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ABSTRACT
Today, an increasing number of Adaptive Deep Neural Networks
(AdNNs) are being used on resource-constrained embedded devices.
We observe that, similar to traditional software, redundant com-
putation exists in AdNNs, resulting in considerable performance
degradation. The performance degradation is dependent on the in-
put and is referred to as input-dependent performance bottlenecks
(IDPBs). To ensure an AdNN satisfies the performance requirements
of resource-constrained applications, it is essential to conduct per-
formance testing to detect IDPBs in the AdNN. Existing neural
network testing methods are primarily concerned with correctness
testing, which does not involve performance testing. To fill this
gap, we propose DeepPerform, a scalable approach to generate
test samples to detect the IDPBs in AdNNs. We first demonstrate
how the problem of generating performance test samples detecting
IDPBs can be formulated as an optimization problem. Following
that, we demonstrate how DeepPerform efficiently handles the op-
timization problem by learning and estimating the distribution of
AdNNs’ computational consumption. We evaluate DeepPerform on
three widely used datasets against five popular AdNN models. The
results show that DeepPerform generates test samples that cause
more severe performance degradation (FLOPs: increase up to 552%).
Furthermore, DeepPerform is substantially more efficient than the
baseline methods in generating test inputs (runtime overhead: only
6–10 milliseconds).

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Computing methodologies→Machine learning.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have shown potential in many ap-
plications, such as image classification, image segmentation, and ob-
ject detection [9, 20, 46]. However, the power of using DNNs comes
at substantial computational costs [19, 30, 34, 47, 54]. The costs,
especially the inference-time cost, can be a concern for deploying
DNNs on resource-constrained embedded devices such as mobile
phones and IoT devices. To enable deploying DNNs on resource-
constrained devices, researchers propose a series of Adaptive Neural
Networks (AdNNs) [2, 12, 14, 23, 49, 51]. AdNNs selectively activate
partial computation units (e.g., convolution layer, fully connected
layer) for different inputs rather than whole units for computation.
The partial unit selection mechanism enables AdNNs to achieve
real-time prediction on resource-constrained devices.

Similar to the traditional systems [55], performance bottlenecks
also exist in AdNNs. Among the performance bottlenecks, some of
them can be detected only when given specific input values. Hence,
these problems are referred to as input-dependent performance
bottlenecks (IDPBs). Some IDPBs will cause severe performance
degradation and result in catastrophic consequences. For example,
consider an AdNN deployed on a drone for obstacle detection. If
AdNNs’ energy consumption increases five times suddenly for spe-
cific inputs, it will make the drone out of battery in the middle of a
trip. Because of these reasons, conducting performance testing to
find IDPB is a crucial step before AdNNs’ deployment process.

However, to the best of our knowledge, most of the existing work
for testing neural networks are mainly focusing on correctness test-
ing, which can not be applied to performance testing. The main
difference between correctness testing and performance testing is
that correctness testing aims to detect models’ incorrect classifica-
tions; while the performance testing is to find IDPBs that trigger
performance degradation. Because incorrect classifications may
not lead to performance degradation, existing correctness testing
methods can not be applied for performance testing. To fill this
gap and accelerate the process of deploying neural networks on
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resource-constrained devices, there is a strong need for an auto-
mated performance testing framework to find IDPBs.

We identify two main challenges in designing such a perfor-
mance testing framework. First, traditional performancemetrics (e.g.,
latency, energy consumption) are hardware-dependent metrics.
Measuring these hardware-dependent metrics requires repeated
experiments because of the system noises. Thus, directly applying
these hardware-dependent metrics as guidelines to generate test
samples would be inefficient. Second, AdNNs’ performance adjust-
ment strategy is learned from datasets rather than conforming to
logic specifications (such as relations between model inputs and
outputs). Without a logical relation between AdNNs’ inputs and
AdNNs’ performance, it is challenging to search for inputs that can
trigger performance degradation in AdNNs.

To address the above challenges, we propose DeepPerform, which
enables efficient performance testing for AdNNs by generating test
samples that trigger IDPBs of AdNNs (DeepPerform focuses on
the performance testing of latency degradation and energy con-
sumption degradation as these two metrics are critical for per-
formance testing [3, 49]). To address the first challenge, we first
conduct a preliminary study (§3) to illustrate the relationship be-
tween computational complexity (FLOPs) and hardware-dependent
performance metrics (latency, energy consumption). We then trans-
fer the problem of degrading system performance into increasing
AdNNs’ computational complexity (Eq.(3)). To address the second
challenge, we apply the a paradigm similar to Generative Adver-
sarial Networks (GANs) to design DeepPerform. In the training
process, DeepPerform learns and approximates the distribution of
the samples that require more computational complexity. After
DeepPerform is well trained, DeepPerform generates test samples
that activate more redundant computational units in AdNNs. In
addition, because DeepPerform does not require backward prop-
agation during the test sample generation phase, DeepPerform
generates test samples much more efficiently, thus more scalable
for comprehensive testing on large models and datasets.

To evaluate DeepPerform, we select five widely-used model-
dataset pairs as experimental subjects and explore following four
perspectives: effectiveness, efficiency, coverage, and sensitivity. First,
to evaluate the effectiveness of the performance degradation caused
by test samples generated by DeepPerform, we measure the in-
crease in computational complexity (FLOPs) and resource con-
sumption (latency, energy) caused by the inputs generated by
DeepPerform. For measuring efficiency, we evaluate the online
time-overheads and total time-overheads of DeepPerform in gen-
erating different scale samples for different scale experimental sub-
jects. For coverage evaluation, we measure the computational units
covered by the test inputs generated by DeepPerform. For sensitiv-
ity measurement, we measure how DeepPerform’s effectiveness is
dependent on the ADNNs’ configurations and hardware platforms.
The experimental results show that DeepPerform generated inputs
increase AdNNs’ computational FLOPs up to 552%, with 6-10 mil-
liseconds overheads for generating one test sample. We summarize
our contribution as follows:

• Approach. Wepropose a learning-based approach 1, namely
DeepPerform, to learn the distribution to generate the test

1https://github.com/SeekingDream/DeepPerform

samples for performance testing. Our novel design enables
generating test samples more efficiently, thus enable scalable
performance testing.

• Evaluation. We evaluate DeepPerform on five AdNN mod-
els and three datasets. The evaluation results suggest that
DeepPerform finds more severe diverse performance bugs
while covering more AdNNs’ behaviors, with only 6-10 mil-
liseconds of online overheads for generating test inputs.

• Application.We demonstrate that developers could benefit
from DeepPerform. Specifically, developers can use the test
samples generated by DeepPerform to train a detector to
filter out the inputs requiring high abnormal computational
resources (§6).

