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ABSTRACT1
As a safety-critical cyber-physical system, cybersecurity and related safety issues for Autonomous2
Vehicles (AVs) have been important research topics for a while. Among all the modules on AVs,3
perception is one of the most accessible attack surfaces, as drivers and AVs have no control over4
the outside environment. Most current work targeting perception security for AVs focuses on5
perception correctness. In this work, we propose an impact analysis based on inference time attacks6
for autonomous vehicles. We demonstrate in a simulation system that such inference time attacks7
can also threaten the safety of both the ego vehicle and other traffic participants.8

9
Keywords: Autonomous Vehicle, Cybersecurity, Perception security, Cyber-physical sytstem10
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INTRODUCTION1
Autonomous vehicles shed light on the development of smart transportation system as they can2
improve the safety, mobility and energy efficiency, as shown in the report issued by USDOT (1).3
One critical feature of autonomous vehicles, comparing to their human counterpart, is that they4
have a very short response time between an event and the vehicle reaction. The processing time5
for the perception-decision-response process for the human-driven vehicle is determined by human6
response time, which can be affected by driver’s distraction (2), age (3) and the possibility of DUI7
(4). For autonomous vehicles, the computer-vision-based system has a shorter response time (5),8
and the reaction time is mainly determined by the mechatronic properties of the vehicle itself.9

Given the fact that autonomous vehicles are safety-critical cyber-physical systems, there10
has been a lot of research work targeting the vulnerabilities within the system. Lot of research on11
vulnerabilities in computer vision (6–8) is also applicable for launching an attack on perception12
module of autonomous vehicles (9–11). Generative adversarial examples can also enable generat-13
ing perturbations that slowdown the inference speed of deep-learning modules, as shown in (12–14
15). For example, if a neural network normally inference around 0.1 second(which is a common15
standard for autonomous driving perception system), when given some attack data, some neural16
networks’ inference speed can be greatly reduced. As our work shows in section 7.1, the vitim17
model will have an average inferece time around 0.1 seconds. But, when under attack its inference18
time goes up to 3 seconds. This means when the inference process finished, the vehicle though19
it is responding to the most current environment state, which was actually happened 3 seconds20
ago. This is way too slow for safety-critical cyber-physical system like autonomous vehicles. In21
this work, we perform an initial impact analysis of inference time attack on autonomous vehicle’s22
perception system. As the first target, we apply such an attack towards an autonomous vehicle at23
a signalized intersection, since in such scenario, the perception system of the autonomous vehicle24
not only need to detect other road users, but also the traffic signals.25

With such a threat model, the attack goal in this paper is to maximize the degradation of26
the performance of an autonomous vehicle in the intersection navigation scenario. The attacker’s27
primary target is to downgrade the autonomous vehicle’s safety performance while also seeking to28
compromise mobility and comfort. To achieve the attack goal, smart selection of attack policy is29
essential, which is the main contribution of this paper.30

The contribution and novelty of our work are shown below:31
• We are the first to study the effect of inference time attacks on the perception module32

of autonomous vehicles. Specifically, we find that the optimal attack policy requires a33
careful selection of both attack intensity and the launch time. This attack is different34
from the DoS attack occurring in V2V communication shown in previous work (16), as35
the information retrieval from the environment is not completely blocked out and we also36
involve the prediction module in state-of-the-art middleware system, which is designed37
to mitigate the information retrieval delay from perception.38

• We performed end-to-end evaluation on both inference time only and performance from39
vehicle side and transportation engieering side. We showed that such attack can threaten40
both the ego vehicle and other traffic participants as well.41

The structure of this paper is as follows: Section 3 shows current work regarding au-42
tonomous vehicle perception time and inference time attack. Section 4 shows the threat model43
in this work, mainly about attacker assumption and attacker’s goal. Section 5 shows how the attack44
is formulated and how adversarial example is obtained. Section 6 shows the impact analysis with45
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FIGURE 1: Problem definition of Object detection and the working mechanism of Pixel2Seq

end-to-end simulation system, on inference only, vehicle and transportation side. Section 8 shows1
potential future work with regard to defense, and section 9 concludes this work.2

