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ABSTRACT
Program input grammars (i.e., grammars encoding the language

of valid program inputs) facilitate a wide range of applications in

software engineering such as symbolic execution and delta debug-

ging. Grammars synthesized by existing approaches can cover only

a small part of the valid input space mainly due to unanalyzable

code (e.g., native code) in programs and lacking high-quality and

high-variety seed inputs. To address these challenges, we present

REINAM, a reinforcement-learning approach for synthesizing prob-

abilistic context-free program input grammars without any seed

inputs. REINAM uses an industrial symbolic execution engine to

generate an initial set of inputs for the given target program, and

then uses an iterative process of grammar generalization to proac-

tively generate additional inputs to infer grammars generalized

from these initial seed inputs. To efficiently search for target gen-

eralizations in a huge search space of candidate generalization

operators, REINAM includes a novel formulation of the search

problem as a reinforcement learning problem. Our evaluation on

11 real-world benchmarks shows that REINAM outperforms an

existing state-of-the-art approach on precision and recall of synthe-

sized grammars, and fuzz testing based on REINAM substantially

increases the coverage of the space of valid inputs. REINAM is able

to synthesize a grammar covering the entire valid input space for

some benchmarks without decreasing the accuracy of the grammar.
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1 INTRODUCTION
Many programs take strings of symbols as inputs. The set of such

strings that a program accepts is called a language, which is rep-

resented by a program input grammar. Program input grammars

facilitate understanding of the input structure and are essential for a

wide range of applications such as symbolic execution [20, 28] (gen-

erally for test-input generation), reverse engineering, protocol spec-

ification [18], delta debugging [29], prevention of exploits [34, 39],

and improvement of system resilience [33]. Despite the importance

of program input grammars, acquiring the grammars often requires

much manual effort, and these grammars are often either not speci-

fied or specified in a machine-unfriendly form (e.g., text documents).

For example, the full specification of the PDF format is available

only in the form of a text document with over 1,300 pages [1].

For a programwhose input grammar is not specified in amachine-

friendly form, existing approaches have been proposed for attempt-

ing to infer the input grammar using program analysis [12, 13,

22, 23], language induction [11, 14, 16, 25, 31], and machine learn-

ing [17, 21, 32]. However, these existing approaches of grammar

inference are not able to produce grammars of sufficient quality

https://doi.org/10.1145/3338906.3338958
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(in terms of completeness and accuracy) for real-world software

systems due to the following three main challenges.

Unanalyzable code. Existing approaches based on program

analysis [12, 13, 22, 23] infer input grammars based on static-analysis

information of the target program’s code or from runtime program

information collected via instrumentation of the program. However,

these approaches cannot handle programs that cannot be instru-

mented (such as web services) or parts of programs that are too

difficult for static program analysis to handle (such as native code

or dynamic language features).

Low variety and quality of seed inputs. Existing approaches
based on language induction [11, 14, 16, 25, 31] leverage language

induction algorithms to synthesize input grammars given a set

of seed inputs. However, the effectiveness of language induction

algorithms heavily depends on the variety and quality of the seed

inputs. For example, to infer an input grammar for a program that

parses IP addresses, if the seed inputs contain only IPv4 addresses,

then the grammar inferred by the language induction algorithms

cannot capture the IPv6 format.

Lack of seed inputs. Given a large number of seed inputs, ex-

isting approaches based on machine learning [17, 32] can train

machine learning models representing input grammars that can be

used to generate inputs for fuzz testing. However, there are often

not sufficiently many valid examples to learn from.

We aim to tackle the preceding challenges by addressing a key

limitation of existing state-of-the-art approaches for grammar infer-

ence (e.g., Glade [14]). Existing approaches usually leverage active

learning—i.e., they use an iterative process of generalization steps,

each of which generates new candidate grammars from the given

seed inputs (see Section 2 for details). Such approaches discard a

candidate grammar if any of its generated strings are rejected by

the target program [14]. This design choice is common in active

learning approaches, resulting in a rigid strategy of “no overgen-

eralization allowed” to ensure that candidate grammars in each

generalization step are precise (i.e., all strings generated from a

synthesized grammar are covered by the ideal input grammar).

However, this design choice forgoes the opportunity to poten-

tially expand the coverage achieved by the final synthesized gram-

mar (i.e., the overlapping scope of all the strings generated from

the final synthesized grammar and all the ones generated by the

ideal input grammar). For instance, a generalization operator may

increase coverage at the expense of a tiny amount of overgeneraliza-

tion, yet existing approaches would still reject such a generalization.

Furthermore, as we illustrate in Section 3, even if a generalization

operator often results in an inaccurate grammar, the composition

of multiple such inaccurate generalizations may complement each

other in a way that forms an accurate composite generalization.

We propose REINAM, a novel framework that uses reinforce-

ment learning to synthesize program input grammars. In particular,

REINAM improves over existing approaches by retaining the ability

to accept inaccurate generalization steps while still synthesizing

a final grammar that achieves high accuracy. REINAM achieves

this goal using three key design choices. First, rather than rep-

resenting the grammar as a deterministic context-free grammar

(CFG), REINAM represents the accuracy of each production rule

as a probability in a probabilistic context-free grammar (PCFG).

This representation allows REINAM to quantify the quality of a

candidate production rule beyond simply whether the rule overgen-

eralizes. For example, it enables REINAM to retain an inaccurate

production rule during a single generalization step, and later de-

crease/eliminate the inaccuracy via a composite generalization.

Second, REINAM enhances the completeness of the final syn-

thesized grammar by incrementally improving imperfect candidate

grammars instead of discarding these grammars as done by the

rigid “no overgeneralization allowed” strategy used in prior ap-

proaches [14]. In particular, REINAM incrementally adjusts the

probability of candidate production rules in the PCFG model using

machine learning to make the rules more accurate. A challenge

is that a large dataset of seed inputs is usually needed to train

a probabilistic generative model such as PCFG. Thus, REINAM

uses reinforcement learning [30] to tune the PCFG. In particular,

reinforcement learning uses the generative PCFG model itself to

generate new training data. Then, REINAM runs the target program

as a black-box oracle to check whether the generated inputs are

valid, and uses this feedback to improve the PCFG model. Finally,

REINAM iteratively generates more data to further tune the PCFG.

Figure 1 shows how REINAM formulates the grammar synthesis

task as a reinforcement learning problem. In our formulation, an

agent (the PCFG) is interacting with an environment (the target

program). The agent chooses an action (the choice of productions to

use to generate a program input) that causes a state transition (the

portion of the program input constructed so far). Upon taking an

action, the agent observes the next state. Eventually (once the pro-

gram input is completely constructed), the agent receives a reward

from the environment (based on whether the input is accepted or

rejected). Then, REINAM uses a reinforcement learning algorithm

to update the agent parameters (the PCFG probabilities).