2 BACKGROUND
2.1 AdNNs’ Working Mechanisms
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Figure 1: Working mechanism of AdNNs

Themain objective of AdNNs [5, 12, 14, 24, 29, 35, 41, 44, 49, 52] is to
balance performance and accuracy. As shown in Fig. 2, AdNNs will
allocate more computational resources to inputs with more complex
semantics. AdNNs use intermediate outputs to deactivate specific
components of neural networks, thus reducing computing resource
consumption. According to the working mechanism, AdNNs can
be divided mainly into two types: Conditional-skipping AdNNs and
Early-termination AdNNs, as shown in Fig. 1. Conditional-skipping
AdNNs skip specific layers/blocks if the intermediate outputs pro-
vided by specified computing units match predefined criteria. 2 (in
the case of ResNet). The working mechanism of the conditional-
skipping AdNN can be formulated as:{

𝐼𝑛𝑖+1 = 𝑂𝑢𝑡𝑖 , if 𝐵𝑖 (𝑥) ≥ 𝜏𝑖

𝑂𝑢𝑡𝑖+1 = 𝑂𝑢𝑡𝑖 , otherwise
(1)

where 𝑥 is the input, 𝐼𝑛𝑖 represents the input of 𝑖𝑡ℎ layer, 𝑂𝑢𝑡𝑖
represents the output of 𝑖𝑡ℎ layer, 𝐵𝑖 represents the specified com-
puting unit output of 𝑖𝑡ℎ layer and 𝜏𝑖 is the configurable threshold
that decides AdNNs’ performance-accuracy trade-off mode. Early-
termination AdNNs terminate computation early if the intermediate

2a block consists of multiple layers whose output is determined by adding the output
of the last layer and input to the block.

https://github.com/SeekingDream/DeepPerform
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outputs satisfy a particular criteria. The working mechanism of
early-termination AdNNs can be formulated as,{

𝐸𝑥𝑖𝑡𝑁𝑁 (𝑥) = 𝐸𝑥𝑖𝑡𝑖 (𝑥), if 𝐵𝑖 (𝑥) ≥ 𝜏𝑖

𝐼𝑛𝑖+1 (𝑥) = 𝑂𝑢𝑡𝑖 (𝑥), otherwise
(2)

2.2 Redundant Computation
In a software program, if an operation is not required but performed,
we term the operation as redundant operation. For Adaptive Neural
Networks, if a component is activated without affecting AdNNs’
final predictions, we define the computation as a redundant com-
putation. AdNNs are created based on the philosophy that all the
inputs should not require all DNN components for inference. For
example, we can refer to the images in Fig. 2. The left box shows the
AdNNs’ design philosophy. That is, AdNNs consume more energy
for detecting images with further complexity. However, when the
third image in the left box is perturbed with minimal perturbations
and becomes the rightmost one, AdNNs’ inference energy consump-
tion will increase significantly (from 30 𝑗 to 68 𝑗 ). We refer to such
additional computation as redundant computation or performance
degradation.

2.3 Performance & Computational Complexity
In this section, we describe the relationship between hardware-
dependent performance metrics and DNN computational complex-
ity. Although many metrics can reflect DNN performance, we
chose latency and energy consumption as hardware-dependent
performance metrics because of their critical nature for real-time
embedded systems [3, 49]. Measuring hardware-dependent per-
formance metrics (e.g., latency, energy consumption) usually re-
quires many repeated experiments, which is costly. Hence, exist-
ing work [12, 14, 29, 35, 41, 52] proposes to apply floating point
operations (FLOPs) to represent DNN computational complexity.
However, a recent study [43] demonstrates that simply lowering
DNN computational complexity (FLOPs) does not always improve
DNN runtime performance. This is because modern hardware plat-
forms usually apply parallelism to handle DNN floating-point op-
erations (FLOPs). Parallelism can accelerate computation within
layers, while each DNN layer is computed sequentially. Thus, For
two DNNs with the same total FLOPs, different FLOPs allocating
strategies will result in different parallelism utilization and different
DNN model performance. However, for AdNNs, each layer/block
usually has a similar structure and FLOPs [12, 14, 34, 52]. Thus
the parallelism utilization is similar for each block. Because paral-
lelism can not accelerate computation between blocks, increasing
the number of computational blocks/layers will degrade AdNNs’
performance. To further understand the relation between AdNNs’
FLOPs and AdNNs’ model performance, we conduct a study in §3.

3 PRELIMINARY STUDY
3.1 Study Approach
Our intuition is to explore the worst computational complexity of
an algorithm or model. For AdNNs, the basic computation are the
floating-point operations (FLOPs). Thus, we made an assumption
that the FLOPs count of an AdNN is a hardware-independent metric
to approximate AdNN performance. To validate such an assumption,

30 + 38
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Figure 2: Left Box shows that AdNNs allocate different com-
putational resources for images with different semantic com-
plexity; rights box shows that perturbed image could trigger
redundant computation and cause energy surge.

we conduct an empirical study. Specifically, we compute the Pearson
Product-moment Correlation Co-efficient (PCCs) [40] between AdNN
FLOPs against AdNN latency and energy consumption. PCCs are
widely used in statistical methods to measure the linear correlation
between two variables. PCCs are normalized covariance measure-
ments, ranging from -1 to 1. Higher PCCs indicate that the two
variables are more positively related. If the PCCs between FLOPs
against system latency and system energy consumption are both
high, then we validate our assumption.

3.2 Study Model & Dataset
We select subjects (e.g., model,dataset) following policies below.
• The selected subjects are publicly available.
• The selected subjects are widely used in existing work.
• The selected dataset and models should be diverse from different
perspectives. e.g.,, the selected models should include both early-
termination and conditional-skipping AdNNs.

We select five popular model-dataset combinations used for image
classification tasks as our experimental subjects. The dataset and the
corresponding model are listed in Table 1. We explain the selected
datasets and corresponding models below.
Datasets. CIFAR-10 [25] is a database for object recognition. There
is a total of ten object classes for this dataset, and the image size of
the image in CIFAR-10 is 32×32. CIFAR-10 contains 50,000 training
images and 10,000 testing images. CIFAR-100 [25] is similar to
CIFAR-10 [25] but with 100 classes. It also contains 50,000 training
images and 10,000 testing images. SVHN [36] is a real-world image
dataset obtained from house numbers in Google Street View images.
There are 73257 training images and 26032 testing images in SVHN.
Models. For CIFAR-10 dataset, we use SkipNet [52] and BlockDrop
[53] models. SkipNet applies reinforcement learning to train DNNs
to skip unnecessary blocks, and BlockDrop trains a policy network
to activate partial blocks to save computation costs. We download
trained SkipNet and BlockDrop from the authors’ websites. For
CIFAR-100 dataset, we use RaNet [56] and DeepShallow [24] mod-
els for evaluation. DeepShallow adaptive scales DNN depth, while
RaNet scales both input resolution and DNN depth to balance ac-
curacy and performance. For SVHN dataset, DeepShallow [24] is
used for evaluation. For RaNet [56] and DeepShallow [24] archi-
tecture, the author does not release the trained model weights but
open-source their training codes. Therefore, we follow the authors’
instructions to train the model weights.

