving the
integrity and privacy of their individual datasets.
Second, our framework significantly enhances development efficiency through its structured

parameter ownership and model merging capabilities. By assigning control of specific parameters
to particular branches, we eliminate conflicts that often arise from concurrent parameter updates.
This structure not only reduces development overhead but also allows each branch to specialize
in different aspects of the model, such as mitigating jailbreaking attacks or focusing on task-
specific outputs. This specialization leads to faster convergence and improved model performance.
Furthermore, the model merging technique minimizes computational and storage costs by avoiding
the need to train multiple models independently. Instead, the teams can store and maintain only
the merged model, streamlining the development process and reducing overall resource usage.

Finally, parallel development is another key advantage of our framework. Often, developers may
need to work on different tasks using datasets that are not available at the same time. Without
our framework, they would have to either delay development until all datasets are accessible or
retrain the model once new data is available. Our framework, however, allows the developers to
work independently on separate branches of the model. Each branch focuses on its own dataset,
with the parameter ownership structure ensuring that updates remain isolated and do not conflict
with one another. This parallelized approach not only accelerates the overall development timeline
but also ensures that when the datasets are finally combined, the model can be efficiently updated
and merged without the need for extensive retraining.

3 Design of Medusa

In this section, we present the design of Medusa, a framework to support collaborative FM
development with automated parameter ownership assignment, masked fine-tuning, and model
merging.

3.1 Key Challenge and Our Idea

Note that the values of branch-specific parameters in two different model branches are often quite
distinct [105]. Determining the parameter values for the merged branch thus presents a challenge.

To address this challenge, we propose assigning the ownership of specific parameters to individual
branches, meaning that only the designated branch can modify those parameters. Our design
minimizes conflicts and simplifies the merging process by construction. Specifically, we introduce
the following concept within the context of FM development.

Definition 3.1 (Parameter Ownership). A parameter 𝑝𝑖 in the base model 𝐵 is owned by a model
branch 𝑏 if 𝐵𝑖 can be modified exclusively in branch 𝑏 during fine-tuning.

Formally, let 𝜃 be the set of parameters in the base model, where each 𝑝 ∈ 𝜃 represents a trainable
parameter. Let B = {𝑏1, 𝑏2, . . . , 𝑏𝑘 } denote the set of model branches. Let a binary mask𝑀𝑝

𝑖
∈ {0, 1}

represent the assignment of parameter ownership, where

𝑀
𝑝

𝑖
=

{
1 if parameter 𝑝 is owned by branch 𝑏𝑖
0 otherwise

By adopting a parameter ownership model, we ensure that branches working on distinct datasets
or tasks modify only the parameters that they own. This structured approach minimizes conflicts
during model branch merging and preserves the integrity of the base FM as development progresses
across multiple tasks.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE115. Publication date: July 2025.



FSE115:8 Dezhi Ran, Yuan Cao, Yuzhe Guo, Yuetong Li, Mengzhou Wu, Simin Chen, Wei Yang, and Tao Xie

Algorithm 1 Ownership Assignment with Gradient Estimation
Input: a base model 𝐵, tasks T = {𝑇1,𝑇2, ..,𝑇𝑛} to be fine-tuned on, boolean value set Γ =

{𝛾1, 𝛾2, .., 𝛾𝑛 |𝛾𝑖 ∈ {0, 1}} indicating whether we can assign parameter ownership in each branch.
Output: ownership assignment {𝐴𝑝 (𝑝 ∈ 𝜃𝐵)}.

⊲ Step 1. Estimate parameters’ importance.
1: for each 𝑖 ∈ [1, 𝑛] do
2: 𝐵′ = 𝑡𝑟𝑎𝑖𝑛_𝑜𝑛𝑒_𝑒𝑝𝑜𝑐ℎ(𝐵,𝑇𝑖 )
3: 𝐹𝑖 = 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝𝑘_𝑟𝑒𝑠𝑡_𝑡𝑜_𝑧𝑒𝑟𝑜 (𝜃𝐵′ − 𝜃𝐵)

⊲ Step 2. Assign parameters to branches.
4: for each 𝑝 ∈ 𝜃𝐵 do

⊲ Step 2.1. Determine the main direction.
5: 𝜌 = 𝑠𝑔𝑛(Σ𝑛𝑖=1 [¬𝛾𝑖 ]𝐹

𝑝

𝑖
)

⊲ Step 2.2. Distribute parameters among assignable branches.
6: for each 𝑖 ∈ [1, 𝑛] do
7: if 𝛾𝑖 and(𝜌 == 0 or 𝑠𝑔𝑛(𝐹𝑝

𝑖
) == 𝜌) then

8: 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 = |𝐹𝑝
𝑖
|

9: else

10: 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 = 0
11: 𝐴𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑜𝑛𝑒_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑜 (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛1,...,𝑛)

3.2 Overview of Medusa

Figure 3 presents the design of Medusa, consisting of three major components: Ownership assigner,
Masked fine-tuner, and Model merger.
Ownership assigner determines parameter ownership by analyzing the magnitude of parameter
changes in each model branch during the fine-tuning process, based on gradient information.
Masked fine-tuner selectively updates only the parameters owned by the current branch during
fine-tuning. By masking parameters assigned to other branches, Medusa ensures that each branch
modifies only its designated parameters.
Model merger combines different model branches using a three-way merging algorithm [86]. By
comparing the base model with the updated parameters from each branch, Medusa integrates
changes while resolving conflicts. This approach ensures that only parameters modified according
to their assigned ownership are incorporated.

3.3 Workflow of Medusa

Input and output of Medusa. As shown in Figure 3, the input of Medusa is a tuple (𝐵,T),
consisting of a base FM (denoted as base model 𝐵) and a set of datasets T = {𝑇1,𝑇2, ..,𝑇𝑛} to fine-tune
𝐵 on. We denote B = {𝑏1, ..., 𝑏𝑛} as the model branches, with branch 𝑏𝑖 fine-tuning 𝐵 on dataset 𝑇𝑖 .
The output of Medusa is a merged model 𝐵𝑚𝑒𝑟𝑔𝑒 that integrates the fine-tuning efforts from all
branches in B.
Parameter ownership assignment (Section 3.4). The ownership assigner of Medusa assigns
the ownership of parameters in the base model 𝐵 to different model branches. The assignment is
based on gradient-based importance estimation, which aims to ensure that each model branch 𝑏𝑖
owns and modifies only the parameters that contribute the most to its respective dataset 𝑇𝑖 . In
practice, some model branches may not want to reveal their datasets due to privacy and security
concerns [23, 44]. Medusa also supports managing branches with restricted parameter ownership
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Algorithm 2Masked Fine-Tuning with Assigned Parameters
Input: a model branch 𝑏𝑖 , boolean value 𝛾𝑖 indicating whether a branch is controllable, the base

model 𝐵, the dataset 𝑇𝑖 for fine-tuning, a learning rate 𝜂, and the ownership assignment
{𝐴𝑝 (𝑝 ∈ 𝜃𝐵)} designated in Algorithm 1.