A key challenge is that REINAM needs to adjust not only the

probabilities of the PCFG, but also the structure of the PCFG (e.g.,
by adding new candidate productions) to synthesize a more general

grammar. However, traditional reinforcement learning algorithms

(e.g., Deep Q-learning [30]) tune only the parameters of the agent

(e.g., a deep neural network). Thus, in addition to using reinforce-

ment learning to adjust the weights of the PCFG, REINAM addition-

ally adjusts the PCFG using generalization operators that modify the

structure of the PCFG. In particular, REINAM first applies general-

ization operators to construct candidate grammars, then optimizes

the probabilities of the corresponding PCFG, and finally uses the

PCFG probabilities to determine whether to accept productions in

the candidate grammar.

Finally, REINAM uses automatic test generation algorithms to

generate additional seed inputs [38, 40]. By doing so, REINAM

improves generalization and alleviates the shortcomings of existing

state-of-the-art approaches such as Glade [14] caused by their focus

on avoiding overgeneralization.

We evaluate REINAM on 11 real-world benchmarks with man-

ually written grammars used in real scenarios. We measure the

precision and recall of the synthesized grammars, as well as the

benefits of the synthesized grammars in grammar-based fuzz test-

ing. Our evaluation results show that REINAM outperforms Glade

in terms of precision, recall, and fuzz testing coverage for most

of the benchmarks. In one of our benchmarks—namely, the input

grammar encoding regular expressions that are accepted by the

GNUGrep [7]—REINAM improves recall from 0.02 to 1.0, indicating
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Figure 1: Formulation of grammar synthesis as a reinforce-
ment learning problem.

that the grammar inferred by REINAM actually covers the entire

program input space.
1

In summary, this paper makes the following main contributions:

• A novel formulation of grammar synthesis as a reinforce-

ment learning problem with a PCFG as the agent, sampled

inputs as the actions, and input acceptance as the rewards.

• A corresponding learning algorithm, called REINAM, which

iteratively chooses a generalization operator to apply to the

current PCFG, adjusts the probabilities of the PCFG using

reinforcement learning, and then retains only general and

accurate production rules.

• An evaluation of on 11 real-world benchmarks for showing

that REINAM effectively synthesizes program input gram-

mars, and furthermore improves the effectiveness of fuzz

testing.

2 BACKGROUND
Grammar synthesis. We first describe Glade [14], an existing

state-of-the-art approach for synthesizing a program input gram-

mar from a given set of seed inputs specified by the users for a

program that includes input validation. Glade requires only black-

box access to the program and uses the program as an oracle in

order to determine whether a given input is valid. In particular,

Glade iteratively generates new candidate grammars by applying

generalization operators (from a predefined set) to the given seed

inputs. Glade then checks the correctness of these candidate gram-

mars by generating new inputs from the candidate grammars and

seeing whether the new inputs are accepted by the target program.

Glade consists of two steps (which they call phases). The first step

learns a regular grammar by applying generalization operators such

as repetition and alternation on the given seed inputs. The second

step transforms the learned regular grammar into a context-free

grammar by applying merging operators. Between the first and

second steps, the character generalization operator is applied to

generalize characters. The following includes more details:

1
For conciseness, we describe the key features of our approach in this paper and

relegate implementation details to an appendix available on our project website: https:

//sites.google.com/site/reinamlearning/.

• Alternation: Decompose a substring in the grammar (inside

a repetition) and form an alternation. For example, “(ab)∗”
can be generalized to (a | b)∗.

• Repetition: Repeat a given substring in the grammar. For

example, “a” can be generalized to “a(a)∗”.
• Merging: Equate two non-terminal symbols in the context-

free grammar translated from the regular grammar resulted

from Step 1. For example, suppose we have a CFG S →

(′a′ T ′a′)∗;T → (′b ′ | ′c ′)∗. 2 We can merge S and T
by substituting T with S , so the grammar becomes S →

(′a′ S ′a′)∗; S → (′b ′ | ′c ′)∗.
• Character generalization: Allow certain terminal symbols

(e.g., ′a′) to be substituted for other ones (e.g., ′b ′, ′c ′, ...).
Glade performs a set of checks to avoid overgeneralization. In

particular, Glade constructs a set of strings Chk such that each

α ∈ Chk uses the candidate production rule added by the general-

ization operator in its derivation. Then, Glade executes the program

on each α ∈ Chk and determines whether it is accepted or rejected.

If any α is rejected, then Glade rejects this generalization. This

mechanism is designed to enforce the “no overgeneralization al-

lowed” strategy. However, generalization can still occur, because

it could be the case that all α ∈ Chk are accepted, but there exists

other inputs generated by the grammar that would be rejected by

the program. Indeed, in our evaluation, we find that Glade occa-

sionally overgeneralizes.

Probabilistic context-free grammar (PCFG). A PCFG is a

CFG augmented with a probabilistic distribution. In particular, a

PCFG G is a tuple G = (M,T ,R, S, P), where M is the set of non-

terminal symbols, T is the set of terminal symbols, R is the set

of production rules, S is the start symbol, and P is a set of the

probability distributions over production rules. More precisely, for

each non-terminal symbolA, if there arek different production rules

r1, ..., rk with A as the left-hand side, then PA(i) is the probability
of choosing production rule ri . These probabilities should satisfy∑k
i=1 PA(i) = 1 and PA(i) ≥ 0.

3 MOTIVATING EXAMPLE
A key shortcoming of Glade is its reliance on the “no overgener-

alization allowed” condition. In this section, we give an example

showing why this design choice can be problematic. In particular,

we find that as a consequence of this design choice, the Grep pro-

gram used in the evaluation of Glade can achieve only very low

coverage of the valid input space [14].

