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ABSTRACT

Android has become the most popular mobile operating system.

Correspondingly, an increasing number of Android malware has

been developed and spread to steal users’ private information. There

exists one type of malware whose benign behaviors are developed

to camouflage malicious behaviors. The malicious component oc-

cupies a small part of the entire code of the application (app for

short), and the malicious part is strongly coupled with the benign

part. In this case, the malware may cause false negatives when

malware detectors extract features from the entire apps to conduct

classification because the malicious features of these apps may be

hidden among benign features. Moreover, some previous work aims

to divide the entire app into several parts to discover the malicious

part. However, the premise of these methods to commence app

partition is that the connections between the normal part and the

malicious part are weak (e.g., repackaged malware).

In this paper, we call this type of malware as Android covert

malware and generate the first dataset of covert malware. To detect

covert malware samples, we first conduct static analysis to extract

the function call graphs. Through the deep analysis on call graphs,

we observe that although the correlations between the normal

part and the malicious part in these graphs are high, the degree of

these correlations has a unique range of distribution. Based on the
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observation, we design a novel system, HomDroid, to detect covert

malware by analyzing the homophily of call graphs. We identify

the ideal threshold of correlation to distinguish the normal part

and the malicious part based on the evaluation results on a dataset

of 4,840 benign apps and 3,385 covert malicious apps. According to

our evaluation results, HomDroid is capable of detecting 96.8% of

covert malware while the False Negative Rates of another four state-

of-the-art systems (i.e., PerDroid, Drebin, MaMaDroid, and IntDroid)

are 30.7%, 16.3%, 15.2%, and 10.4%, respectively.
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1 INTRODUCTION

The widespread use of smartphones has led to a rapid increase in

the number of mobile malware. Especially in recent years, mobile

phones based on the Android operating system have occupied a

dominant position in the smartphonemarket [3, 4], and the Android

platform has become the target of choice for attackers due to its

huge market share and open-source features. To hide the malicious

behaviors, attackers have created certain stealthy malware sam-

ples [6–8]. For example, DEFENSOR ID [6] removed all potential

malicious functionalities but one (i.e., abusing Accessibility Ser-

vice) to hide its maliciousness. However, as long as this malware

is triggered, it can secretly wipe out the victim’s bank account or

cryptocurrency wallet and take over their email or social media

accounts, which may cause huge economic losses [5]. Therefore,

accurate analysis of malware behavior characteristics is urgently

needed to remove malware from users’ daily life.
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In general, existing mobile malware detection approaches can

be classified into two categories, namely syntax-based approaches

[17, 20, 46, 51, 55, 62] and semantics-based systems [18, 22, 31,

41, 42, 58–60]. As for syntax-based methods, they ignore the pro-

gram semantics of apps to achieve high efficient Android malware

detection. For instance, some methods [46, 55] only consider per-

missions requested by apps and extract these permissions from

manifest to construct feature vectors. Nevertheless, malware can

spread malicious activities without any permissions [35]. To com-

plete more effective Android malware detection, many approaches

[31, 32, 60] distill the program semantics into graph representations

and detect malware by analyzing generated graphs. These graph-

based techniques can indeed achieve high accuracy on malware

detection. For example, MaMaDroid [42] first obtains all sequences

from an extracted call graph and then abstracts them into their

corresponding packages. After abstraction, it establishes a Markov

chain model to represent the transition probabilities between these

packages. The Markov chain model is used to construct feature

vectors to detect Android malware. The empirical results [42] have

demonstrated the effectiveness of MaMaDroid on general malware

detection. However, when malicious code accounts for a small part

of the entire code of an app, the feature vectors obtained from the

normal part and the whole call graph can be highly similar. In this

case, MaMaDroid will misclassify the malware as a benign app.

To address the issue, some studies [36, 54] intent to partition the

entire app to discover the suspicious part to achieve more accu-

rate malware detection. However, these approaches are designed

to detect only repackaged Android malware. A repackaged mal-

ware is constructed by disassembling benign apps, adding malicious

codes, and then reassembling them as new apps. In other words, as

discussed in their papers [36, 54], the connections between mali-

cious code and normal code in a repackage malware are expected

to be weak because the malicious part is constructed by injection.

Therefore, if the malicious code is strongly coupled with normal

code, methods [36, 54] may not achieve high accuracy because it

is not easy to divide them into different parts. In short, when the

malicious code accounts for a small part (e.g., less than 2%) of a

malware sample and the connections between normal code and

malicious code are strong, prior approaches [36, 42, 54] may cause

high false negatives.

In this paper, we call this type of malware as Android covert

malware and generate the first covert malware dataset (i.e., 3,358

covert malware) by analyzing 100,000 malicious apps’ call graphs.

In particular, a malicious sample is considered as a covert malware

must meet the following two conditions: 1) Nodes in the malicious

part occupy a small part (e.g., 2%) of all nodes in the entire call

graph; and 2) The normal part and the malicious part are highly

correlated. Since this type of malware is highly concealed, it may be

possible to detect them by performing advanced static analysis or

dynamic analysis. However, the time-cost of these precise analysis

methods [58, 59] are expensive (e.g., 291 seconds for AppContext

[59] to analyze an app), making it difficult to filter and discover

covert malware samples from large-scale real apps. To tackle the

above issues, we aim to propose a novel approach to detect covert

malware efficiently and effectively. Specifically, we mainly address

two challenges:

• Challenge 1: How to identify the malicious code in a covert

malware sample?

• Challenge 2: How to extract light-weight semantic features to

achieve accurate behavior characteristics?

The first key insight of HomDroid is the observation from a deep

analysis of correlations between the normal part and the malicious

part in covert call graphs, that is, although the correlation between

the two parts is high, it has a range of distribution. Specifically, to

address the first challenge, we first perform simple static analysis

(i.e., flow- and context-insensitive analysis) to distill the program

semantics of an app into a function call graph. Then the gener-

ated graph is divided into certain communities (i.e., subgraph) by

community detection. As malware always performs malicious be-

haviors by invoking sensitive API calls, therefore, we mainly focus

on sensitive API calls in this paper. In other words, communities

that do not contain any sensitive API calls will be integrated into a

benign community, and the rest are sensitive communities. For each

sensitive community, we perform homophily analysis to obtain the

coupling between it and the benign community. If the coupling is

above a predetermined threshold1, the sensitive community will be

considered benign. Otherwise, it is treated as a suspicious part of

the app. After obtaining all suspicious parts of the app, we integrate

them into a subgraph, called suspicious subgraph.

The second key insight of HomDroid is that triads in social-

network-analysis can represent different network structural prop-

erties of a network and the extraction of triads from a network is a

lightweight task. Specifically, to address the second challenge, we

extract two types of feature sets from the suspicious subgraph. We

first consider the occurrence of sensitive API calls which are highly

correlated with malicious operations. In addition, to maintain the

graph details, we collect the ratio of the number of sensitive triads

to the total number of triads within the suspicious subgraph. By

this, we can achieve semantic and efficient Android covert malware

detection.

