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ABSTRACT
Neural Machine Translation (NMT) systems have received much
recent attention due to their human-level accuracy. While existing
works mostly focus on either improving accuracy or testing accu-
racy robustness, the computation efficiency of NMT systems, which
is of paramount importance due to often vast translation demands
and real-time requirements, has surprisingly received little atten-
tion. In this paper, we make the first attempt to understand and
test potential computation efficiency robustness in state-of-the-art
NMT systems. By analyzing the working mechanism and imple-
mentation of 1455 public-accessible NMT systems, we observe a
fundamental property in NMT systems that could be manipulated
in an adversarial manner to reduce computation efficiency sig-
nificantly. Our interesting observation is that the output length
determines the computation efficiency of NMT systems instead
of the input, where the output length depends on two factors: an
often sufficiently large yet pessimistic pre-configured threshold
controlling the max number of iterations and a runtime generated
end of sentence (EOS) token. Our key motivation is to generate
test inputs that could sufficiently delay the generation of EOS such
that NMT systems would have to go through enough iterations to
satisfy the pre-configured threshold. We present NMTSloth, which
develops a gradient-guided technique that searches for a minimal
and unnoticeable perturbation at character-level, token-level, and
structure-level, which sufficiently delays the appearance of EOS and
forces these inputs to reach the naturally-unreachable threshold.
To demonstrate the effectiveness of NMTSloth, we conduct a sys-
tematic evaluation on three public-available NMT systems: Google
T5, AllenAI WMT14, and Helsinki-NLP translators. Experimental
results show that NMTSloth can increase NMT systems’ response
latency and energy consumption by 85% to 3153% and 86% to 3052%,
respectively, by perturbing just one character or token in the input
sentence. Our case study shows that inputs generated by NMTSloth
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significantly affect the battery power in real-world mobile devices
(i.e., drain more than 30 times battery power than normal inputs).
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1 INTRODUCTION
Neural Machine Translation (NMT) is a promising approach that
applies neural networks to resolve machine translation problems.
NMT systems have received significant recent attention from both
academia [2, 3, 29, 43] and industry [5, 14, 17–19, 35, 42], due to
its advantages over traditional translation methods (e.g., phrase-
based translation models [30]). For instance, due to being capable
of capturing rather long dependencies in sentences, NMT systems
are seeing a wide adoption in commercial translation systems in-
cluding Microsoft’s translation products [14, 17–19] and Google
Translate [5, 35, 42].

Much research has been done on enhancing the accuracy of
NMT systems [36, 36, 43]. Recently, research [15, 21, 22, 39] has
been conducted to understand the accuracy robustness of existing
NMT systems by developing a series of adversarial test input gener-
ation frameworks that reduce the translation accuracy of existing
NMT systems. While accuracy robustness is clearly important, we
observe that the computation efficiency of NMT systems, partic-
ularly in terms of the latency and energy spent on translating an
input with a specific length, is an equivalently critical property that
has surprisingly received little attention. A common and unique
characteristic of the machine translation domain is the need to
process a huge amount of real-time requests (e.g., Google Trans-
late claims to have been translating over 100 billion words daily
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in 109 languages [5, 35, 42]). The vast demand for translation re-
quests combined with the real-time requirements naturally makes
the computation efficiency of any NMT system be one of the most
critical optimization goals. In this paper, we make the first attempt
in understanding and testing potential vulnerabilities in terms of
computation efficiency of existing NMT systems.
Key observations revealing vulnerabilities on NMT computa-
tion efficiency.Our findings are motivated by several observations.
Particularly, through analyzing the working mechanisms and de-
tailed implementation of 1,455 public-accessible NMT systems (e.g.,
Google T5 [12, 37], Meta [34]), we observe a fundamental property
of NMT systems that could be manipulated in an adversarial man-
ner to significantly reduce computation efficiency. Specifically, we
observe that the computation efficiency of NMT systems is highly
sensitive to different inputs, even those exhibiting just minor dif-
ferences. For instance, slightly modifying an input could incur an
order of magnitude more computation demand (e.g., as shown in
Fig. 2, inserting a character “b” in token “Genäckstück” will increase
the latency of HuggingFace’s NMT systems from 0.876s to 20.382s,
representing an over 20× latency increase). Such dramatic impact
on computation efficiency may occur fundamentally because NMT
systems often need to invoke the underlying decoder with non-
deterministic numbers of iterations to generate outputs [33, 43].
Intuitively, the computation efficiency of NMT systems is deter-
mined by the output length instead of the input, where the output
length depends on two factors: an often sufficiently large yet pes-
simistic pre-configured threshold controlling the max number of
iterations (e.g., as shown in 3, a dominant number of our studied
NMT systems set this threshold to be 500-600, which is significantly
larger than the actual output length in most cases), and a runtime
generated end of sentence (EOS) token. By observing such proper-
ties, our key motivation is that it may be possible to generate test
inputs that could sufficiently delay the generation of EOS such that
NMT systems would have to go through max iterations to satisfy
the pessimistic pre-configured threshold.