Figure 2 shows that the grammar of the Grep program consists of

many special characters (nbchar and npchar ). These special charac-
ters not only form the basic building blocks for the grammar (char ),
but also serve as the special control characters in the grammar (see

the production rule of sinдle). Therefore, in Step 1 of Glade (i.e.,
generalization to a regular language), the generalization process

can fail. For example, suppose the seed input is “[∧a]”; then, the
generalization operators in Step 1 are unable to cover the grammar

“[= (a)∗ =]” (here, ′ =′ can also be
′.′ or ′

:
′
since they appear in

the same production rule). The best that we can do is to apply the

repetition operator, in which case the grammar is generalized to

“[∧(a)∗]”. Next, at the intermediate step of character generalization

step, we consider the generalization “[(∧| =)(a)∗]”, but find that

2
Note that this CFG is not in normal form.

https://sites.google.com/site/reinamlearning/
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дenchar →′
0
′ | ′A′ | ′a′

nbchar → дenchar | s | t | ′!′ | ′”′ | ′#′ | ′$′ | ′%′ | ′&′ | ′′′

| ′,′ | ′ .′ | ′/′ | ′ :′ | ′;′ | ′ <′ | ′ =′ | ′ >′

| ′@′ | ′_′ | ′8′ | ′ ∼′

...

sinдle → sinдle ′[′ tok ′]′ | sinдle ′[′ ′ ∧′ tok ′]′

| sinдle ′[′ ′ =′ tok ′ =′ ′]′ | sinдle ′[′ ′ .′ tok ′ .′ ′]′

| sinдle ′[′ ′ :′ tok ′
:
′ ′]′

r eдex → sinдle | r eдex sinдle

reдex → r eдex ′\′ ′(′ r eдex ′\′ ′)′

Figure 2: The ground-truth grammar of Grep (some rules are
omitted).

this generalization is invalid. Thus, Glade is unable to insert the

′ =′ both before and after “(a)∗” to generalize the grammar to cover

“[= (a)∗ =]”.
This example demonstrates two shorcomings of Glade. First, it

shows that Glade is very sensitive to the given seed inputs. For

example, Glade will not cover “[= (a)∗ =]” unless the user provides
a seed input that includes an expression of the form “[= a =]”. In
the evaluation of Glade’s grammar generation, the authors use 50

seed inputs that are randomly generated from the ideal grammar.

However, in a real world scenario, the developers using Glade most

likely do not know the ideal grammar—otherwise, they would not

need to use Glade. Therefore, we can expect that the quality of

seed inputs will be far worse than those sampled from the ideal

grammar.

Additionally, the grammar of Grep queries is very coarse in the

sense that special characters can be used as both the content of

queries as well as control characters in the queries. This property

makes Grep challenging for Glade, since the seed inputs must cover

the behaviors of all the special characters. Thus, randomly gener-

ated seed inputs are not enough for Glade to synthesize the desired

grammar.

Since the quality of seed inputs greatly affects the performance of

Glade, we propose to use test generation tools such as Pex [38, 40]

to automatically generate seed inputs. Pex is a white-box automated

testing tool based on dynamic symbolic execution. It explores pos-

sible program execution paths to generate test inputs that cover as

many parts as possible of the program. Our results show that we

substantially increase both the precision and the recall on the Grep

benchmark with the help of Pex.

The second shortcoming is that Glade works very hard to avoid

overgeneralizing; even when overgeneralization occurs, it is due

to a shortcoming in the checks used to detect overgeneralization

rather than a deliberate choice. In our example, to generalize “[.a.]”
to a grammar that covers “[= a =]”, Glade would have to perform

character generalization in two places simultaneously (i.e., at each
of the two ‘=’ characters). If we instead allow for overgeneralization,

then we can keep the intermediate grammar “([= a(= | .)])∗” after

applying character generalization to the second “=”. Note that this

grammar can generate the input “[= a.]” being rejected by Grep,

so Glade does not retain this generalization. However, if we sub-

sequently apply another character generalization to the first
′ =′,

then grammar can be transformed into “([(= | .)a(= | .)])∗”, which

increases coverage since it now covers “[= a =]”. Thus, Glade’s
strategy of “no overgeneralizations allowed” makes performing this

pair of generalization steps impossible.

In contrast, REINAM represents the grammar as a PCFG and

uses reinforcement learning to adjust the probabilities of this PCFG

to improve performance.
3
Thus, REINAM can retain some amount

of overgeneralization at each step, enabling it to achieve larger

coverage while sacrificing only a small amount of accuracy. This

ability is even more powerful if the ideal grammar is not context-

free. In this case, REINAMwould learn an overgeneralized grammar

that can achieve high coverage, whereas Glade would frequently

fail to generalize due to non-context-free constraints on valid inputs

that it is unable to capture.

Finally, the third shortcoming of Glade is that the generalization

operators are divided rigidly into two steps—i.e., repetition and

alternation in Step 1, and merging in Step 2. Glade performs only

the repetition and alternation in Step 1 and transforms the resulting

regular expression into a CFG in Step 2. However, the repetition

and alternation are still viable and often needed in Step 2.

For example, consider Figure 3. Suppose that the left-most gram-

mar is an intermediate state during execution of Step 2 of Glade.

The middle and right grammar are constructed by first applying an

alternation operator that changes the production of T form P Q to

P | Q (left to middle), and then applying a merging operator on the

symbols T and S . However, in Glade, such a generalization is not

possible since repetition and alternation are not performed in Step

2. In contrast, REINAM combines the two steps of Glade—REINAM

can perform any of the different kinds of generalization steps on

the current CFG.

4 REINAM
At a high level, REINAM takes as input the target program for which

we want to synthesize an input grammar, and then proceeds in two

phases. In Phase 1, REINAM generates high-variety, high-quality

seed inputs using automatic test generation (e.g., the symbolic

execution engine Pex [38]), and then uses an existing grammar

synthesizer (e.g., Glade) to synthesize an initial CFG. In Phase 2,

REINAM converts the CFG from Phase 1 to a PCFG, and then

uses reinforcement learning to refine this PCFG. An overview of

REINAM is shown in Figure 4.

Reinforcement learning consists of iteratively performing five

steps: (i) apply generalization operators, (ii) sample strings from the

PCFG, (iii) calculating the reward for each production rule, (iv) ad-

justing the probability distribution based on the calculated reward,

and (v) removing low-probability rules. Note that the generalization

operators applied to modify the current PCFG can be customized for

different grammars, including operators beyond the ones described

in this paper, thereby bringing flexibility to our approach.

4.1 Phase 1: Generating Seed Inputs using Pex
Phase 1 first runs a symbolic execution engine (we use Pex [38]) on

the assembly code of the target program. Next, it runs a grammar

synthesizer (we use Glade) using the output of the engine as the

3
Note that Glade uses a PCFG to generate new inputs only for fuzzing, not for synthesis.
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S →′ a′ T ′a′

T → P Q T | P Q
P → ...

Q → ...

=⇒

S →′ a′ T ′a′

T → P T | Q T | P | Q
P → ...

Q → ...

=⇒

S →′ a′ S ′a′

S → P | Q | P S | Q S
P → ...

Q → ...

Figure 3: An example of an initial grammar (top left), and
two generalization steps (top right, bottom).