We develop an automatic system, HomDroid, and evaluate it on a

dataset of 8,198 apps including 4,840 benign apps and 3,358 covert

malware. Compared to four state-of-the-art Android malware detec-

tion methods (i.e., PerDroid [55], Drebin [20], MaMaDroid [42], and

IntDroid [63]), HomDroid is able to detect 96.8% of covert malware

while the False Negative Rates of PerDroid, Drebin,MaMaDroid, and

IntDroid are 30.7%, 16.3%, 15.2%, and 10.4%, respectively. Further-

more, as for runtime overhead of HomDroid, it consumes about 13.4

seconds to complete the whole analysis of an app in our dataset.

Such result indicates that HomDroid is extremely efficient than

methods that perform complex program analysis (e.g., 291 seconds

for AppContext [59], 20 minutes for EnMobile [58], and 275 seconds

for Apposcopy [31]).

In summary, this paper makes the following contributions:

• We built the first dataset [13] of Android covert malware and

propose a novel technique to discover the most suspicious

part of a covert malware by analyzing the homophily of a

call graph.

• We implement a prototype system, HomDroid, a novel and

automatic system that can accurately detect Android covert

malware.

1In this paper, we select a total of five thresholds: 1, 2, 3, 4, and 5.
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• We conduct evaluations using 4,840 benign samples and

3,358 covert malicious samples. Experimental results show

that HomDroid is capable of detecting Android covert mal-

ware with a False Negative Rate of 3.2% while are 30.7%,

16.3%, 15.2%, and 10.4% for four comparative systems (i.e., Per-

Droid [55], Drebin [20], MaMaDroid [42], and IntDroid [63]).

Paper organization. The remainder of the paper is organized as

follows. Section 2 presents our motivation. Section 3 introduces

our system. Section 4 reports the experimental results. Section 5

discusses the future work and limitations. Section 6 describes the

related work. Section 7 concludes the present paper.

2 MOTIVATION

2.1 A Simplified Example

To better illustrate the key insight of our approach, we present

a simplified example at first. This example (i.e., com.cpssw) is an

app that pushes notifications about the scores of users’ favorite

teams. However, it collects private data such as International Mobile

Equipment Identity (IMEI), writes them into files, and sends them

to a remote server. The normal behavior of this malware is to bring

notifications to users, thus it needs to connect to the Internet to

complete this purpose. Meanwhile, the malicious activity is to send

data to the Internet which can cause privacy leaks. In other words,

the normal code and malicious code of this malware both need to

connect to the Internet to achieve their corresponding goals.

java.io.FileOutputStr
eam.write()

java.net.URL.openC
onnection()

android.telephony.T
elephonyManager.g

etDeviceId()

org.apache.http.impl
.client.DefaultHttpCli

ent.execute()

#Nodes: 907
#Edges: 1226

#Nodes: 11
#Edges: 12#Shared Edges: 154

Figure 1: The function call graph of a real malware

(com.cpssw)

Because Android apps use API calls to access operating system

functionality and system resources, and malware samples always

invoke sensitive API calls to performmalicious activities. Therefore,

we can leverage sensitive API calls to characterize the malicious

behaviors of an app. To obtain the sensitive API calls invoked by the

malware example, we upload it to an Android apps analysis system

[14] to analyze and generate a detailed behavioral report. Through

the report, we find that this malware mainly invokes four sensi-

tive API calls (i.e., FileOutputStream.write(), URL.openConnection(),

TelephonyManager.getDeviceId(), and DefaultHttpClient.execute()) to

complete its maliciousness. In other words, the malicious part of

the malware can be characterized by these sensitive API calls and

their correlative parent nodes.

Figure 1 shows the function call graph of the malware example

where the total number of nodes and edges are 918 and 1,392,

respectively. It consists of two parts, the left part is made up of

normal nodes while the right part includes sensitive API calls and

their correlative parent nodes. As shown in Figure 1, the number of

nodes of the malicious part is 11 which accounts for about 1.2% of

all nodes of the entire call graph. Moreover, the proportion of edges

in the malicious part is also low, which is less than 1% of all edges of

the whole app. In this case, we may cause a false negative when we

extract features from the entire app to conduct classification since

the malicious features may be hidden under normal behaviors. In

practice, the cosine similarity of two feature vectors obtained from

the normal part and the whole call graph by MaMaDroid [42] is

more than 95%, and it is misclassified by MaMaDroid [42] in our

experiments.

Some prior studies [36, 54] intent to partition the entire app

to discover the suspicious part to achieve a more accurate mal-

ware detection. However, these approaches are designed to detect

repackaged Android malware and the connections between injected

malicious code and legitimate part are expected to be weak. In this

malware, the number of edges shared by the normal part and mali-

cious part is 154 which is more than 12 times greater than the total

number of edges in the malicious part. To obtain a more determi-

nate result, we regard the call graph in Figure 1 as a social network

and conduct social-network-analysis to research the homophily of

the network. Homophily is the tendency of individuals to associate

and bond with similar others, as in the proverb ‘birds of a feather

flock together’ [43] (Details are in Section 3.3). Suppose that a net-

work consists of two subnetworks, high homophily of the network

means that the correlation between these two subnetworks is low.

After analyzing Figure 1, we find that the homophily of Figure 1 is

not distinct, in other words, the connections between the normal

part and malicious part are strong, making it difficult to be handled

by methods in prior studies [36, 54].

In conclusion, when the malicious code accounts for a small part

of an entire malicious app and the connection between normal code

and malicious code is strong, prior approaches [36, 42, 54] may

cause high false negatives since the malicious behaviors can be

hidden under the normal codes. In this paper, we call this type of

malware as Android covert malware and construct the first dataset

of these malware samples.

2.2 Covert Malware Dataset Construction

To generate the dataset of Android covert malware, we first ran-

domly download about 100,000 malicious apps from AndroZoo

[19] which is a growing collection of Android apps collected from

several sources, including the official Google Play app market and

several third-party Android app markets (e.g., AppChina [12]). Af-

ter obtaining the samples, we perform static analysis to extract the

function call graphs of these apps. As API calls are used by the

Android apps to access operating system functionality and system

resources, they can be used as representations of the behaviors of

Android apps. Moreover, Android malware usually invokes some



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai Jin

sensitive API calls to perform malicious activities. Therefore, we as-

sume these sensitive API calls and their correlated parent nodes as

the malicious part and the rest as the normal part. Particularly, we

focus on the newest version of API calls set in PScout [21], which

is the largest collection of sensitive API calls (i.e., 21,986 API calls).