This implies an important yet unexplored vulnerability of NMT
systems: adversarially-designed inputs that may cause enormous,
abnormal computation demand in existing NMT systems, thus sig-
nificantly wasting the computational resources and energy and
may adversely impair user experience and even service availability.
Such adversarial inputs could result in devastating consequences
for many real-world applications (also proved by our experiments).
For example, abusing computational resources on commercial ma-
chine translation service providers (e.g., HuggingFace [48]) could
negatively impact the quality of service (e.g., enormously long re-
sponse time or even denial of service). For application domains
that are sensitive to latency or energy, such as mobile and IoT de-
vices, abusing computational resources might consume battery in
an unaffordable fast manner.

Motivated by these observations, we aim to systematically de-
velop a framework that generates inputs to test the robustness
w.r.t computation efficiency of NMT systems. The generated test
inputs may significantly increase the computational demand and
thus hinder the computation efficiency regarding response latency,
energy consumption, and availability. To make such testing prac-
tical, any generated NMT test inputs shall not be attack-obvious.
One objective is thus to make trivial or unnoticeable modifications

on normal textual inputs to generate such test inputs. We present
NMTSloth that effectively achieves our objectives. NMTSloth is de-
veloped based on the aforementioned observation. Specifically,
NMT systems iteratively compute the output token until either
the system generates an end-of-sentence (EOS) token or a pre-
configured threshold controlling the max number of iterations has
been met. For our studied 1455 NMT systems 1, the appearance of
EOS is computed from the underlying DNNs output probability.
NMTSloth develops techniques that could perturb input sentences
to change the underlying DNNs output probability and sufficiently
delay the generation of EOS, thus forcing these inputs to reach
the naturally-unreachable threshold. NMTSloth further develops a
gradient-guided technique that searches for a minimal perturba-
tion (including both character-level, token-level, and structure-level
ones) that can effectively delay the generation of EOS. Applying
this minimal perturbation on the seed input would result in signifi-
cantly longer output, costing NMT systems more computational
resources and thus reducing computation efficiency.
Implementation and evaluation.We have conducted extensive
experiments to evaluate the effectiveness of NMTSloth. Particu-
larly, we applied NMTSloth on three real-world public-available
and widely used (e.g., with more than 592,793 downloads in Jan
2022) NMT systems (i.e., Google T5 [12, 37], AllenAI WMT14 [1],
and Helsinki-NLP [23]). The selected NMT systems are trained with
different corpus and feature diverse DNN architectures as well as
various configurations. We compare NMTSloth against four state-
of-the-art methods that focus on testing NMT systems’ accuracy
and correctness. Evaluation results show that NMTSloth is highly
effective in generating test inputs to degrade computation efficiency
of the NMT systems under test. Specifically, NMTSloth generates
test inputs that could increase the NMT systems’ CPU latency, CPU
energy consumption, GPU latency, and GPU energy consumption
by 85% to 3153%, 86% to 3052%, 76% to 1953%, and 68% to 1532%,
respectively, through only perturbing one character or token in any
seed input sentences. Our case study shows that inputs generated
by NMTSloth significantly affect the battery power in real-world
mobile devices (i.e., drain more than 30 times battery power than
normal inputs).
Contribution. Our contribution are summarized as follows:

• Characterization: We are the first to study and characterize
the computation efficiency vulnerability in state-of-the-art
NMT systems, which may critically impair latency and en-
ergy performance, as well as user experience and service
availability. Such vulnerability is revealed by conducting
extensive empirical studies on 1,455 public-available NMT
systems, which have been downloaded more than 8,286,413
times in Jan/2022. The results show that the revealed vulner-
ability could widely exist due to a fundamental property of
NMT systems.