Phase 1

Phase 2

Source Code

Symbolic 
Execution 

Engine

Seed Inputs

Language 
Inference 
Algorithm

Initial CFG

Initial PCFG Generalization Mutated PCFG

Input Sampling

Reward 
Calculation

Probability 
AdjustmentRefined PCFG

Result CFG

Figure 4: Workflow of REINAM.

seed inputs. Pex performs path-bounded dynamic symbolic execu-

tion by repeatedly executing the program to generate path-based

constraints and using an SMT (satisfiability modulo theory) solver

to solve these constraints to obtain the program inputs that would

lead to different execution paths. As discussed in Section 3, the

quality of a set of seed inputs is primarily determined by the var-

ious “categories” of inputs that the set can cover, corresponding

to inputs that achieve high code coverage. Test generation tools

such as Pex are designed to generate inputs that achieve high code

coverage.

4.2 Phase 2: Generalizing PCFGs via
Reinforcement Learning

Initializing the PCFG. Phase 2 first converts the CFG from Phase

1 to a PCFG. For each nonterminal S , we count the number k of

production rules that expand S (i.e., S is on the left-hand side of the

rule); then, we assign each of these rules probability
1

k .

Reinforcement Learning. Reinforcement learning (RL) is an

area of machine learning inspired by behavioral psychology. The

basic idea is that software agents take actions in the environment
to maximize a given metric called the reward. In our context of the

grammar synthesis problem, these concepts are

• Agent: The PCFG.
• Environment: The target program.

• State: A partial derivation of the PCFG (i.e., a sequence α
consisting of both terminal and non-terminal symbols).

• Action: The choice of the production rule to apply to one

non-terminal symbol in α in current state.

• Reward: Whether the constructed input is accepted by the

target program—i.e., 1 if it is accepted and 0 if it is rejected.

In other words, the agent is taking actions that choose producitons

used to construct a program input. For the PCFG agent, the pro-

ductions are chosen randomly according to the PCFG probabilities;

we describe this process in detail below. The reward is whether the

input constructed by the agent is accepted by the program.

The goal of RL is to optimize parameters of the agent so it takes

actions that maximize the reward. The purpose in our context is

to increase the quality (i.e., precision and recall) of the grammar.

However, existing RL algorithms are designed to maximize real-

valued parameters [30]. In contrast, we may also need to modify the

structure of the PCFG itself (i.e.,which productions are available). To
do so, we interleave a traditional RL algorithm with the application

of generalization operators to the PCFG. In particular, we iteratively

perform the following: (i) apply a generalization operator, (ii) run

a traditional RL algorithm—in particular, policy gradients [37]—to

adjust the PCFG probabilities, and (iii) remove any production rule

with probability lower than a fixed threshold from the PCFG.

Generalization operators.We use four kinds of generalization

operators. First, we use the character generalization operator de-

scribed in Section 2, adapted to work for PCFGs. We assign the

probability of
1

# current characters
to the newly added character and

reduce other probabilities proportionally.

Second, the repetition operator changes part of the grammar

from “p” to “p(p)∗”. In particular, the operator picks a production

rule and tries to repeat the symbols on the right-hand side—i.e., for
the rule S → P Q , we would try two generalizations: (i) add the

rule S → P P ∗ Q , and (ii) add the rule S → P Q Q∗.
Third, the alternation operator changes part of the grammar

from “pq” to “p | q”. In particular, the operator picks a production

rule, randomly decomposes the right-hand side of the rule into two

parts, and replaces the right-hand side with an alternation of these

two parts—e.g., for the rule S → P Q ′a′, it may add new rules

S → P1 ‘a′ and P1 → P | Q . The probability of the original rule

S → P Q ′a′ is split equally between S → P Q ‘a′ and S → P1 ‘a′,
and the probability of P1 → P | Q is 1.

Fourth, the merging operator merges two nonterminal symbols

by substituting all usage of one symbol for another. In particular,

to merge P and Q , we add rules P → Q and Q → P . We assign

probability
1

# production rules of P to P → Q and reduce the other

probabilities proportionally, and similarly for Q → P .
These generalization operators have two advantages: (i) they are

already used by Glade (and other grammar synthesis algorithms use

similar operators [22, 26]), and (ii) they are simple to implement.

Constructing inputs using a PCFG.Weperform the following

steps to inputs from our PCFG:

• Initialize α = S (where S is the start symbol of the PCFG).

• Whileα contains non-terminal symbols, uniformly randomly

choose a random non-terminal A in α , and then randomly

apply a production rule toA based on the PCFG probabilities.

• Return α = α1...αk (now, each αi is a terminal symbol).

After sampling an input, we execute the program on this input and

record whether the program accepts or rejects the input.
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Probability adjustment. Recall that in our PCFG, each proba-

bility quantifies the correctness of the corresponding production

rule—i.e., whether this rule exists in the ideal grammar. Unlike

Glade, we allow occasional overgeneralization. In Glade, if any

input generated using a new production rule is rejected by the

program, then that rule is rejected. In contrast, our algorithm does

not necessarily reject a rule if the rule fails a check as long as it

produces at least one input that is accepted. In particular, we use re-

inforcement learning to automatically adjust the probability of each

production rule. To do so, we track which new production rules

are used to construct each input. Then, we define the following

aggregate reward for each new production rule ri :

reward(ri ) =
# accepted inputs that use ri

# inputs that use ri

We use the policy gradient algorithm to tune the PCFG probabili-

ties [37]. We consider different non-terminal symbols separately

since the probability of a production rule is related only to those of

other production rules for the same non-terminal symbol. Consider

a non-terminal symbol A and the probability distribution for its

productions is θ—i.e., A has k production rules rA
1
, ..., rAk , and the

probability for rule rAi is θ (rAi ). The policy gradient [37] update

gives us the following adjusted probabilities θ ′:

θ ′ = θ + η · ∇θ logπθ (st ,at ) · v,

where πθ (st ,at ) is the probability that the agent chooses action at
in state st , η is a fixed learning rate, and v is the reward. In our

setting, we have

θ ′(rAi ) = θ (r
A
i ) + η · ∇θ log(θ (r

A
i )) · reward(r

A
i )

= θ (rAi ) + η ·
reward(rAi )

θ (rAi )
(1)

Finally, we normalize the new probability distribution θ ′(rAi ) so it

sums to 1.
4
After each application of a generalization operator, we

iteratively sample new inputs and run the policy gradient update

until the PCFG probabilities converge. We use the convergence

threshold
1

10·(# production rules of A)—i.e., we terminate if no probabil-

ity changes by more than this threshold.

Rule removal. Finally, after adjusting the probabilities, our al-
gorithm removes production rules with probability lower than the

convergence threshold (or equivalently, we set their probabilities

to zero). This step plays the role of undoing failed generalization

operators, and also avoids wasting computation time on adjusting

the probabilities of incorrect production rules.