3.3 Study Process
We begin by evaluating each model’s computational complexity on
the original hold-out test dataset. After that, we deploy the AdNN



ASE ’22, October 10–14, 2022, Rochester, MI, USA Simin Chen, Mirazul Haque, Cong Liu, and Wei Yang

Table 1: Experiential subject and model performance

Subject FLOPs
CPU (Quad-Core ARM® Cortex®-A57 MPCore) GPU (NVIDIA Pascal™ GPU architecture with 256 cores)

Latency Energy Latency Energy
Dataset Model Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

CIFAR10 (C10)
SkipNet (SN) 195.44 248.62 336.99 0.44 0.51 0.63 65.76 76.60 316.44 0.74 0.94 1.39 168.07 245.62 439.38

BlockDrop (BD) 72.56 180.51 228.27 0.11 0.23 0.37 15.89 34.17 161.12 0.13 0.33 0.71 29.60 73.27 282.59

CIFAR100 (C100)
DeepShallow (DS) 38.68 110.47 252.22 0.04 0.11 0.25 3.47 15.32 37.81 0.09 0.37 1.08 12.63 75.49 441.60

RaNet (RN) 31.50 41.79 188.68 0.07 0.21 2.96 8.21 27.99 448.96 0.10 0.36 5.81 15.87 60.22 997.73

SVHN DeepShallow (DS) 38.74 161.40 252.95 0.04 0.16 0.27 3.99 23.35 91.28 0.03 0.37 0.82 4.16 78.66 180.39

Table 2: PCCs between FLOPs against latency and energy

Hardware Metric SN_C10 RN_C100 BD_C10 DS_C100 DS_SVHN

CPU
Latency 0.68 0.67 0.93 0.99 0.95
Energy 0.65 0.64 0.93 0.98 0.95

GPU
Latency 0.48 0.56 0.91 0.99 0.97
Energy 0.53 0.64 0.91 0.99 0.97

Table 3: System availability under performance degradation

Subject Original Perturbed Ratio

SN_C10 10,000 6,332 0.6332
BD_C10 10,000 4,539 0.4539
RN_C100 10,000 5,232 0.5232
DS_C100 10,000 3,576 0.3576
DS_SVHN 10,000 4,145 0.4145

model on an Nvidia TX2 [37] and measure latency and energy
usage. Through Table 1, we present the FLOPs, latency, and energy
consumption of each AdNN. We observe that the model would
cost a different number of FLOPs for different test samples, and
the variance between each test sample could be significant. For
instance, for dataset CIFAR-100 and model RaNet, the minimum
FLOPs are 31.5M, while the maximum FLOPs are 188.68M.

3.4 Study Results
From the PCCs results in Table 2, we have the following observa-
tions: (i) The PCCs are more than 0.48 for all subjects. The results
imply that FLOPs are positively related to latency and energy con-
sumption in AdNNs [40]. Especially for DS_C100, the PCC achieves
0.99, which indicates the strong linear relationship between FLOPs
and runtime performance. (ii) The PCCs for the same subject on dif-
ferent hardware devices are remarkably similar (e.g.,, with an aver-
age difference of 0.04). According to the findings, the PCCs between
FLOPs and latency/energy consumption are hardware independent.
The statistical observations of PCCs confirm our assumption; that is,
the FLOPs of AdNN handling an input is a hardware-independent
metric that can approximate AdNN performance on multiple hard-
ware platforms.

3.5 Motivating Example
To further understand the necessity of conducting performance test-
ing for AdNNs, we use one real-world example to show the harmful
consequences of performance degradation. In particular, we use
TorchMobile to deploy each AdNN model on Samsung Galaxy S9+,
an Android device with 6GB RAM and 3500mAh battery capacity.

We randomly select inputs from the original test dataset of each
subject (i.e., Table 1) as seed inputs and perturb the selected seed
inputs with random perturbation. Next, we conduct two experi-
ments (one on the selected seed inputs and another one on the
perturbed one) on the phone with the same battery. Specifically, we
feed both datasets into AdNN for object classification and record
the number of inputs successfully inferred before the battery runs
out (We set the initial battery as the battery that can infer 10,000
inputs from the original dataset). The results are shown in Table 3,
where the column “original” and “perturbed” show the number of
inputs successfully inferred, and the column “ratio” shows the corre-
sponding system availability ratio (i.e., the system can successfully
complete the percentage of the assigned tasks under performance
degradation). Such experimental results highlight the importance of
AdNN performance testing before deployment. Otherwise, AdNNs’
performance degradation will endanger the deployed system’s avail-
ability.

4 APPROACH
In this section, we introduce the detail design of DeepPerform.

4.1 Performance Test Samples for AdNNs
Following existing work [17, 27, 27], we define performance test
samples as the inputs that require redundant computation and
cause performance degradation (e.g., higher energy consumption).
Because our work focus on testing AdNNs, we begin by introduc-
ing redundant computation in AdNNs. Like traditional software,
existing work [17, 24] has shown redundant computation also exist
in AdNNs. Formally, let 𝑔𝑓 (·) denotes the function that measures
the computational complexity of neural network 𝑓 (·), and 𝑇𝐼 (·)
denotes a semantic-equivalent transformation in the input domain.
As the example in Fig. 2, 𝑇𝐼 (·) could be changing some unnotice-
able pixels in the input images. If 𝑔𝑓 (𝑇𝐼 (𝑥𝑖 )) > 𝑔𝑓 (𝑥𝑖 ) and 𝑓 (𝑥𝑖 ) is
correctly computed, then there exist redundant computation in the
model 𝑓 (·) handling𝑇𝐼 (𝑥𝑖 ). In this paper, we consider unnoticeable
perturbations as our transformations𝑇𝐼 (·), the same as the existing
work [8, 17, 22]. Finally, we formulate our objective to generate
performance test samples as searching such unnoticeable input
transformation 𝑇𝐼 (·), as shown in Eq.(3).

𝑔(𝑇𝐼 (𝑥)) >> 𝑔(𝑥)
𝑇𝐼 (𝑥) = {𝑥 + 𝛿 (𝑥) | | |𝛿 (𝑥) | |𝑝 ≤ 𝜖} (3)

4.2 DeepPerform Framework
Fig. 3 illustrates the overall architecture of DeepPerform, which is
based on the paradigm of Generative Adversarial Networks (GANs).
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Figure 3: Design overview of DeepPerform

GANs mainly consist of a generator G(·) and a discriminator D(·).
The input 𝑥 of the generator G(·) is a seed input and the output
G(𝑥) is a minimal perturbation (i.e., 𝛿 (𝑥) in Eq.(3)). After applying
the generated perturbation to the seed input, the test sample𝑇𝐼 (𝑥) =
𝑥 + G(𝑥) is sent to the discriminator. The discriminator D(·) is
designed to distinguish the generated test samples 𝑥 +G(𝑥) and the
original samples 𝑥 . After training, the generator would generate
more unnoticeable perturbation, correspondingly, the discriminator
would also be more accurate in distinguishing original samples and
generated samples. After being well trained, the discriminator and
the generator would reach a Nash Equilibrium, which implies the
generated test samples are challenging to be distinguished from
the original samples.

L𝐺𝐴𝑁 = E𝑥 𝑙𝑜𝑔D(𝑥) + E𝑥 𝑙𝑜𝑔[1 − D(𝑥 + G(𝑥))] (4)

The loss function of the Generative Adversarial Networks (GANs)
can be formulated as Equation 4. In Equation 4, the discriminatorD
tries to distinguish the generated samples G(𝑥) +𝑥 and the original
sample 𝑥 , so as to encourage the samples generated by G close to
the distribution of the original sample.

However, the perturbation generated by G may not be able to
trigger performance degradation. To fulfil that purpose, we add
target AdNN 𝑓 (·) into the DeepPerform architecture. While train-
ing G(·), the generated input is fed to AdNN to create an objective
function that will help increase the AdNNs’ FLOPs consumption.
To generate perturbation that triggers performance degradation in
AdNNs, we incorporate two more loss functions other than L𝐺𝐴𝑁

for training G(·). As shown in Eq.(3), to increase the redundant
computation, the first step is to model the function𝑔𝑓 (·). According
to our statistical results in §3, FLOPs could be applied as a hardware-
independent metric to approximate AdNNs system performance.
Then we model 𝑔𝑓 (·) as Eq.(5).

