Generating Regular Expressions from Natural Language Specifications: Are We
There Yet?

Zexuan Zhong', Jiaqi Guot, Wei Yang', Tao Xie', Jian-Guang Lou®, Ting Liuf, Dongmei Zhang?
"Department of Computer Science, University of Illinois at Urbana-Champaign, USA
fMinistry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, China
§Microsoft Research Asia, China
{zexuan2, weiyang3, taoxie } @illinois.edu, jasperguo2013 @stu.xjtu.edu.cn, tingliu@mail.xjtu.edu.cn
{jlou, dongmeiz} @microsoft.com

Abstract

Recent state-of-the-art approaches automatically generate
regular expressions from natural language specifications.
Given that these approaches use only synthetic data in both
training datasets and validation/test datasets, a natural ques-
tion arises: are these approaches effective to address various
real-world situations? To explore this question, in this pa-
per, we conduct a characteristic study on comparing two syn-
thetic datasets used by the recent research and a real-world
dataset collected from the Internet, and conduct an experi-
mental study on applying a state-of-the-art approach on the
real-world dataset. Our study results suggest the existence of
distinct characteristics between the synthetic datasets and the
real-world dataset, and the state-of-the-art approach (based
on a model trained from a synthetic dataset) achieves ex-
tremely low effectiveness when evaluated on real-world data,
much lower than the effectiveness when evaluated on the syn-
thetic dataset. We also provide initial analysis on some of
those challenging cases and discuss future directions.

Introduction

A regular expression is a sequence of characters that define
a search pattern. It is very common to use regular expres-
sions in string-searching tasks that play essential roles in
various software applications such as information-extraction
applications and web applications (with input validators).
For example, people may use the regular expression ‘A.*’ to
search for strings that begin with ‘A’. Although regular ex-
pressions are widely used, writing regular expressions can
be time consuming and error prone. However, it is often eas-
ier for users to specify their tasks (with regular expressions)
in natural language (NL). Therefore, there is a strong need to
automatically generate regular expressions from NL specifi-
cations. In addition, automatic generation of regular expres-
sions can be further applied for other tasks of formal lan-
guage synthesis such as synthesizing program scripts (Raza,
Gulwani, and Milic-Frayling 2015).

Recent research has already attempted to automati-
cally generate regular expressions from NL specifications.
Ranta (1998) proposes a rule-based approach to build an
NL interface to regular expressions. Kushman and Barzi-
lay (2013) use a parallel dataset of NL sentences and reg-

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ular expressions as training data. They train a probabilistic
parsing model, which reads a sentence and outputs the top
parse tree. They then generate a regular expression from the
parse tree. Recently, Locascio et al. (2016) use a sequence-
to-sequence learning model to directly translate an NL sen-
tence to a regular expression without applying any domain-
specific knowledge. The use of deep neural model in this
work reduces the target problem to a general problem of ma-
chine translation and serves as a representative state-of-the-
art approach. Given that these approaches use only synthetic
data in both training datasets and validation/test datasets, a
natural question arises: are these approaches effective to ad-
dress various real-world situations?

To explore this question, in this paper, we conduct a
characteristic study on comparing the synthetic datasets
used by the recent research (Kushman and Barzilay 2013;
Locascio et al. 2016) and real-world dataset collected from
the Internet, and conduct an experimental study on applying
a state-of-the-art approach (Locascio et al. 2016) on the real-
world dataset. Specifically, to build the real-world dataset,
we collect regular expressions and corresponding NL spec-
ifications from an online library for regular expressions. In
our study, we find that there exist distinct characteristics be-
tween the synthetic datasets and real-world dataset. We eval-
uate the model learned by a state-of-the-art approach (Lo-
cascio et al. 2016) (from a synthetic dataset) by using both
the synthetic dataset and real-world dataset. The results
show that the model achieves much lower effectiveness on
the real-world dataset than on the synthetic dataset. We col-
lect some challenging cases that cannot be handled by the
model, and provide initial analysis on them. To provide so-
lutions for generating regular expressions from NL specifi-
cations, we also discuss future directions based on our study
findings.