4.3 Discussion
Negative probability adjustments. Note that in the probability

adjustment formula (1), the gradient

reward(rAi )

θ (rAi )
is non-negative.

Thus, a potential concern is that the gradient can only ever increase

θ (rAi ). The reason why this is not an issue is that because after

taking a gradient step, we normalize the updated probabilities θ ′ so
that

∑
i θ

′(rAi ) = 1. In particular, if a production rule rAi achieves

higher reward reward(rAi ), then the gradient computed using for-

mula (1) is larger, so the probability increases—i.e., θ ′(rAi ) > θ (rAi ).

4
This normalization can formally be derived using Lagrange multipliers.

Conversely, if rAi achieves lower reward, then the probability be-

comes decreases—i.e., θ ′(rAi ) < θ (rAi ).
Time complexity.We can compute the time complexity of our

approach by estimating the number of sampling and probability

adjustment steps needed for the convergence. Suppose the threshold

used by us to determine stability of the probability is ϵ (i.e., if
no probability changes by more than ϵ , then we terminate this

round of RL and start the next generalization step), and assume that

the set of sampled inputs produces the same reward each time.
5

Then, the gradient difference each step is η ·
reward(rAi )

θ (rAi )
, where η ·

reward(rAi ) remains constant by assumption. Thus, θ (rAi ) converges
proportionally to the ratio of accepted strings among all strings

using that rule. The number of sampling and adjustment steps for

convergence is approximately O( 1

η ·ϵ ), which is constant.

Therefore, the (expected) time complexity of our approach is

O(n ·m · RL(n)), where n is the number of symbols in the grammar,

RL(n) is the time needed for one iteration of RL, andm is the total

number of possible production rules. In particular, O(n ·m) is an

upper bound on the number of generalizations that may be tried

(while generalization operators can introduce new production rules,

but we apply only generalization to the initial production rules set).

Also, RL(n) equals the time used for sampling strings and executing

the program on these input strings. The time used for probability

adjustment is negligible. By our previous discussion, each gen-

eralization takes O
(

1

η ·ϵ

)
rounds of sampling and adjustment, so

RL(n) = O
(
(total # strings sampled)·(average execution time)

η ·ϵ

)
. We discuss

the choice of the number of strings sampled in our appendix avail-

able on our project website.

PCFG probabilities. We note that the PCFG probability of a

production rule represents how likely a resulting string would

be accepted by the program if we apply that rule, not the actual

frequency with which the production rule used to construct real-

world inputs. The reason is that we do not have any information

about the distribution of real-world program inputs. As mentioned

above, we initially set the probability of each production rule rAi for

a fixed non-terminal symbol A to be constant. Afterwards, we are

adjusting the probabilities such that they converge proportionally

to the ratio of accepted strings among all strings using a given

rule. We then eliminate production rules with small probability

(corresponding to unreasonable overgeneralizations).

5 EMPIRICAL EVALUATION
To evaluate the effectiveness of REINAM and the contribution of

each phase to the effectiveness, we conduct an empirical evalua-

tion on 11 benchmarks. We seek to answer the following research

questions:

• RQ1: How effective is the final grammar synthesized by

REINAM in terms of precision and recall?

• RQ2: How effective is the final grammar synthesized by

REINAM in terms of improving fuzz testing?

• RQ3: How do the two phases of REINAM contribute to the

grammar’s precision/recall and performance in fuzz testing?

5
This assumption may not be true in practice due to random noise; we make the

assumption to simplify our analysis of convergence.
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• RQ4: What is the execution time of REINAM?

In RQ1, we compare REINAM with Glade in terms of the pre-

cision and recall of the final synthesized grammar. We compute

the two metrics using the manually written ideal grammar for the

benchmarks as ground truth. In RQ2, we evaluate the capability of

REINAM to learn a grammar for a fuzz testing task. We feed the

grammar synthesized by REINAM to a grammar-based fuzzer to

perform fuzz testing on programs. We compare our results with

Glade and an industrial fuzzer. In RQ3, we compare the grammar

after Phase 1 of our algorithm to the final grammar after Phase 2 of

our algorithm. We compare the difference both in precision/recall

and in fuzz testing coverage. In RQ4, we measure the time used by

each phase of REINAM.

5.1 Benchmarks
We include the benchmarks of manually written grammars from

the Glade evaluation [14]:

• A grammar used to match URLs [3]. We separate this gram-

mar into four benchmarks based on the protocols (i.e., “http”,
“https”, “mailto”, and “nntp”). We test whether REINAM can

infer a complete grammar starting from seed inputs includ-

ing only one of the four protocols.

• A grammar for the regular expressions accepted as input by

GNU Grep [7]. This grammar is shown in Figure 2.

• A grammar for a simple Lisp parser [2], including support

for quoted strings and comments.

• A grammar for an XML parser [5], including all XML con-

structs except that only a fixed number of tags are included

(to ensure that the grammar is context-free). We use the .NET

XML library and it has an alphabet of tags to choose from.

Neither Glade nor REINAM are provided with the alphabet.

• A grammar for a Cascading Style Sheets (CSS) parser [4];

CSS is a language used to describe the presentation of a

document written in a markup language such as HTML.

In addition to the Glade benchmarks, we include a grammar used

to match IPv4 and IPv6 addresses, and two benchmarks generated

from ANTLR [6], a widely used parser generator. We use these

two benchmarks to evaluate the performance of REINAM on syn-

thesizing a grammar for a program generated by an automatic

parser generator. We select the following grammars (from the offi-

cial website of ANTLR [6]) that have less than 100 non-terminal

symbols:

• A grammar used to match CSV files [8].

• A grammar used to describe simple first-order logic (FOL)

formulas [9].

The data and benchmarks of our evaluation are available on our

project website.

5.2 Evaluation Setup
Precision and recall. Precision measures the probability that a

randomly generated string from our synthesized lanugage L is ac-

cepted by the target program (i.e., included in the ideal language

L∗), and recall measures the probability that a randomly gener-

ated string from the ideal language L∗ belongs to our synthesized

language L. In other words, the precision of REINAM indicates

whether our synthesized language L overapproximates the ideal

language L∗, and the recall indicates whether L underapproximates

L∗. We calculate precision as

|Eprec∩L∗ |
|Eprec |

, where Eprec is a set of

1000 strings randomly sampled from L, and we calculate recall as

|Erec∩L |
|Erec |

, where Erec is a set of 1000 strings randomly sampled from

a reference grammar used to specify L∗.
Generation of seed inputs. We use Pex’s dynamic symbolic

execution capabilities to generate input strings that are accepted

by the parser, and then use these strings as seed inputs to Glade.