LITERATURE REVIEW3
The perception and control of autonomous vehicles4
Autonomous vehicles use the information obtained from sensors to make control decisions. In this5
paper, we focus on attacking the object detection perception module for the following reasons:6
(1) the object detection module plays a vital role in autonomous vehicles; (2) the object detection7
module is the most widely deployed in autonomous vehicles (17).8

As shown in Figure 1 (a), given one input image, the object detection module seeks to9
output the bounding box and the class labels of each object in the image. Here, we briefly in-10
troduce several working mechanisms of the neural networks-based object detection module. The11
first type is R-CNN, the masterpiece of two-stage object detection neural networks. In the first12
stage, R-CNN applies its region extraction neural networks to generate object region proposals. In13
the second stage, R-CNN uses its feature extraction neural networks to extract features for each14
extracted object region and uses an SVM to classify the category of each region. The second15
type is YOLO, which combines the stage of object region proposal and region classification into16
one neural network. YOLO applies only one network to divide the input image into regions and17
predicts bounding boxes and probabilities for each region. Recently, state-of-the-art, Pixel2Seq,18
applies a language model (LM) to cast the object detection task. Object descriptions (e.g., coor-19
dinate of the bounding boxes and class labels) are expressed as sequences of discrete tokens, and20
the neural networks are trained to generate the desired sequence. Figure 1(b) shows the working21
mechanism of Pixel2Seq. The backend neural networks start with the start symbol (i.e., SOS) and22
iteratively compute the coordinate of the bounding boxes and class labels for each object until the23
output reaches the end symbol (i.e., EOS). From the working mechanism of Pixel2Seq, an impor-24
tant observation is that Pixel2Seq will not stop computation until its output is EOS. Such property25
brings in a new vulnerability: the attacker can craft an adversarial example to make the output of26
Pixel2Seq not reach EOS and increase the response latency.27

For autonomous vehicles, we inherit the assumption that for perception inference time,28
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the inference interval is about 0.1s. The such setting had been applied in a previous study for1
information retrieval (16) and also in the University of Michigan’s Safety Pilot Model Deployment2
program for data acquisition(18), which is way shorter than human drivers’ perception response3
time (3). Based in that assumption, Pixel2seq is possible for application on AV or ADAS systems as4
it can performance pretty well considering both inference time and inference accuracy. We show5
in section 7.1 for baseline system’s inference performance and section 7.2 for baseline end2end6
system response. Therefore, based on the two baseline evaluations, our target model can be used7
when not under attack.8

Inference time attack in CPS system9
In recent times, a remarkable emergence of inference time attacks has drawn significant attention,10
as these attacks are specifically designed to rigorously assess the robustness of cyber-physical11
systems (CPS). The sensitivity of CPS to latency makes these inference time attacks particularly12
concerning, as they can lead to serious consequences with far-reaching implications.13

Inference time attacks (14, 19) involve the deliberate crafting of adversarial samples, aimed14
at consuming significantly more computational resources from the victim system. As a result, these15
attacks cause a substantial increase in the system’s response time, introducing delays and disrup-16
tions that can have critical impacts on real-world scenarios. The potential ramifications of such17
attacks are extensive, impacting various sectors where CPS plays a crucial role. For instance, a18
prominent example of an inference time attack is SlowLiDAR (19), which targets the LiDAR-19
Based Detection module in CPS. SlowLiDAR has been shown to increase the victim’s LiDAR20
system response latency by an alarming rate of up to more than 3000%. This escalation in la-21
tency could be detrimental, especially in applications like autonomous vehicles, where timely and22
accurate sensor data processing is essential for safe navigation. Another noteworthy example is23
EfficFrog (20), which focuses on attacks against the dynamic image reception module in CPS. Un-24
like some other attacks that compromise accuracy, EfficFrog cunningly impacts only the victim’s25
inference latency while having a minor impact on its accuracy. This stealthiness enhances the at-26
tacker’s ability to exploit vulnerabilities without raising immediate suspicion, making it a potent27
threat.28

Given the pivotal roles that Cyber-Physical Systems (CPS) play in various domains, the29
potential consequences of inference time attacks can indeed be far-reaching. Consequently, evalu-30
ating the robustness of CPS under such attacks holds tremendous significance.31