Characteristic Study
Synthetic datasets. We study two synthetic datasets:

¢ KB13 (Kushman and Barzilay 2013). KB13 includes
824 pairs of NL and regular expression. During labeling
time, labeling workers are provided a certain regular ex-
pression and example strings that match the regular ex-
pression, and are asked to write their own original NL
query to capture the example strings. The NL query writ-

9
. - - KB13
L e NL-RX
——RegexLib

- egexLib | |
X6
st
S
G4t
<]
Saf

ol

1k

0 ' | | '::’\ NAW PGS L

0 20 40 60 80 100

Length of the regular expression

Figure 1: Distribution of regular expressions with no more
than 100 characters in the three datasets (note that 26.2% of
regular expressions in RegexLib have more than 100 charac-
ters whereas no regular expression in KB13 or NL-RX has
more than 100 characters).

Table 1: Length statistics of regular expressions in the three
datasets: maximum (Max), average (Avg), median (Med),
and standard deviation (Std).

Dataset | Max | Avg [Med | Std
KB13 79 | 19.0 18 | 11.9
NL-RX 54 | 26.0 25 7.4

RegexLib | 685 | 58.8 53 | 44.2

ten by the workers is regarded as the corresponding de-
scription of the regular expression.

e NL-RX (Locascio et al. 2016). NL-RX consists of 10,000
regular expressions and their corresponding NL descrip-
tions. This corpus is created in two steps. First, a small
manually-crafted grammar is used to parse a regular ex-
pression and generate its initial corresponding NL de-
scription. Second, labeling workers are asked to para-
phrase the generated description.

Real-world dataset (RegexLib). We collect a real-world
dataset from RegexLib (http://regexlib.com/), an
online library for regular expressions. The library includes
various regular expressions and the corresponding NL de-
scriptions contributed by authors of the regular expressions.
For our study, we use all the 3,619 pairs of NL and regular
expression that can be retrieved from the search interface of
the library.

By comparing the synthetic datasets and the real-world
dataset, we find distinct characteristics between them in the
following two main aspects.

o Complexity of regular expressions. Regular expressions
in the real-world dataset (RegexLib) are much more com-
plex than the two synthetic datasets (KB13 and NL-RX).
First, KB13 and NL-RX support only a subset of the reg-
ular expression patterns that appear in the RegexLib. For
example, the question mark ‘?’, indicating appearing zero

18 T
- - KB13
[R NL-RX
14l —RegexLib| |
L2t
S0t
S
g 8f
IS4
& of
4l
ol
0 AP \ h
0 20 40 60 80 100

Number of words in description

Figure 2: Distribution of NL descriptions with no more than
100 words in the three datasets (note that 9% of descriptions
in RegexLib have more than 100 words whereas no descrip-
tion in KB13 or NL-RX has more than 100 words).

Table 2: Word count statistics of descriptions in the three
datasets: maximum (Max), average (Avg), median (Med),
and standard deviation (Std).

Dataset | Max | Avg | Med | Std
KB13 21 7.1 7 2.8
NL-RX 28 | 10.6 10 33

RegexLib | 968 | 36.4 23 1 455

or one time, is not included in KB13 or NL-RX, while it
is one of the most common symbols in RegexLib. Second,
regular expressions in RegexLib are much longer than the
ones in the two synthetic datasets. As is shown in Table 1,
the average and median lengths of regular expressions in
RegexLib are both more than twice of the average and me-
dian lengths in the synthetic datasets. Figure 1 shows the
length distribution of regular expressions. Most of regu-
lar expressions in KB13 and NL-RX lie in the range be-
tween 10 and 40 characters, while in RegexLib more than
half regular expressions contain more than 40 characters.
More statistics in Table 1 show the difference in complex-
ity of regular expressions between the synthetic datasets
and the real-world dataset.

o Complexity of NL sentences. NL sentences from
RegexLib contain a lot of words that never occur in KB13
or NL-RX. Specifically, there are 13,491 distinct words
in RegexLib, 715 distinct words in KB13, and 560 dis-
tinct words in NL-RX. Only 219 distinct words occur in
both RegexLib and KB13, and 350 distinct words occur
in both RegexLib and NL-RX. Such result shows that the
sentences from the synthetic datasets are much simpler
than those from RegexLib. Figure 2 shows the distribu-
tion of the number of words in NL descriptions. Most of
descriptions in KB13 and NL-RX have no more than 20
words, whereas the descriptions in RegexLib tend to have
more than 20 words on average. More statistics in Table 2
show the difference in complexity of NL sentences be-

Table 3: Deep-Regex effectiveness on NL-RX and KB13.
We reuse the result from (Locascio et al. 2016), which re-
ports only the DFA-Equal metric for KB13.