Output: Updated model parameters 𝜃𝑏𝑖 for the branch 𝑏𝑖 under ownership assignment {𝐴𝑝 (𝑝 ∈
𝜃𝐵)}.
⊲ Step 1. Generate mask𝑀𝑖 under ownership assignment {𝐴𝑝 (𝑝 ∈ 𝜃𝐵)}.

1: for each 𝑝 ∈ 𝜃𝐵 do

2: if 𝛾𝑖 then

3: 𝑀
𝑝

𝑖
= [𝑖 == 𝐴𝑝 ]

4: else

5: 𝑀
𝑝

𝑖
= 1

⊲ Step 2. For the model branch 𝑏𝑖 , update only parameters in the mask𝑀𝑖 .
6: ∇𝐽𝑖 (𝜃𝐵) = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐵,𝑇𝑖 )
7: 𝜃𝑏𝑖 = 𝜃𝐵 −𝑀𝑖 · 𝜂 · ∇𝐽𝑖 (𝜃𝐵)𝑝

control during the fine-tuning process. In such cases, Medusa reduces conflicts by modifying only
the parameter assignments of controllable branches.
Masked fine-tuning (Section 3.5). After the parameter ownership is assigned, the masked fine-
tuner ensures that only the parameters assigned to each branch are updated during the fine-tuning
process, while the other parameters remain frozen. The masked fine-tuning optimizes the model
for the specific tasks represented by datasets T while preventing conflicts with other branches. For
branches whose parameters are not assignable,Medusa does not interfere with their fine-tuning
processes.
Model merging (Section 3.6). After all model branches have completed the masked fine-tuning,
the model merger of Medusa combines the branches into a merged model 𝐵𝑚𝑒𝑟𝑔𝑒 . Ideally, when
Medusa controls the parameter ownership in all branches, the updates of parameters experience
no conflicts, allowing the merging process to simply combine parameter updates from different
branches. When branches with restricted ownership control are managed, conflicts of parameter
updates may happen. Medusa employs strategies such as weighted averaging [105] to resolve
conflicting parameter values, ensuring that 𝐵𝑚𝑒𝑟𝑔𝑒 effectively integrates the specialized knowledge
from each fine-tuned branch.

3.4 Parameter Ownership Assignment with Gradient Estimation

To minimize conflicts of parameter updates in different model branches, Medusa assigns each
parameter in the base model 𝐵 to a specific model branch, as illustrated in Algorithm 1. An optimal
parameter ownership assignment should (1) minimize the parameter update conflicts, i.e., dedicate
each parameter 𝑝 in the base model 𝐵’s parameters (𝜃𝐵) to only one model branch if possible and (2)
minimize the impact of the ownership assignment for the fine-tuning effectiveness. To achieve the
aforementioned optimization objectives,Medusa assigns each parameter 𝑝 to the model branch
that exhibits the largest change in 𝑝 after fine-tuning.
However, obtaining the precise parameter change in each model branch is challenging since

it can be obtained only after fine-tuning. To avoid the costs of re-training models, we utilize the
gradient information to estimate the parameter updates in each model branch. By running a single
epoch on each dataset, Medusa obtains the gradients and uses the direction and magnitude as an
approximation of the direction and magnitude for the final parameter update in the model branch.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE115. Publication date: July 2025.



FSE115:10 Dezhi Ran, Yuan Cao, Yuzhe Guo, Yuetong Li, Mengzhou Wu, Simin Chen, Wei Yang, and Tao Xie

Algorithm 3Merging Model Branches into a Single Model
Input: base model 𝐵 and fine-tuned model branches B = {𝑏1, ..., 𝑏𝑛} .
Output: Merged model branch 𝑏𝑚𝑒𝑟𝑔𝑒𝑑 with its parameter 𝜃𝑏𝑚𝑒𝑟𝑔𝑒𝑑

.
1: 𝜃𝑏𝑚𝑒𝑟𝑔𝑒

= 𝜃𝐵
2: for each (𝑝, 𝑝1, ..., 𝑝𝑛, 𝑝𝑚𝑒𝑟𝑔𝑒𝑑 ) ∈ 𝜃𝐵 × 𝜃𝑏1 × ...𝜃𝑏𝑛 × 𝜃𝑏𝑚𝑒𝑟𝑔𝑒𝑑

do

⊲ Averaging models’ changed parameters together after selecting the final sign.
3: 𝜌 = 𝑠𝑔𝑛(Σ𝑛𝑖=1 (𝑝𝑖 − 𝑝))
4: 𝑙𝑖𝑠𝑡𝑝 = []
5: for each 𝑖 ∈ [1...𝑛] do
6: if 𝑠𝑔𝑛(𝑝𝑖 − 𝑝) == 𝜌 then

7: 𝑙𝑖𝑠𝑡𝑝 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑖 )
8: 𝑝𝑚𝑒𝑟𝑔𝑒𝑑 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑙𝑖𝑠𝑡𝑝 )

Once the direction and magnitude of the parameter update are estimated, the next step is to
solve the assignment of parameters to different model branches. When Medusa has full parameter
ownership control, Medusa uses a randomized technique of parameter ownership assignment
with probability proportional to the estimated gradient magnitude of every branch and eliminating
all parameter-level conflicts. For branch 𝑏𝑖 , the probability of assigning the parameter 𝑝 to 𝑏𝑖 is
proportional to the estimated gradient change magnitude of 𝑝 for 𝑏𝑖 .

In some cases where Medusa cannot control the assignment of specific model branches due to
privacy and security concerns [23, 44], Medusa first determines a direction for each parameter
based on the sum of estimated gradients from uncontrollable branches. Medusa then assigns
parameters among the assignable branches with the same gradient direction as this sum, with
probability proportional to their magnitude.

3.5 Fine-Tuning with Conflict-Avoiding Masks

Once the parameter ownership is assigned, the fine-tuner of Medusa generates masks for model
branches and uses these masks to control the fine-tuning process of each model branch 𝑏𝑖 . As
illustrated in Algorithm 2, during the masked fine-tuning phase for model branch 𝑏𝑖 , the fine-tuner
in Medusa first generates a mask 𝑀𝑖 based on the parameter ownership assignment. The mask
ensures that only the parameters specified in the mask𝑀𝑖 are updated during fine-tuning, while
parameters not included in 𝑀𝑖 are frozen and not allowed to change in model branch 𝑏𝑖 . With
these masks, Medusa prevents conflicting parameter updates between model branches. For model
branches whereMedusa cannot control parameter ownership (as discussed in Section 3.4),Medusa
simply assigns a full mask and fine-tunes them without freezing parameters.

