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ABSTRACT
Existing techniques on adversarial malware generation employ
feature mutations based on feature vectors extracted from mal-
ware. However, most (if not all) of these techniques suffer from a
common limitation: feasibility of these attacks is unknown. The
synthesized mutations may break the inherent constraints posed
by code structures of the malware, causing either crashes or mal-
functioning of malicious payloads. To address the limitation, we
present Malware Recomposition Variation (MRV), an approach that
conducts semantic analysis of existing malware to systematically
construct new malware variants for malware detectors to test and
strengthen their detection signatures/models. In particular, we use
two variation strategies (i.e., malware evolution attack and mal-
ware confusion attack) following structures of existing malware to
enhance feasibility of the attacks. Upon the given malware, we con-
duct semantic-feature mutation analysis and phylogenetic analysis
to synthesize mutation strategies. Based on these strategies, we
perform program transplantation to automatically mutate malware
bytecode to generate new malware variants. We evaluate our MRV
approach on actual malware variants, and our empirical evaluation
on 1,935 Android benign apps and 1,917 malware shows that MRV
produces malware variants that can have high likelihood to evade
detection while still retaining their malicious behaviors. We also
propose and evaluate three defense mechanisms to counter MRV.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation;

KEYWORDS
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1 INTRODUCTION
Along with the exponential growth of markets of mobile appli-
cations (apps in short) comes the frequent occurrence of mobile
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malware. According to the McAfee Security Report [27], more than
37 million mobile malware samples were detected over the six
months preceding the report-writing time. To fight against mal-
ware, a signature-based technique extracts malicious behaviors as
signatures (such as bytecode or regular expression) while a more
complicated machine-learning-based technique [23] learns discrim-
inant features from analyzing semantics of malware.

To defeat these detection techniques, malware authors constantly
produce new variants of existing malware families. Recent stud-
ies [33, 34, 41] show that performance of both signature-based
and learning-based malware detection techniques can be degraded
by carefully-crafted malware variants. To increase the robustness
of malware detectors against malware variants, we need to be
proactive and take potential adversarial scenarios into account
in designing malware detectors. To enable the proactive design
of malware detectors, existing work [11, 13, 16, 19] has been pro-
posed to evaluate malware detectors in adversarial settings. Such
work envisions potential attack scenarios and manipulates (adds,
changes, or removes) features1 extracted from malware according
to the envisioned attacks. The malware detectors are then used to
identify malware variants through the manipulated features. The
performance of the malware detection on manipulated features is
expected to be lower than the original detection. The robustness of
the malware detectors are further evaluated based on performance
degradation.

However, the validity of these evaluations is questionable due
to impracticality of the attacks. The attacks used in the prior work
manipulate the feature vectors of a malware sample without consid-
ering feasibility and impact of the mutation. In other words, when
applying the changes made in feature vectors to the malware’s
code, the changes may cause the malware to crash, cause unde-
sired behaviors, or disable malicious functionalities (sometimes the
modified code cannot even be compiled).

There are three practical constraints to craft a realistic attack:
PreservingMalicious Behaviors.Themutatedmalware should

maintain the original malicious purposes, and therefore simply con-
verting the malware’s feature values to another app’s feature values
is likely to break the maliciousness. For example, malicious behav-
iors are usually designed to be triggered under certain contexts
(to avoid user attention and gain maximum profits [43]), and the
controlling logic of the malware is too sophisticated (e.g., via logic
bombs and specific events) to be changed.

1Malware detectors use feature sets for signatures or detection models.
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Maintaining the Robustness of Apps. The mutated malware
should be robust enough to be installed and executed in mobile
devices. Automatically mutating an app’s feature values is likely to
break the code structures and therefore cause the app to crash at
runtime.

Evading Malware Detectors. To evade a malware-detection
model, an adversary needs to identify the features and compute
the feature values that can evade detection without breaking the
malware. Doing so usually requires an adversary to possess in-
ternal knowledge and understanding of the malware detectors.
Unfortunately, generally an adversary may have little (or even no)
knowledge about the malware-detection model (such as features
and algorithms). Moreover, the particular knowledge to a single
malware-detection model is too specific to successfully produce eva-
sive variants, especially if the malware detector (e.g., VirusTotal [5])
is based on combining multiple models or techniques.

To create an attack satisfying these three constraints, we em-
ploy Malware Recomposition Variation (MRV) consisting of two
mutation strategies, Malware Evolution Attack and Malware Confu-
sion Attack (Section 3). The advantage of our mutation strategies is
that the strategies can produce high percentages of feasible feature
mutations (suggested in our evaluation), thus greatly enhancing
the feasibility of the attacks. The insight is that feature mutations
are less likely to break the apps when the mutations follow feature
patterns2 of existing malware. To mutate app features in black-box
scenarios, we create a substitute model named as RTLD (Section 2)
approximating the models of malware detectors. Such methodology
has been widely used to launch successful black-box attacks in prior
work [21, 26, 30]. RTLD generally reflects the susceptibility of a
detection technique to the mutations of malware feature values.

To apply the mutation strategies without breaking dependen-
cies and functionalities in an app, we develop a new technique,
inspired by program transplantation [36], to reuse the existing im-
plementations instead of randomly mutating or synthesizing the
code. In particular, we develop a transplantation framework capable
of inter-method, inter-component, and inter-app transplantation
(transplanting a feature in one app/component/method, i.e., donor,
to a different app/component/method, i.e., host). By leveraging the
existing implementations, this technique enables systematic and
automatic mutations on malware samples while aiming to produce
well-functioning apps.

We also propose and evaluate three defense mechanisms to
strengthen the robustness of malware detectors against MRV at-
tacks. (i) Adversarial Training. Training a new model with the com-
bination of the generated malware variants and original training
data. (ii)Variant Detector. Developing a detector in addition to the
original malware detector to detect whether an app is a variant
derived from existing malware. (iii)Weight Bounding. Bounding the
feature weights in the original malware detector to make feature
weights more evenly distributed3.

Main Contributions. This paper makes the following main
contributions.

2In our mutation strategies, the feature patterns are extracted from malware evolution
histories and existing evasive malware.
3Such defense mechanism forces the increasing number of mutations to craft adver-
sarial samples; therefore, the attack will likely become infeasible (our empirical result
suggests that the number of working adversarial samples dramatically decreases as
the number of mutations increases).

• Attacks.We propose two practical attacks (feature evolution
attack and feature confusion attack) to effectively mutate existing
malware for evading detection (Section 3).

• Observation. We evaluate the robustness of detection models
and the differentiability of selected features of malware detectors
by systematically and automatically applying proposed attacks to
existing malware detectors (Section 7).

• Characterization. We propose an RTLD feature model that
characterizes and differentiates contextual and essential features of
malicious behaviors (Section 2).

• Framework.We develop a transplantation framework capable
of inter-method, inter-component, and inter-app transplantation
to automatically mutate app features (Section 4).

Related Work. Smutz et al. [38] propose mutual agreement
analysis to detect classifier evasions in malware detectors. To eval-
uate the improvement over the Drebin malware detector, Smutz et
al. withhold some malware families from the training set and use
malware samples from these families to check the performance of
malware detectors. Our work differs from their work in two aspects.
First, their approach works for only ensemble classifiers, while our
approach works for any type of malware detectors. Second, they
use existing malware samples to mimic the attack of unknown
malware families, while we generate previously unknown malware
variants to test the robustness of malware detectors.

Grosse et al. [19] investigate how adversarial perturbation would
affect malware detectors based on deep neural networks. Grosse et
al. mutate malware features based on the forward derivative [31]
of the neural network to evade detection. Grosse et al. do not
apply the computed feature mutations to the malware bytecode.
Instead, they choose a conservative mutation strategy by adding
only manifest features (i.e., features extracted from the manifest
file, AndroidManifest.xml). In comparison, our proposed attacks
are more comprehensive (adding, removing, or changing features)
and more practical (changing both the manifest file and dex code).

Demontis et al. [16] investigate performance of malware detec-
tors by applying a few previous attacks [12, 22]. Demontis et al.
propose to perform feature mutations and obfuscations to evade
malware detection. However, their work does not apply feature
mutations on malware bytecode. It is possible that the computed
feature mutations are infeasible attacks. Hu et al. [21] propose to
leverage generative adversarial network [18] to generate adversar-
ial malware samples. They also do not apply feature mutations on
malware bytecode, thus leading potential infeasible attacks.

2 RTLD FEATURE MODEL
We characterize semantic features of mobile apps using the RTLD4

feature model, which aims to reflect the essential malicious behav-
iors while balancing between the computational efficiency and accu-
racy. The RTLD feature model is a general model summarizing the
essential features (i.e., security-sensitive resources) and contextual
features (e.g., when, where, how the security-sensitive resources
are obtained and used) commonly used in malware detection.

The RTLD features cover four main aspects: Resource (what
security-sensitive resources malicious behaviors obtain), Temporal
(when the malicious behaviors are triggered), Locale (where the

4RTLD is short for Resource, Temporal, Locale, and Dependency.



malicious behaviors occur), and Dependency (how the malicious
behaviors are controlled).

The advantages of using the RTLD features are two-fold. First,
we can learn a substitute model approximating the targeted detector
using the RTLD features. Based on the transferability property [26,
29, 39], some adversarial samples generated based on the substitute
model can also evade the original detectors.