Sampling from PCFG. We sample a string matching a nonter-

minal A in the CFG G as follows:

• Randomly select a production A → A1...An for A.
• For each i ∈ {1, ...,n}, ifAi is a nonterminal, then recursively

sample a string matching Ai , and if Ai is a terminal, then

return Ai .

For simplicity, we use a uniform distribution over productions when

sampling strings to measure precision and recall. In contrast, our

RL algorithm samples strings using the probabilities in the PCFG

G. Here, we discard the probabilities since they do not necessarily

capture the true distribution of inputs.

Programs used for evaluation. Because Pex requires source

code to perform dynamic symbolic execution and generate program

inputs, we write C# programs to parse the grammars described in

Section 5.1. We use parsers in the .NET system library to parse

the grammars of URLs, IP addresses, regular expressions, and XML

documents. We also test against an open-source Lisp parser and

an open-source CSS parser. The programs for the two ANTLR

grammars are generated by using ANTLR in C# mode.

Fuzz testing. Fuzz testing (or fuzzing) is an automated software

testing technique. An effective fuzzer generates “sufficiently valid”

inputs and then monitors the execution of the program on these

inputs. One of the purposes of using fuzz testing is to observe the

behavior of the target program under various inputs, so we want

the fuzzer to achieve high code coverage.

Grammar-based fuzzer. Both Glade and REINAM synthesize a

CFG L that approximates the ideal language L∗. We use a grammar-

based fuzzer to leverage the synthesized grammar to improve

fuzzing. The fuzzer is similar to the step of input sampling described

earlier. We randomly sample 1000 strings from the grammar, using

a uniform distribution over productions. As before, for REINAM,

we use a uniform distribution instead of using the PCFG probabili-

ties since these probabilities have no relation to the distribution of

real inputs. Then, we execute the program on the sampled inputs

and use Visual Studio to measure the code coverage as the number

of blocks covered. We use the code coverage achieved using the

manually written ideal grammar as an upper bound. We compare

our fuzzer against a state-of-the-art fuzzer that does not employ

grammar-based fuzzing, Radamsa [10]. Radamsa combines random

bit-flipping with domain-independent heuristics designed to test

edge cases to create high quality mutation. Note that the Learn &

Fuzz [21] tool is not available to us, so we cannot compare against

their approach.

5.3 RQ1: Precision and Recall
As shown in Table 1, REINAM performs well across all benchmarks.

The row “LI” shows the result of the grammar synthesized by solely
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Table 1: Precision (P) and Recall (R).

Benchmark

http https nntp mailto ip css xml grep lisp csv fol

P R P R P R P R P R P R P R P R P R P R P R

LI 0.79 0.06 0.77 0.07 0.80 0.05 0.99 0.13 1.00 0.50 0.99 1.00 0.32 1.00 0.79 0.02 0.65 1.00 1.00 0.24 0.90 0.30

LI+SE 0.96 0.50 0.96 0.64 0.97 0.49 0.97 0.42 0.91 1.00 0.99 1.00 0.56 1.00 0.98 0.40 0.91 1.00 1.00 0.40 0.88 0.45

LI+SE+RL 0.87 0.77 0.91 0.70 0.95 0.82 0.93 0.77 0.82 1.00 0.86 1.00 0.50 1.00 0.78 1.00 0.73 1.00 0.94 1.00 0.75 0.45

Figure 5: Code coverage achieved by different fuzzers (as per-
centages)

Table 2: Coverage (numbers are #basic blocks covered in

code).

Benchmark http https nntp mailto ip lisp css xml grep csv fol

Radamsa 1579 1558 1461 1157 2272 131 737 1349 1819 82 216

LI 1625 1623 1618 1691 2241 175 1819 1349 1819 88 348

LI+SE 1750 1796 1673 1829 2318 176 1642 1349 1819 88 353

LI+SE+RL 1784 1811 1716 1863 2325 211 1809 1349 1819 92 353

Total 2164 2164 2164 2164 2421 211 1948 1349 1819 111 414

LI (Language Inference algorithm): results of Glade only

LI+SE (Symbolic Execution engine): results of REINAM Phase 1

LI+SE+RL (Reinforcement Learning): results of REINAM Phase 1+2

Radamsa: code coverage achieved by Radamsa

running Glade, while the row “LI+SE+RL” shows the result of the

final grammar synthesized by REINAM. On average, the precision

stays almost the same, with a less than 1% change (-0.36% on av-

erage), while the recall improves drastically by 49.2%. This rate is

calculated by subtracting the number on the third row by the first

row and taking the average across benchmarks. On all of our 11

benchmarks, REINAM outperforms Glade in recall without losing

precision. In the three benchmarks “css”, “xml”, and “lisp”, Glade

already achieves 1.0 recall, indicating that the grammar synthe-

sized by Glade already covers the entire input space of the three

programs. For these benchmarks, REINAM cannot further improve

recall, but manages to keep the perfect score as expected.

As mentioned in Section 5.1, we intentionally split the “url” gram-

mar into four benchmarks “http”, “https”, “nntp”, and “mailto”. For

these four benchmarks, we see a substantial increase in recall. Glade

performs poorly, with recall lower than 0.15 on all four benchmarks,

due to the limitation of Glade that the quality of the synthesized

grammar highly depends on the quality of the seed inputs. Since

Glade starts with input strings starting with “http” (“https”, “nntp”,

or “mailto” in other three benchmarks) as the seed inputs, Glade

is not able to explore other possible URL protocols. Meanwhile,

REINAM leverages the help of Pex in Phase 1 in order to generate

a set of seed inputs for achieving higher coverage. Therefore, the

final synthesized grammar of REINAM for these four benchmarks

has recall above 0.70 without substantial loss of precision. The “ip”

benchmark is similar. Glade starts with the seed inputs in IPv4, is

unable to generalize the grammar to cover the IPv6 case.

The performance on benchmarks “grep” and “csv” is similar. We

have already analyzed why Glade achieves only 0.02 recall on “grep”

in Section 3.We can see that REINAM gets 1.0 recall—i.e. all possible

strings that can be accepted by the program are covered by the final

synthesized grammar of REINAM.Given that the precision is similar

(0.78 vs. 0.79), the improvement is substantial. The “csv” benchmark

is similar to the “grep” benchmark in the sense that it includes many

characters with special behaviors. In particular, since the grammar

describes all possible CSV files, there are many special characters

that can be in a data field, and several special characters serve

as both separating symbols and content symbols. As discussed in

Section 3, this property makes the benchmark challenging for Glade

since the seed inputs must cover all of these behaviors. Therefore,

REINAM outperforms Glade by improving recall from 0.24 to 1.0.