After dividing the graph into the normal part and malicious part,

we build the covert malware dataset according to the following

steps: 1)We first conduct statistical analysis to obtain the proportion

of malicious nodes in all nodes; 2) We then perform homophily

analysis to collect the correlation between the normal part and

the malicious part; 3) Next, malware samples with low correlation

between the normal part and the malicious part are be omitted; 4)

As for the remaining malware, we divide them into six categories

according to the proportion: [0-1%), [1%-2%), [2%-3%), [3%-4%), [4%-

5%), and greater than 5%; 5) To find which category may be more

covert, we randomly select 100 samples from each category and

upload them to VirusTotal [16]; 6) After analyzing the scanning

results, we find that malware with a proportion of less than 2%

is less likely to be detected as malware. Therefore, we pay more

attention to these malware samples with a proportion of less than

2% (i.e., 4,321 samples); 7) To further verify whether these samples

contain disguised behaviors or not, we conduct dynamic analysis to

obtain accurate behaviors. Specifically, we use some state-of-the-art

security tools (e.g., AppCritique [10] and Sandroid [14]) to generate

detailed behavior reports, and then manually analyze these reports

to check whether sensitive API calls invoked bymalicious behaviors

are also used by normal behaviors. If there are many such cases,

then we consider the malware to be covert. After in-depth manual

analysis, we finally obtain 3,358 covert malware samples.

3 SYSTEM ARCHITECTURE

In this section, we propose a novel system HomDroid. We further

illustrate how HomDroid excavates the most suspicious part of

an app and extracts semantic features from the suspicious part to

detect Android covert malware.

Feature 
Extraction

Feature 
Vector

Static 
Analysis

Function Call 
Graph

Community 
Detection

Communities

Homophily 
Analysis

Suspicious 
Subgraph

Graph Partition Classification

Figure 2: System overview of HomDroid

3.1 Overview

As shown in Figure 2, HomDroid consists of four main phases: Static

Analysis, Graph Partition, Feature Extraction, and Classification.

• Static Analysis: Given an app, we first conduct static anal-

ysis to obtain the function call graph where each node is a

function that can be an API call or a user-defined function.

• Graph Partition: After generating the call graph, we then

divide it into certain subgraphs by community detection and

discover the most suspicious part by homophily analysis.

The output of this phase is the most suspicious subgraph.

• Feature Extraction: Next, two types of feature sets are col-

lected from the suspicious subgraph, including the appear-

ance of sensitive API calls and the ratio of the number of

sensitive triads to the total number of triads within the sub-

graph.

• Classification: In our final phase, given a feature vector,

we can accurately flag it as either benign or malicious by

using a trained machine learning classifier.

3.2 Static Analysis

To achieve high accuracy malware detection, we consider main-

taining the program semantics of an APK file. In other words, we

conduct light-weight static analysis to distill the semantics of an

app into a graph representation. More specifically, we implement

our static analysis to extract the function call graph of an app based

on an Android reverse engineering tool, Androguard [28].

3.3 Graph Partition

In this phase, we pay attention to discover the most suspicious part

of a function call graph. As shown in Figure 2, our Graph Partition

phase is composed of two steps which are Community Detection

and Homophily Analysis.

3.3.1 Community Detection. In the study of complex networks, a

network is said to have community structure if the nodes of the

network can be easily grouped into sets of nodes such that each

set of nodes is densely connected internally. As for an Android

app, it is made up of certain specific modules and each module

completes different functionality. Nodes in one module should be

closely connected because they are designed to implement the same

functionality in cooperation. Furthermore, a previous study [47]

has demonstrated that a software call graph can be treated as a

network with community structures. Therefore, in this subsection,

we perform community detection to divide a function call graph

into certain communities (i.e., subgraphs).

We implement four widely used community detection algorithms

(i.e., infomap [50], label propagation [48], multi level [24], and lead-

ing eigenvector [44]) to check which one is better for us to detect

malware. More specifically, we first download 500 benign apps

and 500 malicious apps from AndroZoo [19] as our test dataset.

Then function call graphs of these apps are extracted by our static

analysis. After obtaining 1,000 call graphs, we conduct community

detection on them and record the detection results including the

values of modularity Q [45] of these call graphs and the runtime

overheads of different community detection algorithms. Modularity

Q is a metric that can quantify the quality of a detected commu-

nity structure of a network. The value of Q is between 0 to 1, Q

is 0 means that the network has no community structure. On the

contrary, if Q is close to 1, the network may have an ideal commu-

nity structure. According to a previous study [45], the values of Q

typically fall in the range from about 0.3 to 0.7 and higher values

are rare.

Figure 3 presents the community detection results on our 1,000

randomly downloaded apps (i.e., 500 benign apps and 500 malicious

apps). On the one hand, the average values of modularity Q of

communities generated by informap, label propagation, multi level,

and leading eigenvector are 0.60, 0.52, 0.66, and 0.54, respectively.
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Figure 3: The values of modularity Q of 1,000 call graphs

and the runtime overheads of four different community de-

tection algorithms (i.e., infomap [50], label propagation [48],

multi level [24], and leading eigenvector [44])

Such result indicates that communities obtained bymulti level have

better community structure than the other three algorithms. On the

other hand, as for the runtime of community detection, multi level

consumes the least runtime overhead which means that it is faster

than informap, label propagation, and leading eigenvector. Therefore,

by comprehensively considering the modularity Q and the runtime

of community detection, we finally decide to choose multi level as

our community detection algorithm.

3.3.2 Homophily Analysis. Homophily is the tendency of individu-

als to associate and bond with similar others. Homophily has been

investigated in many network analysis studies [27, 30, 33, 53]. In

this subsection, we use a simple example to better illustrate how to

quantify the homophily of a social network.

group A group B

p (white nodes) = 6/9 = 2/3
q (red nodes) = 3/9 = 1/3

2*p*q = 2*(2/3)*(1/3)=8/18

n = 5 (blue edges)
tn = 18 (total edges)

n/tn = 5/18

Figure 4: An assumed social network which consists of two

groups

Figure 4 presents the friendships between students in two groups

and connections between them indicate that they are friends. For

simplicity, we use white nodes and red nodes to represent students

in groups A and B, respectively. Suppose that the proportions of

white nodes and red nodes in Figure 4 are p and q, respectively.

Because whether the color of a node is red or blue is an independent

random process, the probability that a node is white is p and the

probability of red is q. Then the probability that two nodes on an

edge are different can be computed as p∗q (i.e., the color of the left

node is white while is red for the right node) + q∗p (i.e., the color

of the left node is red while is white for the right node) = 2∗p∗q.

Moreover, if the total number of edges in Figure 4 is tn and the

number of edges between groups A and B is n. Then the proportion

of edges with nodes of different colors can be calculated as n/tn.

After obtaining the probability that two nodes are different 2∗p∗q

and the proportion of edges with two nodes of different colors n/tn,

we can analyze the homophily of the social network in Figure 4 by

comparing the value of 2∗p∗q and n/tn. In other words, when n/tn

is less than or equal to 2∗p∗q, the homophily of this social network

will be considered high and the correlation between groups A and

B is low. On the contrary, if n/tn is greater than 2∗p∗q, the social

network will have low homophily while the correlation between

groups A and B is high.