• Approach: We design and implement NMTSloth, the first
framework for testing NMT systems’ computation efficiency.
Specifically, given a seed input, NMTSloth applies a gradient-
guided approach to mutate the seed input to generate test
inputs. Test inputs generated by NMTSloth only perturb one
to three tokens in any seed inputs.

1https://huggingface.co/models?pipeline_tag=translation&sort=downloads
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• Evaluation:We evaluate NMTSloth on three real-world public-
available NMT systems (i.e., Google T5, AllenAI WMT14,
and Helsinki-NLP) against four correctness-based testing
methods. In addition, we propose a series of metrics (Eq.(4))
to quantify the effectiveness of the triggered computation
efficiency degradation. Evaluation results suggest existing
correctness-based testing methods cannot generate test in-
puts that impact computation efficiency. In contrast, NMTSloth
generates test inputs that increase NMT systems’ latency
and energy consumption by 85% to 3153% and 86% to 3052%,
respectively.

• Mitigation: We propose one lightweight method to miti-
gate possible computation efficiency degradation: running
a detector at runtime for input validation. We evaluate the
performance of our proposed mitigation method in terms
of accuracy and additional overheads. Results confirm the
efficacy and efficiency of our proposed mitigation method.

2 BACKGROUND
2.1 Neural Machine Translation Systems

Encoder Decoder

Input

H

SOS

I Like Reading

I Like Reading

EOSOutput 

1 2 3 4

Figure 1: Working mechanism of NMT systems

Much recent research has been done towards developing more
accurate and efficient machine translation systems [5, 33, 35, 40,
42, 43, 43]. The fundamental of machine translation systems is
the language model, which computes the conditional probability
𝑃 (𝑌 |𝑋 ), where 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑚] is the input token sequence
and𝑌 = [𝑦1, 𝑦2, · · · , 𝑦𝑛] is the output token sequence.ModernNMT
systems apply the neural networks to approximate such conditional
probability 𝑃 (𝑌 |𝑋 ). As shown in Fig. 1, a typical NMT system
consists of an encoder 𝑓𝑒𝑛 (·) and a decoder 𝑓𝑑𝑒 (·). The encoder
encodes the source input 𝑋 into hidden representation 𝐻 , then 𝐻 is
feed into the decoder for decoding. An implementation example of
NMT systems’ decoding process is shown in Listing 1 2. From the
code snippet, we observe that the decoding process starts with a
special token (SOS) and iteratively accesses𝐻 for an auto-regressive
generation of each token 𝑦𝑖 until the end of sequence token (EOS)
or the maximum iteration (e.g., max_length) is reached (whichever
condition is reached earlier). To improve NMT systems’ accuracy, a
common practice is to apply the beam search algorithm to search
multiple top tokens at each iteration and select the best one after
the whole decoding process.

2The code snippet is downloaded from PyTorch NMT tutorial

1 '''

2 Encoding process

3 '''

4 decoded_words = ['<SOS >']

5 for di in range(max_length):

6 decoder_output , decoder_hidden = decoder(

decoder_input , decoder_hidden , encoder_outputs)

7 topv , topi = decoder_output.data.topk (1)

8 if topi.item() == EOS_token:

9 decoded_words.append('<EOS >')

10 break

11 else:

12 decoded_words.append(index2word[topi.item()])

13 decoder_input = topi.squeeze ().detach ()