The second advantage of the RTLD features is the separation of
essential features and contextual features. To form an informative
feature set for signature or detection model, existing malware de-
tection tends to include as many features as possible. For example,
Drebin, a recently published approach of malware detection [7],
uses the feature set containing 545,334 features. A recent study [35]
shows that such large feature set has numerous non-informative
or even misleading features. Two of our observations confirm this
finding. (i) Malware detectors often confuse non-essential features
in code clones as discriminative features. Copy-paste practice is
prevalent in the malware industry, resulting in many code clones
in malware samples [15]. Because the same code has appeared
in many malware instances, learning-based detectors may regard
non-essential features (e.g., minor implementation detail) in code
clones as major discriminant factors (because the same pieces of
code appear in many malware samples but not in benign apps). (ii)
Using a universal set of features for all malware families would
result in a large number of non-essential features to characterize
each malware family, because the features essential to malicious
behaviors are different for each family. The separation of essential
features and contextual features in the RTLD model enables our
generated attacks to pinpoint the features that are not critical to
the malicious behaviors but confusing to the classifiers.

We use the simplified code snippet of the DougaLeaker malware5
shown in Figure 1 to illustrate the feature model. The code snippet
shows two malicious behaviors of the DougaLeaker malware. First,
the code snippet saves the Android ID and telephone number of the
victim device to global class User when the app starts (Lines 5-7
in Figure 1b). Then the code snippet reads contacts on the victim
device (Lines 8-13 in Figure 1b) and sends the contacts to a malicious
server (Line 20 in Figure 1b). The code snippet also starts a service
that sends the Android ID and telephone number to the malicious
server through text messages between 11PM and 5AM.

The resource features describe the security-sensitive resources
exploited by malicious behaviors while the dependency features
further represent how the malicious behaviors are controlled. We
locate resource features by constructing call graphs and identify-
ing call-graph nodes of the security-sensitive methods (including
methods for accessing permission-protected resources and methods
for executing external binaries/commands). We compile the list of
security-sensitive methods based on PScout [8] and construct the
call graphs using the SPARK call-graph algorithm implemented in
Soot [40]. The call graphs represent the invocation relationships
between the app’s entrypoints and permission invocations. We save
the entrypoints of the call graphs in this step to trace back to the
other features in later steps. For the DougaLeaker example, we can
locate the HttpPost method invocation (not shown in Figure 1) in
exec_post along with the sendTextMessage method invocation

5MD5 of the malware is e65abc856458f0c8b34308b9358884512f28
bea31fc6e326f6c1078058c05fb9.

1 public class User extends Application{
2 public String androidid;
3 public String tel;}

(a) User class of DougaLeaker malware

1 public classMainActivity extends Activity{
2 public void onCreate(android.os.Bundle b){
3 super.onCreate(b);
4 this.requestWindowFeature(1);
5 User u = (User) getApplication();
6 u.androidid = Settings.Secure.getString(getContentResolver(),

"android_id");
7 u.tel = getSystemService("phone").getLine1Number();
8 if(isRegisterd(u.androidid)){
9 Cursor cursor = managedQuery(ContactsContract.Contacts.

CONTENT_URI, 0, 0, 0, 0);
10 while (cursor.moveToNext() != 0) {
11 this.id = cursor.getString(cursor.getColumnIndex("_id"));
12 this.name = cursor.getString(cursor.getColumnIndex("

display_name"));
13 this.data = new StringBuilder(String.valueOf(this.data)).

append("name:").append(this.name).toString();
14 }
15 cursor.close();
16 }else{
17 startService(new Intent(getBaseContext(), MyService.class));
18 }
19 }
20 this.exec_post(this.data);}} //sending contacts through

HttpPost

(b) MainActivity of DougaLeaker malware

1 public class MyService extends Service{
2 public int onStartCommand(Intent intent, int flags, int startId

){
3 User u = (User) getApplication();
4 String text = "android_id = " + u.androidid + "; tel =" + u.tel;
5 Date date = new Date();
6 if(date.getHours>23 || date.getHours< 5 ){
7 android.telephony.SmsManager.getDefault().

sendTextMessage(this.number, null, text, null, null);
8 }
9 return;}}

(c) MyService of DougaLeaker malware

Figure 1: Motivating Example: DougaLeaker malware

(Line 7 in Figure 1c) in onStartCommand in the call graph. Due to
space limit, we omit many details here.

The temporal features describe the contexts when the malicious
behaviors are triggered. To extract the temporal features, we iden-
tify three categories of temporal features based on the attributes
of their entrypoints. (i) For system events handled by intent fil-
ters, their entrypoints are lifecycle methods. The components of
the lifecycle methods should have intent filters specified. (ii) For
both system events captured by event-handling methods and UI
events, their entrypoints should be event-handling methods. (iii)
For lifecycle events, their entrypoints are lifecycle methods, and



these lifecycle methods have not been invoked by other events (due
to inter-component communications).

The locale features describe the program locations where the
malicious behaviors occur. The location of a malicious behavior
is either an Android component (i.e., Service, Activity, and
Broadcast Receiver) or concurrency constructs (e.g., AsyncTask
and Handler). Malicious behaviors get executed when these
components are activated. Due to the inter-component communi-
cation (ICC) in an Android app, the entrypoint component of a
malicious behavior could be different from the component where
the behavior resides in.

The locale features in general reflect the visibility of a task (i.e.,
whether the execution of the task is in the foreground or back-
ground) and continuity (i.e., whether the task is once-off execution
or a continuous execution, even after exiting the app). For example,
if a permission is used in a Service component (that has not been
terminated by stopService), the permission use is running in the
background, and it is also a continuous task (even after exiting the
app).

The dependency features describe the control dependencies
of invocations of malicious behaviors. A control dependency be-
tween two statements exists if the truth value of the first statement
controls whether the second statement gets executed. Malware fre-
quently leverage external events or attributes to control malicious
behaviors. For example, a DroidDream malware sample leverages
the current system time to control the execution of its malicious
payload. It suppresses its malicious payload during the day but
allows the payload’s executions at late night when users are likely
sleeping.

We construct inter-procedure control-flow graph (ICFG) to ex-
tract the dependency features. Based on the ICFG, we construct the
subgraphs from each entrypoint to a resource feature (i.e., security-
sensitive method call). For each subgraph, we traverse the subgraph
to identify the conditional statements that the security-sensitive
method invocation is control-dependent on. The value of a condi-
tional statement is used to decide which program branch to take in
runtime executions, and thus decide whether a security-sensitive
method invocation on one of the program branches can be exe-
cuted or not. We say that such conditional statement controls the
invocation of the method. Finally, we save the set of extracted
conditional statements as dependency features with the resource
features and the corresponding location/temporal features. Fig-
ure 8 shows the ICFG of the onCreate and onStartCommand meth-
ods. As shown in the figure, the sendTextMessage method on
Line 7 in onStartCommand (Figure 1c) is controlled by the con-
ditional statement on Line 6 in onStartCommand and the condi-
tional statement on Line 8 in onCreate (Figure 1b). On the other
hand, the exec_post method in onCreate is not controlled by any
conditional statement, and thus the security-sensitive behavior in
exec_post does not have any dependency feature.

3 MUTATION STRATEGY SYNTHESIS
In this section, we present our techniques of synthesizing strate-
gies to mutate app features in black-box scenarios. To address the
challenge that adversaries have no knowledge about malware de-
tection techniques (e.g., features, models, algorithms) in black-box
scenarios, we develop two attacks: evolution attack and confusion
attack.

3.1 Evolution Attack
In evolution attack, instead of developing targeted malware to
evade specific detection techniques, we come up with a more gen-
eral defeating mechanism: mimicking and automating the evolution
of malware. Such defeating mechanism is based on the insight that
the evolution process of malware reflects the strategies employed
by malware authors to achieve a malicious purpose while evading
detection. Although existing anti-virus techniques have already
been updated to detect the “blind spot" exploited by evolved mal-
ware samples, those malware samples are merely a few instances
being manually mutated by malware authors. The mutation strate-
gies, if automated, can be systematically employed on a large set of
malware samples, enabling the exploitation to identify much more
blind spots of existing detection.

The main insight for malware evolution attack is that malware
creation is similar to biological evolution process (i.e., copy and edit
of the patterns). To interpret how malware evolve and understand
the differences among variants of a malware family, we conduct a
phylogenetic analysis for each family of malware6. We believe that
capturing the subtle differences among evolving malware patterns
can help mimick new malware.

Phylogenetic analysis on each family of malware. A phy-
logenetic evolutionary tree [10] is a branching diagram (a.k.a evolu-
tion tree) that shows the inferred evolution relations among differ-
ent samples based on the similarities and differences in their feature
representations. In the context of malware phylogenetic analysis,
we aim to understand how each family of malware evolves.

We perform our study using the aforementioned RTLD feature
type due to its competitive performance for classifying malicious
apps. We conduct malware phylogenetic analysis from searching
the common shared feature set and divergent feature set. The pair-
wise distance between malware samples is defined based on the
ratio of the number of features in the common shared feature set
to the number of features in the total feature set (including the
divergent feature set).

Pairwise distance computation. Note that in the RTLD fea-
ture type, each mobile app actually corresponds to multiple lines
of feature vectors. Therefore, we align the feature vectors from any
two mobile apps, using the (permission, API) key. In other words,
if the (Permission, API) values of two feature vectors are the same,
we further study similarities between the two feature vectors. Oth-
erwise, we stop comparing the two feature vectors since comparing
two feature vectors with different API methods is not worthwhile.
Let pi be the API set carried by app i , pj be the API set carried by
app j, and then the similarity between apps i and j is defined as:

Si j =
pi ∩ pj

pi ∪ pj
, (1)

where ∩ is the intersection operation of the two sets and ∪ is the
union operator of the two sets. We say that Eq.(1) captures the
coarse-grained difference between two apps since it considers only
the API method information.