𝑔𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝑊𝑖 × I(𝐵𝑖 (𝑥) > 𝜏𝑖 ) (5)

Where𝑊𝑖 is the FLOPs in the 𝑖𝑡ℎ block, 𝐵𝑖 (𝑥) is the probability that
the 𝑖𝑡ℎ block is activated, I(·) is the indicator function, and 𝜏𝑖 is the
pre-set threshold based on available computational resources.

L𝑎𝑑𝑣 = ℓ (𝑔𝑓 (𝑥),
𝑁∑︁
𝑖=1

𝑊𝑖 ) (6)

To enforce G could generate perturbation that trigger IDPB, we de-
fine our performance degradation objective function as Equation 6.
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Figure 4: Architecture of the generator and discriminator

Where ℓ is the Mean Squared Error. Recall
∑𝑁
𝑖=1𝑊𝑖 is the status that

all blocks are activated, then L𝑎𝑑𝑣 would encourage the perturbed
input to activate all blocks of the model, thus triggering IDPBs.

L𝑝𝑒𝑟 = E𝑥 | |G(𝑥) | |𝑝 (7)

To bound the magnitude of the perturbation, we follow the exist-
ing work [8] to add a loss of the 𝐿𝑝 norm of the semantic-equivalent
perturbation. Finally, our full objective can be denoted as

L = L𝐺𝐴𝑁 + 𝛼L𝑎𝑑𝑣 + 𝛽L𝑝𝑒𝑟 (8)

Where 𝛼 and 𝛽 are two hyper-parameters that balance the impor-
tance of each objective. Notice that the goal of the correctness-based
testing methods’ objective function is to maximize the errors while
our objective function is to maximize the computational complexity.
Thus, our objective function in Eq.(8) can not be replaced by the
objective function proposed in correctness-based testing [8, 38, 45].

4.3 Architecture Details
In this section, we introduce the detailed architecture of the gener-
ator and the discriminator. Our generator G adapts the structure
of encoder-decoder, and the architecture of the discriminator is a
convolutional neural network. The architectures of the generator
and the discriminator are displayed in Fig. 4.
Generator. As shown in Fig. 4, there are three main components in
the generator, that is, the Encoder, the ResBlocks, and the Decoder.
The Encoder repeats the convolutional blocks twice, a convolutional
block includes a convolutional layer, a batch normalization layer,
and a RELU activation layer. After the encoding process, the input
would be smaller in size but with deep channels. The ResBlock
stacks four residual blocks [16], which is widely used to avoid the
gradient vanishing problem. The Decoder is the reverse process of
the Encoder, the transpose convolutional layer is corresponding to
the convolutional layer in the Encoder. After the decoding process,
the intermediate values will be changed back to the same size as the
original input to ensure the generated perturbation to be applied
to the original seed input.
Discriminator. The architecture of the discriminator is simpler
than the generator. There are three convolutional blocks to extract
the feature of the input, after that, following a flatten layer and a
dense layer for classification.
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Algorithm 1: Training DeepPerform
Input: The subject AdNNs 𝑓 ( ·) to be tested
Input: Perturbation Constraints 𝜖 , Perturbation norm 𝑝
Input: Training dataset X
Input: Hyper-parameters 𝛼 , 𝛽
Input:Maximum training epochs𝑇
Output: Generator G and Discriminator D

1 𝑔𝑓 ( ·) = ModelPerformance(𝑓 ) // Construct 𝑔𝑓 through Equation 5.

2 for epoch in range(0, T) do
3 for batch in X do
4 𝑥 = G(𝑥 ) + 𝑥 ; // generate test samples

5 𝑥 = CLIP(𝑥, 𝑥, 𝑝, 𝜖) ; // clip test samples

6 L𝐺𝐴𝑁 + = ComputeGanLoss(𝑥 , 𝑥 , D) ; // Equation 4

7 L𝑝𝑒𝑟 + = ComputePerLoss(𝑥 , 𝑥 ) ; // Equation 7

8 L𝑎𝑑𝑣+ = ComputeAdvLoss(𝑥 , 𝑥 ) ; // Equation 6

9 end
10 ▽G = ComputeGrad(L𝐺𝐴𝑁 + L𝑝𝑒𝑟 + L𝑎𝑑𝑣 ) ; // Compute G gradient

11 ▽D = ComputeGrad(L𝐺𝐴𝑁 ); // Compute D gradient

12 G = G + ▽G, D = D + ▽D; // Update the weights of D and G
13 end

4.4 Training DeepPerform
The training of DeepPerform is comprised of two parts: training
the discriminator D and training the generator G. Algorithm 1 ex-
plains the training procedure of the DeepPerform. The inputs of our
algorithm include the target AdNNs 𝑓 (·), perturbation constraints
𝜖 , training datasetX, hyper-parameters 𝛼, 𝛽 and max epochs𝑇 . The
outputs of our training algorithm include a well-trained generator
and discriminator. First, the algorithm constructs the performance
function 𝑔(·) through Equation 5 (Line 1). Then we run 𝑇 epochs.
For each epoch, we iteratively select small batches from the train-
ing dataset (Line 2, 3). For each seed 𝑥 in the selected batches, we
generate test sample 𝑥 and compute the corresponding loss through
Eq.(4), (7), (6) (Line 6-8). We compute the gradients of G and D
with the computed loss (Line 10, 11), then we update the weights
of G and D with the gradients (Line 12). The update process is
performed iteratively until the maximum epoch is reached.

5 EVALUATION
We evaluate DeepPerform and answer the following questions:
• RQ1 (Efficiency): How efficiently does DeepPerform generate
test samples?

• RQ2 (Effectiveness): How effective can DeepPerform generate
test samples that degraded AdNNs’ performance?

• RQ3 (Coverage): Can DeepPerform generate test samples that
cover AdNNs’ more computational behaviors?

• RQ4 (Sensitivity): Can DeepPerform behave stably under dif-
ferent settings?

• RQ5 (Quality): What is the semantic quality of the generated
test inputs, and how does it relate to performance degradation?

5.1 Experimental Setup
5.1.1 Experimental Subjects. We select the five subjects used in
our preliminary study (§3) as our experimental subjects. As we
discussed in §3, the selected subjects are widely used, open-source,
and diverse in working mechanisms.

5.1.2 Comparison Baselines. As we mentioned in §2, almost all
existing DNN testing work focuses on correctness testing. As far as
we know, ILFO [17] is the state-of-the-art approach for generating
inputs to increase AdNNs computational complexity. Furthermore,

ILFO has proved that its backward-propagation approach is more
effective and efficient than the traditional symbolic execution (i.e.,
SMT); thus, we compare our method to ILFO. ILFO iteratively ap-
plies the backward propagation to perturb seed inputs to generate
test inputs. However, the high overheads of iterations make ILFO a
time-consuming approach for generating test samples. Instead of
iterative backward computation, DeepPerform learns the AdNNs’
computational complexity in the training step. After DeepPerform
is trained, DeepPerform applies forward propagation once to gen-
erate one test sample.