THREAT MODEL32
Attacker’s Goal33
In this research, our primary objective is to investigate the manipulation of the inference time of34
a targeted autonomous vehicle’s (AV) perception module, which can have serious implications on35
its security (19, 20). Our study revolves around the creation of adversarial perturbations specifi-36
cally designed to increase the inference time of the AV’s perception module, potentially leading to37
disruptions in its essential functions. The introduction of adversarial perturbations to the AV’s per-38
ception module aims to impede its accurate and efficient processing of incoming data. This could39
result in delays in decision-making, compromising the overall safety and reliability of the AV’s40
operations. The impact of such attacks can directly lead to several safety hazards in real-world41
scenarios: (1) Vehicle collisions: If the inference time of the targeted AV increases suddenly, it42
may not be able to apply timely braking or make appropriate maneuvers, increasing the risk of col-43
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lisions with other vehicles or obstacles, and (2) Violation of traffic rules and public security issues:1
The compromised perception module might fail to detect traffic signals, pedestrian crossings, or2
road signs, leading to the AV breaking traffic rules and posing security risks to the public.3

Attacker’s Assumption4
In this work, we assume that the attacker has some knowledge about the autonomous vehicle’s5
perception module and has already given a set of trojan triggers with different attack intensities. In6
this specific scenario, the stronger attack intensity refers to the longer inference time delay caused7
by the attack. The attacker can also launch the attack with a selected starting time. For example,8
place the trigger on a billboard or put it as a sticker on the side of the road. We inherit the attack9
assumption in work (15). Once the attack intensity is determined, the attacker can use a universal10
trojan trigger. Thus the attacker does not have to generate different perturbations given each frame11
of perception data.12

Our primary focus lies within the white-box attack setting, wherein the attacker possesses13
complete knowledge of the perception module utilized in the target Autonomous Vehicle (AV)14
systems. This assumption of having full access to the system’s internals is consistent with prior15
adversarial attacks on AVs relying on camera or LiDAR technology (19, 21). To achieve this white-16
box scenario, the attacker can acquire a victim AV through purchase or rental and subsequently17
engage in reverse engineering of its perception module. The feasibility of such reverse engineering18
has been demonstrated in the case of Tesla Autopilot, indicating the plausibility of accessing and19
comprehending the inner workings of the AV’s perception module. By exploring the white-box20
attack setting in this manner, we aim to gain deeper insights into the vulnerabilities of AV systems21
and devise more robust defense strategies to enhance their security against potential adversarial22
threats.23

In addition to the aforementioned scenarios, we also consider the possibility that the at-24
tacker can covertly paste an adversarial perturbation on the victim’s camera. This assumption is25
consistent with existing research and holds significant practical relevance in real-world situations26
(22, 23). For example, the attacker could secretly affix a sticker or a specially crafted object to the27
camera when the victim vehicle is parked in a parking lot or any other vulnerable location.28

ATTACK FORMULATION29
Problem Formulation30
This paper is focused on attacking the perception modules of autonomous vehicles, with a specific31
target being the state-of-the-art object detection neural networks such as Pixel2Seq. Models such32
as Pixel2Seq formulate the object detection problem as a sequential generation task and employ33
neural networks to accomplish this task. The key characteristic of the sequential generation model34
is its iterative generation of discrete tokens to represent bounding boxes and class labels for each35
detected object. The process continues until the end of the sequence (EOS) symbol is reached,36
indicating the end of the generation. In this kind of model, the inference process will not terminate37
until EOS occurs, thus our attack aims to minimize the likelihood of the EOS symbol, compelling38
the model not to terminate prematurely. In essence, we want to prolong the object detection process39
to disrupt the network’s performance. Formally, our attack can be formulated as the following40
optimization problem:41
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∆ = argmaxδ LatencyF (x+δ )

s.t. ||δ || ≤ ε ∧ ||x+δ || ∈ [0,1]n
(1)

where the x in the original input captured by the camera, δ is the optimal adversarial perturbation1
under solving, LatencyF (·) is the function that measures the object detection neural networks2
latency. The constraint ||δ || ≤ ε limits the size of the adversarial perturbation and makes the3
perturbation unnoticeable, and ||x+δ || ∈ [0,1]n limits the adversarial examples should be a realistic4
one. Following existing work (8), we set unnoticeable perturbation size constraint ε as 0.03; such5
a setting can ensure the adversarial perturbations are unnoticeable.6