14 return decoded_words

Listing 1: Source Code of NMT Systems Implementation

2.2 Testing NMT Systems
Although modern NMT systems demonstrate human-level perfor-
mance in terms of accuracy, NMT systems are still far from robust
due to the complexity and intractability of the underlying neural
networks. To improve the robustness of NMT systems, a series
of testing methods have been proposed, which focus on accuracy
testing. The core idea of existing work is to perturb seed input
sentences with different perturbations and detect output incon-
sistency between perturbed and seed outputs. At high-level, the
perturbations in existing work can be categorized into three types.
(i) character-level: This type of perturbations [3, 8, 9, 31, 52] repre-
sents the natural typos and noises in textual inputs. For example,
character swap (e.g., noise→ nosie), order random (e.g., noise→
nisoe), character insertions (e.g., noise → noisde), and keyboard
typo (e.g., noise→ noide) (ii) token-level: This type of perturbations
[7, 31, 38, 39, 49, 50] replaces a few tokens in the seed sentences
with other tokens. However, token replacement sometimes would
completely change the semantic of the input text; thus, this type of
perturbation usually appears in adversary scenarios; (iii) structure-
level: Different from the above two perturbations, this type of per-
turbations [15, 21, 22, 32] seeks to generate legal sentences that do
not contain lexical or syntactic errors. For example, [21] proposes
a structure invariant testing method to perturb seed inputs with
Bert [27], and the perturbed sentences will exhibit similar sentence
structure with the seed sentences.

3 MOTIVATION & PRELIMINARY STUDY
In this section, we first give a motivating example in detail to show
efficiency degradation issues in real-world NMT systems. We then
present a comprehensive empirical study based on 1455 state-of-
the-art NMT systems, which reveals an important vulnerability in
existing NMT systems that may suffer from significant efficiency
degradation.

3.1 Motivating Example
Fig. 2 illustrates the efficiency degradation issue that HuggingFace
NMT API 3 may experience due to unnoticeable perturbations. This
selected NMTAPI is rather popular among developers, with 136,902
downloads merely in Jan 2022. Fig. 2 shows the computation time
using two input sentences, where a normal (abnormal) input is used
3https://huggingface.co/Helsinki-NLP/opus-mt-de-en
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Computation time on cpu: 0.876s Computation time on cpu: 20.381999999999s

Figure 2: Example illustrating NMT systems’ efficiency degra-
dation by inserting one character (using HuggingFace API)

in the left (right) sub-figure. Note that the abnormal input differs
from the normal input by only one character “b” (highlighted in
blue). Nonetheless, due to such a one-character difference in the
input, the computation time increases from 0.876s to 20.382s (a
2226.7% increase). This real-world example reveals that state-of-the-
art NMT systems may have critical yet unrevealed vulnerabilities
that negatively impact computation efficiency.

As we discussed in Sec. 2.1, the working mechanism of NMT
systems is to iteratively call the decoder 𝑓𝑑𝑒 (·) to generate output
tokens until either the particular token EOS is reached or the pre-
configured threshold is met. Thus, NMT systems with more decoder
calls (i.e., denoted as | |𝑓𝑑𝑒 (·) | |) will consume more computational
resources and incur longer computational times. An intuitive ap-
proach to mitigate the efficiency degradation issue in Fig. 2 is to
set a small threshold to limit | |𝑓𝑑𝑒 (·) | |. However, this solution is
impractical due to inherently significant differences of | |𝑓𝑑𝑒 (·) | | in
the translation corpus. According to our empirical study of 1,455
NMT systems (detailed in 3.2), 1,370 of them set max_lengthwithin
a range of 500 to 600. To further understand why this intuitive ap-
proach does not work, we conduct a comprehensive empirical study
using 1455 state-of-the-art NMT systems. Specifically, we focus on
answering the following two research questions.

• RQ 1.1: What is the current engineering configurations in
real-world NMT systems that control | |𝑓𝑑𝑒 (·) | | (Sec. 3.2)

• RQ 1.2: Why small threshold is impractical to mitigate effi-
ciency degradation? (Sec. 3.3)

3.2 Current Engineering Configurations
3.2.1 Study Methodology. We investigate the configurations of
existing mainstream NMT systems. Specifically, we studies 1,455
NMT systems (e.g., Google T5, Meta FairSeq) from HuggingFace
online NMT service 4. HuggingFace is a commercial platform that
provides third-party real-time translation service, which covers
almost all NMT model architectures. NMT systems on the Hugging-
Face platform are open-source and widely used by public, as shown
in Table 1 (e.g., the most popular NMT systems in HuggingFace
have been downloaded for more than 3,141,480 times in Jan 2022).
HuggingFace provides high-level abstraction API for NMT service.
List 2 shows code snippets of using HuggingFace API to load Google
4https://huggingface.co/