NL-RX | KBI3
DFA-Equal | String-Equal | DFA-Equal
58.7% 40.3% 65.6%

©
o

—s—Top-K Accuracy
r|—©--Top-1 Accuracy

©
o

©
o
T

o]
o
T

~
o
T

DFA-Equal Accuracy (%)
& o

-

0 5

(o2}
o
T

o
a

10 15 20
Size of beam search

Figure 3: Effectiveness of Deep-Regex when using beam-
search.

tween the synthetic datasets and the real-world dataset.

Experimental Study

We study the effectiveness of Deep-Regex (Locascio et al.
2016) (a state-of-the-art approach) on a synthetic dataset
(NL-RX) and the real-world dataset (RegexLib). Deep-
Regex reduces the target problem of generating regular ex-
pressions from NL specifications to a black-box task of
machine translation. It uses sequence-to-sequence learning
model (Sutskever, Vinyals, and Le 2014) augmented with
attention mechanism (Luong, Pham, and Manning 2015) for
the translation task. The sequence-to-sequence model con-
sists of an encoder RNN and a decoder RNN. The encoder
takes an NL sentence as input and generates representation
vectors (for the sentence), which are further fed into the de-
coder. The decoder predicts next words given the words that
have been predicted.

Effectiveness on synthetic datasets

We train the model on a synthetic dataset and evaluate the
model on it (we reuse the split training, validation, and test
data from the dataset as used by Locascio et al. (2016)). We
employ String-Equal and DFA-Equal to test whether two
regular expressions are equivalent. For String-Equal, two
regular expressions are regarded as equivalent when they are
exactly the same string. For DFA-Equal, two regular expres-
sions are regarded as equivalent when the semantics of the
regular expressions’ corresponding DFAs is the same. Ta-
ble 3 shows the effectiveness of Deep-Regex on NL-RX and
KB13, respectively.

To understand the sources of errors and find ways to
further improve the effectiveness, we randomly select 100
failed samples from NL-RX. We analyze the error types and
summarize the main causes of errors as follows.

e Ambiguity of NL. NL descriptions in 28% failed sam-
ples are ambiguous, resulting in that the model predicts
a regular expression embedding other meanings. As Ex-
ample #1 shown in Table 4, the description is ambiguous
because it is unclear what part of the string would appear
at least twice.

e False prediction for wildcard and quantifier. Similar to
Example #2 in Table 4, 35% of failed samples are due to
that the model predicts incorrect wildcard (.) or quanti-
fier (¥, +). These symbols appear in almost every regular
expression, causing the model not to be able to differenti-
ate their semantics dependent on their positions in regular
expressions.

e False prediction for keywords. There are 17% failed
samples being predicted incorrectly by the model because
the model does not make correct prediction for some key-
words. Example #3 in Table 4 is a sample where the model
fails to predict “and”.

Other samples (20%) among the 100 failed samples cannot
be easily categorized into one of the preceding categories.

To evaluate the potential capacity of Deep-Regex, we con-
duct an experiment that uses beam search instead of a greedy
strategy. The effectiveness result is shown in Figure 3. When
we use beam search of size k, we will get k candidates. Here
we test (1) whether there is at least one correct result in all
k candidates (denoted as Top-K) and (2) whether the candi-
date with the highest likelihood is correct (denoted as Top-
1). The result shows that the model is more likely to gener-
ate the correct regular expression when using a larger beam
size. However, finding the correct candidate among the can-
didates still remains another challenge.

Effectiveness on real-world dataset

We evaluate the effectiveness of Deep-Regex on the real-
world dataset (RegexLib). First, we use Deep-Regex to
train a model using the synthetic NL-RX dataset, named
as the Deep-Regex model. Then we evaluate the model on
the RegexLib dataset (as the test set). From the RegexLib
dataset, we eliminate the entries with long descriptions be-
cause the inputs of Deep-Regex model have a limitation of
length in our implementation. Finally, our test set contains
1,091 pairs of NL and regular expression. The Deep-Regex
model cannot generate any correct regular expressions for
1,091 samples when using the greedy strategy. When we
use beam search with size of 20 instead, the model can gen-
erate 5 samples with the DFA-Equal Top-20 metric (4 sam-
ples with the String-Equal Top-20 metric). Such extremely
low effectiveness 0.5% is in sharp contrast with 90.9% (as
shown in Figure 3) when applied on the NL-RX dataset. We
find that many NL descriptions in the failed cases (from the
RegexLib dataset) are quite different from the sentences in
the training data from NL-RX, i.e., words in the test data are
often not covered by the training data and are masked as un-
known words. In addition to the three error-cause categories

Table 4: Example failed cases generated by Deep-Regex.