If Si j is far below a threshold, this fact suggests that the two apps
share very few similar behaviors defined by APImethods. Therefore,

6We investigate malware evolution by family due to the fact that most of new malware
variants come from within existing families. A recent study [37] suggests that the
number of malware families has remained relatively constant over the years whereas
the number of variants within a family has been growing rapidly.
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Figure 2: Illustration of fine-grained matching of feature
vectors [(f ki )1, (f ki )2, ..., (f ki )m ] and [(дkj )1, (д

k
j )2, ..., (д

k
j )n ] re-

garding API method k from two apps i and j.

we stop fine-grained comparisons of other feature vectors due to
the large behavior gap.

If Si j is above a certain threshold, this fact indicates that the two
apps share many common behaviors defined by API methods. Then
we study each API method in a finer-grained way, and check how
the two apps are aligned regarding each APImethod. This technique
invokes a more thorough treatment and diversity comparisons of
feature vectors abstracted from both apps. We name such technique
as fine-grained app behavior analysis.

In the fine-grained app behavior analysis, for the API method k ,
let the correspondingm feature vectors involving API method k in
app i be (f ki )1, (f ki )2, ..., (f ki )m , and the corresponding n feature
vectors involving API method k in app j be (дkj )1, (д

k
j )2, ..., (д

k
j )n ,

where feature vectors (f ki )ℓ and (дkj )ℓ are both d-dimensional fea-
ture vectors. We need to find the best alignment of two groups of
feature vectors with respect to API method k . Note that in fact this
problem can be abstracted as a maximum matching problem in a bi-
partite graph, where the first disjoint set is [(f ki )1, (f ki )2, ..., (f ki )m ],
and the second disjoint set is [(дkj )1, (д

k
j )2, ..., (д

k
j )n ], and the edges

between the two sets find the maximum matching. Figure 2 illus-
trates the feature vector matching process between two apps. Note
that each bit in the feature vector (f ki )r is a binary value, where 1
denotes the existence of this feature. Therefore, for each pair of fea-
ture vectors, we define its distanceW as the number of equivalent
bits vs. the number of all feature bits, i.e.,

W ((f ki )r , (д
k
j )t ) =

#shared feature bits by(f ki )r and(дkj )t
#feature vector length

. (2)

Given the pairwise feature distance, we can refer to a Hungarian-
type Algorithm [24] to find the best matching of two groups of
feature vectors and also get the subtle difference regarding each API
method. To this end, we have obtained all pairwise distances among
different apps via coarse-grained and fine-grained app analyses.

Generation of phylogentic tree. We then feed the pairwise
distances of mobile apps to the phylogenetic tree generation algo-
rithm, namely, Unweighted Pair Group Method Average algorithm
(UPGMA) [25]. The UPGMA algorithm is a simple bottom-up hierar-
chical clustering algorithm that is most popularly used for creating
phenetic trees. UPGMA builds a rooted tree (a.k.a dendrogram)
that reflects the structure present in the similarity matrix. In each
step, the nearest two clusters are merged into the higher-level clus-
ter by averaging all pairwise sample distances. Please refer to the
appendix of this paper for examples of phylogentic tree for the
AdDisplay family and Droid_Kunfu family.

There are two key insights obtained from the phylogentic analy-
sis:

• Even for the malware samples in the same sub-family, their
distances may not be as small as those from different sub-
families if only API methods are considered as “features”.

• There are many subtle differences that cannot be captured
by API methods alone, such as those differences in UI types
and entry points, which actually provide complementary
sources to understand how malware evolve.

Generation of candidate feature mutation set. Although
phylogentic analysis provides similarities between different mal-
ware samples, in practice, we are more interested in knowing how
each feature type evolves in the same family because the evolu-
tion analysis provides much information about the feasibility and
statistical frequency regarding different feature types.

• Feasibility (F): as long as this feature value corresponding
to a particular feature type has been mutated, we view it
as feasible. In particular, if mutation of the i-th type feature
exists, then F (i) = 1; otherwise, F (i) = 0 7.

• Statistical Frequency (Sf): we count the number of feature
mutations given an API method. In particular, if mutation
of the i-th type feature appears for n times, then S f (i) = n;
otherwise, S f (i) = 0.

Then we rank different feature mutations corresponding to each
API method in a principled way, i.e., making a balance between the
feasibility and statistical frequency. Let the ranking function R(.)
be

R(i) = αF (i) + (1 − α)S f (i); (3)

where α = 0.1 in our setting, and i denotes mutation of the i-th
type feature. We sort R(.) in the descending order, and select the
top x features for mutations8 as our candidate feature-mutation
type, and feed them to the program mutation engine for generating
new malware mutants.

3.2 Confusion Attack
We propose Malware Confusion Attack to mutate the malware fea-
tures from the original feature values to the ones that are less
differentiable for malware detection. This attack complements the
Malware Evolution Attack because learning-based malware de-
tectors can be robust to malware evolution [37]. Such defeating
mechanism is based on the observation that malware detectors
(based on a classifier) could be easily misled by feature omissions
and substitutions. In confusion attack, the main idea is to mimic
the malware that can evade detection, i.e., confusing the malware
detectors by modifying the feature values that can be shared by
malware samples and benign apps. In particular, we mutate differen-
tiating feature values (i.e., feature values that exist in only malware
samples) to confusing feature values (i.e., feature values that exist in
bothmalware samples9 and benign apps) so that malware detection
techniques may fail to identify the mutated malware sample based
on the features. Because the confusing feature values exist in both
a malware sample and a benign app, the malware detector cannot
differentiate the two apps. Therefore, the detector may mark both

7Here we take a very conservative way, because we are not sure whether this type of
feature mutation works in practice.
8 Empirically we iteratively increase x till 10; as indicated in our experiment, the
program under mutation often breaks after more than 10 features are mutated.
9Malware samples here refer to other malware samples (likely to be evasive malware
samples) instead of the one to be mutated.
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apps in the same category, producing false positives if the label is
malware while producing false negatives if it is benign.

To find a malware feature that can actually cause confusion,
we first extract RTLD features from all benign apps and malware
samples in our dataset (i.e., project all apps to the RTLD vector
space). Then, we identify a set of (sub-) feature vectors10 that can
be projected from both benign apps and malware samples as the
confusion vector set. For each feature vector in the confusion vector
set, we count the number of benign apps that can be projected to
the vector as the confusion weight of the vector. The rationale is that
if more benign apps are projected to the vector, it is harder for the
malware detector to mark the apps with this vector as malicious.

For each malware sample that we try to mutate, we first check
whether its resource features appear in any vectors in the confusion
vector set. If a resource feature R appears in a vector V in the
confusion vector set, we then try to mutate the original feature
vector ofR to be the same as the vectorV bymutating the contextual
features. A resource feature could appear in many vectors in the
confusion vector set. In our approach, we try to mutate only top 10
matching vectors ranked by the confusion weight.

If a resource feature R does not appear in any vectors in the
confusion vector set, we leverage a similarity metric to find another
resource feature (in the confusion vector set) R′ that is most likely
to be executed in the same context as R. Then we select top 10
vectors (ranked based on confusion weights) matching R′ as the
target vectors for mutation.

Note that there could be multiple mutated malware samples
produced from mutating a single malware sample. If any of the
mutated malware samples passes the validation test (Section 5) and
evades the malware detection, we claim that malware confusion
attack successfully produces a malware variant.

Similarity-metric computation. The aforementioned attack
requires a similarity metric to find a resource feature that is most
likely to be executed in the same context as another resource fea-
ture. We compute the similarity metric by the likelihood that two
security-sensitive methods (i.e., resource features) reside in the
same program basic block. To construct the similarity metric, for
each resource feature (i.e., security-sensitive methodm) appearing
in the confusion vector set, we count its number of occurrencesOm
in all apps. For each other security-sensitive method n that appears

10If a benign app and a malware sample share over 50% of their feature values, we
select their common subset of feature vectors into the confusion vector set.

in at least one same basic block asm, we also count the number of
the co-occurrences ofm and n (in the same basic block)Omn . Then
the likelyhood that method n is invoked under the same context
as methodm is computed as a similarity score: Smn =

Omn
Om

; Smn
also indicates the likelihood ofm’s context to be compatible with
n. Thus, for any security-sensitive method n that does not appear
in the confusion vector set, we can check for all security-sensitive
methods appearing in the confusion vector set, and among these
methods, pickmi that has the highest similarity score Smin as the
method that is most likely to be executed in the same context as n.

4 PROGRAMMUTATION
In this section, we present how MRV mutates existing malware
based on synthesized mutation strategies. The mutation process
is essentially a program transformation that keeps malicious be-
haviors (i.e., resource features) while mutating context features.
To mutate context features, we develop a program transplantation
framework that satisfies two needs: (a) transplanting a malicious
behavior to different contexts in the same app; (b) transplanting
contextual features from other apps into the existing contexts.

4.1 Transplantation framework
Transplantation is the process that transplants the implementation
of a feature (i.e., organ) from one app (i.e., donor app) to another
app (i.e., host app) [9]. We broaden the concept of transplantation
to components and methods. Transplantation takes four steps: iden-
tification of the organ (i.e., code area that needs to be transplanted),
extraction of the organ, identification of the insertion point in the
host, and adaption of the organ to the host’s environment.

