Telemade: A Testing Framework for Learning-Based Malware Detection Systems

Wei Yang, Tao Xie
*Department of Computer Science, University of Illinois at Urbana-Champaign, USA
{weiyang3, taoxie} @illinois.edu

Abstract

Learning-based malware detectors may be erroneous due to
two inherent limitations. First, there is a lack of differentia-
bility: selected features may not reflect essential differences
between malware and benign apps. Second, there is a lack of
comprehensiveness: the used machine learning (ML) mod-
els are usually based on prior knowledge of existing malware
(i.e., training dataset) so malware can evolve to evade the de-
tection. There is a strong need for an automated framework to
help security analysts to detect errors in learning-based mal-
ware detection systems. Existing techniques to generate ad-
versarial samples for learning-based systems (that take im-
ages as inputs) employ feature mutations based on feature
vectors. Such techniques are infeasible to generate adversar-
ial samples (e.g., evasive malware) for malware detection sys-
tems because the synthesized mutations may break the inher-
ent constraints posed by code structures of the malware, caus-
ing either crashes or malfunctioning of malicious payloads.
To address the challenge, we propose Telemade, a testing
framework for learning-based malware detectors.

Introduction

Mobile malware grows exponentially as the number of apps
on mobile app market increases. According to a recent mal-
ware security report (Malware Trends Report), every 4.2
seconds a new malware specimen emerges. To fight against
malware, researchers adopt machine-learning-based tech-
niques (Kong and Yan 2013) that learn discriminant features
from analyzing semantics of malware.

Although machine learning (ML) algorithms bring im-
pressive capabilities to malware detection systems, recent
research (Rndic and Laskov 2014; Xu, Qi, and Evans 2016;
Carmony et al. 2016)) finds ML algorithms presenting unex-
pected or incorrect behaviors in corner cases. In particular,
the researchers find that learning-based systems can produce
unexpected results to small, specially crafted perturbations.
Such perturbations cause the learning-based systems to
mis-classify these well-crafted examples. In safety/security-
critical settings, such incorrect behaviors can lead to poten-
tially disastrous consequences.

*This work was supported in part by National Science Foun-
dation under grants no. CCF-1409423, CNS-1513939, CNS-
1564274.

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we investigate the possibility of automati-
cally producing corner-case testing inputs (i.e., evasive mal-
ware variants) for learning-based malware detection sys-
tems to strengthen the robustness of malware detection.
A key observation made in our research is that, features,
which abstract concrete malicious behaviors, are fragile,
and could be mutated (i.e., changed). The susceptibility of
such features makes it possible to produce corner-case in-
puts for malware detectors (when malware are properly mu-
tated (Rndic and Laskov 2014; Xu, Qi, and Evans 2016;
Carmony et al. 2016)). Our research suggests that features
that are unique to malware are not necessarily needed for
forming malicious behaviors. Such result is mainly due to
two factors.

First, learning-based detectors often confuse non-
essential features (i.e., features that are not essential for
forming malicious behaviors) in code clones as discrimi-
native features. The prevalence of copy-paste practice in
malware industry results in many code clones in malware
samples (Chen et al. 2015). Because the same code has ap-
peared in many malware instances, learning-based detectors
may regard non-essential features (e.g., minor implemen-
tation detail) in code clones as major discriminant factors
(because the same pieces of code appear in many malware
samples but not in benign apps). Learning-based detectors
place higher weight on these features not because these fea-
tures are essential to form malicious behaviors but because
these features appear in malware much more frequently than
in benign apps. In other words, the ML models confuse the
statistical correlation (between code clones and malware) as
a causal relationship (between essential features and mal-
ware). Our proposed testing techniques leverage such factor
to mutate some of these non-essential features with higher
weight in the ML models to evade detection.