EVALUATION7
Simulation System Setup8
Two kinds of vehicles will be discussed in all scenarios, Vehicle Under Test (VUT) and Back-9
ground Vehicle (BV). VUT here refer to the autonomous vehicle, and BV refer to other traffic10
participants that can have impact and interact with VUT. In this paper, VUT is an autonomous11
vehicle where all information about surrounding vehicles is detected from its perception module.12

The evaluation platform consists of a multi-resolution simulation system composed of a13
perception module, a background vehicle controller, and middleware. In this system, the percep-14
tion module relies on the CARLA simulation, which generates perception data for the VUT. The15
movements of the background vehicle and VUT are reflected in CARLA, impacting the corre-16
sponding scenarios and changing the perception data. The background vehicle is controlled by17
SUMO (24), a microscopic traffic simulator, which follows traffic rules and generates traffic sig-18
nals in the traffic network.19

In this work, we use Robot Operating System(ROS) as a standardized middleware, pro-20
viding the functionality of generating vehicle planning and control given the inferred perception21
information. We chose ROS because it is widely applied in autonomous driving systems such as22
Autoware (25) and Apollo (26). We implemented the perception, prediction and control module23
within ROS to test the impact of inference time attack on both vehicle side and transportation side.24
The Pix2seq algorithm is implemented as the inference model for perception, taking perception25
data from CARLA and outputting the inference information for both background vehicles and26
traffic lights. This inference information serves as the input for the VUT middleware system.27

For evaluation, we let VUT interact with background vehicle and traffic signal without28
launching inference time attack. This is to indicate that the functionality of perception, prediction29
and control module we implemented is fine. Then we launch the inference time attack with the30
same background setting for VUT, trying to see the impact of attack. A figure of the evaluation31
platform is shown below.32

Experiment Setup33
Following other works relate to AV cybersecurity, In our experiment, perception data is generated34
in CARLA and background vehicle is generated and controlled by SUMO. Two simulators are35
synchronized and the AV in experiment is controlled by ROS where an optimal controller is used36
to generate longitudinal vehicle speed control command. All background vehicles will follow the37
IDM car-following model (27). Parameters of the IDM car-following model is determined by38
SUMO. All background vehicle will disable the emergency collision avoidance function.39

All scenarios are reconstructed/build in CARLA simulator and the perception data is also40
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FIGURE 2: System architecture for end-to-end evaluation

generated by CARLA.The evaluation scenario is in Town04 map provided by CARLA simulator1
as shown in figure 3.2

For vehicle control, we implement a model predictive controller (MPC) for VUT, which3
is a widely used control model for autonomous vehicles (28, 29). A detailed modeling of vehicle4
controller will be discussed in section 6.3.5

Description of background vehicle and vehicle under test6
We take the assumption that the VUT observe surrounding vehicle though pixel2seq(30), and the7
relative coordinates of BV is obtained along with corresponding depth information. We assume that8
the depth information given to VUT is correct, as error in depth information does not contribute to9
the error introduced in the system. We then obtain the relative coordinate from the 2d front-person-10
view data and convert to relative coordinate with regard to ego vehicle. Given multiple cameras11
are mounted on VUT, redundancy reduction is performed to lower the impact of duplicated objects12
on the downstream application of prediction and planning. Based on the relative coordinates after13
redundancy reduction and the VUT’s ego status, the relative coordinates of background vehicles14
obtained from perception is then obtained and used as inputs for VUT’s prediction, planning and15
control.16

For VUT, the planning and control decision is made based on the observed BV information.17
If BV information has delays according to the system time stamp, then the possible BV location18
will be calculated by the prediction module within the controller. The prediction module had been19
integrated with the controller. The controller formulation of VUT is described below.20

In this scenario, vehicle n is the background vehicle traveling on the highway main lane21
and may interact with VUT thus VUT had to respond to it using perception information. Vehicle22
i is the autonomous vehicle under investigation, also the victim vehicle in this work. The control23
(i.e., acceleration) of vehicle i is determined by a nonlinear optimal controller described later.24