In our transplantation framework, we take different strategies
based on the type of features that need to be mutated. On one
hand, to mutate temporal features or locale features of a malicious
behavior (i.e., resource feature), we identify (or construct) a suitable
context (that satisfies the targeted value of temporal features or
locale features) in the same app, and then move the malicious
behavior to the identified or constructed location. On the other
hand, to alter dependency features that usually require sophisticated
ways (i.e., specific method sequences) to achieve the desired control,
we find and migrate an existing implementation of such control
(i.e., organ) from a donor app to the host app.

Such two-strategy design aims to simplify the existing problem
of software transplantation. In the first strategy, the transplanta-
tion is intra-app. We simply save and pass the unresolved depen-
dency and contextual information (e.g., values of parameters) in
the app via setting the variables and fields global. In the second
strategy, although the transplantation is inter-app, we just need
to transplant a program slice that contains a few dependencies.
Such transplantation is lightweight compared to transplanting the
whole implementation of a functional feature in previous work [9].
Intra-app transplantation is feasible for temporal and locale fea-
tures because synthesizing a new entrypoint or a new component
within an existing Android app results in little or no impact to other
areas of the app. Mutation of dependency features requires inter-
app transplantation because synthesizing new dependencies in the
app is challenging. The tight coupling of dependencies brings huge
impact to other program behaviors and likely causes the mutated
app to crash.



Note that although temporal features and locale features all
require the transplantation of malicious behaviors, the donor (i.e.,
area of code) that requires transplantation is different. The related
code of a malicious behavior can be separated as the triggering part
and the execution part. These two parts may not be in the same
component. For example, in Figure 8, the malicious behavior of
sending text message can be separated as the triggering part in the
OnCreate method of the activity component and execution part in
the OnStartCommand method of the service component. To mutate
temporal features, the donor to be transplanted is the triggering
part. To mutate locale features, the donor to be transplanted is the
execution part.

We categorize the transplantation based on the locality into three
levels: inter-method, inter-component, and inter-app transplanta-
tion, which are illustrated next.

Listing 1: Code snippet of mutated DougaLeaker malware

1 public void onClick(View v) {
2 User u = (User) getApplication();
3 u.androidid = Settings.Secure.getString(getContentResolver(), "

android_id");
4 u.tel = getSystemService("phone").getLine1Number();
5 if(!isRegisterd(u.androidid)){
6 String text = "android_id = " + u.androidid + "; tel =" + u.tel;
7 Date date = new Date();
8 if(date.getHours>23 || date.getHours< 5 ){
9 android.telephony.SmsManager.getDefault().sendTextMessage(

MyService.number, null, text, null, null); } }}

Listing 1 shows the mutated code related to the SMS-sending be-
havior in Figure 1. The mutation strategy consists of two mutations:
(i) to mutate the temporal feature from lifecycle event “entering
the app” (i.e., onCreate of MainActivity) to UI event “clicking the
button” (i.e., onClick of a button’s event listener), (ii) to mutate the
locale feature from Service to Activity.

4.2 Inter-method transplantation
Inter-method translation refers to the migration of malicious be-
haviors (i.e., resource features) from one method to another in the
same component. Such transplantation is commonly performed
to mutate the temporal features. For example, the mutation of the
temporal feature in Listing 1 is inter-method transplantation (Lines
2-5 of the onClick method in Listing 1 are transplanted from Lines
5-8 of the onCreate method in Figure 1b). In the case of temporal
features, the organ that needs to be transplanted is the entry of the
malicious behavior and its dependencies.

First, we locate the entry of the malicious behavior. The entry
of the malicious behavior is the first node on the call-graph path
leading to the malicious behavior. For example, startService in
Figure 1b is the entry of the SMS-sending behavior. In order to locate
the entry of the malicious behavior, we construct the call graph
from the entrypoint of the app (corresponding to the feature to be
mutated) to the malicious method call. The entry of the malicious
behavior is the first node on a call path from the entrypoint to the
malicious method call (a malicious behavior could have multiple
entries).

Then, we extract all dependencies related to the entry. To en-
sure the entry method to be invoked under the same context (e.g.,
parameter values) , we perform a backward slicing from the entry

method until we reach the entrypoint of the app. For example, in
Figure 8, nodes 3-7 and 8 are all dependencies related to the entry
(i.e., node 17, startService). The corresponding statements are
the code snippet to be transplanted.

Next, we create an entrypoint method that can provide temporal
features that we need. The entrypoint creation is done by either
registering an event handler for system or UI events or creating
a lifecycle method in the component. We also edit the manifest
file to register receiver components for some of system events. For
example, in Listing 1, we create an event listener and an onClick
method to provide the temporal feature that the mutation needs.

Finally, we need to remove the organ from donor methods. If
some of statements are dependent on the organ, the removal can
cause the donor method to crash. To avoid the side-effects of the
removal, we initialize a set of global variables with the local vari-
ables in the organ. We then replace the original dependencies on
the organ by making the statements dependent on the new set
of global variables. Note that in some instances, the host method
is invoked after the donor method, so the set of global variables
may not be initialized when the donor method is invoked. So when
replacing the dependencies, we add conditional statements to check
for null to avoid NullPointerException in the donor method. For
example, after transplanting Lines 5-8 in Figure 1b, we need to
remove Line 7 while keeping other lines because Lines 9-13 are
control-dependent on Lines 5-6.

4.3 Inter-component transplantation
The inter-component transplantation migrates malicious behaviors
from one component to another component in the same app. Inter-
component transplantation can be used to mutate the values of
temporal features and locale features. For example, the mutation of
the locale feature in Listing 1 is inter-component transplantation
(Lines 6-9 in the Activity component in Listing 1 are transplanted
from Lines 4-7 in the Service component in Figure 1c).

Inter-component transplantation follows the same process as
inter-method transplantation except for two differences. First, in
addition to temporal features, inter-component transplantation
is also used to mutate locale features. As previously mentioned,
when locale features are mutated, the organ to be transplanted is
the execution part of the code. To extract such organ, we find the
call-graph node directly linked by the entrypoint of the execution
part. Note that the entrypoint of the execution part can be different
from the entrypoint of the malicious behavior. For example, in
Figure 8, the entrypoint of the execution part is onStart, while the
entrypoint of the malicious behavior is onClick. After we locate
the call-graph node, the rest of the extraction process is the same.

The other difference of inter-component transplantation is when
mutating the locale feature while maintaining the temporal feature,
the regenerator needs to create ICCs to invoke the host method. To
avoid crash caused by unmatching intent messages, the regenerator
also adds conditional statements to avoid executing the existing
code in the host method when such ICCs occur.

4.4 Inter-app transplantation
The inter-app transplantation is used to migrate the dependency
feature of a malicious behavior in the donor app to the host app with
an identical malicious behavior. The extraction of the dependency
feature is different from migration of the triggering/execution part



of the malicious code. The organ consists of two parts. The first
part is the implementation of the controlling behavior. We first
construct the inter-component control flow graph of the app. Then
we compute the subgraph containing all paths from the controlling
statement (i.e., the statementwhose value determines the invocation
of themalicious behavior) to the controlled statement (i.e.,malicious
behavior). Such subgraph essentially represents the controlling
behavior. The second part of the organ is the dependencies of the
controlling statement. To extract these necessary dependencies,
we slice backward from the controlling statement until we reach
entrypoints of the app. We then migrate both parts of the organ
into the host app.

5 PRACTICABILITY OF ATTACKS
We take two measurements in examining the practicability of the
generated attacks and filter out the impractical mutations. (a) We
perform impact analysis and targeted testing to check whether the
malicious behaviors have been preserved; (b) We perform robust-
ness testing to check whether the robustness of the app has been
compromised.

Impact Analysis. Our impact analysis is based on the insight
that the component-based nature of Android constrains the im-
pact of mutations within certain components. We analyze the
impact propagation among components by computing the inter-
component communication graph (ICCG). We find three types of
components that can ‘constrain’ the impact of the mutations within
the components themselves. If any mutations are performed in com-
ponents other than these three types of components, we discard
such mutations.

(i) Isolated Component. We define an isolated component as a
component with no predecessor node or successor node in the
ICCG. We can constrain the impact of mutations in an isolated
component within the component for two main reasons. On one
hand, because an isolated component has no successor node in
the ICCG, it is guaranteed that changes in the isolated component
will not break any dependencies in other components of the app
(assuming no ICC through global states or variables). On the other
hand, because an isolated component has no predecessor node in the
ICCG, no executions of other components will lead to the isolated
component. The lack of incoming edges in the ICCG suggests that
the component can be invoked by only the components of other
apps or system events through broadcasting intent messages that
match intent-filters of the component.

(ii) Receiving-Only Component. We define a receiving-only com-
ponent as a component with no successor node but with at least one
predecessor node in the ICCG. Similar to an isolated component,
changes in a receiving-only component will not break dependencies
of other components. However, mutating a receiving-only compo-
nent may result in crashes when other components attempt to
invoke the mutated receiving-only component. MRV further per-
forms targeted testing to ensure that the malicious behaviors are
still preserved within the receiving-only component.