In Figure 4, the proportion of white nodes and red nodes are 2/3

and 1/3, respectively. The number of edges with nodes of different

colors is 5 and the total number of edges is 18. In other words, p, q,

t, and tn in Figure 4 are 2/3, 1/3, 5, and 18, respectively. Therefore,

we can claim that the homophily of the social network in Figure 4

is high because 5/18 (i.e., n/tn) is less than 8/18 (i.e., 2∗p∗q).

As stated earlier, the purpose of this phase is to discover the

most suspicious part of a given function call graph. In reality, An-

droid malware samples usually invoke some sensitive API calls to

spread malicious activities. For example, getDeviceID() can get your

phone’s IMEI and getLine1Number() can obtain your phone number.

To achieve efficient covert malware detection, we only consider a

small part of sensitive API calls. Specifically, we choose sensitive

API calls reported in a recent work [34] as our objectives which

composes of three different API call sets. The first API call set is

the top 260 API calls with the highest correlation with malware,

the second API call set is 112 API calls that relate to restrictive per-

missions, and the third API call set is 70 API calls that are relevant

to sensitive operations. In final, 426 sensitive API calls are obtained

by computing the union set of these three API call sets. However,

benign apps may also invoke several sensitive API calls to complete

some functionalities (e.g., push functionality). For instance, some

social apps may require to access users’ location for presenting

location-specific news or videos. In the situation they also need

to invoke a sensitive API call LocationManager.getLastLocation().

Therefore, in an effort to achieve more accurate malicious behavior

characteristics, we perform homophily analysis to deeply analyze

and extract the most suspicious part of a call graph.

Specifically, we define the coupling between two graphs a and b

by computing the quotient of n/tn and 2∗p∗q:

𝑐 (𝑎, 𝑏) =
𝑠

𝑒𝑎+𝑒𝑏

2∗ 𝑛𝑎
𝑛𝑎+𝑛𝑏

∗
𝑛𝑏

𝑛𝑎+𝑛𝑏

Note that the number of nodes and edges in graph a are 𝑛𝑎 and

𝑒𝑎 while are 𝑛𝑏 and 𝑒𝑏 in graph b. Furthermore, the number of edges

shared by graph a and graph b is s.

Given an APK file, we first extract the function call graph by

static analysis, then the call graph is divided into certain commu-

nities (i.e., subgraphs) by community detection. Communities that

do not contain any sensitive API calls will be integrated into a

benign community, and the rest are sensitive communities. For each

sensitive community, we perform homophily analysis to obtain the

coupling between it and the benign community. If the coupling is

above a threshold, the sensitive community should be considered

benign. Otherwise, it is treated as a suspicious part of the app. After

obtaining all suspicious parts of the app, we integrate them into a

subgraph which is the most suspicious subgraph of the function call

graph. In this subsection, the purpose of our homophily analysis is
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to filter the normal parts in sensitive communities (i.e., subgraph)

to generate a more accurate suspicious subgraph.

Covert Malware AndroZoo-Malware VirusShare-Malware
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Figure 5: The coupling values between the normal part and

the malicious part in Android covert malware and general

malware

In order to select suitable thresholds of coupling, we first con-

duct a simple study. Specifically, we consider 426 sensitive API

calls and their correlated nodes as the malicious part and the rest

nodes are the normal part. Then the values of coupling of 3,358

covert malware are extracted. Moreover, to verify the assumption

that the connections between the malicious part and the normal

part of covert malware are higher than that of general malware.

We also randomly download 3,000 malware samples from Andro-

Zoo [19] and VirusShare [11], respectively. As aforementioned,

we discover 3,358 covert malware from 100,000 malware samples,

the percentage is only 3.358%, which means that most of the mal-

ware in our randomly downloaded samples are general malware.

Figure 5 presents the coupling of 3,358 Android covert malware

and our randomly downloaded samples from AndroZoo [19] and

VirusShare [11]. Through the results in Figure 5, we observe that

the coupling values between the malicious part and the normal part

of covert malware are higher than that of most of general malware,

and almost all values of coupling in covert malware are between

1 to 5. Therefore, we finally choose five thresholds of coupling in

this paper, which are 1, 2, 3, 4, and 5.
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Figure 6: An example of community detection and ho-

mophily analysis

To better illustrate the different steps involved in community

detection and homophily analysis, we present an example in Fig-

ure 6. Suppose that a function call graph is partitioned into seven

communities and communities 1-4 do not contain any sensitive

API calls. After generating the benign community by integrating

communities 1-4, we perform homophily analysis to compute the

coupling between sensitive communities 5-7 and the benign com-

munity one by one. The analysis results show that the coupling

between community 6 and the benign community is less than a

given threshold while is greater than the threshold for communi-

ties 5 and 7. Therefore, we only consider communities 5 and 7 as

suspicious parts and integrate them into a subgraph to represent

the most suspicious part of the function call graph.

3.4 Feature Extraction

After obtaining the most suspicious subgraph of a call graph, we

then extract features from the subgraph. More specifically, we col-

lect two types of feature sets including the appearance of sensitive

API calls and the ratio of the number of sensitive triads to the total

number of triads within the subgraph.

Our first type of feature set focuses on the occurrence of sensi-

tive API calls. As aforementioned, we select 426 most suspicious

sensitive API calls [34] as our concerned objectives. Given the most

suspicious subgraph, we check whether the nodes in the subgraph

contain any sensitive API calls. If sensitive API calls appear in the

subgraph, the value of the corresponding feature will be one, oth-

erwise, it is zero. The dimension of our first type of feature vector

is the total number of sensitive API calls, which is 426.

Furthermore, to maintain the graph semantics of the subgraph,

we also consider the graph structure details to construct our second

feature set. In social network analysis, there are 16 different types

[23] of triads in a network. In practice, these triads can represent

different network structure properties of a network. Therefore, we

select a total of six types of triads from the 16 types [23] since

sensitive API calls are always being invoked by other functions to

perform malicious activities in Android malware.

021D 021U 021C 111U 030T 120U

Figure 7: The selected six types of sensitive triads where the

red nodes are sensitive API calls

In Figure 7, we present our selected six types of triads which can

represent different graph structure details. For example, a sensitive

triad of 021U shows that two normal functions invoke a same

sensitive API call while 021C indicates that one normal function 𝑓1
first invokes another normal function 𝑓2 and then normal function

𝑓2 invokes a sensitive API call. By extracting these sensitive triads

from the suspicious subgraph, we are able to characterize malicious

behaviors to achieve semantic Android malware detection. More

specifically, we first extract all these six types of triads from a given

suspicious subgraph. For each type of triad, we then collect sensitive

triads by checking whether a triad contains any sensitive API call

or not. After obtaining all sensitive triads and all triads, the ratio
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of the number of sensitive triads to the total number of triads for

each sensitive API call will be calculated as the features.
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Figure 8: An example to illustrate how we construct the fea-

ture vector about the ratio of the number of sensitive triads

to the total number of triads

To better describe the construction of the features of sensitive

triads, we present an example in Figure 8. Assuming that a suspi-

cious subgraph contains six nodes, and two of them are sensitive

API calls. After collecting all the triads from the subgraph, we find

that there are four sensitive triads including two sensitive triads of

021D, one sensitive triad of 021C, and one sensitive triad of 030T.