The status of the scenario is described by vehicle n, i. As we assume that all vehicles are25
traveling at the center of the lane, no lateral movement is considered. Thus we use 1-D location26
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FIGURE 3: Snapshot of evaluation scenarios used for both perception evaluation and end to end
evaluation

x and longitudinal speed v to describe the status of each vehicle. For each vehicle involved in1
the system, we denote the vehicle status as sk

j, where k refers to the timestamp and j ∈ {n,m, i},2

referring to the vehicle index. We then have sk
j = (xk

j,v
k
j)3

We treat the system as a discrete-time system and use a constant speed kinematic model4
to describe the state transition of the system. This status update function has been used in the5
prediction module of Autoware.AI (25), which we apply in this paper. Such transition is described6
below as:7

zk+1 = zk +F(zk,uk) (2)
where zk = [sk

n,s
k
i ] and F(zk,uk) = [∆t ∗vk,0]T for state estimate function from observation,8

note that the state estimation is based on the assumption that vehicle n travels on the highway main9
lane.10

The longitudinal speed planning strategy for the victim vehicle is that, given perception
information, it wants to arrive at the conflict point as fast as possible while maintaining a certain
level of performance for safety, mobility, and comfort. We set the conflict point as the back of
vehicle n with safety minimum gap as 2 meters. In this paper, victim vehicle Vi generates its
control command using the optimal control method, which we formulated as solving a finite-time
constraint discrete non-linear model predictive control problem. The problem is solved following
a rolling horizon manner. Let N be the prediction horizon, and we have the following formulation
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for the trajectory control problem:

minu1:N

N

∑
k=1

w1(xi − xc)
2 +w2(vi − v f f

i )2

+w3u2
i +w4((

xi − xc

vi
− xn − xc

vn
)2 −h)2

s.t.zk+1 = F(zk,uk)

zk ∈ Z,uk ∈ U
k = 0, ...,N −1

(3)

By solving this nonlinear model predictive control problem, we have the control input to the au-1
tonomous vehicle at each time stamp. w1(xi − xc)

2 regulate the distance between the autonomous2
vehicle and the conflict point, and we want the autonomous vehicle to arrive at conflict point as3
fast as possible. w2(vi − v f f

i )2 regulate the speed difference between the vehicle’s speed and the4
free-flow speed of the road. w3u2

i penalizes large control input to improve the comfort performance5
for the autonomous vehicle. w4((

xi−xc
vi

− xn−xc
vn

)2 −h)2 enforce the safety constraints based on the6
time-to-collision between the ego vehicle and the background vehicle. In this optimization prob-7
lem, Z is the feasible set of all states and U is the feasible set of all control commands of the victim8
vehicle, which considers the acceleration and de-acceleration limits of the actuator.9

We assume that the victim’s state estimation of the surrounding vehicles is based only on10
perception, which is common in autonomous vehicle settings.11

Perception

Update in
time?

Prediction based
on last updated
perception No(delay

occurred)

Optimal trajectory planning
based on surrounding vehicle’s

information

Yes(delay not
occurred)

Vehicle execute
control command

Environment

FIGURE 4: Information update and command generation for the victim autonomous vehicle when
under or not under attack

For response to traffic signal regarding autonomous vehicle, we deploy the evaluation in12
signalized intersection in Town04, a virtual map provided by CARLA simulator. In this scenario,13
we deploy a traffic signal controller at the T intersection on highway, and we apply a fixed signal14
time. For the highway direction, the signal time has 20 seconds green time, and 15 seconds red.15



Chen, Chen, Li, Yang and Feng 11

FIGURE 5: Histogram between baseline and pixel2seq under attack

RESULT1
Delay on End-to-end system2
Given that the impact of an inference time attack on the AV system affects both inference cor-3
rectness and latency, we first evaluated the difference in inference time from an end-to-end system4
perspective. The reason why we perform the evaluation on inference time only at the en-to-end sys-5
tem at this time is that, as a safety-critical cyber-physical system, both response time and inference6
result has important impact on the decision making for AV system. What’s more, the perception to7
surrounding environment with lower frequency can also result in a delayed interaction for AV with8
regard to surrounding environment. Even with the help of prediction,9

Assuming the same initial speed and driving length, a significant difference in inference10
time can result in a substantial variation in the number of inferences executed. For the sticker11
attack, the mean inference time for pixel2seq without an attack is about 0.05-0.15 seconds, while12
the mean inference time for pixel2seq under attack is around 3.2 seconds. If the total driving time13
per run is 40 seconds, pixel2seq can perform 400 inferences without an attack, and 12.5 inferences14
when under attack. This significant imbalance in the number of observations makes it challenging15
to conduct a fair comparison.16