Second, the features essential to form malicious behav-
iors are different for each malware family. Almost all ex-
isting learning-based malware detectors use a universal fea-
ture set to detect malicious samples for all malware families.
For example, Drebin, recent malware detection work (Arp
et al. 2014), uses a feature set containing 545,334 features.
However, based on recent research results (Zhu and Dumi-
tras 2016) mined from 1,068 research papers and malware
documents, each malware family is associated with a dis-
tinct set of malware behaviors and concrete features. A re-

ML Architecture | _ _ _ __ ______________
/Algorithm Design i

Selected
Algorithms/
Architectures Test Result

N I
Training —b[Training —» Trained Models

Data
J Testing

_______________ 1
1
A 4
Input Cross-
Generation/ Test Input referencing
Validation Oracles

Figure 1: Overview of our testing framework for learning-
based malware detectors

cent study (Roy et al. 2015) shows that such large feature set
has numerous non-informative or even misleading features.
Using a universal set of features for all malware families
would result in a large number of non-essential features to
characterize each family. Furthermore, as mentioned earlier,
if these non-essential features are unique in some malware
samples (for other reasons such as code clones), the trained
detection model can perform poorly when mutating the val-
ues of the non-essential features is applied to malware sam-
ples.

The main challenge in building a testing framework for
malware detection systems compared to learning-based sys-
tems for other formats (e.g., images) is that mutating the
inputs of malware detectors (i.e., malware programs) is
more sophisticated than mutating images. The mutations
(on images) that are usually computed based on mathemat-
ical models are not suitable to mutate a malware program.
Specifically, first, the mutations can destruct the original ma-
licious behaviors in the program. The mutated malware pro-
gram should maintain the original malicious purposes, and
therefore simply converting the malware’s feature values to
another app’s feature values is likely to break the malicious-
ness. For example, malicious behaviors are usually designed
to be triggered under certain contexts (to avoid user atten-
tion and gain maximum profits (Yang et al. 2015)), and the
controlling logic of the malware is too sophisticated (e.g.,
via logic bombs and specific events) to be changed. Second,
the mutations can simply crash the program. The mutated
malware program should be robust enough to be installed
and executed on mobile devices. Automatically mutating an
app’s feature values is likely to break the code structures and
therefore cause the app to crash at runtime.

To address the challenge, we propose Telemade, a testing
framework for learning-based malware detectors, as shown
in Figure 1. Such framework can be integrated into the
development of a learning-based system. The existing ap-
proaches to debug/tune a learning-based system may re-
quire domain-specific knowledge of how to set ‘magic num-
bers’ in the ML models/algorithms. For example, develop-
ing a neural network requires a priori experience about how
to tune the network structures (e.g., the number of hidden

layers and the connection of the hidden layers) and hyper
parameters (e.g., learning rate). In this work, we leverage
the testing result provided by Telemade as feedback to de-
bug/tune the ML models/algorithms. Although the frame-
work of Telemade is general for all malware detectors, in
our current implementation of Telemade, we focus on An-
droid malware detectors as an example.

Test Input Generation

This section presents techniques of test input generation
that produce corner-case inputs for learning-based malware
detection systems. Such techniques are based on our prior
work (Yang et al. 2017) on attacking malware detection sys-
tems.

Evolution and confusion strategies. Telemade aims to
generate corner-case inputs for various types of ML algo-
rithms/models. So instead of developing targeted malware
to evade specific detection techniques, we propose a general
mechanism of test input generation called evolution strat-
egy: mimicking and automating the evolution of malware.
Such input generation mechanism is based on the insight that
the evolution process of malware reflects the strategies em-
ployed by malware authors to achieve a malicious purpose
while evading detection. We also develop a targeted strat-
egy called confusion strategy. The main idea of malware
confusion strategy is to mimic the malware that can gener-
ally evade detection, i.e., confusing the malware detectors by
modifying the feature values that can be shared by malware
and benign apps.