In addition, the total number of six types (i.e., 021D, 021U, 021C,

111U, 030T, and 120U ) of triads in the subgraph are two, zero, three,

zero, one, and zero, respectively. For each sensitive API call, we

compute the ratio of the number of corresponding sensitive triads

to the total number of triads for each type of triad. For example, the

number of triads of 021C of sensitive API call 5 is one and the total

number of triads of 021C in the subgraph is three, then the feature

of sensitive API call 5 for 021C will be calculated as 1/3. Moreover,

if the subgraph does not contain sensitive triads of certain types,

the corresponding features will be set zero directly. Finally, we can

obtain a feature vector whose dimension is the number of sensitive

API calls multiply by six (i.e., six types of sensitive triads). In Hom-

Droid, the number of selected sensitive API calls is 426, then the

dimension of the feature vector of sensitive triads is 426∗6=2,556.

After extracting the mentioned two types of features, we con-

catenate them as our final feature vector whose dimension is 2,982.

3.5 Classification

Given extracted feature vectors, our final phase focuses on training

a classifier first and then uses it to detect Android covert malware.

More specifically, in order to check the ability of HomDroid on de-

tecting covert malware with different classifiers, we implement six

classification algorithms (i.e., 1-Nearest Neighbor, 3-Nearest Neigh-

bor, Random Forest, Decision Tree, SVM, and Logistic Regression)

by using a python library scikit-learn [15]. Parameters in these

algorithms are default parameters in scikit-learn [15], we leverage

them to commence our evaluations and all the experimental results

are presented in the following section.

4 EVALUATIONS

In this section, we aim to answer the following research questions:

• RQ1: How effective is HomDroid on detecting Android covert

malware in various setups?

• RQ2: How does HomDroid perform compared to other state-of-

the-art Android malware detection systems?

• RQ3: What is the runtime overhead of HomDroid on detecting

Android malware?

4.1 Dataset and Metrics

Table 1: Summary of the dataset used in our experiments

Category #Apps Average Size (MB)

Benign apps 4,840 2.7

Covert malware 3,358 3.2

As aforementioned, we obtain 3,358 Android covert malware by

analyzing and filtering 100,000 malicious apps from AndroZoo [19].

In order to evaluate the effectiveness of HomDroid on detecting

Android covert malware, we also crawl benign apps fromAndroZoo.

Our final dataset consists of 4,840 benign apps and 3,358 covert

malware, and the average sizes (in Table 1) of these benign apps and

covert malware are 2.7 MB and 3.2 MB, respectively. We leverage

this dataset to commence our evaluations and the experimental

results are reported in the following subsections. Note that all

experiments are conducted by performing 10-fold cross-validations,

which means that the dataset is partitioned into 10 subsets, each

time we pick one subset as our testing set and the rest nine subsets

as training set. We repeat this 10 times and report the average as

our final results.

In addition, we adopt several widely used metrics to measure

the experimental results of HomDroid. These metrics are presented

in Table 2, in which True Positive Rate (TPR) and False Negative

Table 2: Descriptions of the usedmetrics in our experiments

Metrics Abbr Definition

True Positive TP
#samples correctly classified as

malicious

True Negative TN #samples correctly classified as benign

False Positive FP
#samples incorrectly classified as

malicious

False Negative FN
#samples incorrectly classified as

benign

True Positive Rate TPR TP/(TP+FN)

False Negative Rate FNR FN/(TP+FN)

True Negative Rate TNR TN/(TN+FP)

False Positive Rate FPR FP/(TN+FP)

Accuracy A (TP+TN)/(TP+TN+FP+FN)

Precision P TP/(TP+FP)

Recall R TP/(TP+FN)

F-measure F1 2*P*R/(P+R)
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Figure 9: F-measure, FNR, and FPR of HomDroid on detecting Android covert malware with different classification models

Rate (FNR) present the effectiveness on detecting malicious sam-

ples while True Negative Rate (TNR) and False Positive Rate (FPR)

show the ability on benign samples detection. In our experiments,

we report both FNR and FPR to see how HomDroid performs on

classifying both malicious and benign samples. Moreover, we also

report F-measure and Accuracy for presenting the overall detection

effectiveness of HomDroid.

4.2 Detection Effectiveness

In this phase, we conduct several experiments to examine the ability

of HomDroid on Android covert malware detection by using the col-

lected dataset in Table 1. Specifically, we evaluate the effectiveness

of HomDroid from the following two aspects:

• Different classification models: 1-Nearest Neighbor (1NN),

3-Nearest Neighbor (3NN), Random Forest (RF), Decision Tree

(DT), Support Vector Machine (SVM), and Logistic Regression

(LR).

• Different thresholds of coupling: 1, 2, 3, 4, and 5.

4.2.1 Different Classification Models. As aforementioned, we im-

plement six differentmachine learning algorithms by using a python

library scikit-learn [15]. These implemented classifiers (i.e., 1NN,

3NN, RF, DT, SVM, and LR) are used to evaluate the effectiveness

of HomDroid on detecting Android covert malware. Figure 9 re-

ports the experimental results including the F-measure, Accuracy,

False Negative Rate (FNR), and False Positive Rate (FPR) achieved

by HomDroid with different classifiers. From the results in Figure

9, we can see that classifier 1NN is able to achieve the best overall

effectiveness than the other five classifiers. For example, when we

select the threshold of coupling as 3, the F-measure of HomDroid is

the highest among all F-measures in Figure 9 when we adopt 1NN

to detect malware. The F-measure is 95.3% while is 90.4%, 92.6%,

84.5%, 78.3%, and 78.9% for 3NN, RF, DT, SVM, and LR, respectively.

As for the ability of HomDroid on detecting covert malware,

the FNR of HomDroid is lowest when we choose the threshold of

coupling as 3 and 1NN as our final classifier. In such case, HomDroid

only misclassifies about 3.2% of covert malware as benign apps,

which can demonstrate that HomDroid has high effectiveness on

detecting Android covert malware. As regards the effectiveness of

HomDroid on distinguishing benign samples, RF is able to maintain

the lowest false positives than 1NN, 3NN, DT, SVM, and LR no

matter which threshold of coupling is selected. However, the results

of RF are not as good as 1NN in terms of F-measure, Accuracy, and

FNR when we choose 3 as the threshold of coupling. As a matter

of fact, it is crucial to maintain a low FNR for Android malware

detection because high FNR signifies more malicious samples being

misclassified as benign samples, and these misclassified malicious

samples can still spread malicious activities. When users install

these covert malware samples, their private data may be stolen by

attackers, which may cause different levels of economic losses.