3.6 Model Merging with Weighted Averaging

After the development of each model branch is completed, the 𝑛 branches in B are merged into a
single model using a three-way merge algorithm [86], applied element-wise, as shown in Algo-
rithm 3. WhenMedusa has full parameter ownership control of all model branches, there is no
conflict in parameter updates. In this case, we can simply add the parameter updates together as
follows:

𝜃𝑏𝑚𝑒𝑟𝑔𝑒
= 𝜃𝐵 + Σ𝑛𝑖=1 (𝜃𝑏𝑖 − 𝜃𝐵)

However, in situations whereMedusa cannot control the fine-tuning process of all branches,
parameter update conflicts may occur. Medusa resolves these conflicts by first identifying the
dominant update direction across branches, and then applying weighted averaging of updates that
align with this direction. As shown in Algorithm 3, parameter updates aligned with the dominant
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direction are weighted according to their magnitude, averaged, and taken as the merged update.
This approach ensures that conflicting updates are resolved in favor of the strongest learning signal
while preserving knowledge from multiple branches.

4 Evaluations

To evaluate the effectiveness of Medusa, we conduct extensive evaluations to investigate the
following three research questions:

• RQ1: How effective and general is Medusa in helping collaborative FM development in
terms of improving the merged model performance given full parameter ownership control?

• RQ2: How effective isMedusa in helping FM development whenMedusa cannot control
parameter ownership on all model branches?

• RQ3: What is the scope of Medusa in facilitating collaborative FM development in terms of
branch numbers, model scale, and branch conflicts?

To answer RQ1, we analyze the performance of models merged by Medusa and state-of-the-
art post-training model merging approaches [40, 103, 105, 109, 113] under three popular fine-
tuning techniques [37], with different models parameters and different task (i.e., model branch)
combinations.

To answer RQ2, we experiment with the setting whereMedusa can mask the fine-tuning process
in only one model branch, i.e., does not update certain parameters in this model branch, while
not interfering with the fine-tuning process of another model branch due to privacy and security
concerns [23, 44].
To answer RQ3, we conduct experiments and ablation studies to investigate the efficacy and

application scope of Medusa concerning the number of model branches, the efficacy of gradient
estimation for optimizing the parameter ownership assignment, the impact of masked fine-tuning
for model performance, and the application scope of model merging concerning the number of
model parameters and task combinations.

4.1 Evaluation Setup

Base pre-trained models. Following previous work on model merging [105, 109], we adopt
Text-to-Text Transfer Transformer [30, 60, 72, 104] (T5) and T0 [18, 82], two highly popular models
fine-tuned by over thousands of developers on HuggingFace [99], as our base pre-trained FMs.
T5 [60] employs an encoder-decoder architecture pre-trained on a large corpus of text [60, 72, 104],
making it versatile to be fine-tuned for various natural language processing (NLP) applications
such as translation [2, 92], summarization [50, 84], and question-answering [39, 61]. T5 contains a
series of models, among which T5-base (220M) and T5-large (770M) are the most popular models
for academic use. With the same encoder-decoder architecture as T5 and pre-trained on a larger
set of NLP tasks, T0 [82] outperforms GPT-3 while being 16x smaller. We use T0-3B (the T0 model
with 3 billion parameters) in our evaluation due to the limits of computation resources.
Fine-tuning techniques. We use three standard and popular fine-tuning techniques [37, 53, 107]
to evaluate the effectiveness and generalization of Medusa in helping different FM development
processes.

• Fully Fine-Tuning (FFT) [43, 79, 107] involves updating all the parameters of a pre-trained
model when adapting it to a specific task.

• Low Rank Adaptation (LoRA) [37, 112] introduces low-rank matrices into the layers of
the model, allowing only these matrices to be fine-tuned while keeping the original model
parameters frozen. LoRA significantly reduces the number of trainable parameters and is
one of the most popular fine-tuning techniques.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE115. Publication date: July 2025.



FSE115:12 Dezhi Ran, Yuan Cao, Yuzhe Guo, Yuetong Li, Mengzhou Wu, Simin Chen, Wei Yang, and Tao Xie

• IA3 [53] is another popular parameter-efficient fine-tuning technique designed to modify
only a small fraction of the model’s layers, specifically targeting the attention [92] and
activation components [49], significantly reducing the number of trainable parameters while
preserving the model’s generalization capabilities.

Datasets. We focus our attention on GLUE [93, 94], a group of classic NLP tasks. GLUE is a
widely used benchmark designed to evaluate models’ generalization abilities across a variety of
NLP tasks such as grammaticality, semantic similarity, sentiment analysis, and natural language
inference. We use five tasks in GLUE to evaluate the generalization performance of Medusa on a
range of well-established NLP challenges. Specifically, CoLA tests the model’s ability to classify
whether a sentence is grammatically acceptable, SST2 focuses on binary sentiment classification of
movie reviews, MNLI and RTE evaluate natural language inference by asking models to predict
whether a given premise entails, contradicts, or is neutral with respect to a hypothesis, QNLI is a
question-answering task reformulated as sentence-pair classification, and WNLI is a common-sense
reasoning task.
Baseline approaches.We compareMedusawith six state-of-the-artmodelmerging approaches [40,
103, 105, 109, 113] from the deep learning community. These approaches have been developed to
merge already fine-tuned models without altering the fine-tuning process.

• Linear Averaging [103, 113] is a simple yet effective approach where the parameters of
multiple fine-tuned models are averaged element-wise. This approach assumes that by
averaging the weights of fine-tuned models, the resulting model can capture useful features
from each model while minimizing the risk of overfitting.

• Task Arithmetic [15, 40, 67] leverages task-specific weight vectors, where model weights
fine-tuned for different tasks can be added or subtracted. By interpreting task fine-tuning as
vector transformations in the model parameter space, Task Arithmetic enables the merging
of multiple task-specific models.

• TIES [105] tries to resolve parameter conflicts when merging models in addition to averaging
parameter updates. The approach trims redundant parameters and elects the most influential
sign when there are conflicting weight updates from different models.

• DARE [109] proposes a drop-and-rescale technique to improve the merging of fine-tuned
models by sparsifying the differences between pre-trained and fine-tuned model parameters.