5.1.3 Experiment Process. We conduct an experiment on the se-
lected five subjects, and we use the results to answer all five RQs.
The experimental process can be divided into test sample generation
and performance testing procedures.
Test Sample Generation. For each experimental subject, we split
train/test datasets according to the standard procedure[25, 36]. Next,
we train DeepPerform with the corresponding training datasets.
The training is conducted on a Linux server with three Intel Xeon
E5-2660 v3 CPUs @2.60GHz, eight 1080Ti Nvidia GPUs, and 500GB
RAM, running Ubuntu 14.04. We configure the training process
with 100 maximum epochs, 0.0001 learning rate, and apply early-
stopping techniques [57]. We set the hyper-parameter 𝛼 and 𝛽 as
1 and 0.001, as we observe L𝑝𝑒𝑟 is about three magnitude larger
than L𝑎𝑑𝑣 . After DeepPerform is trained, we randomly select 1,000
inputs from original test dataset as seed inputs. Then, we feed the
seed inputs into DeepPerform to generate test inputs (𝑥 + G(𝑥) in
Fig. 3) to trigger AdNNs’ performance degradation. In our experi-
ments, we consider both 𝐿2 and 𝐿𝑖𝑛𝑓 perturbations [8] and train two
version of DeepPerform for input generation. After DeepPerform
is trained, we apply the clip operation [28] on 𝑥 + G(𝑥) to ensure
the generated test sample satisfy the semantic constraints in Eq.(3).
Performance Testing Procedure. For the testing procedure, we
select Nvidia Jetson TX2 as our main hardware platform (We eval-
uate DeepPerform on different hardwares in §5.5). Nvidia Jetson
TX2 is a popular and widely-used hardware platform for edge com-
puting, which is built around an Nvidia Pascal-family GPU and
loaded with 8GB of memory and 59.7GB/s of memory bandwidth.
We first deploy the AdNNs on Nvidia Jetson TX2. Next, we feed the
generated test samples (from DeepPerform and baseline) to AdNNs,
and measure the response latency and energy consumption (energy
is measured through Nvidia power monitoring tool). Finally, we
run AdNNs at least ten times to infer each generated test sample to
ensure the results are accurate.
RQ Specific Configuration. For RQ1, 2 and 3, we follow existing
work [1, 17, 33] and set the maximum perturbations as 10 and 0.03
for 𝐿2 and 𝐿𝑖𝑛𝑓 norm separately for our approach and baselines.
We then conduct experiments in §5.6 to study how different maxi-
mum perturbations would affect the performance degradation. ILFO
needs to configure maximum iteration number and balance weight,
we set themaximum iteration number as 300 and the balance weight
as 10−6, as suggested by the authors [17]. As we discussed in §2,
AdNNs require a configurable parameter/threshold to decide the
working mode. Different working modes have different tradeoffs
between accuracy and computation costs. In our deployment ex-
periments (RQ2), we follow the authors [17] to set the threshold as
0.5 for all the experimental AdNNs, and we evaluate how different
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threshold will affect DeepPerform effectiveness in §5.5. Besides
that, to ensure the available computational resources are the same,
we run only the AdNNs application in the system during our per-
formance testing procedure.

5.2 Efficiency
In this section, we evaluate the efficiency of DeepPerform in gen-
erating test samples compared with selected baselines.
Metrics.We record the online time overheads of the test sample gen-
eration process (overheads of running G to generate perturbation),
and use the mean online time overhead (s) as our evaluation metrics.
A lower time overhead implies that it is more efficient, thus better in
generating large-scale test samples. Because DeepPerform requires
training the generator G(·), for a fair comparison, we also evaluate
the total time overheads (G(·) training + test samples generation)
of generating different scale numbers of test inputs.
Online Overheads. The average time overheads of generating one
test sample are shown in Fig. 5. The results show that DeepPerform
costs less than 0.01s to generate a test sample under all experi-
mental settings. In contrast, ILFO requires 27.67-176.9s to generate
one test sample. The findings suggest that given same time budget,
DeepPerform can generate 3952-22112× more inputs than exist-
ing method. Another interesting observation is that the overheads
of ILFO fluctuate among different subjects, but the overheads of
DeepPerform remain relatively constant. The reason is that the
overheads of DeepPerform mainly come from the inference pro-
cess of the generator, while the overheads of ILFO mainly come
from backward propagation. Because backward propagation over-
heads are proportional to model size (i.e.,, a larger model demands
more backward propagation overheads), the results of ILFO show a
significant variation. The overhead of DeepPerform is stable, as its
overheads have no relation to the AdNN model size. The result sug-
gests that when testing large models, ILFO will run into scalability
issues, whereas DeepPerform will not.
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Figure 5: Online overheads to generate one test sample (s)

Total Overheads. The total time overheads of generating various
scale test samples are shown in Fig. 6. We can see from the results
that ILFO is more efficient than DeepPerform when the number of
generated test samples is minimal (less than 200). However, when
the number of generated test samples grows greater, the overall time
overheads of DeepPerform are significantly lower than ILFO. To
create 1000 test samples for SN_C10, for example, ILFOwill cost five
times the overall overheads of DeepPerform. Because the overhead
of ILFO is determined by the number of generated test samples [17],
the total overheads quickly rise as the number of generated test
samples rises. The main overhead of DeepPerform, on the other

hand, comes from the GAN model training instead of test sample
generation. As a result, generating various scale numbers of test
samples will have no substantial impact on the DeepPerform’s total
overheads. The results imply that ILFO is not scalable for testing
AdNNswith large datasets, whereas DeepPerform does an excellent
job. We also notice that the DeepPerform’s overheads for 𝐿2 and
𝐿𝑖𝑛𝑓 are different for DN_SVHN. Because we use the early stopping
method [57] to train DeepPerform, we can explain such variation
in overheads. In detail, the objective 𝐿𝑝𝑒𝑟 differs for 𝐿2 and 𝐿𝑖𝑛𝑓 .
Thus, training process will terminate at different epochs.

5.3 Effectiveness
5.3.1 Relative Performance Degradation. Metrics. To characterize
system performance, we choose both hardware-independent and
hardware-dependent metrics. Our hardware independent metric is
floating-point operations (FLOPs). FLOPs are widely used to assess
the computational complexity of DNNs [52, 53]. Higher FLOPs in-
dicate higher CPU utilization and lower efficiency performance. As
for hardware-dependent metrics, we focus on latency and energy
consumption because these two metrics are essential for real-time
applications [3, 49]. After characterizing system performance with
the above metrics, We measure the increment in the above perfor-
mance metrics to reflect the severity of performance degradation.
In particular, we measure the increased percentage of flops I-FLOPs,
latency (I-Latency) and energy consumption (I-Energy) as our per-
formance degradation severity evaluation metrics.

Eq.(9) shows the formal definition of our degradation severity
evaluation metrics. In Eq.(9), 𝑥 is the original seed input, 𝛿 is the
generated perturbation, and 𝐹𝑓 (·), 𝐿𝑓 (·), 𝐸𝑓 (·) are the functions
that measure FLOPs, latency, and energy consumption of AdNN
𝑓 (·). A test sample is more effective in triggering performance
degradation if it increases more percentage of FLOPs, latency, and
energy consumption.We examine two scenarios for each evaluation
metric: the average metric value for the whole test dataset and the
maximum metric value caused for a particular sample. The first
depicts long-term performance degradation, whereas the second
depicts performance degradation under the worst-case situation.
Wemeasure the energy consumption using TX2’s powermonitoring
tool [37].