In conclusion, HomDroid can obtain better effectiveness when

we adopt 1NN to train a classifier and use it to detect Android covert

malware.

Table 3: F-measure, Accuracy, FNR, and FPR ofHomDroid on

detecting Android covert malware with 1NN

Thresholds F-measure Accuracy FNR FPR

1 13.9% 61.3% 92.3% 1.7%

2 79.3% 81.7% 14.1% 21.2%

3 95.4% 96.2% 3.2% 4.2%

4 89.5% 91.4% 10.3% 7.3%

5 89.6% 91.5% 10.4% 7.3%

4.2.2 Different Thresholds of Coupling. In our experiments, we

choose five values of thresholds to commence our evaluations ac-

cording to the result in Figure 5. Figure 5 shows that most of the

coupling is between 1 to 5, therefore, we select 1, 2, 3, 4, and 5 as

our final thresholds to examine the ability of HomDroid on covert

malware detection.

Through the results in Figure 9 and Table 3, we can see that

HomDroid with 1NN is able to maintain the best effectiveness when

the threshold of coupling is 3. In particular, the FNR and FPR of

HomDroid are only 3.2% and 4.2%, which means that about 96.8% of

covert malware and 95.8% of benign apps can be correctly classified.

Such result is encouraging and demonstrates that HomDroid is able

to accurately detect Android covert malware.

In short, HomDroid can achieve the best effectiveness when we

select 3 as our threshold of coupling to generate the most suspicious

subgraph and use 1NN to detect covert malware.
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4.3 Comparison with Prior Work

In this phase, we perform comparative experiments of HomDroid

with four state-of-the-art Android malware detection approaches:

PerDroid2 [55], Drebin [20], MaMaDroid [42], and IntDroid [63]

4.3.1 With PerDroid. PerDroid [55] detects Android malware by

analyzing risky permissions requested by an app. It scans the mani-

fest file to collect the list of all permissions, and then applies several

feature ranking methods to rank themwith respect to the risk. After

obtaining the ranking of all analyzed permissions, permissions with

top risks will be considered as risky permissions and are used as

features to detect malware. These risky permissions can provide a

mechanism of access control to core facilities of the mobile system,

thus can be represented as a type of apps’ behavior.

Figure 10: F-measure, Accuracy, FNR, and FPR of PerDroid,

MaMaDroid, IntDroid, and HomDroid on detecting Android

covert malware

The authors [55] have published their risky permissions in their

open website [1]. Therefore, we directly adopt the list of their pub-

lished top 88 risky permissions as our features. More specifically,

we leverage Androguard [28] to implement the feature extraction

and scikit-learn [15] to design six classifiers (i.e., 1NN, 3NN, RF, DT,

SVM, and LR) for completing our malware detection. The exper-

imental results on our collected dataset indicate that PerDroid is

able to maintain the best effectiveness when we choose 3NN as our

classifier. Therefore, we select the result of 3NN as the effectiveness

of PerDroid and show the comparative results with HomDroid in

Figure 10.

Results in Figure 10 indicate that HomDroid can detect more

covert malware and distinguish more benign apps than PerDroid.

The FNR and FPR of PerDroid are 30.7% and 16.4% on detecting

covert malware while are 3.2% and 4.2% for HomDroid. In Table 4,

we also present the FNR of PerDroid on general malware detection

and the result is directly adopted from their paper [55]. It is obvi-

ous that the effectiveness of PerDroid drops a lot when detecting

covert malware. The FNR increases from 5.4% to 30.7%, such result

2For more convenient discussion, we call the system in [55] as PerDroid since it is a
permission-based method.

Table 4: FNR of PerDroid, Drebin,MaMaDroid, IntDroid, and

HomDroid on detecting general malware and covert mal-

ware (The results of general malware detection are all di-

rectly adopted from their published paper [20, 42, 55, 63])

Methods General Malware Covert Malware

PerDroid 0.054 0.307

Drebin 0.06 0.163

MaMaDroid 0.035 0.152

IntDroid 0.009 0.104

HomDroid — 0.032

indicates that PerDroid is not suitable to detect covert malware.

This is mainly due to the fact that PerDroid only pays attention to

requested permissions and ignores the program details of app code.

However, in order to complete the concealment of malicious be-

haviors, covert malware samples may use the same permissions as

normal code to invoke other sensitive API calls. Moreover, malware

can even perform malicious activities without any permissions

[35]. On the contrary, HomDroid distills the program semantics of

app code into a call graph to detect malware, the consideration of

program semantics makes HomDroid more effective than PerDroid.

4.3.2 With Drebin. In order to mitigate the inaccuracies in Per-

Droid, Drebin [20] has been designed to extract features not only

from manifest but also from app code to complete effective Android

malware detection. More specifically, Drebin considers extracting

eight different types of feature sets from an app, four of which

are extracted from the manifest, and the others are obtained from

app code. Feature sets in the manifest consist of hardware features,

requested permissions, app components, and filtered intents while

includes restricted API calls, used permissions, suspicious API calls,

and network addresses in app disassembled code. After extracting

all the feature sets from an app, Drebin embeds them into a joint

vector space to train an SVM to detect malware.

Through the experimental results shown in Figure 10, we can

see that Drebin can achieve better effectiveness than PerDroid since

Drebin considers features from both manifest and app code. For

example, Drebin is able to detect 83.7% of covert malware while

PerDroid can only distinguish 69.3% of these malware samples.

However, although Drebin is better than PerDroid, it still behinds

HomDroid. It is reasonable because Drebin only searches for the

presence of certain strings (i.e., features) rather than considering

the program semantics (e.g., invocations between functions). In

addition, results in Table 4 show that the FNR of Drebin increases

from 6% to 16.3% while is only 3.2% for HomDroid when detecting

covert malware. Such case indicates that HomDroid is superior

to Drebin on discovering Android covert malware. This happens

because the malicious code of covert malware only accounts for a

small part of the entire app, making the features obtained from the

benign part and the entire part similar.

4.3.3 With MaMaDroid. To complete more comprehensive com-

parison, we compare HomDroid with another graph-based Android

malware detection method, namely MaMaDroid [42]. Similar to

HomDroid, MaMaDroid first extracts the call graph of an app based

on static analysis, then all the sequences are obtained from the call

graph and are abstracted into the corresponding packages to model

the app’s invocation behaviors. Specifically, it establishes a Markov



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai Jin

chain model to represent the transition probabilities between func-

tions. Markov chains stand for multiple pairs of call relationships

performed by an app and are used to construct feature vectors to

detect malware.