Index | Description | Ground Truth | Predicted Result
#1 items with a small letter preceding “dog”, at least thrice. ([a-b].*dog.®){3,} ([a-b]).*((dog){3,})
#2 lines with vowels after lower-case letter. *([a-z]).*([aeiou]).* | ([a-z]).*([aeiou]).*
#3 lines with a lower-case letter and a character at least 6 times. | (.*[a-z].*)&((){6,}) | ([a-z]).*((.){6.})

#4 match the numbers 100 to 199. 110-9]10-9] ([0-9])*

on the synthetic dataset (discussed in the preceding subsec-
tion), there are two types of real-world regular expressions
that the Deep-Regex model trained from the synthetic NL-
RX dataset cannot handle.

e Variations of NL. In the synthetic NL-RX dataset, NL
descriptions tend not to have variations because they are
first generated by a pre-defined grammar. In the RegexLib
dataset, sentences with similar meanings could be very
different syntactically. We find that the model trained
from the synthetic NL-RX dataset cannot handle various
expressions. Augmenting the training data to instill lan-
guage variations may alleviate such issue.

e Numerical range. The Deep-Regex model cannot han-
dle the descriptions that contain a numerical range. As
shown in Example #4 in Table 4, the Deep-Regex model
cannot generate a regular expression to specify a number
between 100 and 199. Because the sequence-to-sequence
learning model learns the translation alignment between
two sequences, the Deep-Regex model may not be able to
address such challenge even provided with more similar
(but not the same) samples in the training data.

Future Directions

Large real-world benchmark. Ideally, we would like to re-
train the Deep-Regex model (originally trained on the NL-
RX dataset) on a real-world dataset such as the RegexLib
one before applying the model on real-world test data en-
tries. However, currently we can hardly train a model on the
real-world dataset used in this paper because such dataset
is too sparse to be a sufficient training set. Specifically, the
dataset consists of 3, 619 entries from RegexLib and 13, 491
distinct words. In contrast, the NL-RX dataset is dense: it
has 10,000 entries but only 560 distinct words. Since the
data collected from public websites are typically insufficient
to serve as the training data, it is an open problem for col-
lecting sufficient labeled real-world data or synthesizing ad-
ditional correlated synthetic data to supplement the collected
real-world data.

Testability of regular expressions. Deep-Regex treats a
regular expression as a general sequence, and employs a ma-
chine translation model to address the target problem. How-
ever, a major difference between regular expressions and NL
is that regular expressions are testable, i.e., the correctness
of a regular expression can be tested by matched or un-
matched string examples. Using string examples to further
improve the generated regular expressions can be a promis-
ing direction to explore. When users want to write a regular
expression to match strings, they often have some positive
(matched) and negative (unmatched) string examples. Us-

ing these available string examples can help the generation
process in two main ways. First, string examples can help
disambiguate NL sentences (Manshadi, Gildea, and Allen
2013). Take #1 sample in Table 4 as an example, if users
provide a matched string example “adogadogadog”, then the
NL description would not be ambiguous, because we con-
firm it is “dog” that appears at least thrice from the matched
example. Second, string examples can help differentiate reg-
ular expression candidates. As discussed earlier, when using
beam search in Deep-Regex, a set of candidates are provided
by the model. Positive and negative string examples can help
select the correct (or best) answer among the candidates.

Acknowledgments

This work was supported in part by National Science Foun-
dation under grants no. CCF-1409423, CNS-1434582, CNS-
1513939, CNS-1564274.

References

Kushman, N., and Barzilay, R. 2013. Using semantic uni-
fication to generate regular expressions from natural lan-
guage. In North American Chapter of the Association for
Computational Linguistics.

Locascio, N.; Narasimhan, K.; DeLeon, E.; Kushman, N.;
and Barzilay, R. 2016. Neural generation of regular expres-
sions from natural language with minimal domain knowl-
edge. In Empirical Methods on Natural Language Process-
ing.

Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. In Empirical Methods on Natural Language Process-
ing.

Manshadi, M. H.; Gildea, D.; and Allen, J. F. 2013. Inte-
grating programming by example and natural language pro-
gramming. In Association for the Advancement of Artificial
Intelligence.

Ranta, A. 1998. A multilingual natural-language interface
to regular expressions. In International Workshop on Finite
State Methods in Natural Language Processing.

Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2015. Com-
positional program synthesis from natural language and ex-
amples. In International Joint Conference on Artificial In-
telligence.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In Neural Informa-
tion Processing Systems.