𝐼 − 𝐹𝐿𝑂𝑃𝑠 (𝑥) =
𝐹𝑓 (𝑥 + 𝛿) − 𝐹𝑓 (𝑥)

𝐹𝑓 (𝑥)
× 100%

𝐼 − 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑥) =
𝐿𝑓 (𝑥 + 𝛿) − 𝐿𝑓 (𝑥)

𝐿𝑓 (𝑥)
× 100%

𝐼 − 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑥) =
𝐸𝑓 (𝑥 + 𝛿) − 𝐸𝑓 (𝑥)

𝐸𝑓 (𝑥)
× 100%

(9)

The hardware-independent experimental results are listed in
Table 4. As previously stated, greater I-FLOPs implies that the cre-
ated test samples demand more FLOPs, which will result in sig-
nificant system performance reduction. The table concludes that
DeepPerform generates test samples that can cause more severe
performance degradation. Other than that, we have multiple ob-
servations. First, for four of the five subjects, DeepPerform gen-
erates test samples that require more FLOPs, e.g., 31.14%-62.77%
for SN_C10. Second, for both 𝐿2 and 𝐿𝑖𝑛𝑓 perturbation, the model
would require more FLOPs, and the difference between 𝐿2 and 𝐿𝑖𝑛𝑓
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Figure 6: Total overheads of generating different scale test samples (s)

Table 4: The FLOPs increment of the test samples (%)

Norm Subject
Mean Max

baseline / ours baseline / ours

SN_C10 6.43 31.14 18.43 62.77
BD_C10 48.44 38.39 162.58 188.60

𝐿𝑖𝑛𝑓 RN_C100 133.67 181.57 498.29 498.99
DS_C100 116.19 157.66 287.98 552.00
DS_SVHN 115.99 228.32 498.29 498.29
SN_C10 20.34 31.30 30.43 82.09
BD_C10 48.44 38.39 162.58 188.60

𝐿2 RN_C100 133.67 182.12 498.99 498.99
DS_C100 116.19 157.66 287.98 552.00
DS_SVHN 115.99 228.32 498.29 498.29

setting is minimal. Third, the maximum FLOPs are far greater than
the average case for some extreme scenarios, e.g., for DS_SVHN,
and DS_C100. The hardware-dependent experimental results are
listed in Table 5. Similar to hardware-independent experiments,
DeepPerform outperforms ILFO on 65 out of 80 comparison sce-
narios. However, for the other 15 comparisons, we explain the
results as the following two reasons: (i) the system noise has af-
fected the results because for almost all scenarios DeepPerform
has been able to increase more I-FLOPs than ILFO. (ii) recall in
Table 2, 𝑅𝑁_𝐶100 has the the PCCs around 0.64, and the FLOPs
increment of 𝑅𝑁_𝐶100 for DeepPerform and ILFO is around the
same level. Thus, DeepPerform may cause slightly less latency and
energy consumption degradation than ILFO. However, for 𝑆𝑁_𝐶10,
although it has low PCCs, DeepPerform can increase much more
FLOPs than ILFO, thus, DeepPerform can cause more severe per-
formance degradation. Based on the results in Table 5, we conclude
that DeepPerform outperforms baseline in creating inputs that con-
sume higher energy or time.

5.3.2 Absolute Performance Degradation. Besides the relative per-
formance degradation, we also investigate the absolute performance
degradation of the generated inputs. In Figure 7, we plot the un-
normalized efficiency distribution (i.e., FLOPs, latency, energy con-
sumption) of both seed and generated inputs to characterize the
absolute performance degradation. We specifically depict the prob-
ability distribution function (PDF) curve [21] of each efficiency
metric under discussion. The unnormalized efficiency distribution
is shown in Fig. 7, where the green curve is for the seed inputs, and
the red curve is for the test inputs from DeepPerform. From the
results, we observe that DeepPerform is more likely to generate test
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Figure 7: The unnormalized efficiency distribution of seed
inputs and the generated inputs

inputs located at the right end of the x-axis. Recall that a PDF curve
with more points on the right end of the x-axis is more likely to
generate theoretical worst-case test inputs. The results confirm that
DeepPerform is more likely to generate test inputs with theoretical
worst-case complexities.

5.3.3 Test Sample Validity. Tomeasure the validity of the generated
test samples, we define degradation success number 𝜂 in Eq.(10),

𝜂 =
∑︁
I(𝐹𝐿𝑂𝑃𝑠 (𝑥 + 𝛿) ≥ 𝐹𝐿𝑂𝑃𝑠 (𝑥)) . 𝑥 ∈ X (10)

whereX is the set of randomly selected seed inputs and I(𝐹𝐿𝑂𝑃𝑠 (𝑥+
𝛿) > 𝐹𝐿𝑂𝑃𝑠 (𝑥)) indicates whether generated test samples re-
quire more computational resources than the seed inputs. We run
DeepPerform and baselines the same experimental time and gen-
erate the different number of test samples (X in Eq.(10)), we then
measure 𝜂 in the generated test samples. For convince, we set the ex-
perimental time as the total time of DeepPerform generating 1,000
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Table 5: The performance degradation on two hardware platforms (%)

Device Subject

L2 Linf
I-Latency I-Energy I-Latency I-Energy

Mean Max Mean Max Mean Max Mean Max
baseline/ours baseline/ours baseline/ours baseline/ours baseline/ours baseline/ours baseline/ours baseline/ours

SN_C10 8.2 25.4 20.9 45.7 8.3 25.7 20.6 44.9 5.7 30.9 15.1 46.1 5.7 31.4 15.6 45.8
BD_C10 28.7 17.5 142.1 132.5 28.9 17.7 148.2 135.3 25.4 25.6 143.9 135.7 25.8 26.1 148.2 141.0

CPU RN_C100 72.2 39.9 1654.4 624.1 72.5 40.3 1685.1 633.7 53.6 141.1 370.2 1313.1 54.1 144.3 387.1 1341.1
DS_C100 61.4 133.8 216.2 464.0 64.6 142.6 217.3 471.8 52.0 171.5 254.5 483.6 54.9 180.1 282.0 503.9
DS_SVHN 29.8 210.1 392.3 1496.1 30.3 214.6 398.4 1467.7 70.2 257.2 1371.2 1580.8 71.7 260.1 1372.8 1548.2

SN_C10 4.4 14.3 6.8 17.9 5.3 15.4 8.1 19.7 4.4 11.8 4.8 15.7 5.2 12.4 6.1 15.9
BD_C10 9.3 9.8 53.6 41.6 10.2 11.7 59.0 42.4 13.9 16.9 39.9 41.1 15.1 20.2 46.4 46.6

GPU RN_C100 90.6 51.0 1968.5 923.9 96.9 55.4 2446.5 1043.4 66.9 167.2 454.8 1496.8 70.6 197.4 557.9 1837.4
DS_C100 56.1 102.7 184.9 370.2 62.8 116.4 194.1 478.8 71.7 158.6 183.8 384.7 80.3 177.9 217.1 457.8
DS_SVHN 11.5 75.9 149.7 244.2 15.8 92.0 172.3 298.3 38.7 72.0 280.0 308.9 47.4 88.0 348.3 382.8

test samples (same time for ILFO). From the third column in Ta-
ble 6, we observe that for most experimental settings, DeepPerform
achieves a higher degradation success number than ILFO. Although
ILFO is an end-to-end approach, the high overheads of ILFO disable
it to generate enough test samples.