(iii) Sending-Only Component. We define a sending-only com-
ponent as a component with no predecessor but with at least one
successor in the ICCG. Note that we exclude the main activity com-
ponent from this definition because the main activity is essential
to a mobile app. A sending-only component can be mutated with
manageable impacts for two main reasons. First, there is no danger

of crash due to the invocation of a mutated component because
sending-only components do not have incoming ICCs. Second, most
components serving for themain functionality of the app should not
be affected because these components can still be invoked through
the main activity of the app. It is worth noting that a mutation in
a sending-only component could affect the invocation of another
component that has only one single incoming edge (and that edge
origins from the sending-only component) in the ICCG. There are
some rare cases of apps without the main activity but with services
as entrypoints of the apps, and MRV would compute those services
as sending-only components. For those cases, we cannot mutate
the sending-only components because these components are the
entrypoints of the apps.

Targeted Testing. We then perform targeted testing to further
ensure that the executions are expected within these three types
of components. We develop two techniques to assist the targeted
testing. First, to simulate the environment where the malicious
behaviors are invoked, we create environmental dependencies by
changing emulator settings or using mock objects/events. By sim-
ulating the environment, we can directly invoke the malicious
behaviors to speed up the validation process. Second, to further
validate the consistency of malicious behaviors when the triggering
conditions are satisfied, we apply the instrumentation technique
to insert logging functions at the locations of malicious method
invocations. The logging functions print out detailed information
about the variables, functions, and events invoked after the trig-
gering events. We therefore attain the log files before and after the
mutation under the same context (e.g., the same UI or system events
and same inputs). Then, we automatically compare the two log files
to check the consistency of malicious behaviors.

Checking robustness of mutated apps.We leverage random
testing to check the robustness of a mutated app. In particular,
we use Monkey [28], a random user-event-stream generator for
Android, to generate UI test sequences for mutated apps. Each
mutated app is tested against 5,000 events randomly generated by
Monkey to ensure that the app does not crash11.

6 EXPERIMENT
Malware Detection Dataset. Our subject set consists of a mal-
ware dataset and a benign app dataset. Our malware dataset starts
with 3,000 malware randomly selected from Genome [44], Con-
tagio [3], VirusShare [4], and Drebin [7]. We use VirusTotal [5]
to perform sanity checking on the malware dataset (descriptions
about signature-based detectors are provided later in this paper).
We exclude the apps identified as benign by VirusTotal from the
malware dataset. We also exclude any duplicate apps by comparing
SHA1 hashes. For benign apps, we download the most popular 120
apps from each category of apps in the Google Play store as of
February 2015 and collect 3,240 apps in total. We implement the
process of extracting RTLD features using third-party static analy-
sis frameworks, including Soot [40] and FlowDroid [36]. To isolate
and remove the effects of potential limitations of these frameworks,
we run feature-extraction analysis on the complete subject set and
remove any apps that cause a third-party tool to fail. The filtering

11 Due to the limited coverage of random testing, a mutated app that passes the testing
step can still be invalid. As future work, we plan to incorporate intelligent testing
techniques [20, 42] for MRV.
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Figure 4: Detection results of AppContext vs. Drebin on the origi-
nal dataset (ORI) and dataset with adversarial samples (MRV) pro-
duced by MRV
gives us a final analyzable dataset of 1,917 malware and 1,935 be-
nign apps to perform malware detection. Our final malware dataset
consists of 529 malware samples from Genome, 25 samples from
Contagio, 287 samples from VirusShare, and 1,076 samples from
Drebin dataset. Our final benign app dataset retains 63 to 96 apps
from the original 120 apps in each Google Play category. All runs of
our process of extracting RTLD features, the transplantation frame-
work, and learning-based detection tools [7, 43] are performed on
a server with Intel(R) Xeon(R) CPU 2.80GH with 38 processors and
80 GB of memory with a timeout of 80 minutes for each app.

Baseline Approaches.We implement two baseline approaches
for comparison with MRV: Random MRV and OCTOPUS. We first de-
velop a random transformation strategy (Random MRV) to compare
against confusion and evolution attacks. Instead of following the
evolution rules and similarity metrics to mutate the RTLD features,
we randomly mutate RTLD features (i.e.,mutate the original feature
value to the same-level feature value randomly selected from the
available dataset) and transform themalware samples based on such
mutation. Note that for Random MRV and evolution MRV, we follow
the sequence of temporal feature, locale feature, and dependency
feature to apply the transformation at different levels (Figure 3). We
choose such sequence because the transplantation goes from inter-
method to inter-app as the level increases in this sequence, likely
leading to a higher success rate in the program transplantation. We
leave the exploration on other possible mutation sequences to our
future work.

We also implement a syntactic app obfuscation tool called
OCTOPUS similar to DroidChameleon [33]. Specifically, OCTOPUS
contains four levels of obfuscation: bytecode-sequence obfus-
cation (i.e., repacking, reassembling), identifier obfuscation (i.e.,
renaming), call-sequence obfuscation (i.e., inserting junk code, call
reordering, and call indirection), and encryption obfuscation (i.e.,
string encryption). Then, we apply each level of obfuscation in
OCTOPUS to each malware sample at a time, and perform testing
on the sample file (Section 5) after each obfuscation. If the testing
passes, we apply the next obfuscation to the obfuscated sample
(resulted from applying the current obfuscation). If the testing
fails, we apply the next obfuscation to the the sample before the
current obfuscation (i.e., skipping the current obfuscation). In our
experiment, all semantic mutations including Random MRV and
evolution/confusion attacks are performed after the syntactic
obfuscation of OCTOPUS.

Malware detectors. We use a number of learning-based and
signature-based malware detectors to evaluate the effectiveness of

MRV. For learning-based malware detectors, we adopt AppCon-
text [43] and Drebin[7].AppContext leverages contextual features
(e.g., the events and conditions that cause the security-sensitive
behaviors to occur) to identify malicious behaviors. In our experi-
ment, AppContext generates around 400,000 behavior rows on our
dataset (3,852 apps), where each row is a 679-dimensional behav-
ior vector. We conservatively label these behaviors (i.e., marking
a behavior as malicious only when the behavior is mentioned by
existing malware diagnosis). The labeled behaviors are then used
as training data to construct a classifier. Drebin uses eight features
that reside either in the manifest file or in the disassembled code to
capture the malware behaviors. Since Drebin is not open source,
we develop our own version of Drebin according to its descrip-
tion [7]. Although Drebin extracts only eight features from an app,
Drebin covers almost every possible combination of feature values
resulting in a very large feature vector space. In fact, Drebin pro-
duces over 50,000 distinct feature values on our dataset (3852 apps).
We perform ten-fold cross-validations to assess the effectiveness
of AppContext and Drebin. Figure 4 shows the performance of
AppContext and Drebin on all subjects in our dataset.

For signature-based malware detectors, we leverage the existing
anti-virus service provided by VirusTotal [5]. Specifically, we follow
the evaluation conducted for Apposcopy [17] to pick the results of
seven well-known anti-virus vendors (i.e., AVG, Symantec, ESET,
Dr. Web, Kaspersky, Trend Micro, and McAfee) and label an app
as malicious if more than half of the seven suggest that the app is
malicious. Following such procedure, only malware labeled as ma-
licious are selected into our malware dataset, and thus all malware
in our dataset can be detected by VirusTotal.

Learning algorithms. In our experiment, we leverage k-
Nearest Neighbors (kNN), Decision Tree (DT), and Support Vector
Machine (SVM) for malware detection in AppContext and Drebin.
For confusion attack, we leverage Random Forest (RF) as the
algorithm to train the substitute model12. The reason for us to
use RF is that we want to use a different algorithm from the
ones used in malware detection to validate our assumption in
transferability [29].

Malware variants generation. We focus on generating mal-
ware variants by detected/known malware samples. Among all
1,917 malware samples, 1,739 samples can be detected by all three
detection tools that we used. Because many malicious servers of
malware are blocked, causing malware to crash even before the
mutations, we test the 1,739 malware with 5,000 events randomly
generated by Monkey and discard the crashed apps. This step gives
us a final set of 409 valid malware samples to generate malware
variants. We then systematically apply OCTOPUS, evolution/confu-
sion attacks, and Random MRV to all 409 valid malware samples.

7 RESULTS
7.1 Defeating existing malware detection
Table 1 shows the malware variants generated through transforma-
tion of OCTOPUS, Random MRV, malware evolution attack and confu-
sion attack, and the detection results of VirusTotal on the variants.

12We optimize the parameter for SVM and DT (we use C4.5 DT [32]) using
CVParameterSelection of Weka [6]. For RF and kNN, we tune the parameters by
testing on a sample set (100 malware and 100 benign apps). We set the benign/malware
ratio in each subset (of an individual tree) for RF as 3 and K value for kNN as 7.



Table 1: Number of transformable malware samples and generated
malware variants by different evasive techniques and the detection
results

O. R. E. C. F.

Transformable malware 409 121 314 58 341
Generated variants 1008 212 638 58 696

Variants undetected by VirusTotal 125 113 512 53 565
Variants Undetected by AppContext 0 2 97 56 153

Variants Undetected by Drebin 0 111 460 58 518
O. = OCTOPUS, R. = Random MRV, E. = Malware Evolution Attack, C. = Malware Confusion
Attack, F. = Full Version of MRV

We also show the result of the full version of MRV (the combination
of confusion and evolution attack) in the last column (F). Therefore,
the full version includes all malware variants produced by confu-
sion attack and evolution attack. The row “Transformable malware"
refers to the number of malware samples that can be mutated to
a valid malware variant (i.e., of all malware variants generated at
different levels of an evasive technique, at least one of the malware
variants can pass the testing). The row “Generated variants" shows
the number of generated variants that pass the impact analysis and
testing13, and the last three rows14 show the number of variants
that can evade the detection of VirusTotal, AppContext, and Drebin,
respectively.