To realize the evolution strategy, we identify a feature
set called evolution feature set. In the set, each feature is
evolved either at the intra-family level or inter-family level.
For each feature vector in the evolution feature set, we count
the number of evolutions as the evolution weight, where the
intra-family evolution weight is proportional to the number
of evolutions at the intra-family level, and inter-family evo-
lution weight is proportional to that at the inter-family level.
The rationale is that if the feature type has already been
evolved frequently under observation, it is more likely to be
evolved according to the nature of the law (in the biological
evolution process (Baxevanis and Ouellette 2004)).

To realize the confusion strategy, we identify a set of
feature vectors that can be projected from both benign apps
and malware as confusion feature set. For each feature in the
confusion feature set, we count the number of benign apps
that can be projected to the feature vector as the confusion
weight of the feature vector. The rationale is that if more
benign apps are projected to the feature, it is harder for the
malware detector to label the apps with this feature as mali-
cious.

The advantage of our test input generation strategies is
that the strategies can produce a high percentages of feasible
feature mutations (suggested in our evaluation), thus greatly
enhancing the feasibility of the inputs. The insight is that
feature mutations are less likely to break the apps when the
mutations follow feature patterns (extracted from malware
evolution histories and existing evasive malware) of existing
malware.

Manifold-guided input generation. To guide the afore-
mentioned input generation techniques to produce meaning-
ful inputs (i.e., mobile apps), we propose to construct mani-
fold to check whether a generated input is meaningful to the
problem domain. A manifold is a topological space, in which
each point is surrounded by a locally Euclidean space. Vari-
ous researchers (Narayanan and Mitter 2010) speculate that
data relevant to a specific task tend to lie in the vicinity of a
lower-dimension manifold. Such speculation indicates that
we might be able to tell whether specific inputs are mean-
ingful by checking whether they could fit in the manifold
constructed from the training data.

Reconstructing the manifold and deriving the manifold-
to-manifold distance might lead to efficiency problems. Dur-
ing manifold construction, determined by the construction
algorithm, some properties among the training data might
be fully or partially preserved, i.e., invariants, which could
be utilized for faster checking of new inputs. For instance,
Isomap (Tenenbaum, De Silva, and Langford 2000) pre-
serves the geodesic distance between each pair of points
(i.e.,, the sum of edge lengths along the shortest path be-
tween two points). This property entails that, if an input un-
der test is together used with the training data to construct a
manifold, the shortest Euclidean distance between the point
corresponding to the test input and the points representing
the training data in the lower-dimensional space will be the
same as that in the higher-dimensional input space. Thus, if
the distances of test inputs to the manifold are used to judge
whether those inputs fit in the manifold, we simply need
to find the shortest Euclidean distance between those inputs
and training data in the input space instead of constructing
manifolds and measuring the distances among manifolds.

Another way to construct the manifold is to leverage au-
toencoders to identify intrinsic properties of the data (Vin-
cent et al. 2008) and realize both manifold learning and
checking. Autoencoders are neural networks with simpler
hidden representations trained to forward inputs to outputs.
An autoencoder ae = d o e can be viewed as two parts: an
encoder e : S — H, which is trained to map from inputs
to hidden representations and resembles to constructing the
manifold from the training data, and a decoder d : H — S,
which is trained to recover inputs from hidden representa-
tions and resembles to the reverse process of manifold con-
struction. The input space is denoted as S, the hidden repre-
sentation space is denoted as H, and H has fewer dimensions
than S. Assume that H is large enough to embrace most hid-
den representations of normal inputs. Then the reconstruc-
tion error for training inputs by ae, which can be defined
as the average Euclidean distance from the outputs of ae
to the training inputs, should be reasonably low. Based on
this property, the encoder resembles to normal inputs lying
on the manifold. For unintended inputs, since their hidden
representations are likely to clash with those of normal in-
puts due to limited space dimensions of H, and e tries to re-
cover from hidden representations based on training inputs,
the outputs of e (also as the outputs of ae) should be differ-
ent from those inputs, resulting in high reconstruction errors.
Based on this property, the decoder resembles to unintended
inputs being away from the manifold. Such properties enable

unintended-input detection according to the reconstruction
errors, essentially approximating the distances between in-
puts and the manifold. Researchers (Meng and Chen 2017)
have applied this technique to defend against adversarial ex-
amples for neural network classifiers.