Among all the baselines, DARE can be integrated with other model-merging approaches. There-
fore, we have six baseline approaches in total, namely Linear Average, Task Arithmetic, TIES,
DARE+TIES, DARE+Linear Average, and DARE+Task Arithmetic. In contrast to existing approaches,
Medusa is the first to introduce parameter ownership and merging-aware masks, which are used
to alter the fine-tuning process. This proactive approach enablesMedusa to control the merging
process in advance, improving mergeability and ensuring better overall performance.
Experiment platform. All experiments are conducted on an AI server with two Intel Xeon
Platinum 8374C 36-core processors, four NVIDIA GeForce RTX 3090 Graphics Cards with 24G
memory, CUDA 12.0, and NVLink [25] enabled for training and merging models.
Fine-tuning settings. For fully fine-tuning of T5-base and T5-large, we use Adam optimizer [47]
for 1 to 20 epochs on different tasks varied on the size of their dataset with a learning rate of
3e-4, following previous work [105]. We fine-tune models with a batch size of 256 with gradient
accumulation [70] to fit our limited GPU resources. During the fine-tuning process, we use bf16,
i.e., brain floating point [8], to accelerate the fine-tuning [33]. For fine-tuning T0-3B with LoRA and
IA3, we set the learning rate be 1e-4 following previous work [37, 53, 105]. The Adam optimizer is
used with a batch size of 16 and gradient accumulation, and the T0-3B models are trained for 2 to
32 epochs across various tasks to fit the GPU resource limits.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE115. Publication date: July 2025.



Medusa: A Framework for Collaborative Development of Foundation Models FSE115:13

Table 1. Effectiveness of Medusa and baseline approaches on merging model branches developed from

T5-base with fully fine-tuning. Medusa has full control of parameter ownership on both model branches.

Approach COLA / RTE COLA / SST2 COLA / QNLI COLA / WNLI RTE / SST2 RTE / QNLI RTE / WNLI SST2 / QNLI SST2 / WNLI QNLI / WNLI Average

Linear Average 69.1 / 56.3 69.1 / 53.8 69.1 / 50.1 69.1 / 39.4 51.3 / 52.5 66.4 / 80.2 49.8 / 45.1 56.3 / 49.3 60.8 / 43.7 74.4 / 43.7 57.48
DARE+Linear Average 69.1 / 53.8 69.1 / 52.3 69.1 / 51.1 69.1 / 42.3 52.3 / 68.3 66.1 / 50.3 47.3 / 43.7 60.7 / 49.7 59.6 / 39.4 65.8 / 56.3 56.78
Task Arithmetic 69.1 / 51.3 69.1 / 49.4 69.1 / 48.9 69.1 / 45.1 51.6 / 49.2 58.1 / 73.8 65.0 / 43.7 49.1 / 50.1 50.3 / 45.1 50.5 / 43.7 55.07
DARE+Task Arithmetic 69.1 / 54.9 69.1 / 50.3 69.1 / 47.5 69.1 / 40.8 50.5 / 52.8 53.8 / 62.1 58.8 / 43.7 49.1 / 51.3 52.2 / 43.7 49.5 / 43.7 54.05
TIES 71.7 / 58.8 69.1 / 53.6 69.5 / 77.3 74.6 / 47.9 62.5 / 86.4 67.9 / 82.1 70.4 / 43.7 87.4 / 67.4 88.3 / 49.3 81.5 / 43.7 67.65
DARE+TIES 69.6 / 54.2 69.1 / 85.3 78.2 / 80.7 78.0 / 40.8 52.7 / 89.9 47.3 / 66.8 47.3 / 56.3 90.0 / 57.1 90.5 / 43.7 50.6 / 42.3 64.52
Medusa (Ours) 71.9 / 67.9 74.8 / 84.6 76.2 / 79.5 77.9 / 43.7 65.0 / 90.6 71.8 / 52.7 47.3 / 56.3 89.1 / 86.3 91.9 / 42.3 57.1 / 56.3 69.15

Table 2. Effectiveness of Medusa and baseline approaches on merging model branches developed from

T5-large with fully fine-tuning. Medusa has full control of parameter ownership on both model branches.

Approach COLA / RTE COLA / SST2 COLA / QNLI COLA / WNLI RTE / SST2 RTE / QNLI RTE / WNLI SST2 / QNLI SST2 / WNLI QNLI / WNLI Average

Linear Average 69.2 / 56.3 36.6 / 53.8 51.5 / 50.1 32.6 / 39.4 45.5 / 52.5 75.5 / 80.2 52.7 / 45.1 49.1 / 49.3 49.1 / 43.7 49.6 / 43.7 51.28
DARE+Linear Average 69.1 / 54.2 69.1 / 49.1 61.7 / 46.3 42.8 / 45.1 46.6 / 49.1 47.3 / 49.5 52.7 / 43.7 49.1 / 51.2 49.1 / 43.7 49.5 / 43.7 50.61
Task Arithmetic 31.3 / 51.3 30.9 / 49.4 30.9 / 48.9 30.9 / 45.1 45.1 / 49.2 53.8 / 73.8 52.3 / 43.7 49.1 / 50.1 49.1 / 45.1 49.6 / 43.7 46.15
DARE+Task Arithmetic 30.9 / 45.1 30.9 / 49.1 69.1 / 51.9 30.9 / 49.3 56.0 / 49.1 47.3 / 49.6 51.3 / 43.7 49.1 / 49.1 49.1 / 54.9 49.6 / 43.7 47.47
TIES 71.4 / 58.8 69.2 / 53.6 74.5 / 49.6 73.0 / 47.9 52.7 / 86.4 53.4 / 49.5 52.7 / 43.7 50.9 / 67.4 49.7 / 49.3 60.7 / 43.7 57.91
DARE+TIES 77.1 / 52.7 76.8 / 49.2 80.2 / 49.5 78.7 / 43.7 47.3 / 50.9 47.3 / 49.5 47.3 / 43.7 49.1 / 49.5 49.1 / 43.7 49.5 / 43.7 53.91
Medusa (Ours) 78.7 / 51.6 69.1 / 93.9 69.1 / 49.7 69.0 / 43.7 73.3 / 95.4 35.0 / 43.0 49.8 / 56.3 94.7 / 49.4 95.3 / 43.7 49.3 / 43.7 62.69

Table 3. Parameter update conflicts without parameter ownership assignment.

Model COLA / RTE COLA / SST2 COLA / QNLI COLA / WNLI RTE / SST2 RTE / QNLI RTE / WNLI SST2 / QNLI SST2 / WNLI QNLI / WNLI
T5-base 42.87 % 41.19 % 42.74 % 42.21 % 43.11 % 36.67 % 32.51 % 43.36 % 42.42 % 34.80 %
T5-large 47.62 % 45.89 % 47.65 % 47.06 % 47.83 % 41.75 % 40.07 % 47.96 % 47.15 % 42.12 %

Table 4. Task similarity measured by the model’s performance fine-tuned on one task and tested on another.