5.4 Coverage

Table 6: Validity and coverage results

Norm Subject
𝜂 (#) 𝐶𝑜𝑣 (%)

ours / baseline ours / baseline

SN_C10 842 69 0.74 ± 0.001 0.65 ± 0.001
BD_C10 630 84 0.37 ± 0.001 0.37 ± 0.001

Linf RN_C100 871 133 0.99 ± 0.002 0.89 ± 0.030
DS_C100 646 69 1.00 ± 0.000 0.83 ± 0.016
DS_SVHN 916 220 1.00 ± 0.000 0.92 ± 0.033

SN_C10 993 81 0.84 ± 0.001 0.85 ± 0.001
BD_C10 732 79 0.41 ± 0.001 0.40 ± 0.001

L2 RN_C100 924 229 0.94 ± 0.007 0.95 ± 0.013
DS_C100 734 181 1.00 ± 0.000 1.00 ± 0.000
DS_SVHN 924 518 0.98 ± 0.025 0.73 ± 0.034

In this section, we investigate the comprehensiveness of the
generated test inputs. In particular, we follow existing work [38, 58]
and investigate the diversity of the AdNN behaviors explored by the
test inputs generated by DeepPerform. Because AdNNs’ behavior
relies on the computation of intermediate states [32, 38], we analyze
how many intermediate states are covered by the test suite.

𝐶𝑜𝑣 (X) =
∑
𝑥∈X

∑𝑁
𝑖=1 I(𝐵𝑖 (𝑥) > 𝜏𝑖 ))

𝑁
(11)

To measure the coverage of AdNNs’ intermediate states, we follow
existing work [38] and define decision block coverage (𝐶𝑜𝑣 (X) in
Eq.(11)), where 𝑁 is the total number blocks, I(·) is the indicator
function, and (𝐵𝑖 (𝑥) > 𝜏𝑖 )) represents whether 𝑖𝑡ℎ block is acti-
vated by input 𝑥 (the definition of 𝐵𝑖 and 𝜏𝑖 are the same with Eq.(1)
and Eq.(2)). Because AdNNs activate different blocks for decision
making, then a higher block coverage indicates the test samples
cover more decision behaviors. For each subject, we randomly select
100 seed samples from the test dataset as seed inputs. We then feed
the same seed inputs into DeepPerform and ILFO to generate test
samples. Finally, we feed the generated test samples to AdNNs and
measure block coverage. We repeat the process ten times and record
the average coverage and the variance. The results are shown in Ta-
ble 6 last two columns. We observe that the test samples generated
by DeepPerform achieve higher coverage for almost all subjects.

5.5 Sensitivity
In this section, we conduct two experiments to show that DeepPerform
can generate effective test samples under different settings.
Configuration Sensitivity.As discussed in §2, AdNNs require con-
figuring the threshold 𝜏𝑖 to set the accuracy-performance tradeoff
mode. In this section, we evaluate whether the test samples gen-
erated from DeepPerform could degrade the AdNNs’ performance
under different modes. Specifically, we set the threshold 𝜏𝑖 in Eq.(1)
and Eq.(2) as 0.3, 0.4, 0.5, 0.6, 0.7 and measure the maximum FLOPs
increments. Notice that we train DeepPerform with 𝜏𝑖 = 0.5 and
test the performance degradation with different 𝜏𝑖 . The maximum
FLOPs increment ratio under different system configurations are
listed in Table 7. For all experimental settings, the maximum FLOPs
increment ratio keeps a stable value (e.g., 79.17-82.91, 175.59-250.00).
The results imply that the test samples generated by DeepPerform
can increase the computational complexity under different configu-
rations, and the maximum FLOPs increment ratio is stable as the
configuration changes.

Table 7: Increment under different thresholds

Norm Subject
Threshold

0.3 0.4 0.5 0.6 0.7

SN_C10 79.17 82.91 82.91 75.00 70.00
BD_C10 250.00 250.00 175.59 175.59 175.59

L2 RN_C100 500.00 498.99 498.99 200.00 200.00
DS_C100 600.00 600.00 552.00 400.00 200.00
DS_SVHN 498.29 498.29 498.29 498.29 400.00

SN_C10 66.67 78.26 82.91 66.67 73.91
BD_C10 233.33 175.59 175.59 233.33 233.33

Linf RN_C100 498.99 498.99 498.99 498.99 498.99
DS_C100 552.00 552.00 552.00 400.00 300.00
DS_SVHN 498.29 498.29 498.29 498.29 400.00

Hardware Sensitivity.We next evaluate the effectiveness of our
approach on different hardware platforms. In particular, we select
Intel Xeon E5-2660 V3 CPU and Nvidia 1080 Ti as our experimen-
tal hardware platforms and measure the maximum performance
degradation ratio on those selected platforms. The test samples
generated by DeepPerform, as shown in Table 8, cause severe and
stable runtime performance degradation on different hardware plat-
forms. As a result, we conclude that DeepPerform is not sensitive
to hardware platforms.
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Figure 9: Testing inputs generated by DeepPerform

5.6 Quality
We first conduct quantitative evaluations to evaluate the similarity
between the generated and seed inputs. In particular, we follow
existing work [8] and compute the perturbation magnitude. The
perturbation magnitude are listed in Table 9. Recall that we follow
existing work [8, 17] and set the perturbation constraints 𝜖 as 10
and 0.03 for 𝐿2 and 𝐿𝑖𝑛𝑓 norm (§5.1). From the results in Table 9,
we conclude that generated test samples can satisfy the semantic-
equivalent constraints in Eq.(3). Moreover, we conduct a qualitative
evaluation. In particular, we randomly select seven images from the
generated images for RA_C100 and visualize them in Fig. 9 (more
results are available on our website), where the first row is the ran-
domly selected seed inputs, and the second row is the corresponding
generated inputs. The visualization results show that the test in-
puts generated by DeepPerform are semantic-equivalent to the
seed inputs. Furthermore, we investigate the relationship between

Table 8: Performance degradation on different hardware

Norm Subject
Intel Xeon E5-2660 v3 CPU Nvidia 1080 Ti

I-Latency / I-Energy I-Latency / I-Energy

SN_C10 36.95 36.20 24.94 50.77
BD_C10 76.69 79.24 64.10 63.55

L2 RN_C100 1019.25 1173.21 938.21 856.46
DS_C100 567.10 609.73 414.38 338.51
DS_SVHN 236.12 246.70 311.01 282.09

SN_C10 29.38 28.28 24.95 11.94
BD_C10 70.67 74.09 49.82 52.70

Linf RN_C100 319.72 355.29 679.79 652.98
DS_C100 463.91 496.84 439.53 464.65
DS_SVHN 232.88 244.91 263.49 141.56

Table 9: The perturbation size of the generated test inputs

Norm SN_C10 BD_C10 RN_C100 DS_C100 DS_SVHN

L2 9.48 9.47 9.50 9.48 9.62
Linf 0.03 0.03 0.03 0.03 0.03

Table 10: Efficiency and accuracy of AdNN model
Metric SN_C10 BD_C10 RN_C100 DS_C100 DS_SVHN

I-FLOPs
before 31.30 38.39 182.12 157.66 228.32
after 8.07 15.26 35.37 28.54 38.65

Acc
before 92.34 91.35 65.43 58.78 94.54
after 13.67 10.56 6.67 7.67 18.78

different semantic-equivalent constraints and performance degra-
dation. We first change the perturbation magnitude constraints (i.e.,
𝜂 in Eq.(3)) and train different models (experiment results for 𝐿2
norm could be found on our websites). After that, we measure the
severity of AdNN performance degradation under various settings.
Fig. 8 shows the results. We observe that although the relationship
between performance degradation ratio and perturbation magni-
tude is not purely linear, there is a trend that the overhead increases
with the increase of perturbation magnitude.