Table 1: Top 10 popular NMT systems on HuggingFace web-
site (the order is based on the number of downloads)

Rank Model Name max_length # of Downloads

1 Helsinki-NLP/opus-mt-zh-en 512 3141840
2 Google/t5-base 300 1736544
3 Helsinki-NLP/opus-mt-en-de 512 749228
4 Helsinki-NLP/opus-mt-en-ROMANCE 512 599267
5 Google/t5-small 300 592793
6 Helsinki-NLP/opus-mt-ar-en 512 196033
7 Helsinki-NLP/opus-mt-de-en 512 129923
8 Helsinki-NLP/opus-mt-es-en 512 111028
9 Helsinki-NLP/opus-mt-ROMANCE-en 512 92987
10 Helsinki-NLP/opus-mt-fr-en 512 91552

T5 translation service. All NMT model classes are inherited from a
common parent class, GenerationMixin, which contains all func-
tions supporting sentence translation. We parse the source code
of the GenerationMixin.generate function and observe that the
translation flow could be divided into nine parts. Among all nine
parts, we find that the eighth part determines the critical stopping
criteria. The source code of the eighth part is shown in List 3. From
the source code, we observe that two variables, max_length and
max_time, determine the stopping criteria. max_length is a vari-
able from the NMT systems’ configuration file that determines the
maximum length of the sequence to be generated, equivalent to
the maximum number of decoder calls mentioned earlier. Similarly,
max_time is a variable that determines the maximum computation
time. According to HuggingFace programming specifications, only
one of these two fields needs to be set. Finally, We select all NMT
models from HuggingFace’s API services 5 and parse each NMT
model’s configuration file to check how max_length and max_time
have been set.

1 # HuggingFace high -level API for translation

2 model = AutoModelWithLMHead.from_pretrained("t5-base")

3 s = "CS is the study of computational systems"

4 input_tk = tokenizer(s, return_tensors="pt").input_ids

5 trans_res = model.generate(input_tk)

Listing 2: HuggingFace libraries high-level translation API

1 # 8. prepare stopping criteria

2 stopping_criteria = self._get_stopping_criteria(

3 max_length=max_length ,

4 max_time=max_time ,

5 stopping_criteria=stopping_criteria)

Listing 3: Stopping criteria in translation

3.2.2 Study Results. Among all 1, 455 NMT systems, we success-
fully collect 1, 438 configuration files, where 1, 400 of them include
the max_length field and none of them includes the max_time field.
This is mainly because the max_time field is hardware-dependent.
The statistical results of the max_length values are shown in Fig. 3.
We have the following two observations. First, there is a signifi-
cant variance in the max_length value (ranging from 20 to 1024);
Second, almost all NMT systems (97.86%) set the max_length to
be from 500 to 600, i.e., maximum 500-600 decoder calls. Note that
real-world NMT systems prefer to set such a large threshold just to
prevent unresponsiveness (e.g., dead-loop). However, in most cases
5https://huggingface.co/models?pipeline_tag=translation&sort=downloads

https://huggingface.co/
https://huggingface.co/models?pipeline_tag=translation&sort=downloads
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 >1000.   (0.64%)
500-600. (97.86%)
300-400. (0.64%)
200-300. (0.43%)
100-200. (0.21%)
0-100.     (0.21%)

0.75

0.76

0.77

0.78

0.79

−0.490 −0.485

Figure 3: The distribution of max_length values

Table 2: Statistical results of efficiency differences inmachine
translation (1%, 10%, 50%, 90%, 100% represent quantile)

Language
# of pairs

Quantile of Target Length Quantile of Length Ratio
Src Tgt 10% 50% 90% 100% (max) 1% (min) 10% 50% 90% 100% (max)

fr en 13,172,019 4.00 24.00 52.00 97.00 0.50 0.87 1.10 1.47 3.00
zh en 9,564,315 11.00 41.00 87.00 179.00 0.90 1.38 1.83 3.00 8.26
zh es 9,847,770 10.00 40.00 87.00 176.00 0.75 1.19 1.57 2.68 8.50
zh fr 9,690,914 11.00 41.00 88.00 178.00 0.74 1.21 1.63 2.85 8.29
zh ru 9,557,007 10.00 42.00 90.00 180.00 0.62 1.60 2.25 5.00 13.75

with normal inputs, such a threshold will not yield any real impact
as the EOS token often appears much earlier.