The authors [42] have published their partial source code of

MaMaDroid [2]. We leverage the open-source code to complete the

abstraction, modeling, and feature extraction of MaMaDroid. The

classification phase is not provided in their code, so we implement

the phase by using scikit-learn [15]. Specifically, we accomplish the

RF classifier to commence our comparative experiments since RF

can achieve the best effectiveness as reported in their paper [42].

Comparative results of HomDroid and MaMaDroid in terms of

F-measure, Accuracy, FNR, and FPR are presented in Figure 10. As

we can see from Figure 10, MaMaDroid outperforms PerDroid since

MaMaDroid maintains the program semantics by distilling them

into a call graph. However, compared to HomDroid, MaMaDroid de-

tects less covert malware. Specifically, MaMaDroid can only detect

84.8% of covert malware while HomDroid is capable of achieving

a TPR of 96.8%. In addition, similar to Drebin, the effectiveness of

MaMaDroid also decreases when detecting covert malware, such

results are reasonable because of the two following reasons: 1) The

abstraction phase ofMaMaDroid may incur certain inaccuracies. For

instance, android.telephony.TelephonyManager.getDeviceId() and an-

droid.telephony.SmsManager.sendTextMessage() are both abstracted

in android.telephony package while their usages and corresponding

security-levels are completely different; and 2)MaMaDroid extracts

features from the entire app, which may cause false negatives since

the malicious part occupies only a small part of the entire app.

4.3.4 With IntDroid. Our final comparative system is IntDroid [63],

which combines social-network-analysis-based technique with tra-

ditional graph-based method to achieve effective Android malware

detection. Specifically, IntDroid first applies centrality analysis to

obtain the central nodes in a function call graph, then the average

intimacy between sensitive API calls and these central nodes are

computed as the semantic features. To complete our comparative

evaluations, we adopt the best parameters in their paper [63] to

commence our experiments. In other words, we select nodes with

top 3% all centralities as central nodes and apply 1NN to train a

model for malware detection. The comparative results are shown

in Figure 10 and Table 4.

Through the results in Figure 10 and Table 4, we see that IntDroid

performs better than PerDroid. This happens because IntDroid also

distills the program semantics into a call graph and then extracts

semantic features from the graph. However, when using IntDroid

to detect covert malware, the detection effectiveness drops a lot.

For example, IntDroid achieves 99.1% TPR when detecting general

malware while the TPR can decrease to 89.6% when encountering

covert malware. It is reasonable because the analysis object of

IntDroid is the entire app, however, the malicious part of covert

malware only accounts for a small part of the entire app. It may

cause inaccuracies since themalicious features may be hidden under

the benign features.

In conclusion, in distinguishing benign apps, HomDroid is sim-

ilar to other comparison methods because their FPRs are similar.
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Figure 11: The Cumulative Distribution Function (CDF) of

runtime overheads of HomDroid on different phases (sec-

onds)

However, HomDroid’s TPR is at least 7% higher than other compar-

ison tools, which shows that HomDroid can find 7% more covert

malware than other tools.

4.4 Runtime Overhead

In this phase, we pay attention to evaluate the runtime overhead of

HomDroid. As aforementioned, HomDroid composes of four steps

to analyze an app, which are Static Analysis, Graph Partition, Fea-

ture Extraction, and Classification. We introduce the corresponding

overhead in Figure 11 according to the different steps involved

in HomDroid. Our dataset consists of 4,840 benign apps and 3,385

covert malware, the average nodes and edges of our 8,198 apps are

5,615 and 12,131, respectively.

(1) Static Analysis:HomDroid is a semantics-basedAndroid covert

malware detection method, it distills the program semantics of

an app into a function call graph by static analysis. The runtime

overhead of function call graph extraction is given in Figure 11, it

needs to take about 2.44 seconds to complete the static analysis on

average. Moreover, more than 90% of apps in our dataset can be

obtained the call graphs within 8 seconds.

(2) Graph Partition: After obtaining the call graph of an app,

we then perform community detection and homophily analysis to

dig out the most suspicious subgraph. This step is the most time-

consuming phase among all the steps in HomDroid. As shown in

Figure 11, the average runtime overhead to partition a call graph

is 9.89 seconds, and more than 85% of call graphs are able to be

discovered the corresponding most suspicious subgraph within 20

seconds.

(3) Feature Extraction: Given the most suspicious subgraph, we

extract two types of feature sets from it including the presence of
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certain sensitive API calls and the ratio of the number of sensitive

triads to the total number of triads within the subgraph. This step

requires less time than the former two steps (i.e., static analysis and

graph partition). Specifically, on average, it takes about 1.04 seconds

for HomDroid to achieve the feature extraction from a suspicious

subgraph.

(4) Classification: The final step of HomDroid is to perform classi-

fication by a classifier. The classifier is first trained by using feature

vectors extracted from the feature extraction step. Figure 11 shows

the runtime overhead of HomDroid when we select 1NN as our

classifier. In practice, classification consumes the least runtime over-

head, it only requires about 0.05 seconds to distinguish a feature

vector as either benign or malicious.

Table 5: The comparative runtime overheads of PerDroid,

Drebin, MaMaDroid, IntDroid, and HomDroid on analyzing

our datset

Methods Average Runtime (s)

PerDroid 5.67

Drebin 29.8

MaMaDroid 60.4

IntDroid 40.3

HomDroid 13.4

We also compare the runtime overhead of HomDroid with Per-

Droid, Drebin, MaMaDroid, and IntDroid as shown in Table 5. It is

obvious that PerDroid is the fastest system to detect malware among

these compared four systems since PerDroid only extracts the re-

quested permissions from the manifest file of an app. However, its

detection effectiveness is the lowest due to the lack of consideration

of semantics from app code. As for Drebin, it collects eight different

types of feature sets from both manifest and app code, and these fea-

ture sets consist of several complex features (e.g., network address),

thus making it time-consuming to complete the whole analysis of

an app. As regards MaMaDroid, due to the complex static analysis

and over many features (i.e., 115,600 features), the runtime overhead

ofMaMaDroid is more expensive than Drebin and HomDroid. As for

IntDroid, it combines social network analysis with traditional graph

analysis. Although the runtime overhead of social network analysis

is small, the procedure of traditional graph analysis is more time-

consuming. In other words, HomDroid achieves a more efficient

malware detection than Drebin, MaMaDroid, and IntDroid.

5 DISCUSSIONS and LIMITATIONS

5.1 Discussions

(1) The use of homophily analysis. In our work, the generation

of covert malware should meet that the normal parts and the mali-

cious parts are highly correlated. In this generation phase, the use

of homophily analysis is to check whether the normal parts and

the malicious parts are highly correlated or not. Besides, in graph

partition phase of HomDroid, the purpose of homophily analysis is

to filter out the normal parts from sensitive subgraphs to generate

an accurate suspicious subgraph. Although we choose to leverage

homophily analysis in both phases, the correlation analysis in the

two phases are independent. The use of same analysis technique

will not incur bias in the final results.