Eval
Train

COLA RTE SST2 QNLI WNLI

COLA 78.72 52.71 49.08 49.37 43.66
RTE 69.13 70.40 49.08 54.68 46.48
SST2 68.74 52.71 91.97 49.46 43.66
QNLI 69.13 57.76 49.08 89.53 43.66
WNLI 69.13 47.29 49.08 50.54 57.75

4.2 RQ1: Effectiveness with Full Parameter Ownership Control

4.2.1 Main Results on Model Development with Fully Fine-Tuning. Table 1 and Table 2 present
the effectiveness of Medusa and baseline approaches for collaborative FM development with two
model branches, of which Medusa can fully control the parameter ownership. These experiments
take T5-base and T5-large as base models, respectively, with the fine-tuning technique being fully
fine-tuning.
From Table 1 and Table 2, we find that by assigning parameter ownership to different model

branches,Medusa reduces the parameter update conflicts between model branches by construction,
outperforming baseline approaches on average by 1.50% absolute improvement for T5-base and
4.78% absolute improvement for T5-large, respectively.

To investigate whether the improvement really comes from the core contribution of Medusa,
i.e., reducing update conflicts with parameter ownership assignment, we conduct two additional
analyses. First, we investigate the proportion of parameter update conflicts. As shown in Table 3,
most task pairs exhibit over 40% parameter update conflict between different model branches.
Note that for Medusa, the conflicts of model parameter update are zero since Medusa assigns
different parameters to different model branches. Consequently, we conclude that resolving con-
flicts generally helps improve the performance of merged models. Among all baseline approaches,
TIES outperforms other baseline approaches since TIES tries to resolve conflicts with predefined
heuristics such as ignoring minor parameter updates, demonstrating the importance of reducing
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Table 5. Effectiveness of Medusa and baseline approaches on merging model branches developed from T0-3B

with LoRA. Medusa has full control of parameter ownership on both model branches.

Approach COLA / RTE COLA / SST2 COLA / QNLI COLA / WNLI RTE / SST2 RTE / QNLI RTE / WNLI SST2 / QNLI SST2 / WNLI QNLI / WNLI Average

Linear Average 61.0 / 52.7 58.1 / 92.9 60.0 / 50.5 61.3 / 45.1 52.7 / 93.2 52.7 / 52.3 52.7 / 43.7 93.1 / 49.6 93.1 / 43.7 55.0 / 45.1 60.42
DARE+Linear Average 58.1 / 52.7 58.4 / 92.4 59.2 / 49.7 58.4 / 43.7 52.7 / 93.0 52.7 / 50.3 52.7 / 43.7 92.7 / 49.6 93.0 / 43.7 51.3 / 45.1 59.65
Task Arithmetic 57.4 / 52.7 56.6 / 92.2 57.3 / 49.7 57.0 / 43.7 52.7 / 92.4 52.7 / 49.7 52.7 / 43.7 92.0 / 49.6 92.4 / 43.7 49.7 / 43.7 59.08
DARE+Task Arithmetic 57.5 / 52.7 56.4 / 92.2 56.5 / 49.7 57.5 / 43.7 52.7 / 92.1 52.7 / 49.7 52.7 / 43.7 92.0 / 49.6 92.0 / 43.7 49.7 / 43.7 59.01
TIES 64.8 / 52.7 58.4 / 93.5 60.7 / 54.1 62.9 / 43.7 52.7 / 93.9 52.7 / 58.1 53.4 / 43.7 92.8 / 50.3 93.9 / 43.7 63.3 / 47.9 61.86
DARE+TIES 77.6 / 59.2 73.5 / 95.2 76.2 / 81.3 77.4 / 54.9 69.0 / 96.7 49.1 / 90.2 68.6 / 62.0 94.7 / 93.4 96.4 / 56.3 85.7 / 57.7 75.76
Medusa (Ours) 77.1 / 64.3 73.2 / 95.8 74.9 / 94.7 76.4 / 50.7 66.4 / 96.1 62.8 / 94.5 74.4 / 67.6 95.3 / 89.6 96.1 / 49.3 94.2 / 59.2 77.62

Table 6. Effectiveness of Medusa and baseline approaches on merging model branches developed from T0-3B

with IA3. Medusa has full control of parameter ownership on both model branches.

Approach COLA / RTE COLA / SST2 COLA / QNLI COLA / WNLI RTE / SST2 RTE / QNLI RTE / WNLI SST2 / QNLI SST2 / WNLI QNLI / WNLI Average

Linear Average 61.1 / 53.4 61.7 / 93.6 60.8 / 50.0 61.1 / 43.7 52.7 / 95.0 54.9 / 76.1 52.7 / 46.5 94.4 / 49.7 95.0 / 43.7 58.8 / 43.7 62.41
DARE+Linear Average 63.9 / 55.2 61.4 / 94.7 61.8 / 50.0 61.2 / 43.7 52.7 / 95.1 61.0 / 75.3 54.5 / 43.7 94.8 / 49.7 95.5 / 43.7 59.3 / 43.7 63.04
Task Arithmetic 57.9 / 52.7 59.5 / 93.0 57.6 / 49.6 58.4 / 43.7 52.7 / 94.0 53.1 / 55.5 52.7 / 43.7 93.1 / 49.5 93.9 / 43.7 50.1 / 43.7 59.91
DARE+Task Arithmetic 59.9 / 52.7 59.7 / 93.7 58.9 / 49.6 58.5 / 43.7 52.7 / 94.5 54.2 / 54.8 53.1 / 45.1 94.0 / 49.6 94.4 / 43.7 50.1 / 43.7 60.32
TIES 66.0 / 54.5 61.6 / 94.0 65.7 / 50.6 67.9 / 43.7 52.3 / 95.6 57.8 / 85.1 56.3 / 50.7 95.2 / 50.0 95.4 / 43.7 79.8 / 45.1 65.55
DARE+TIES 71.6 / 58.1 68.9 / 96.1 75.6 / 82.4 73.6 / 45.1 69.7 / 96.1 47.3 / 50.7 47.3 / 56.3 95.6 / 56.7 95.6 / 43.7 61.0 / 42.3 66.69
Medusa(Ours) 73.5 / 49.1 72.5 / 95.8 75.5 / 92.8 74.9 / 54.9 58.1 / 96.4 48.4 / 53.6 55.2 / 56.3 96.4 / 83.9 96.4 / 52.1 82.0 / 57.7 71.29

parameter update conflicts. However, compared to TIES,Medusa avoids parameter update con-
flicts by construction during the fine-tuning process with the parameter ownership assignment,
consequently further improving the performance of the merged models.
Second, we investigate whether the task similarity contributes to the performance of merged

models, i.e., training the model on dataset A may improve the model’s performance on dataset
B. We investigate by fine-tuning T5-base on one dataset and test its performance on another. As
shown in Table 4, fine-tuning T5-base on one dataset and testing it on another dataset substantially
reduces the model performance. The results indicates that the performance of merged models does
not benefit from potential task similarity and thatMedusa does help collaborative FM development
in a practical essence.