The case for the “fol” benchmark is unique. Although REINAM

improves recall from 0.3 to 0.45, it decreases precision from 0.90

to 0.75. This benchmark is the only one for which REINAM can-

not achieve a recall above 0.5. Intuitively, first-order logic (FOL)

formulas are more complex to write. For example, to write a valid

HTTP address, it only needs to start with “http://” and have a “.”

between the site and domain segments. However, FOL formulas are

much more strictly formatted. Intuitively, the ideal language of FOL

formulas is quite sparse, indicating that if we consider the entire

input space of a FOL parser, it would be much smaller than the

input space of a URL parser. Therefore, the generalization operators

in REINAM may have difficulty generalizing to the complicated

structure of the FOL grammar.

5.4 RQ2: Application in Fuzzers
In the fuzz testing experiment, we can see from Table 2 and Figure 5

that REINAM greatly improves code coverage. If we compare the

rows “Radamsa”, “LI”, and “LI+SE+RL”, we find that on average,

REINAM improves coverage by 18.4% compared to the Radamsa

fuzzer and by 4.9% compared to Glade’s grammar-based fuzzer.

In the benchmarks “xml” and “grep”, all fuzzers achieve perfect

code coverage. Interestingly, the grammar synthesized by Glade

(“LI”) achieves only 0.02 recall in Table 1, but the fuzzer using this

grammar still achieves perfect code coverage. The reason is that

different strings generated from the same grammar can share same

or similar execution paths that would cover similar basic blocks in

code. Therefore, coverage is not always correlated with recall.

Ignoring the two benchmarks with perfect coverage for all ap-

proaches, REINAM outperforms the naïve fuzzer on all benchmarks.
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Table 3: Execution time breakdown of REINAM (number in seconds and percentage of total time).

Benchmark http https nntp mailto ip lisp css xml grep csv fol

SE 900 (33.5%) 900 (32.3%) 900 (37.8%) 900 (35.3%) 14 (22.2%) 208 (20.5%) 900 (62.5%) 605 (32.2%) 44 (7.8%) 190 (50.5%) 307 (40.8%)

LI 624 (23.2%) 834 (29.9%) 84 (3.5%) 825 (32.3%) 14 (22.2%) 358 (35.2%) 49 (3.4%) 01 (0.0%) 167 (29.7%) 4 (1.1%) 11 (1.5%)

RL 1160 (43.2%) 1051 (37.7%) 1398 (58.7%) 827 (32.3%) 35 (55.6%) 450 (44.3%) 492 (34.1%) 1273 (67.8%) 351 (62.5%) 182 (48.4%) 435 (57.8%)

Total 2684 2785 2382 2612 63 1016 1441 1878 562 376 753

When compared to Glade’s grammar-based fuzzer, REINAM per-

forms slightly worse in the “css” benchmark, but outperforms Glade

on all other benchmarks. This advantage is due to the benefit that

we get from allowing overgeneralization, since REINAM produces

more rejected inputs than Glade. These rejected inputs cover parts

of source code that the accepted inputs cannot cover—e.g., the code
used to handle invalid inputs.

Another observation is that the Radamsa fuzzer performs poorly

on the benchmarks of parenthesis matching pattern “lisp”and “css”,

and also on the benchmark “fol”. Especially for the “css” benchmark,

Radamsa cannot even reach 40% code coverage. The reason is that

as we discussed, the ideal grammars for “lisp”, “css”, and “fol” are

more structured than those for other benchmarks. The character-

level modifications used by a non-grammar-based fuzzer cannot

synthesize these structured strings, whereas the generalization

operators used by REINAM can infer these kinds of structures.

5.5 RQ3: Comparison of Phases 1 & 2
From Table 1, Table 2, and Figure 5, we see that Phase 1 and Phase

2 contribute differently to the improvements over Glade in terms

of precision/recall and fuzzing.

In RQ1, if we compare row “LI+SE”, which shows the result of

the grammar synthesized by running Glade on the Pex-generated

seed inputs (REINAM Phase 1), against row “LI”, which shows the

result of synthesized grammar of Glade itself, we find that Phase 1

on average improves precision by 9.2% and recall by 29.1%.

In the three parenthesis matching pattern benchmarks “css”,

“xml”, and “lisp”, Glade already achieves 1.0 recall, which cannot be

improved upon. However, Phase 1 does improve precision in both

the “xml” and “lisp” benchmarks, and maintains the same precision

in the “css” benchmark. The reason is that Pex generates a set of

seed inputs with higher coverage. As described in Section 2, the

first step of Glade directly synthesizes a regular grammar that only

captures the seed inputs. Therefore, a set of seed inputs with higher

coverage would result in an initial regular grammar with higher

coverage, so fewer further generalizations are needed to infer the

ideal grammar. Since imprecision happens during generalization,

fewer generalizations result in higher precision. We observe similar

behaviors for other benchmarks, especially when the grammar

synthesized by Glade has low precision.

However, for the three benchmarks “fol”, “ip”, and “mailto”, we

find that the grammar synthesized byGlade already achieves perfect

or near perfect precision. In these cases, recall improves substan-

tially after Phase 1; however, precision after Phase 1 is reduced. This

reduction is a sacrifice for achieving better recall. The reason is that

a set of seed inputs with higher coverage brings more opportunities

for generalization, but also causes the check mechanism in Glade to

fail more frequently, resulting in more uncaught overgeneralization,

which thereby reduces precision.

Next, in RQ1, if we compare row “LI+SE”, which shows the result

of the grammar synthesized by running Glade on the Pex-generated

seed inputs (REINAM Phase 1), and row “LI+SE+RL”, which shows

the result of the final grammar synthesized by REINAM, we find

that on average, the results after Phase 2 improve recall by 20.1%

but worsen precision by 9.5%.

In particular, we observe that precision decreases for all bench-

marks compared to the results of Phase 1. This finding is expected

since the reinforcement learning algorithm in Phase 2 allows over-

generalization to further generalize the grammar. Compared to

the “no overgeneralization allowed” strategy used in Glade, our

allowance of overgeneralization leads to reduced precision.

Furthermore, we observe that in the benchmarks from the URL

grammar (i.e., “http”, “https”, “nntp”, and “mailto”), and the “grep”

and “csv” benchmarks, after Phase 1, the recall is still low. The high-

est is “https” with a recall of 0.64; all others are less than 0.50. The

reinforcement learning in Phase 2 further generalizes the grammar

to achieve higher coverage. Table 1 shows that among these six

benchmarks, recall improves by an average of 35.1% over Phase

1 alone. In addition, “grep” and “csv” actually achieve 1.0 recall,

indicating that the final grammar synthesized by REINAM can per-

fectly cover the entire program input space. This result suggests

that our reinforcement learning approach is effective especially in

cases when the input space is large but existing approaches can

synthesize a grammar that covers only part of the input space.