3.3 Feasibility Analysis of an Intuitive Solution
3.3.1 Study Methodology. An intuitive solution to mitigate the
efficiency degradation is to limit | |𝑓𝑑𝑒 (·) | | (i.e., the max_length
field). In this section, we conduct a statistical analysis to prove that
such an intuitive solution is infeasible. We analyze the distribution
of max_length of the target sentence (ground truth) in the training
corpus. We select the MultiUN dataset [10] as the subject in our
empirical study because of the following criteria: (i) the datasets
are open-source and public-available; (ii) the datasets are widely
studied in recent works (with more than 1,000 citations until Jan
2022); (iii) the datasets are diverse in covering various areas (e.g.,
different languages, concepts, etc). MultiUN dataset is a collection
of translated documents from the United Nations. It includes seven
languages with 489,334 files and a total number of 81.41M sentence
fragments.We parse the source/target sentence pairs in theMultiUN
dataset and measure the length of all target sentences.

3.3.2 Study Results. The statistic results of the output length are
shown in Table 2 (full results could be found in an anonymous web-
site 6). Column “Target Length” shows the target sentence length
under different quantiles, and Column “Target and Source Ratio”
shows the ratio of sentence length between the source and target.
From the results, we observe that the lengths of target sentences
(ground truth) are in sparse distributions. Particularly, the ratio
of sentence length between the source and target exhibits rather
large variance. For instance, the length of target sentence varies
from 4 to 97 and the ratio is from 0.62 to 13.75 for language fr
and en. As a result, setting a small max_length field will lead to
low-precision translation results. For instance, in the last line of

6https://github.com/SeekingDream/NMTSloth

Table 2, i.e., translating zh to ru, if setting max_length to 42, at
least 50% of data will not be translated completely. Thus, we can
conclude that the intuitive solution, i.e., setting a small max_length
field, is impractical to avoid efficiency degradation issues. On the
contrary, setting a sufficiently large max_length can address the
limitation of incomplete translation while not incurring efficiency
issues for any ordinary inputs due to the EOS mechanism.

4 PROBLEM FORMULATION
Our goal is to generate test inputs that can degrade computation
efficiency of NMT systems. Our proposed method seeks to perturb
a seed sentence to craft test inputs. The perturbed test inputs will
incur significantly long computation time, thus impairing user ex-
perience and even cause service unavailability. Note that we allow
general and unnoticeable perturbation patterns, including adding
limited number of characters (e.g., 1-3 characters) at arbitrary po-
sitions and replacing arbitrary tokens using semantic-equivalent
alternatives. As we discussed in Sec. 2, NMT systems’ computa-
tion efficiency depends on the output length, where a lengthier
output implies less computation efficiency. Thus, our goal can be
achieved through increasing NMT systems’ output length through
generating effective test inputs. We thus formulate our problem
of generating test inputs for computation efficiency testing as the
following optimization:

Δ = argmax𝛿 | |𝑓𝑑𝑒 (𝑥 + 𝛿) | | 𝑠 .𝑡 . | |𝛿 | | ≤ 𝜖, (1)

where 𝑥 is the seed input, 𝑓𝑑𝑒 (·) is the decoder of the NMT system
under test, 𝜖 is the maximum allowed perturbation, and | |𝑓𝑑𝑒 (·) | |
measures the number of times of NMT’s decoders being called. Our
proposed NMTSloth tries to search a perturbation Δ that maximizes
the decoders’ calling times (decreasing target NMT systems effi-
ciency) within a minimum allowable perturbation threshold (which
ensures unnoticeable perturbations).

5 METHODOLOGY
We now present NMTSloth and provides three specific implementa-
tions including character-level perturbation, token-level perturba-
tion, and structure-level perturbation.

5.1 Design Overview
NMTSloth is an iterative approach. During each iteration, NMTSloth
perturbs one token in a seed sentence with different types of per-
turbations. An overview of the detailed procedure of each iteration
is illustrated in Fig. 4, which contains three major steps:

(1) Finding critical tokens. For each seed sentence, we feed it to
the NMT system under test and apply a gradient-based ap-
proach to search for the critical tokens that have the highest
impact on NMT systems’ computation efficiency.