4.2.2 Main Results on Model Development with Parameter-Efficient Fine-Tuning. Table 5 and Table 6
present the effectiveness of Medusa and baseline approaches for collaborative FM development
where Medusa can fully control the parameter ownership of the two model branches. Both ex-
periments take T0-3B as the base model, with the fine-tuning technique being LoRA and IA3,
respectively. We do not conduct experiments on T5-base and T5-large with PEFT techniques be-
cause the number of trainable parameters is relatively small for effective merging. We discuss this
scenario further in Section 4.4.
From Table 5 and Table 6, we have two major observations. First, consistent with the results

on fully fine-tuning techniques, Medusa outperforms baseline approaches by 1.8% and 4.6% on
average in the setting of LoRA and IA3, respectively. These results demonstrate the generalization of
Medusa in helping collaborative FM development concerningmodel size and fine-tuning techniques.
Second, the effectiveness of Medusa with LoRA is better than that with IA3. The main reason is
that fine-tuning models with LoRA has more trainable parameters than that with IA3. Specifically,
fine-tuning T0-3B with LoRA has 9.3M trainable parameters while fine-tuning T0-3B with IA3 has
only 0.54M trainable parameters. In Section 4.4, we also find that small trainable parameters can
lead to failures of model merging. Nevertheless, larger FMs have more trainable parameters when
using PEFT techniques to fine-tune, and Medusa is expected to have better performance on them.

4.3 RQ2: Effectiveness with Partial Parameter Ownership Control

Table 7 and Table 8 present the main results for collaborative FM development where Medusa
can control the parameter ownership of only partial model branches. These experiments take
T5-base and T5-large as base models, respectively, with the fine-tuning technique being fully
fine-tuning. From the tables, we have three major observations. First, Medusa outperforms all
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Table 7. Effectiveness of Medusa on merging model branches developed from T5-base

with fully fine-tuning. Medusa has full control of parameter ownership on the second

model branch and no control of parameter ownership on the first model branch.

Approach COLA / RTE COLA / SST2 RTE / COLA RTE / SST2 SST2 / COLA SST2 / RTE Average

Linear Average 69.1 / 56.3 69.1 / 53.8 56.3 / 69.1 51.3 / 52.5 53.8 / 69.1 52.5 / 51.3 58.68
DARE+Linear Average 69.1 / 53.8 69.1 / 52.3 53.8 / 69.1 52.3 / 68.3 52.3 / 69.1 68.3 / 52.3 60.82
Task Arithmetic 69.1 / 51.3 69.1 / 49.4 51.3 / 69.1 51.6 / 49.2 49.4 / 69.1 49.2 / 51.6 56.62
DARE+Task Arithmetic 69.1 / 54.9 69.1 / 50.3 54.9 / 69.1 50.5 / 52.8 50.3 / 69.1 52.8 / 50.5 57.78
TIES 71.7 / 58.8 69.1 / 53.6 58.8 / 71.7 62.5 / 86.4 53.6 / 69.1 86.4 / 62.5 67.02
DARE+TIES 69.6 / 54.2 69.1 / 85.3 54.2 / 69.6 52.7 / 89.9 85.3 / 69.1 89.9 / 52.7 70.13

Medusa (Full Control) 71.9 / 67.9 74.8 / 84.6 67.9 / 71.9 65.0 / 90.6 84.6 / 74.8 90.6 / 65.0 75.80

Medusa (Partial Control) 69.1 / 68.6 69.1 / 92.0 52.7 / 79.4 52.7 / 89.2 49.5 / 79.6 83.1 / 52.7 69.82

Table 8. Effectiveness of Medusa on merging model branches developed from T5-large

with fully fine-tuning. Medusa has full control of parameter ownership on the second

model branch and no control of parameter ownership on the first model branch.

Approach COLA / RTE COLA / SST2 RTE / COLA RTE / SST2 SST2 / COLA SST2 / RTE Average

Linear Average 69.2 / 56.3 36.6 / 53.8 56.3 / 69.2 45.5 / 52.5 53.8 / 36.6 52.5 / 45.5 52.32
DARE+Linear Average 69.1 / 54.2 69.1 / 49.1 54.2 / 69.1 46.6 / 49.1 49.1 / 69.1 49.1 / 46.6 56.20
Task Arithmetic 31.3 / 51.3 30.9 / 49.4 51.3 / 31.3 30.9 / 45.1 49.4 / 30.9 45.1 / 30.9 39.82
DARE+Task Arithmetic 30.9 / 45.1 30.9 / 49.1 45.1 / 30.9 56.0 / 49.1 49.1 / 30.9 49.1 / 56.0 43.52
TIES 71.4 / 58.8 69.2 / 53.6 58.8 / 71.4 52.7 / 86.4 53.6 / 69.2 86.4 / 52.7 65.35
DARE+TIES 77.1 / 52.7 76.8 / 49.2 52.7 / 77.1 47.3 / 50.9 49.2 / 76.8 50.9 / 47.3 59.00
Medusa (Ours) 78.7 / 51.6 69.1 / 93.9 51.6 / 78.7 73.3 / 95.4 93.9 / 69.1 95.4 / 73.3 77.00

PartialMedusa (Ours)+TIES 69.1 / 86.3 69.1 / 95.9 52.7 / 81.6 52.7 / 92.9 39.1 / 80.2 51.6 / 84.5 71.31

Table 9. Effectiveness of Medusa on merging multiple model branches fully fine-tuned from T5-base.

Approach

3 Tasks 4 Tasks 5 Tasks

Average

COLA RTE SST2 COLA RTE SST2 WNLI COLA RTE SST2 WNLI QNLI

Linear Average 69.1 54.5 49.1 69.1 49.5 49.1 43.7 69.1 51.6 49.1 46.5 47.3 53.97
Task Arithmetic 69.1 52.3 49.2 69.1 56.7 49.1 43.7 69.1 47.3 49.5 49.3 59.7 55.35
TIES 69.1 58.1 64.4 69.1 45.8 49.7 52.1 69.1 52.0 49.4 45.1 52.9 56.41
DARE+Linear Average 69.1 51.3 49.1 69.1 50.2 49.1 43.7 69.1 50.2 49.1 53.5 47.4 54.24
DARE+Task Arithmetic 69.1 48.0 49.2 69.1 49.1 49.1 43.7 69.1 46.6 56.7 50.7 59.0 54.95
DARE+TIES 69.0 53.1 71.1 69.1 52.7 68.2 43.7 69.1 47.7 50.9 59.2 50.5 58.69
Medusa (Ours) 70.4 60.7 93.5 69.1 60.7 70.5 56.3 69.1 48.5 53.8 49.3 80.6 64.96

baseline approaches in terms of average performance across multiple tasks. In particular, Table 7
shows thatMedusa achieves an average performance of 75.80 compared to the best-performing
baseline, DARE+TIES, which scores 70.13. Similarly, in Table 8, Medusa leads with an average
score of 77.00, surpassing all other baseline approaches.