Therefore, we plotted the accumulated inference time data to demonstrate the effectiveness17
of the attack. The plot is shown in Figure 5. By accumulating multiple experiments for inference18
time attack with 40 times, we obtained the histogram for perception module when under attack.19
As shown in the figure, the inference time under attack is around 3.0-3.5 seconds, which is not20
suitable for a time-critical cyber-physical system like AV.21
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Car-following case1
We conducted evaluations on two different scenarios and two different attack models as mentioned2
in section 4. For the car-following case with a sticker attack, we ran 40 runs and achieved a3
collision rate of 100%. Moreover, upon examining the experiment log, we found that the inference4
process was delayed for 100% of the frames due to adversarial perturbation. We define ’delayed5
inference’ by comparing the inference time during end-to-end evaluation.6

We observed that the inference time attack resulted not only in a delayed response but also7
in a falsified inference result. Both the delayed response and the falsified result violate the time-8
criticality requirement for AV, which is a time-sensitive cyber-physical system. The time length of9
each run ranged from 30-40 seconds.10

FIGURE 6: System snapshot and CAV perception in benign case

FIGURE 7: System snapshot and CAV perception under attack

In contrast, in benign cases, our implemented longitudinal controller always responds11
promptly and appropriately to the detected lead vehicle, generating a control command that en-12
sures both safety and rider comfort. No collisions were observed in these benign cases.13
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We present a snapshot of our simulation system, illustrating how the Vehicle Under Test1
(VUT) responds to a background vehicle (BV) based on the corresponding perception result. Fig-2
ure 6 showcases the Bird’s Eye View (BEV) of the evaluation scenario in the upper part, displaying3
the relative distance between the VUT and BV. In the lower left, we provide a real-time camera4
feed from a Front-Person-View (FPV) for the VUT, also indicating the relationship between the5
VUT and BV. The lower right section presents the inference and perception result from the Pix2seq6
algorithm. In the benign case, the BEV, FPV, and inference results from Pix2seq are consistent with7
each other, suggesting that no delay occurred during the evaluation scenario.8

Figure 7 has a similar layout for cross-reference and represents an example of Pix2seq un-9
der attack. The BEV view reveals that a collision has already occurred, a fact also visible from the10
FPV that bypasses the inference. However, the lower right section, showing the inference result,11
still indicates that the BV is far from the VUT. This discrepancy demonstrates a "delayed infer-12
ence and response," suggesting that the VUT is responding to environmental data from some time13
ago, thus violating the time-criticality principle intrinsic to safety-critical systems like autonomous14
vehicles.15

For impact analysis on vehicle and the transportation system, we first evaluate a typical16
case where a background vehicle stay stationary in the road network, and see what is the impact of17
inference time attack on AV system. The time-space diagram and speed profile of victim vehicle18
in benign case is shown below:19

In Town04, the ground of testing scenario is not even, therefore we let the controller apply20
a brake instead of setting throttle and brake as zero when planning speed is zero. This caused the21
speed drop of target vehicle at figure 8b around time 30s. Also the controller takes perception error22
from vehicle perception data , thus the estimation of the distance between the ego vehicle and front23
vehicle varies as the perception result itself has some error. The fluctuation of distance estimation24
from perception result in the planned speed for target vehicle, therefore the speed profile of ego25
vehicle did not showed a perfect constant speed.26

We also launched the inference time attack for the same case where the background vehicle27
remained in the same position and tried to evaluate the target vehicle’s response to the background28
vehicle. We obtained the time-space diagram of the VUT and the background vehicle. We also29
obtained the speed profile of the VUT to see the impact of the attack on VUT. Both beign and30
malicious cases are shown in figure 8.31

Traffic Signal Response scenarios32
For Traffic Signal Response scenarios, the cases differ slightly from those in the car-following33
scenario. In traffic signal response cases, delayed perception can result in red-light-running, or34
delayed start-up.35

Red-light running, which violates traffic rules and threatens safety, occurs when the ac-36
tual traffic signal is red but the perception result for the VUT indicates it’s green due to delayed37
perception. Delayed start-up mainly impact the mobility within the transportation network. This38
situation is the opposite of red-light running, resulting from a delayed perception when the actual39
traffic signal is green, but the VUT perceives it as red. It’s also possible that delayed perception40
has no impact on the VUT’s response to traffic lights. In such cases, the traffic light remains the41
same when the VUT passes the intersection.42