6 APPLICATION
This section investigates if developers can mitigate the performance
degradation bugs using the existing methods for mitigating DNN
correctness bugs (i.e., adversarial examples). We focus on two of the
most widely employed approaches: offline adversarial training [15],
and online input validation [50]. Surprisingly, we discover that not
all of the two approaches can address performance faults in the
same manner they are used to repair correctness bugs.

6.1 Adversarial Training
Setup. We follow existing work [15] and feed the generated test
samples and the original model training data to retrain each AdNN.
The retraining objective can be formulated as

L𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = ℓ (𝑔𝑓 (𝑥 ′), 𝑔𝑓 (𝑥))︸                ︷︷                ︸
L1

+ 𝛽
{
ℓ (𝑓 (𝑥), 𝑦) + ℓ (𝑓 (𝑥 ′), 𝑦)

}︸                              ︷︷                              ︸
L2

(12)

where 𝑥 is one seed input in the training dataset, 𝑥 ′ = G(𝑥) + 𝑥

is the generated test input, 𝑓 (·) is the AdNNs, and 𝑔𝑓 (·) measures
the AdNNs computational FLOPs. Our retraining objective can be
interpreted as forcing the buggy test inputs 𝑥 ′ to consume the
same FLOPs as the seed one (i.e., L1), while producing the correct
results (i.e., L2). For each AdNN model under test, we retrain it
to minimize the objective in Eq.(12). After retraining, we test each
AdNNs accuracy and efficiency on the hold-out test dataset.
Results. Table 10 shows the results after model retraining. The left
two columns show the performance degradation before and after
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Table 11: Performance of SVM detector

Subject
AUC Extra Latency (s) Extra Energy (j)

L2 Linf L2 Linf L2 Linf

SN_C10 0.9997 0.9637 0.0168 0.0167 1.8690 1.8740
BD_C10 0.9967 0.9222 0.0001 0.0002 0.0108 0.0197
RN_C100 1.0000 0.9465 0.0031 0.0042 0.3263 0.4658
DS_C100 0.5860 0.3773 0.0167 0.0212 1.8578 2.4408
DS_SVHN 1.0000 1.0000 0.0098 0.0210 1.1030 2.3959

model retraining, while the right two columns show the model
accuracy before and after model retraining. The findings show that
following model training, the I-FLOPs fall; keep in mind that a
higher I-FLOPs signifies a more severe performance degradation.
Thus, the decrease in I-FLOPs implies that model retraining can help
overcome performance degradation. However, based on the data in
the right two columns, we observe that such retraining, different
from accuracy-based retraining, may harm model accuracy.

6.2 Input Validation
Input validation [50] is a runtime approach that filters out abnor-
mal inputs before AdNNs cast computational resources on such
abnormal inputs. This approach is appropriate for situations where
the sensors (e.g., camera) and the decision system (e.g., AdNN) work
at separate frequencies. Such different frequency working mode
is very common in robotics systems [13, 31, 60], where the AdNN
system will randomly select one image from continuous frames
from sensors since continuous frames contain highly redundant
information. Our intuition is to filter out those abnormal inputs at
the early computational stage, the same as previous work [50].
Design of Input Filtering Detector. Our idea is that although
seed inputs and the generated test inputs look similar, the latent
representations of these two category inputs are quite different [50].
Thus, we extract the hidden representation of a given input by
running the first convolutional layer of the AdNNs. First, we feed
both benign and DeepPerform generated test inputs to specific
AdNN.We use the outputs of the first convolutional layer as input to
train a linear SVM to classify benign inputs and inputs that require
huge computation. If any resource consuming adversarial input is
detected, the inference is stopped. The computational complexity of
the SVMdetector is significantly less thanAdNNs. Thus the detector
will not induce significant computational resources consumption.
Setup. For each experimental subject, we randomly choose 1,000
seed samples from the training dataset, and apply DeepPerform to
generate 1,000 test samples. We use these 2,000 inputs to train
our detector. To evaluate the performance of our detector, we
first randomly select 1,000 inputs from the test dataset and ap-
ply DeepPerform to generate 1000 test samples. After that, we run
the trained detector on such 2,000 inputs and measure detectors’
AUC score, extra computation overheads, and energy consumption.
Results. Table 11 shows that the trained SVM detector can success-
fully detect the test samples that require substantial computational
resources. Specifically for 𝐿2 norm perturbation, all the AUC scores
are higher than 0.99. The results indicate that the proposed detec-
tor identifies 𝐿2 test samples better. The last four columns show
the extra computational resources consumption of the detector.
We observe that the detector does not consume many additional
computational resources from the results.

7 THREATS TO VALIDITY
Our selection of five experimental subjects might be the external
threat that threaten the generability of our conclusions.We alleviate
this threat by the following efforts. (1) We ensure that the datasets
are widely used in both academia and industry research. (2) All
evaluated models are state-of-the-art DNN models (published in
top-tier conferences after 2017). (3) Our subjects are diverse in terms
of a varied set of topics: all of our evaluated datasets and models
differ from each other in terms of different input domains (e.g., digit,
general object recognition), the number of classes (from 10 to 100),
the size of the training dataset (from 50,000 to 73,257), the model
adaptive mechanism. Our internal threat mainly comes from the
realism of the generated inputs. We alleviate this threat by demon-
strating the relationship of our work with existing work. Existing
work [26, 58, 59] demonstrates that correctness-based test inputs
exist in the physical world. Because we formulate our problem(i.e.,
the constraint in Eq.(3)) the same as the previous correctness-based
work [33, 59], we conclude our generated test samples are real and
exist in the physical world.

8 RELATEDWORKS
Adversarial Examples & DNN Testing. Adversarial Examples
have been used evaluate the robustness of DNNs. These examples
are fed to DNNs to change the prediction of the model. Szegedy et al.
[42] and Goodfellow et al. [15] propose adversarial attacks on DNNs.
Karmon et al. Adversarial attacks have been extended to various
fields like natural language and speech processing [7, 22], and graph
models [4, 61]. Although, all these attacks focus on changing the
prediction and do not concentrate on performance testing. Several
testing methods have been proposed to test DNNs [10, 11, 58, 59].
Performance Testing. Runtime performance is a critical property
of software, and a branch of work has been proposed to test software
performance. For example, Netperf [18] and IOZone [48] evaluate
the performance of different virtual machine technologies. WISE [6]
proposes a method to generate test samples to trigger worst-case
complexity. SlowFuzz [39] proposes a fuzzing framework to detect
algorithmic complexity vulnerabilities. PerfFuzz [27] generates
inputs that trigger pathological behavior across program locations.

9 CONCLUSION
In this paper, we propose DeepPerform, a performance testing
framework for DNNs. Specifically, DeepPerform trains a GAN to
learn and approximate the distribution of the samples that require
more computational units. Through our evaluation, we have shown
that DeepPerform is able to find IDPB in AdNNs more effectively
and efficiently than baseline techniques.
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