As shown in Table 1, although the full MRV generates fewer mal-
ware variants than OCTOPUS (696 vs. 1,008), the full MRV produces
much more evasive variants than both OCTOPUS and Random MRV
for all three tools, especially the learning-based tools. This result
indicates that the full MRV is much more effective in producing
evasive malware variants than syntactic obfuscation and random
transformation.

We investigate the malware variants produced by the full MRV
that can still be detected by anti-virus software. We find that most
variants of this kind contain extra payloads (e.g., rootkit, another
apk). The anti-virus software can detect them by identifying the
extra payloads because our mutation transforms only the main
program.

Although originally Drebin detects more malware samples than
AppContext (Figure 4), Drebin performs worse on the full MRV
dataset. Given different training malware samples, the full MRV can
consistently make over 60% testing variants undetected by Drebin.
One potential reason could be that AppContext leverages huge
human efforts in labeling each security-sensitive behavior, while
Drebin is a fully automatic approach, so overfitting is likely to occur
in Drebin’s model.

We also notice that Random MRV becomes much more effective
in evading Drebin than evading AppContext (AppContext detects
almost all variants produced by Random MRV). The reason lies in
the large number of syntactic features used in Drebin. Such re-
sult indicates that although Random MRV is effective in befuddling
the syntactic-based detection (e.g., anti-virus software), it is not
effective in evading semantics-based detection techniques.

One noteworthy result is that confusion attack can successfully
mutate only 58 malware samples into working malware variants.
The reason is that confusion attack usually requires mutating more

13The variants are generated at each level, and one malware sample may result in
multiple malware variants.
14For AppContext and Drebin, we show the number of variants that cannot be detected
by models based on all training algorithms.

Table 2: Details of Evolution Attack at each level (undetected vs.
all)

Results T. L. D.

Robust variants 178 316 144
Undetected by VirusTotal 77/178 296/316 139/144
Undetected by AppContext 21/178 15/316 61/144

Undetected by Drebin 73/178 272/316 115/144
T. = Temporal Features L. = Locale Features D. = Dependency Features

contextual features than evolution features. We observe in our ex-
perimental data that the likelihood of an attack to break the app
increases as the number of mutations in the attack increases. Ac-
tually, confusion attack synthesizes more than 1,000 variants, and
most of the variants are unable to run. However, such conversion
rate is already high compared to Random MRV. Random MRV gen-
erates more than 320,000 variants, but only 212 of them can run
without crashing (and only 2 can evade the detection of AppCon-
text). Such result suggests that considering the feasibility of an
attack is essential in generating adversarial malware samples.

7.2 Effectiveness of attacks at each level
For evolution attack, we also investigate the effectiveness of muta-
tion at each RTLD level. Table 2 shows the detailed detection results
of evolution attack at each mutation level.

Table 2 shows some interesting observations. For example, for
anti-virus software and Drebin, the level that produces the largest
number of evasive variants is on the locale-feature level, while
for AppContext, the level that produces the largest number of
evasive variants is on the dependency-feature level. This result
indicates that mutating at the locale-feature level is more effective
for the detectors using syntactic features (e.g., VirusTotal, Drebin),
while mutating at the dependency-feature level is more effective
for semantics-based detectors (e.g., AppContext). Such result also
indicates that the transformation sequence used in the experiment
(i.e., temporal-locale-dependency) might not be the most optimal
choice to evade some detectors. Ideally, we can explore different
combinations of the mutation levels to maximize the number of
undetected malware samples for each malware detector.

We also observe that most of unsuccessful variants produced at
the dependency-feature level are due to the fact that a malicious
behavior cannot be triggered in the simulated testing environment.
The reason of lacking triggering is that by transplanting condi-
tional statements from one component/method to another compo-
nent/method, the internal logic of the original malware sample is
broken. Some of the transplanted conditional statements may be
mutually exclusive with the existing conditions in the code, thus
making the malicious behavior infeasible to be triggered. As an
ongoing effort, we plan to leverage a constraint solver to iden-
tify the potential UNSAT conditions when synthesizing mutation
strategies.

7.3 Strengthening the robustness of detection
We also investigate the possibility of leveraging variants produced
by MRV to strengthen the robustness of detection. We propose the
following three techniques.

Adversarial Training. We randomly choose half of our generated
malware variants into the training set to train the model, and put
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Figure 5: Detection results of AppContext (SVM) when different
defense mechanisms are applied

the other half of generated variants into the testing set to evaluate
the model15.

Variant Detector. We create a new classifier called variant de-
tector to detect whether an app is a variant derived from existing
malware. The variant detector leverages mutation features that are
generated from each pair of apps’ RTLD features to reflect the fea-
ture differences between the two apps. The number of mutation
features is the same as the number of RTLD features. The differ-
ence is that for any RTLD feature that the two apps disagree on,
the mutation feature (corresponding to the RTLD feature) is the
(bidirectional) mutation between the apps on the RTLD feature.
If the pair of apps are derived from same malware, we label the
feature vector as “variant”. Otherwise, we label the feature vector as
“unrelated”. Because only a small portion of all pairs of apps would
have a “variant” relation, the trained model would be biased to the
majority class (i.e., the “unrelated” class). To resolve such issue, we
use SMOTE [14] to make both classes to have an equal number of
instances by creating synthetic instances. We then use the trained
model on each app labeled (by malware detectors) as benign. For
each of the apps, we create pairs to produce mutation features by
grouping the app with each malware sample in our training set.
Then the trained model determines whether the app is a variant of
malware in the training set based on the mutation features.

Weight Bounding. We constrain the weight on a few dominant
features to make feature weights more evenly distributed. For ex-
ample, in the case of SVM, we constrainw in the cost function of
SVM:

min
w ∈Rd

∥ w ∥2 +C
N∑
i
max(0, 1 − yi f (xi ))

We observe that adversaries can produce evasive malware vari-
ants by applying just a few mutations on dominant features in
contrast to many more mutations on other non-dominant features.
Therefore, to locate dominant features, we select all 44 malware
variants produced by fewer than three mutations, and summarize
17 dominant features that enable the production of the variants. To
compute the specific range of the weight, we put only 44 malware
variants and their original malware samples as malicious samples in
the training set, and record the range value of the weight of the 17
dominant features under different parameters. We then summarize
the constraints in reasonable settings (TPR ≥ 0.80 and FPR ≤ 0.10)
and put the hard constraints in the training phase.

15We perform ten-fold cross-validation in our experiment to report TP and FP.

Table 3: Number of malware samples evading detection of AppCon-
text or Drebin under different algorithms

Detector ORI. AT. VD. WB.

AppContext 178 125 106 152
Drebin 38 19 8 23

ORI. = Original detection, AT. = Adversarial training
VD. = Variant detection, WB. = Weight bounding

Figure 5 presents the detection results of AppContext’s malware
detection16. The red line represents the detection performance on
the original dataset, and the purple triangles represent the detection
performance on the dataset with malware variants produced by
MRV. The other three curves represent the detection performance of
three proposed protection techniques on the dataset with malware
variants. As shown in Figure 5, all three proposed techniques can
alleviate the MRV attacks. The variant detector technique can reach
almost the same performance as the original malware detector
(while being more secure/robust to malware variants).

To alleviate the concerns that our proposed defenses are over-
fitting to MRV attacks, we also investigate whether the trained
models can assist detecting not only malware variants but also
unknown malware samples in general. We choose to investigate
the malware samples evading the detection of the original AppCon-
text and Drebin (178 and 38 malware samples evade the detection,
respectively)17. As shown in Table 3, all the protection mechanisms
can help detect evasive malware samples, and only eight of the
samples can evade the detection of the variant detector technique.

8 CONCLUSION
In this paper, we have proposed practical attacks that mutate mal-
ware variants to evade detection. The core idea is to leverage ex-
isting malware program structures to change the features that are
non-essential to malware but important to malware detectors. To
achieve this goal, we have presented the MRV approach includ-
ing static analysis, phylogenetic analysis, machine learning, and
program transplantation to systematically produce new malware
mutations. To the best of our knowledge, our work is the first effort
toward solving the malware-evasion problem by altering malware
bytecode without any knowledge of the underlying detection mod-
els.

MRV opens up intriguing, valuable venues of applications. First,
the proposed attacks can be used to evaluate the robustness of
malware detectors and quantify the differentiability of features.
Second, MRV can help discover potential attack surfaces to assist
the iterative design of malware detectors. Finally, the program
transplantation framework (capable of changing malware features)
can be written as a malicious payload within malware and such
adaptive malware are valuable for the community to investigate.
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APPENDIX A MALWARE EVOLUTIONS
To further assist the improvement of existing detection, we sum-
marize the evolution patterns of malware for contextual features
(Section 3). We infer malware evolution patterns from phylogenetic
trees. Figure 7 demonstrates how 32 samples are evolved in the
AdDisplay family, and Figure 6 demonstrates how 28 samples are
evolved in the Droid_Kunfu family, where the number labeled in
the bottom of each phylogenetic tree denotes the distance between
two nodes. A node in a phylogenetic tree could be a leaf node that
denotes a malware sample, and also could be an internal node that
denotes a cluster grouped from its children nodes. Figures 10 and 11
show detailed introduction of each malware sample in the families.

Temporal features. Among all temporal features, lifecycle
events are most likely to evolve. Such evolution can be intra-
component (i.e., the entrypoint is mutated to another method in the
same Android component) or inter-component (i.e., the entrypoint
is mutated to a method in a different Android component). For
inter-component evolution, the corresponding ICCs have been
added to incorporate the evolution.