(2) Mutating seed input sentences. After identifying the critical
tokens in the seed sentences, we mutate the seed sentences
with three types of perturbations and generate three lists of
similar sentences.

(3) Detecting efficiency degradation. We feed the mutated sen-
tences and the seed sentence into NMT systems and detect
any efficiency degradation.
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If you understand this one, then 
the others are nearly the same.

Seed Sentence

(1) Find
Critical Tokens

If you understand this one, then 
the others are nearly the same.

Critical Tokens

Character-Level
(1) If you unsderstand this one, then the others are 
nearly the same.
(2) If you undaerstand this one, then the others are 
nearly the same.
…

Token-Level
(1) If you share this one, then the others are nearly 
the same.
(2) If you old this one, then the others are nearly the 
same.
…

Structure-Level
(1) If you know this one, then the others are nearly 
the same.
(2) If you see this one, then the others are nearly the 
same.

(2) Input Mutation (3) Degradation Detection

Character-Level
(✓) If you undaerstand this one, 
then the others are nearly the 
same.

Token-Level
(✓) If you share this one, then the 
others are nearly the same.

Structure-Level
(✓) If you know this one, then the 
others are nearly the same.

Mutated Sentences
Generated Test Inputs

Figure 4: Design overview of NMTSloth

5.2 Detail Design
FindingCritical Tokens:Given a seed sentence𝑥 = [𝑡𝑘1, · · · , 𝑡𝑘𝑚],
the first step is to identify tokens that are critical to NMT systems’
efficiency. As we discussed earlier, NMT systems’ computation effi-
ciency depends on the corresponding output length given any input,
which is determined by the pre-configured threshold and the EOS
token. In Sec. 3, we showed that the pre-configured threshold is set
as a fixed value in the configuration files of NMT systems. Thus, to
generate effective testing inputs, our objective is to decrease the
probability that the EOS token would appear given a specific input
to reduce NMT systems’ computation efficiency.

Formally, let NMT system’s output probability be a sequence of
vectors, i.e., [𝑝1, 𝑝2, · · · , 𝑝𝑛], and the probability of EOS token ap-
pearance be [𝑝𝑒𝑜𝑠1 , 𝑝𝑒𝑜𝑠2 , · · · , 𝑝𝑒𝑜𝑠𝑛 ]. We seek to find the importance
of each token 𝑡𝑘𝑖 in 𝑥 to this probability sequence. We also observe
that the output token sequence will affect EOS’s probability. Thus,
we define the importance score of token 𝑡𝑘𝑖 as 𝑔𝑖 , shown in (2).

𝑜𝑖 = argmax(𝑝𝑖 ) 𝑓 (𝑥) = 1
𝑛

𝑛∑︁
𝑖

(𝑝𝑒𝑜𝑠𝑖 +𝑝𝑜𝑖
𝑖
) 𝑔𝑖 =

∑︁
𝑗

𝜕𝑓 (𝑥)
𝜕𝑡𝑘

𝑗
𝑖

,

(2)
where [𝑜1, 𝑜2, · · · , 𝑜𝑛] is the current output token, 𝑓 (𝑥) is the prob-
ability we seek to minimize, 𝑡𝑘 𝑗

𝑖
is the 𝑗𝑡ℎ dimension of 𝑡𝑘’s embed-

dings, and 𝑔𝑖 is the derivative of 𝑓 (𝑥) to 𝑖𝑡ℎ token’s embedding.
Input Mutation: After identifying important tokens, the next step
is to mutate the important token with unnoticeable perturbations.
In this step, we get a set of perturbation candidate 𝐿 after we perturb
the most important tokens in the original input. We consider two
kinds of perturbations, i.e.,, token-level perturbation and character-
level perturbation. Table 3 shows some examples of token-level and
character-level perturbations with different perturbation sizes 𝜖
(the perturbation is highlighted with the color red).