Test Input Validation

The input generation technique makes changes (to the orig-
inal input program), which may cause the program to crash,
cause undesired behaviors, or disable functionalities. We
also propose an extra validation step to validate whether
the input program functions properly. We take two measure-
ments in examining the practicability of the generated inputs
and filter out the impractical mutations. First, we perform
impact analysis and targeted testing to check whether the
malicious behaviors have been preserved. Second, we per-
form robustness testing to check whether the robustness of
the program has been compromised.

Impact Analysis. Our impact analysis is based on the in-
sight that the component-based nature of Android constrains
the impact of mutations within certain components. We an-
alyze the impact propagation among components by com-
puting the inter-component communication graph (ICCG).
We find three types of components that can ‘constrain’ the
impact of the mutations within the components themselves.
If any mutations are performed in components other than
these three types of components, we discard such mutations.
Based on the analysis, we identify three types of components
that can be mutated with minimized impacts: (1) isolated
component: no communications with other components; (2)
receiving-only component: only receiving messages from
other components; (3) sending-only component: only send-
ing messages to other components. Isolated components and
receiving-only components have no impacts to other compo-
nents, and thus do not affect behaviors in other components.
Mutating a sending-only component reduces an entry point
to the subsequent components where the sending-only com-
ponent may send messages with unwanted contents (e.g.,
sensitive information), causing no crashes in the subsequent
components but only eliminating some unwanted contexts
(possibly legitimate contexts).

Targeted Testing. We develop two techniques to test the
generated malware sample inputs in a targeted way. First, we
create environmental dependencies by changing emulator
settings or using mock objects/events to simulate the envi-
ronment where the malicious behaviors are directly invoked
to speed up the validation process. Second, to further vali-
date the consistency of malicious behaviors when the trig-
gering conditions are satisfied, we apply the instrumentation
technique to insert logging functions at the locations of ma-
licious method invocations. We therefore attain the log files
before and after the mutation under the same context (e.g.,
the same Ul or system events and same inputs). Then, we
automatically compare the two log files to check the consis-
tency of malicious behaviors.

Robustness testing. We leverage random testing to check
the robustness of a mutated program. In particular, we use

Monkey!, a random user-event-stream generator for An-
droid, to generate UI test sequences for mutated programs.
Each mutated program is tested against 5,000 events ran-
domly generated by Monkey to ensure that the program does
not crash.

Testing Criterion

A learning-based system is structurally different from tra-
ditional software. Traditional software usually incorporates
the program logic in program structures (e.g., control flows,
data flows). However, the program logic of a learning-based
system is usually embedded in the arithmetic operations of
formulas in the program; instead of writing the logic man-
ually by a programmer, a learning-based system learns the
program logic from training data. So it is insufficient to
measure the effectiveness of test inputs for a learning-based
system based on traditional test coverage such as statement
coverage or branch coverage. DeepXplore (Pei et al. 2017)
proposes a new coverage metric called neuron coverage.
Neuron coverage counts the number of neurons activated in
a neural network instead of counting the lines of program
statements being covered by an execution.

In Telemade, the testing criterion is not limited to neu-
ron coverage. We design the testing criterion based on the
learning algorithm used in a learning-based system. Specifi-
cally, for a neural network, we take a step further to propose
a neuron-combination coverage. Such coverage is based on
the observation that activating all neurons in a neural net-
work does not explore all the corner cases for the neural
network. The combination of covered neurons provides a
more accurate manifestation of program behaviors. Neuron-
combination coverage measures how many combinations of
neuron activations (denoted as C'4) have been covered by a
set of test inputs. Assume that there are N neurons in the
neural network. Then the neuron-combination coverage can
be defined as Cc = Ca /2.