Second, the results from the experiments whereMedusa has partial control of parameter owner-
ship demonstrate competitive performance. For example, in Table 8, PartialMedusa achieves an
average score of 71.31, showing that even with limited control over parameter ownership, Medusa
can significantly improve the performance of merged models compared to baseline approaches.
Third, more control of parameter ownership indicates higher effectiveness.Medusa with full

control of parameter ownership assignment consistently outperforms Medusa with full control of
parameter ownership assignment, indicating the usefulness of using Medusa for all model branch
development.

4.4 RQ3: Ablation Studies and Application Scope Analysis

4.4.1 Scalability to Multiple Branches. Table 9 presents the performance comparison between
Medusa and multiple baseline approaches for merging model branches fine-tuned on multiple
tasks. The results show how each approach scales as the number of tasks increases from 3 to 5.
For each task configuration (3, 4, and 5 tasks),Medusa consistently outperforms the baseline

approaches, especially as the number of tasks increases. While baseline approaches such as Linear
Average and TIES show a gradual decline in performance when merging more than 3 tasks,Medusa

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE115. Publication date: July 2025.



FSE115:16 Dezhi Ran, Yuan Cao, Yuzhe Guo, Yuetong Li, Mengzhou Wu, Simin Chen, Wei Yang, and Tao Xie

Fig. 4. Efficacy of gradient-based estimation

of model parameter updates.

Table 10. Failures when the number of trainable parameters is

small.

Approach

T5-base 1.7M
1

T5-large 4.5M
1

COLA / RTE COLA / RTE

Base Model 69.1 / 52.3 30.9 / 52.7
Finetuned 80.0 / 69.7 78.8 / 66.1
Linear Average 69.1 / 48.7 30.9 / 53.1
DARE+Linear Average 69.1 / 50.9 30.9 / 45.5
Task Arithmetic 69.1 / 52.7 30.9 / 52.0
DARE+Task Arithmetic 69.1 / 52.0 30.9 / 51.6
TIES 69.1 / 52.0 30.9 / 51.6
DARE+TIES 69.1 / 51.3 69.3 / 52.3
Medusa (Ours) 69.1 / 55.6 75.3 / 52.7
1 # of trainable parameters.

maintains its robustness, demonstrating higher average performance across all task sets and its
effectiveness in collaborative model merging as the number of tasks and model branches grows.

4.4.2 Efficacy of Gradient-based Estimation. We conduct an ablation study with gradient infor-
mation at different training epochs to evaluate the efficacy of Medusa in balancing the cost and
accuracy when using gradient information to estimate the parameter updates in different model
branches. Specifically, we investigate the COLA dataset by measuring the consistency of the model
parameter update directions with the update direction reflected by gradients. As shown in Figure 4,
with the gradient at the first epoch, Medusa can correctly predict the update directions of around
90% parameters, demonstrating the efficacy of using gradient information for accurate and cheap
parameter update prediction.

4.4.3 Impact of Masked Fine-Tuning. Medusa uses masked fine-tuning to avoid conflicts of pa-
rameter updates in different model branches. To investigate whether fine-tuning a model with
masks harms the performance of the fine-tuned models, we collect the performance of fine-tuned
models with and without masks. Table 11 presents the performance of models fine-tuned with and
without masks. From Table 11, we have two major observations. First, masked fine-tuning does
not compromise the effectiveness of the fine-tuning process for all models. Second, combining the
model parameters by averaging the deltas of parameter updates incurs the model performance
drop, appealing for a more effective mechanism for incorporating the parameters of two fine-tuned
models. However, as Medusa focuses on parameter ownership assignment, the merging approach
is not the major focus, left for our future work to explore.

4.4.4 Failure Cases of Collaborative FM Development. Mergeability between conflicting model

branches. While masked fine-tuning does not compromise the model’s effectiveness, we observe
that on certain task pairs, specifically COLA/RTE and COLA/SST2 on T5-base, all baseline ap-
proaches make the fine-tuning invalidated, i.e., the merged model performs comparably to the base
model on COLA, despite the base model not being fine-tuned on the task. After investigating the
CoLA and SST-2 datasets, we find that the fundamental nature of the two tasks appears incompati-
ble: CoLA requires strict grammatical judgment based on linguistic rules, while SST-2 focuses on
semantic sentiment understanding, leading to conflicting optimization objectives during merging if
not proactively prevented as Medusa does. This phenomenon also indicates that some tasks may
be inherently not suitable for merging, making the mergeability prediction an important direction,
left for our future work.
Emergent mergeability of trainable parameters.While we demonstrate the generalization of
Medusa across different models including T5-base, T5-large, and T0-3B, and different fine-tuning
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Table 11. Performance of models fine-tuned with/without masks. FT represents fine-tuning.

Model

COLA RTE SST2 QNLI WNLI

Base / FT / Masked-FT Base / FT / Masked-FT Base / FT / Masked-FT Base / FT / Masked-FT Base / FT / Masked-FT

T5-base 69.1 / 78.7 / 79.6 52.3 / 70.4 / 70.8 49.1 / 92.0 / 91.4 49.4 / 89.5 / 88.8 43.7 / 57.7 / 56.3
T5-large 30.9 / 80.8 / 79.8 52.7 / 87.7 / 83.8 49.1 / 95.6 / 96.2 49.5 / 94.0 / 92.3 43.7 / 57.7 / 57.8
T0-3B (LoRA) 57.5 / 84.9 / 84.5 52.7 / 89.2 / 88.4 88.8 / 97.1 / 97.0 49.5 / 94.6 / 94.6 43.7 / 74.6 / 69.0
T0-3B (IA3) 57.5 / 80.8 / 77.5 52.7 / 71.8 / 60.6 88.8 / 96.8 / 96.6 49.5 / 92.4 / 93.1 43.7 / 54.9 / 52.1

techniques including fully fine-tuning, LoRA, and IA3, we also notice thatMedusa performs better
for LoRA than IA3. Given that LoRA has more trainable parameters than IA3, we investigate the
impact of the number of trainable parameters on merged models’ performance with small models
on COLA and RTE datasets, as shown in Table 10. From Table 10, we find that when merging
these models, all existing baselines fail to produce meaningful models, i.e., the performance of the
models after merging drops to the base model, indicating that the fine-tuning process is wasted
after merging. DespiteMedusa still outperforming all baseline approaches, it also suffers from a
performance drop. Consequently, we conclude thatMedusa and model merging are not suitable for
small models without enough trainable parameters to accommodate skills obtained from different
sources.

5 Discussion and Future Work

In this section, we discuss future work that could address the current limitations of Medusa.

5.1 White-box Model Merging

Medusamakes no assumptions about the internal architecture of the models that it merges, missing
opportunities to exploit architecture-specific characteristics of the models for improved merging
performance. Future work could involve developing white-box merging techniques that consider
the specific layers, activation functions, and architectural nuances of the models. By understanding
and leveraging these details, we could potentially enhance the efficiency and effectiveness of the
merging process, leading to better performance of the merged models across tasks.