(2) Why can HomDroid detect covert malware? Existing An-

droid malware detection methods analyze the entire app to extract

features, however, the malicious part of covert malware only oc-

cupies a small part of the entire app, thus the malicious features

may be hidden under benign features. Moreover, some repackaged

malware detection techniques first divide the entire app into several

parts and then discover the most suspicious part. The premise of

these methods to commence app partition is that the connections

between the normal part and the malicious part are weak. How-

ever, covert malware samples do not fit the situation. HomDroid

performs homophily analysis to discover the most suspicious parts,

which has the ability to discover the suspicious parts from the entire

graph although the connections between the normal part and the

malicious part are strong.

(3) The application of HomDroid. The design of HomDroid

is to detect Android covert malware, therefore, we can combine

HomDroid with other state-of-the-art general malware detection

techniques (e.g., IntDroid) to complete more comprehensive mal-

ware discovery. For example, IntDroid can be used as the first line

of defense to filter most of malware (i.e., general malware), then

HomDroid can be applied as the second line of defense to discover

more malware (i.e., covert malware).

(4) Using different triads to detect covertmalware. Since sen-

sitive API calls are always being invoked by other functions to

perform malicious activities, therefore, we only select six types of

triads to commence our feature extraction. In reality, we also apply

a feature ranking method (i.e., T-test) to research the ability of these

six triads on covert malware detection. The results show that 021U

triad ranks first. In our future work, we will construct different

combinations of triads to find the most suitable combination to

achieve better detection results.

5.2 Limitations

Similar to any empirical approach, HomDroid suffers from several

limitations, which are listed below.

(1) Call graph extraction. In this paper, our static analysis

phase is implemented by leveraging Androguard [28]. In reality,

function call graph extracted by Androguard [28] is a context- and

flow-insensitive call graph. We ignore these information for achiev-

ing high efficiency to detect covert malware. To mitigate the in-

accuracies caused by our constructed call graph, we plan to use

advanced program analysis to generate a suitable call graph to

achieve the balance between the efficiency and effectiveness on

detecting covert malware.

(2) Obfuscations. Since HomDroid is a graph-based method,

it can resist some typical obfuscations (e.g., rename obfuscation),

however, apps can use reflection [49] to call sensitive API calls, in

this case, we may miss the call relationships between these meth-

ods. To be resilient to reflection, we can use an open-source tool,

DroidRA [37], to conduct reflection analysis to identify methods

that use reflection for each app. Then the missing edges can be

added into the call graph, where caller nodes are methods that use

reflection and callee nodes are reflected methods. Moreover, since

HomDroid is to perform static analysis to extract the call graph, it

is vulnerable to dynamic loading and encryption (e.g., APK Protect

[9]). As for dynamic loading, it is the technique through which a
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computer program at runtime loads a library into memory. Thus all

static-analysis-based methods suffer from this limitation. As for en-

cryption, packers can protect apps by using encryption techniques

to hide the actual Dex code. To address this limitation, we can use

some unpacker systems such as PackerGrind [56] to recover the

actual Dex files, then static analysis can be applied to extract call

graph.

(3) Sensitive API calls. HomDroid mainly focuses on 426 sensi-

tive API calls that are highly correlated with malicious operations

[34]. These sensitive API calls account for a small part of the whole

sensitive API calls. We plan to conduct statistical analysis to select

more valuable sensitive API calls to commence our experiments.

(4) The partition of our dataset. We perform 10-fold cross-

validations to generate our evaluation results, which means that

the dataset is partitioned into 10 subsets, each time we pick one

subset as our testing set and the rest nine subsets as training set.

We repeat this 10 times and report the average. In this partitioning

phase, we do not distinguish the family labels of our covert malware.

In practice, the result may overfit when samples from the same

family are not used in both training and testing sets. We plan to

label the family first by using Avclass [52], and then make sure that

samples from the same family are used in both training and testing

sets.

6 RELATEDWORK

The Android platform has become the main target of choice for

attackers, posing a serious threat to users’ safety and privacy. There-

fore, it is of great significance to establish a healthy mobile app

market. In recent years, academia and industry have done a lot of

important studies for completing the purpose.

Syntax-based methods [17, 20, 39, 40, 46, 51, 55, 62] ignore the

semantics of app code to achieve efficient Android malware de-

tection. For example, Wang et al. [55] detects Android malware

by analyzing risky permissions requested by an app. These risky

permissions can provide a mechanism of access control to core

facilities of the mobile system, so they can be represented as a type

of apps’ behavior. Because of the lack of program semantics, such

approach suffers from low effectiveness on detecting Android mal-

ware. Drebin [20] considers extracting features from both manifest

and app code. After extracting all the features, it embeds them into

a joint vector space to train an SVM to detect malware. However, it

only searches for the presence of particular strings, such as some

restricted API calls, rather than considers the program semantics.

So it can be easily evaded by attacks on syntax features [26].

In order to maintain high effectiveness on detecting Android

malware, researchers [18, 22, 25, 29, 31, 36, 38, 41, 42, 54, 57–61]

conduct program analysis to extract different types of app seman-

tics. For example, MaMaDroid [42] first performs static analysis to

obtain the graph representation of an app, then all the sequences

are obtained from the graph and are abstracted into the correspond-

ing packages to model the app’s invocation behaviors. In practice,

the abstraction of MaMaDroid may bring some false alarms, for

instance, android.telephony.TelephonyManager.getDeviceId() and an-

droid.telephony.SmsManager.sendTextMessage() are both abstracted

in android.telephony package while their usages and corresponding

security-levels are completely different. Themain ideas ofDroidSIFT

[60] and Apposcopy [31] are similar, that is, they both first extract

graph representation of an app, and then conduct graph matching

to detect malware. However, since heavy-weight program analyses

are both performed by DroidSIFT and Apposcopy to obtain accurate

graphs, they all suffer from low scalability. In their papers [31, 60],

they report that the average runtime overhead are 175.8 seconds

and 275 seconds for DroidSIFT and Apposcopy, respectively.

7 CONCLUSION

In this paper, we generate the first dataset of Android covert mal-

ware. To detect these covert malware samples, we design a new

technique to discover the most suspicious part of covert malware

by analyzing the homophily of a call graph. We implement a pro-

totype system, HomDroid, a novel and automatic system that can

accurately detect Android covert malware. We conduct evaluations

using 4,840 benign samples and 3,358 covert malicious samples.

Experimental results show that HomDroid is capable of detecting

Android covert malware with a False Negative Rate of 3.2% while

are 30.7%, 16.3%, 15.2%, and 10.4% for four comparative systems (i.e.,

PerDroid [55], Drebin [20], MaMaDroid [42], and IntDroid [63]).
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