For instance, assume that there is a neural network with
N = 3 neurons numbered {0, 1,2}, respectively. The
first test input activates neurons numbered {0, 1} while the
second test input activates neurons numbered {1,2}. Per
the definition of neuron coverage, only neurons numbered
{0,2} are both activated and inactivated by the two test
inputs, thus C4 = Na/N = 2/3. Similarly, according
to the definition of neuron-combination coverage, there are
two different combinations of neuron activation status (i.e.,
{0,1} and {1,2}), thus Cc = Oy /2N =2/23 = 1/4.

Conclusion

In this paper, we have proposed Telemade, a testing frame-
work fro learning-based malware detection systems. We dis-
cuss three broad thrusts: (1) techniques of test input genera-
tion; (2) validation of the generated inputs; (3) testing met-
rics for learning-based malware detection systems. We take
Android malware detectors as an example and implement
proposed input generation and validation techniques that can
analyze and mutate Android apps.

"http://developer.Android.com/tools/help/
monkey.html

References

Arp, D.; SPreitzenbarth, M.; Hubner, M.; Gascon, H.; and
Rieck, K. 2014. DREBIN: effective and explainable detec-
tion of Android malware in your pocket. In Proc. NDSS.

Baxevanis, A. D., and Ouellette, B. F. F. 2004. Bioinformat-
ics: A Practical Guide to the Analysis of Genes and Proteins.
John WileySons.

Carmony, C.; Zhang, M.; Hu, X.; Bhaskar, A. V.; and Yin,
H. 2016. Extract me if you can: Abusing PDF parsers in
malware detectors. In Proc. NDSS.

Chen, K.; Wang, P,; Lee, Y.; Wang, X.; Zhang, N.; Huang,
H.; Zou, W.; and Liu, P. 2015. Finding unknown malice in
10 seconds: Mass vetting for new threats at the Google-play
scale. In Proc. USENIX Security, 659-674.

Kong, D., and Yan, G. 2013. Discriminant malware dis-
tance learning on structural information for automated mal-
ware classification. In Proc. KDD, 1357—-1365.

Malware trends 2017. https://www.
gdatasoftware.com/blog/2017/04/
29666-malware-trends—-2017.

Meng, D., and Chen, H. 2017. MagNet: a two-pronged
defense against adversarial examples. In Proc. CCS, 135—
147.

Narayanan, H., and Mitter, S. 2010. Sample complexity
of testing the manifold hypothesis. In Advances in Neural
Information Processing Systems, 1786—1794.

Pei, K.; Cao, Y.; Yang, J.; and Jana, S. 2017. DeepXplore:
Automated whitebox testing of deep learning systems. In
Proc. SOSP, 1-18.

Rndic, N., and Laskov, P. 2014. Practical evasion of a
learning-based classifier: A case study. In Proc. IEEE S &
P, 197-211.

Roy, S.; DeLoach, J.; Li, Y.; Herndon, N.; Caragea, D.; Ou,
X.; Ranganath, V. P;; Li, H.; and Guevara, N. 2015. Exper-
imental study with real-world data for Android app security
analysis using machine learning. In Proc. ACSAC, 81-90.

Tenenbaum, J. B.; De Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. Science 290(5500):2319-2323.

Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-
A. 2008. Extracting and composing robust features with
denoising autoencoders. In Proc. ICML, 1096-1103.

Xu, W.; Qi, Y.; and Evans, D. 2016. Automatically evading
classifiers. In Proc. NDSS.

Yang, W.; Xiao, X.; Andow, B.; Li, S.; Xie, T.; and Enck,
W. 2015. AppContext: Differentiating malicious and benign
mobile app behaviors using context. In Proc. ICSE, 303—
313.

Yang, W.; Kong, D.; Xie, T.; and Gunter, C. A. 2017.
Malware detection in adversarial settings: Exploiting feature
evolutions and confusions in Android apps. In Proc. ACSAC,
288-302.

Zhu, Z., and Dumitras, T. 2016. FeatureSmith: Automati-
cally engineering features for malware detection by mining
the security literature. In Proc. CCS, 767-778.