Malware also frequently evolve temporal features of malicious
behaviors triggered by system events. Except some system events
commonly observed in benign apps (e.g., android.intent.action
.PACKAGE_ADDED, android.intent.action.BOOT_COMPLETED),
most temporal features such as system events have evolved to UI
events or lifecycle events. The behaviors triggered by third-party ad-
network intents (e.g., com.airpush.android.PushServiceStart)
also evolve18.

Locale features. We observe that locale features often evolve
with temporal features. The reason is that when malware authors
mutate an entrypoint of a malicious behavior from one component
to another, instead of adding another ICC from the new component
to invoke the code in the original component, the malware authors
tend to directly migrate the code to the new component. Most of
such evolutions occur for malicious behaviors with fewer (e.g., one
or two) entrypoints, and the corresponding security-sensitive meth-
ods are usually directly invoked in the entrypoint methods. We find
that the most frequent change of locale features is migration from
an activity or receiver component to a service component. However,

18Such evolution is due to that the emerging Adblock apps (e.g., Airpush
Detector [1], Airpush Opt-out [2]) force Adware authors to implement
malicious behaviors by themselves instead of leveraging third-party libraries
such as Airpush.

https://goo.gl/QVn82
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2017.pdf
http://developer.Android.com/tools/help/monkey.html
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Figure 6: Phylogentic tree generated for the DroidKungFu family.
Each leaf in the graph denotes a malware sample in DroidKungFu
family, where leaf nodes (1–4) belong to droidkungfu.ab, (5–9)
belong to droidkungfu.aw, (10) belongs to droidkungfu.bb, (11-
12) belong to droidkungfu.bl, (13-15) belong to droidkungfu.c,
(16–22) belong to droidkungfu.g, (23-28) belong to droidkungfu.
m.
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Figure 7: Phylogentic tree generated for the addisplay family.
Each leaf in the graph denotes a malware sample in the addisplay
family, where leaf nodes (1–9) belong to addisplay.adswo, (10–
23) belong to addisplay.airpush, (24–25) belong to addisplay
.dowgin, (26) belongs to addisplay.kuguo, (27–28) belong to
addisplay.waps, (29–32) belong to addisplay.wooboo.

we observe fewer evolutions the other way around (i.e., evolutions
from a service component to an activity or receiver component).
Such pattern is due to that malicious behaviors in service compo-
nents tend to be continuous (e.g., downloading, monitoring) while
activity or receiver components cannot support such continuity
(unless starting another thread).

Dependency features. The most common evolution for depen-
dency features is adding controls of a security-sensitive method
(i.e., a resource feature) through ICCs. Such evolution can confuse
malware detection techniques because the generated program de-
pendence graphs can reflect only the control dependencies between
a malicious behavior and values stored in Intent messages (of ICCs).
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Figure 8: Inter-Procedural Control Flow Graph of DougaLeaker
Connecting the control dependencies between the malicious behav-
ior and the original value (e.g., the current system time) requires
precise analysis of ICC. However, the current use of such analysis
is absent or limited.

The other frequent evolution is making malicious behaviors
dependent on attributes of external entities (including Internet
connection and telephony manager). The Internet connection

reflects the command & control behaviors through network servers.
The package manager and telephony manager suggest that mal-
ware control malicious behaviors based on the installed apps on
the phone and the IMEI number or network server of the phone.
Such evolution does not aim to evade detection, but to update the
malicious logic of the malware.

Composite Evolution. We have observed a number of
interesting cases that combine the mutations of all three types
of features. One representative case is a malicious app trying
to obtain NetworkInfo on the phone to launch malicious be-
haviors based on different types of network connection. The
original malware sample leverages the system event android
.net.conn.CONNECTIVITY_CHANGE to get notified when the
network connection changes so the malware sample can obtain
the NetworkInfo from the system Intent message for new
network connections. To evade detection, the malware sample
evolves to leverage the system event android.intent.action
.USER_PRESENT. Such event gets the malware sample notified
when a user is present after unlocking the screen. Then the
malware sample starts a service and uses a timer in the service to
repetitively invoke getNetworkInfo every 20 minutes. In this way,
the malware author mutates the original value of the temporal
feature (CONNECTIVITY_CHANGE) to a value (USER_PRESENT)
completely unrelated to network connection. Meanwhile, the
locale feature value is mutated from receiver to service, and the
control dependency with a timer is also added. Malware variants
produced by MRV can be especially helpful in detecting such
sophisticated evolution.

APPENDIX B IDEAS BEHIND OUR ATTACKS
An illustration. The goal of malware detection is to classify an
app as “malware” or “benign”. In MRV, we achieve the goal by
mutating the feature vector Vi of a particular malicious app i (e.g.,
changing feature values ⟨a,b, c⟩ of malicious appM1 in Table 4). In
order to evade detection, we can mutate feature values Vi in three
strategies:

(i) look-alike-benign-app: mutating Vi to be exactly the same as
the feature vector of a benign app, e.g., ⟨a,b, c ′⟩ of B1 in Table 4;



(ii) look-alike-misclassified-malware: mutating Vi to be exactly
the same as the feature vector of a malware being misclassified as
benign, e.g., ⟨a,b, c ′⟩ ofM2;

(iii) look-alike-unclassifiable-app: mutating Vi to the feature vec-
tor of an app that the malware detector cannot draw any classi-
fication conclusion (either malware or benign), e.g., ⟨a′,b ′, c ′⟩ of
Mv .

Malware Evolution Attack: we can follow the feature mutations
fromM1 toM2 (i.e., c → c ′ in f3) to derive a new malware variant
Mv from M3 (shown in Table 4). Such attack follows the idea of
the aforementioned strategy of look-alike-unclassifiable-app (iii),
but as the attack is derived from existing mutations, the likelihood
of the mutations to break the malicious behaviors decreases (as
confirmed by our empirical evaluation). Note that we do not come
up with any attack that conforms to the aforementioned strategy
of look-alike-benign-app (i). The main reason is that, based on
our empirical results, using features (e.g., program structure) that
exist in only benign apps has a high likelihood to break malicious
behaviors and eliminate the maliciousness.

Malware Confusion Attack: In Table 4, malware sampleM2 shares
the same feature vector with benign app B1, and the malware
detector cannot tell the difference and therefore marks both apps in
the same category (producing false positives if the label is malware
while producing false negatives if it is benign). This attack follows
the idea of the strategy look-alike-misclassified-malware (ii) but
does not rely on the detection result from any particular detection
algorithm.

Table 4: Examples of feature values for malware detection

App Ground-truth f1 f2 f3 Detection result
M1 Malware a b c Malware
M2 Malware a b c′ Benign
B1 Benign a b c′ Benign
B3 Malware a′ b′ c Malware
Mv Malware a′ b′ c′ Benign
Columns f1 to f3 are three feature columns.

Attacking Weak Spots of Malware Detection. MRV lever-
ages two fundamental limitations of malware detection: differentia-
bility of selected features and robustness of detection model. To better
illustrate the limitations, we model the vector space of features
used by any given malware-detection technique asV (shown in the
Venn diagram in Figure 9).

The differentiability of selected features can be represented by
the intersection of the vector space (denoted as B) for the existing
benign apps and that (denoted as M) of the existing malware. In
an ideal case, if the selected features are perfect (i.e., all differences
between benign apps and malware are captured by features), no
malware and benign apps should be projected to the same feature
space, i.e., B ∩M = ∅. Such perfect feature set, however, is diffi-
cult or even impossible to get in practice. For example, to detect a
malware sample that loads a malicious payload at runtime, a mal-
ware detector could use the name of the payload file as a feature
for the detection. Unfortunately, the name of the payload file can
be easily changed to a common file name used by benign apps to
evade the detection, therefore resulting in false negatives. If the
detector removes such a feature in fighting malware, the detector
produces false positives by incorrectly catching benign apps that

𝑉𝑉

𝐵𝐵 𝑀𝑀
𝐷𝐷

𝑀𝑀𝑀

Figure 9: A feature vector space V , the feature vectors of existing
benign apps B, the feature vectors of existing malware M , the fea-
ture vectors that can be detected by detection model D , the feature
vectors of all potential malware M ′, and their relationships.