5.2 Model Merging across Architectures

Currently, Medusa is limited to merging models that have been fine-tuned from the same pre-
trained model. Future extensions of Medusa could explore techniques for merging models across
different architectures. Doing so would involve developing techniques to align and reconcile
differences in model structure, parameterization, and feature representations, thereby enabling the
combination of models with diverse origins.

5.3 Mergeability Prediction

As revealed in our evaluation in Section 4.4, some tasks are inherently not mergeable due to
huge differences and conflicts between two model branches. Mergeability prediction could involve
developing metrics or machine learning models that assess the likelihood of successful model
merging based on pre-fine-tuning characteristics. Implementing these features would streamline
the model merging process, making it more robust and less reliant on manual intervention.

6 Threats to Validity

The main threat to the external validity concerns the representativeness of the models, datasets,
training techniques, and baselines selected for our evaluations. To mitigate the impact of the
bias introduced by the model and dataset selection, we use three popular pre-trained models
and five datasets widely used by related work on model merging. To mitigate the impact of the
bias introduced by training technique selection, we use three different and popular fine-tuning
techniques. To mitigate the impact of the bias introduced by baseline selection, we choose recent
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and state-of-the-art model merging approaches. Evaluating Medusa with more different datasets,
models, and training techniques will further alleviate the threat.
The threats to internal validity are instrumentation effects that can bias our results, including

faults in our implementation of Medusa, parameter selection inMedusa, and hyper-parameter
selection during fine-tuning models. To mitigate the impact of the bias introduced by the parameter
selection in Medusa, we conduct extensive ablation studies with different parameters in Medusa.
To mitigate the impact of the hyper-parameter selection during fine-tuning models, we follow
previous work [105] and use the same evaluation metrics in our evaluations.

7 Related Work

7.1 Post-training Model Merging

There is a growing body of work on post-training model merging [15, 40, 67, 103, 105, 109, 113],
which focuses on combining pre-trained models that have been fine-tuned on different tasks. Linear
averaging approaches [103, 113] average parameters of multiple fine-tuned models element-wise.
Task arithmetic [15, 40, 67] leverages task-specific weight vectors, to represent weights for specific
tasks to facilitate direct manipulation of multi-task learning by adding or subtracting on task vectors.
These approaches are vulnerable to parameter update conflicts [13, 48]. TIES [105] tries to reduce
parameter update conflicts with heuristics such as trimming minor updates to avoid redundant
updates [111]. DARE [109] improves upon TIES by re-scaling the remaining parameters to keep
the distributional stability. Complementing the existing work focusing on resolving parameter
update conflicts after fine-tuning, Medusa is the first to resolve parameter update conflicts before
fine-tuning, with the novel concept of parameter ownership assignment. In addition, Medusa
can be combined with any existing or future post-training model merging techniques to further
improve the effectiveness of collaborative FM development.

7.2 Masked Training of Deep Learning Models

Masked training [52, 63], a technique aimed at enhancing model efficiency and generalization [59],
has become increasingly relevant in the context of deep learning. Sung et al. [87] demonstrate that
applying fixed masks during training [98] can significantly reduce the number of parameters while
maintaining model performance. This approach has been particularly impactful in environments
where computational resources are limited, such as in edge computing [115] and federated learning
scenarios [51]. In distributed training [83] and federated learning [57, 96, 97], masked training
techniques help reduce the communication overhead [1] by limiting the number of parameters that
need to be updated and shared across different nodes. This training technique not only improves
training efficiency but also enhances privacy by ensuring that only a small, non-sensitive subset of
the model parameters is exchanged between nodes. Our work benefits from the existing principles
for masked training of deep learning models. By using masks during the fine-tuning process, we
ensure that only the most important parameters in each model branch are updated, substantially
reducing the parameter update conflicts while maintaining the efficacy of the fine-tuning process
and the performance of the merged model.

7.3 Version Control Systems of FMs

The application of version control systems (VCS) [17] to deep learning models is an emerging
research field. Git-Theta [45] has pioneered extending Git’s large file system [56] to optimize large
file management [58] associated with machine learning models [99, 110]. By tracking changes to
model weights and configurations, Git-Theta reduces the storage costs for large models. In contrast
to Git-theta, which focuses on the storage optimization of FMs, Medusa focuses on facilitating
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the collaborative development of FMs by reducing parameter update conflicts with automated
parameter ownership assignment.

7.4 Ensemble Learning over Multiple Models

It is important to acknowledge that ensemble learning is also a closely related topic toMedusa.
Ensemble learning [31] has a rich history in machine learning, dating back several decades [5, 26,
100]. Traditional ensemble approaches combine multiple models trained on the same or similar tasks
to improve performance and generalization. Some ensemble approaches require maintaining and
running multiple models during inference [5, 26]. For example, bagging [5] and boosting [26] have a
rich history of combining multiple models to improve performance on a single task [12, 27, 64, 114].
These approaches typically operate by aggregating outputs from multiple models during inference,
whether through voting [6], averaging [20], or weighted combinations [32]. Notably, some ensemble
approaches, such as parameter averaging and model distillation, do produce a single unified
model [100, 103]. For example, parameter averaging [100, 103] combines multiple models trained
with different random seeds by averaging their weights, resulting in a single model with improved
generalization. Knowledge distillation [34] ensembles multiple teacher models into a single student
model [28].
Medusa shares the foundational insights from ensemble approaches, particularly parameter

averaging.While there are similarities in the technical approach of combiningmodel parameters, our
work explores a different and complementary direction. Where traditional ensemble learning excels
at combining models trained on the same task to improve performance [22, 106], we investigate
the possibility of merging models trained on different tasks to enable capability sharing across
domains, yet reducing the conflicts among different tasks. Complementing the existing work
focusing on resolving parameter update conflicts after fine-tuning,Medusa is the first to resolve
parameter update conflicts before fine-tuning, with the novel concept of parameter ownership
assignment. In addition, Medusa can be combined with any existing or future post-training model
merging/ensemble techniques to further improve the effectiveness of collaborative FM development.

8 Conclusion

In this paper, we have introducedMedusa, a pioneering framework designed for collaborative
FM development. By managing model branches and introducing a structured system of parameter
ownership,Medusa tracks different fine-tuning efforts as separate branches, similar to Git, allowing
developers to work on different tasks without destabilizing the base model.Medusa proactively
optimizes the merging process through our parameter-ownership-assignment algorithm to generate
merging-aware masks. These masks guide the fine-tuning process on different branches, ensuring
that only specific branches canmodify designated parameters. Extensive evaluations on five datasets,
three fine-tuning techniques, and three popular models against six state-of-the-art post-training
model-merging approaches demonstrate the efficacy and generalization of Medusa, opening up a
new direction for deriving engineering principles for FM development, similar to those used in
traditional software engineering.
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