For the sticker attack, we obtain the time-space diagram and speed profile of VUT in both43
benign and malicious cases. In the benign case, our implemented latitudinal controller could al-44
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(a) Time-space diagram of both target vehicle and
background vehicle in benign case

(b) Speed profile of target vehicle in benign case

(c) Time-space diagram of both target vehicle and
background vehicle when target vehicle is under at-
tack

(d) Speed profile of target vehicle when under attack

FIGURE 8: Time-space diagram and speed profile of vehicles in benign case and under attack,
when responding to background vehicle

ways respond properly and timely to the traffic signal once it detected the traffic lights. It generated1
a longitudinal control command that satisfied safety, rider comfort, and mobility requirements, con-2
sidering the impact on the entire traffic network. We observed no collisions in the benign case and3
no violation of traffic signal.4

For malicious case, we also evaluate the scenario with time-space diagram and speed profile5
for VUT. As show in figure 9c and 9d, the delayed response of VUT leads to the violation of traffic6
rule, as no deacceleration is performed in response to the traffic signal in red.7

To evaluate the impact of inference time attack on AV’s response to the traffic signal, we8
first obtained a baseline performance of AV respond to TSC system. From the baseline response9
of AV, we can see that the AV can respond to traffic signal correctly and stop at stop bar when10
it detects a red signal, and resume driving once the signal turns green. In contrast, when under11
attack, due to the delayed inference the VUT did not respond to the traffic signal and directly do a12
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(a) Time-space diagram of both target vehicle
and background vehicle in benign case

(b) Speed profile of target vehicle in benign case

(c) Time-space diagram of both target vehicle
and background vehicle when target vehicle is
under attack

(d) Speed profile of target vehicle when under
attack

FIGURE 9: Time-space diagram and speed profile of vehicles, benign case and under attack

red-light running. Both cases are shown in figure 9.1

DISCUSSION2
In this work, our primary focus is on the inference attack. We accept the attacker’s assumption that3
once the attack is launched and the VUT is under attack, the inference delay is maximized. Also,4
in this work, the main product is the inference time delay, while the falsified inference result is a5
side product.6

Therefore, from a vehicle and transportation perspective, we tend to consider a weaker7
assumption, that when an attack is launched, the delay may not reach its maximum. Additionally,8
we are interested in understanding if the delay in inference can have an accumulative effect on both9
vehicle control and the traffic state.10

In this context, one possible direction for future work would be to treat the generation of11
adversarial samples as a sequence instead of a single adversarial sample. In other words, we’d like12
to explore if smartly choosing the inference delay time sequence can result in a greater impact not13
only on a single vehicle but also on traffic flow. The generation of such a sequence and connecting14
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it with the generation of adversarial perturbation is one possible avenue for future work.1
At the vehicle control and transportation system level, one possible defense method is to2

utilize the last observed perception information that has not been attacked. The current prediction3
method for vehicle-side control suffers from a relatively short prediction horizon. It’s important4
to note that the common setting for the prediction horizon of the vehicle-side controller is approx-5
imately 2 seconds. However, during the inference time attack mentioned in section 4, based on6
the end-to-end evaluation, the inference delay could be as long as 3.2 seconds, which exceeds the7
common planning horizon.8

Therefore, utilizing traffic-level prediction that has a lower update interval but longer infor-9
mation validity could be a possible direction. Integrating traffic-level information into the vehicle-10
side prediction can better equip the VUT to cope with the surrounding traffic state, and thus miti-11
gate the attack to some extent.12

CONCLUSION13
In this work, we revealed a potential threat to the AV system through perception module. We14
showed that certain kind of attack can delay inference of perception module in AV system and15
thus threaten the safety for AV. We evaluated the attack on an end-to-end simulation system us-16
ing standardized middleware structure with real-time system. We performed the attack under two17
scenarios: response to background vehicle and response to traffic signal. In both cases we show18
significant difference in performance with and without attack. Future work regarding this vulnera-19
bility in inference time can relate to traffic-informed defense, and identification of AV that is under20
such attack.21
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