1:  d773f025002869b6eb12e70f76ba52f2  ‐> AdDisplay.AdsWo.E

 2:  4cf0477cfba17d7878295e0d5e56a31d  ‐> AdDisplay.AdsWo.E

 3:  c2da85fbfe747ab078731bd442257546  ‐> AdDisplay.AdsWo.E

 4:  e55da73e5da16fe03b707ca1323e62d5  ‐> AdDisplay.AdsWo.E

 5:  194074d37f408dc6cc974c1cf0ecd4ad  ‐> AdDisplay.AdsWo.E

 6:  81f233eef06d51fa59c1901691725791  ‐> AdDisplay.AdsWo.E

 7:  9ae24e89552f4e265b50f115dc3d1395  ‐> AdDisplay.AdsWo.F

 8:  41809a1f095544f7da1de22123405a6c  ‐> AdDisplay.AdsWo.F

 9:  21b12288a39993fd18ab69f514cb8e96  ‐> AdDisplay.AdsWo.J

 10:  e31132afd3e9d02142833d02fb984736  ‐> AdDisplay.AirPush.G

 11:  79dc71e7041885f6e51938b54ed7e518  ‐> AdDisplay.AirPush.G

 12:  9d5930aae21e3e3306210861d416a167  ‐> AdDisplay.AirPush.G

 13:  8c32a989e1f5eed4ef6ed4a0dc3fd6ae  ‐> AdDisplay.AirPush.G

 14:  1dadc9e17be6aaaeefd070d4ea827a53  ‐> AdDisplay.AirPush.G

 15:  832eeac91b6e0a334417f986b79b4229  ‐> AdDisplay.AirPush.G

 16:  ad8f0ea0860f71ac6e450333f3b13cd8  ‐> AdDisplay.AirPush.G

 17:  dea28ed03914b4009401f4ef82613dd7  ‐> AdDisplay.AirPush.G

 18:  0cd5a09a403c2edf29b4add947b95d2a  ‐> AdDisplay.AirPush.G

 19:  18ec5f6798253791421b955a75cb8239  ‐> AdDisplay.AirPush.G

 20:  a475f21f44a4c9111a2c6cc03006ebbb  ‐> AdDisplay.AirPush.G

 21:  9990dd0b9a43518de68d5591f74fa2ac  ‐> AdDisplay.AirPush.K

 22:  f11942551c4eaf67c6a73aabaa5dbf5f  ‐> AdDisplay.AirPush.K

 23:  9232049eb7072b5b610a328673bedb01  ‐> AdDisplay.AirPush.K

 24:  d9da808860b27973c80f39e820b6e7f5  ‐> AdDisplay.Dowgin.C

 25:  4d71b397c9246e6d92b424e6004f71b0  ‐> AdDisplay.Dowgin.R

 26:  f9fb590b4abd510e374037f8a083c724  ‐> AdDisplay.Kuguo.A

 27:  4923af63ad8e5bb90cc669561464397b  ‐> AdDisplay.Waps.H

 28:  e4a0830b3527e4c025166440a225759c  ‐> AdDisplay.Waps.I

 29:  4e64babbdf32556d7f91c43ced451b66  ‐> AdDisplay.Wooboo.A

 30:  885d67ba8bcafc92090284baad55ac02  ‐> AdDisplay.Wooboo.C

 31:  4c944782253e2c3227391722d066a151  ‐> AdDisplay.Wooboo.C

 32:  f851e6896b136cf4619c50fb38ef7c5a  ‐> AdDisplay.Wooboo.C

Figure 10: The detailed (ind, apk name, and its corresponding sub-
family) items in the AdDisplay family phylogenetic analysis.

may have behaviors of dynamic code loading. In either way, the
selected feature set is imperfect to differentiate such malware and
benign apps.

Feature evolution attack is based on the insight that reapplying
the feature mutations in malware evolution can create newmalware
variants that may evade detection (i.e., the feature vectors of the
variants fall into the area of M ′ \ D). Feature evolution attack
mutates RTLD feature values iteratively at each level (following
the sequence of temporal feature, locale feature, and dependency
feature).

The robustness of a detection model can be represented by the dif-
ference between the feature vectors (denoted asM ′) of all potential
malware and the feature vectors (denoted asD) that can be detected



1:  5e2c1f35ea3196a7d81b42d932729c4f253fbc8a  ‐> DroidKungFu.AB.Gen  

2:  b77e28f4018dfb1e73e83a617db9f36a708ccfae  ‐> DroidKungFu.AB.Gen   

3:  ba92a5bbb79dace47a76455754865d8fab9ab2cc  ‐> DroidKungFu.AB.Gen

4:  c3d37de639c0909ad78cec8c52f63f04742fbe6b  ‐> DroidKungFu.AB.Gen

5:  a997762fd1edc5971071ec574e6e8c4e  ‐> DroidKungFu.AW

6:  1e036ab0c29dd1c8d8b95bdd2eb3400d  ‐> DroidKungFu.AW

7:  1e7203279f153c3282eeecadbf2a9b232bc4ffda  ‐> DroidKungFu.AW

8:  f1e4a265c516b104d4e2340483fca24d60be4c08  ‐> DroidKungFu.AW

9:  267043ab471cf7a7d82dda6f16fa4505f719f187  ‐> DroidKungFu.AW

10:  683e1f3e67b43631690d0fec49cec284  ‐> DroidKungFu.BB

11:  517dc7b67c852392491ce20baff70ada92496e6d  ‐> DroidKungFu.BL

12:  044f87b435c583ca4aa116aef4b54e09bdb42c7b  ‐> DroidKungFu.BL

13:  b9eae89df96d9d62ed28504ee01e868b  ‐> DroidKungFu.C

14:  4d56a6705afa9b162f652303f6c16741  ‐> DroidKungFu.C

15:  f30c4058f1e6cb46f81d21b263cf35454638275a  ‐> DroidKungFu.C

16:  6d3b9cdf559443db567113585b40eef459307c94  ‐> DroidKungFu.G

17:  537db43883f55b112a4206fb99093bbb31c9c3f2  ‐> DroidKungFu.G

18:  4c1775c28def41a221e5bf872c5e593de22bb9a6  ‐> DroidKungFu.G

19:  92888228c556f94b8be3d8bf747a2427481f32d1  ‐> DroidKungFu.G

20:  0657a70a655dc439b4222c8161b1f5a9667e84e3  ‐> DroidKungFu.G

21:  8c841b25102569be4a1a5f407108482473fad43e  ‐> DroidKungFu.G

22:  e3f0de8ad898f0b5a7c9d327ffc266635b8af32b  ‐> DroidKungFu.G

23:  03ddb783e7ab88c838b1888b38eba992  ‐> DroidKungFu.M.Gen

24:  00b89bcb196a138f9f20a6853c41673a18a2575f  ‐> DroidKungFu.M.Gen

25:  584f8a2801a8e7590dc466a6ebc58ea01a2d1758  ‐> DroidKungFu.M.Gen

26:  8edb188204c6ad79006e555b50e63705b68ea65d  ‐> DroidKungFu.M.Gen

27:  bd249c0843df2f8acfe7615feba505ead30e5bbc  ‐> DroidKungFu.M.Gen

28: 2cfa26bb22bbdc4e310728736328bde16a69d6b4  ‐> DroidKungFu.M.Gen

Figure 11: The detailed (ind, apk name, and its corresponding sub-
family) items in the DroidKungFu family phylogenetic analysis.

by the detection model19. Such difference can be denoted asM ′ \D.
A perfect detection model should detect all possible malicious fea-
ture vectors (i.e.,M ′). In practice, detection models are limited to
detecting only existing malware because it is hard to predict the
form of potential malware (including zero-day attacks). In this work,
we argue that a robust malware-detection model should aim to de-
tect new malware variants produced through known mutations.
Such mutations may employ not only syntactic and semantic obfus-
cation techniques, but also feature mutations based on analyzing
the evolutions of malware families.

Feature confusion attack is based on the insight that malware
detection usually performs poorly in differentiating malware and
benign apps with the same feature vector. As discussed earlier, if we
simply mutate malware feature vectors to benign feature vectors
(i.e., feature vectors in space B), such mutation would generally
break or weaken the malicious behaviors (i.e., turning malware
into benign apps). So, our design decision is making malware with
unique malicious feature vectors (i.e.,M \ (B ∩M)) to possess the
feature vectors same as benign apps (i.e., B ∩ M). Because some
apps already possess such feature vectors, we could leverage the
program transplantation technique to transplant the existing im-
plementation to the host malware. Using program transplantation
greatly decreases the likelihood of breaking the original malicious
behaviors in the host malware.

Threat Model & Use Cases. We assume that an attacker has
only black-box access to the malware detector under consideration.
Under such assumption, the attacker can feed any malware sample
as the input to the detector and know whether the sample can be
detected or not, but the attacker has no internal knowledge (e.g.,

19We safely assume that for a reasonable malware-detection model,D ⊆ M ′.
A reasonable malware-detection model produces false positives on a benign
app only because the feature vector of the benign app is the same as some
malware samples.

detection model, signature, feature set, confidence score) about the
detector. The attacker is capable of manipulating the malware’s
binary code, but has no access to the malware’s source code. We
assume that the attacker has access to the existing malware samples
(i.e., samples that are correctly detected by the malware detector),
and the goal of the attacker is to create malware variants with the
same malicious behaviors, but can evade the detection.

Although we present our techniques as attacks to malware de-
tection, the techniques can also be used in assisting the assessment
or testing of existing malware-detection techniques, to enable the
iterative design of a detection system. The main idea is to launch
feature evolution attack and feature confusion attack on each revi-
sion of the detection system, so that security analysts can further
prune their selection of features in the next revision. Feature evo-
lution attack can be used to evaluate the robustness of a detection
model. The more robust a detector model is (i.e., the larger D is),
the more difficult for a mutated malware to evade the detection
(i.e., the smaller M ′ \ D can be). Feature confusion attack can be
used to evaluate the differentiability of selected features. The more
differentiable a feature is, the less the opportunity is for a malware
sample to confuse the detector (i.e., smaller B ∩M is desirable).

Discussion. Limitations of app testing. In testing processes for
transformed apps, the testing checks only twomain things: whether
the app crashes or not and whether the malicious statements get
invoked or not. Due to the unavailability of systematic functional
test cases in regression tests, the testing cannot cover all the cases.
Such issue could be addressed by manually creating regression
tests for the malicious behaviors. Additionally, it is infeasible to test
whether malware become less profitable or easier to be detected by
manual inspection.

Adware threat in the experiment. In our experiment, we view
one family of adware (i.e., AdsDisplay) as a malware family due to
the fact that both malware and adware are “unwanted software”,
and they both differ significantly from benign apps according to a
recent study [35].
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