In the fuzz testing task, the average improvement in coverage

achieved by the grammar-based fuzzer using REINAM’s grammar

(row “LI+SE+RL”) to the coverage achieved by the grammar-based

fuzzer using the Phase 1 grammar (row “LI+SE”) is 3.2%. Similarly,

the average improvement of row “LI+SE” to row “LI” is 1.7%. From

the data, we can see that Phase 2 contributes more to the improve-

ment in coverage. This comparison shows the benefits of keeping

some overgeneralized rules in our RL algorithm. We see that for

benchmarks such as “css”, Phase 2 does not increase recall, which

remains at 1.0. However, the final synthesized grammar improves

coverage by 8.6% (1809 vs. 1642) compared to Phase 1. Thus, while

Phase 2 does not improve the coverage of the ideal language, it

improves the actual code coverage acheived using fuzz testing. This

result further demonstrates that our reinforcement learning ap-

proach is effective not only for exploring the input space of all valid

program inputs, but also for generating invalid program inputs that

cover execution paths that cannot be covered by valid inputs.

5.6 RQ4: Execution Time
We can see from Table 3 that the RL phase (Phase 2) takes an average

of 49.2% of the total execution time. Pex takes an average of 34.2%

of the time in Phase 1. The execution time of Pex can be tuned by

setting the timeout parameters. The timeout in the evaluation is

set to 900 seconds; Pex times out in five benchmarks.
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Based on the discussion in Section 4.3, the execution time of the

RL phase is primarily dependent on the size of the grammar and

the execution time of the program. The time overhead of the RL

phase is unsatisfying; however, the bottleneck in Phase 2 is waiting

for the results of executing the program on sampled strings. This

step can be parallelized by executing the program on k sampled

strings simultaneously. Currently, we execute the program on 1500

sampled strings in parallel on 4 threads. The results can be improved

by parallelizing the program execution across more threads.

6 THREATS TO VALIDITY
Threats to external validity. Our evaluation uses manually writ-

ten ideal grammars to measure precision and recall. Additionally,

the grammars in evaluation benchmarks may not be complicated

enough to reflect real-world scenarios. We attempt to combat this

threat by selecting complex grammars such as the CSS grammar.

Threats to internal validity.We randomly sample strings from

the ideal grammars for Glade to match with the increased num-

ber of seed inputs (generated by Pex) included in REINAM. The

randomly generated seed inputs for Glade may not be sufficiently

representative, and may affect Glade’s effectiveness. The technique

by which we sample from the PCFG is simpler and is potentially

more biased compared to more sophisticated techniques. Also, a

different learning rate η may affect the evaluation results. Never-

theless, we synthesize grammars using different η, and find that the
results are quite close—i.e., less than 0.5% difference in precision

and recall and no difference in coverage.

7 RELATEDWORK
Our approach draws on both existing work in grammar inference

as well as techniques used in machine learning and automated test

generation.

Inferring input grammars.Höschele et al. [22, 24] propose the
AUTOGRAM approach based on dynamic taint tracing to extract

syntactic entities of a given seed input. By tracing the data flow of

particular characters of the seed input in the parsing method of the

target program, AUTOGRAM decomposes formats into meaningful

fields. However, since AUTOGRAM traces only paths taken by a

given seed input, it requires that the given set of seed inputs capture

all meaningful features of the input grammar in order to infer a

complete grammar.

Coverage-guided fuzzing. In recent years, coverage-guided

fuzzing has achieved substantial success with tools such as Amer-

ican Fuzzy Lop (AFL)
6
and Fairfuzz [26]. However, AFL does not

support fuzzing .NET executables, and does not have an appropriate

replacement that we can compare to.

Many fuzzers fail to explore paths that involve a difficult check

such as string-equality comparisons. Recent advances in grey-box

fuzzing have utilized lightweight program analysis to mitigate this

problem. Steelix [27] tracks progress in string-comparison checks

to incrementally discover inputs that can bypass these checks. An-

gora [19] solves path constraints via a searching algorithm based on

gradient descent. Other tools, such as Driller [36], use more heavy-

weight program analysis to bypass these checks by symbolically

executing an intermediate representation and solving constraints to

6
http://lcamtuf.coredump.cx/afl/

bypass these checks. REINAM is able to discover the “constants” in

grammar to bypass these checks in the grammar-inference process.

As we can see in the inference of the URL protocol, the discovery

of protocol names such as “mailto” and “https” is unlikely to be

discovered using grey-box approaches.

Machine learning for fuzzing. Godefroid et al. [21] use a re-

current neural network to learn an input model and generate inputs

for fuzzing with the Learn & Fuzz algorithm. They have recently

formalized fuzzing as a reinforcement learning problem [17]. Their

work does not produce an explicit grammar, but instead uses a

generative deep neural network to serve as the grammar.

PCFG inference from examples. The problem of inferring a

probabilistic context free grammar (PCFG) from a set of examples

has been studied extensively for the purpose of natural language

processing. Belz [15] extends standard split/merge grammar infer-

ence techniques to optimize grammars from examples, but requires

a large corpus of annotated examples, which are not viable for infer-

ring program input grammars. Scicluna and Higuera [35] propose

an unsupervised approach to grammar inference without anno-

tated examples. While they show that this approach works for

small samples with respect to NLP standards (the polynomial num-

ber of examples with respect to the number of productions in ideal

grammars), this approach is still not viable for inferring program

input grammars. REINAM addresses these issues by expanding seed

inputs using Pex before synthesizing the grammar.

8 CONCLUSION
We have presented REINAM, a reinforcement learning approach

for synthesizing a PCFG that encodes the language of valid pro-

gram inputs. To address the challenge of lacking high-variety and

high-quality seed inputs faced by the existing approaches, REINAM

includes an industrial symbolic execution engine, Pex [38], to gen-

erate initial seed inputs for the given target program, and includes

a grammar-generalization loop to proactively generate additional

inputs during grammar inference. In the grammar-generalization

loop, instead of eliminating production rules in a candidate gram-

mar that may not be accurate initially (as done by Glade [14], an

existing state-of-the-art approach), REINAM keeps and evolves

inaccurate grammars, enabling it to infer ground-truth grammars

whose inference requires composite generalizations from the initial

seed inputs. To efficiently search for such composite generaliza-

tions in a huge search space of candidate generalization operators,

REINAM includes a novel formulation of the search problem as a

reinforcement learning problem. Our evaluation results show that

REINAM outperforms Glade on both precision and recall of the

synthesized grammars, and fuzz testing based on REINAM substan-

tially increases the coverage of the space of valid inputs. REINAM is

often able to synthesize a grammar covering the whole valid input

space without decreasing the precision of the grammar.
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