For character-level perturbation, we consider character insertion
perturbation. Specifically, we insert one character 𝑐 into token 𝑡𝑘 to
get another token 𝛿 . The character-inset perturbation is common in
the real world when typing quickly and can be unnoticeable without

Table 3: Examples of token-level, character-level, and
structure-level perturbation under different size

Original 𝜖 Do you know who Rie Miyazawa is?

1 Do you know who Rie Miya-zawa is?
Character-Level 2 Do you know whoo Rie Miya-zawa is?

1 Do Hello know who Rie Miyazawa is?
Token-Level 2 Do Hello know who Hill Miyazawa is?

1 Do you remember who Rie Miyazawa is?
Structure-Level 2 Do you remember what Rie Miyazawa is?

careful examination. Because character insertion is likely to result
in out-of-vocabulary (OOV), it is thus challenging to compute the
token replace increment at token-level. Instead, we enumerate pos-
sible 𝛿 after character insertion to get a candidate set 𝐿. Specifically,
we consider all letters and digits as the possible character 𝑐 because
humans can type these characters through the keyboard, and we
consider all positions as the potential insertion position. Clearly,
for token 𝑡𝑘 which contains 𝑙 characters, there are (𝑙 + 1) × ||𝐶 | |
perturbation candidates, where | |𝐶 | | denotes the size of all possible
characters. For token-level perturbation, we consider replacing the
original token 𝑡𝑘 with another token 𝛿 . To compute the target to-
ken 𝛿 , we define token replace increment I𝑠𝑟𝑐,𝑡𝑔𝑡 to measure the
efficiency degradation of replacing token 𝑠𝑟𝑐 to 𝑡𝑔𝑡 . As shown in (3),
𝐸 (·) is the function to obtain the corresponding token’s embedding,
𝐸 (𝑡𝑔𝑡) − 𝐸 (𝑠𝑟𝑐) is the vector increment in the embedding space.
Because 𝜕𝑓 (𝑥 )

𝜕𝑡𝑘
𝑗

𝑖

indicates the sensitivity of output length to each em-

bedding dimension, I𝑠𝑟𝑐,𝑡𝑔𝑡 denotes the total benefits of replacing
token 𝑠𝑟𝑐 with 𝑡𝑔𝑡 . We search the target token 𝛿 in the vocabulary
to maximize the token replace increment with the source token 𝑡𝑘 .

I𝑠𝑟𝑐,𝑡𝑔𝑡 =
∑︁
𝑗

(𝐸 (𝑡𝑔𝑡) −𝐸 (𝑠𝑟𝑐)) × 𝜕𝑓 (𝑥)
𝜕𝑡𝑘

𝑗
𝑖

𝛿 = argmax𝑡𝑔𝑡 I𝑡𝑘,𝑡𝑔𝑡 ;

(3)
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For structure-level perturbation, we follow existing work [21, 39]
to parse the seed input sentence as a constituency tree and replace
the critical token with another token based on Bert [4]. Unlike
token-level perturbation, the structure-level perturbation ensures
the constituency structure of the perturbed sentence is the same
as the seed one. Fig. 5 shows an example of the structure-level
perturbation. After replacing the critical token, the constituency
tree is the same as the seed one.

Our
group

is detecting bugs in deep

S

NP VP

VBZNNPRP$ VP NP

VBG NP

NNS

PP

IN

neural networks

NP

NN NN NNS

team

Figure 5: Constituency tree of sentence

EfficiencyDegradationDetection:After collecting candidate per-
turbations 𝐿, we select an optimal perturbation from the collected
candidate sets. Since our objective is searching this perturbation
candidate set that will produce a longer output length, we straight-
forwardly test all perturbations in this set and select the optimal
perturbation that produces the maximum output length.

6 EVALUATION
We evaluate NMTSloth and answer the following research questions.

• RQ 2.1 (Severity): How severe will NMTSloth degrade NMT
systems efficiency?

• RQ 2.2 (Effectiveness): How effective is NMTSloth in gener-
ating test samples that degrade NMT systems efficiency?

• RQ 2.3 (Sensitivity): Can NMTSloth generate useful test
samples that decrease NMT systems efficiency under differ-
ent NMT systems’ configurations?

• RQ 2.4 (Overheads): What is the overhead of NMTSloth in
generating test samples?

6.1 Experimental Setup
Models and Datasets.As shown in Table 4, we consider the follow-
ing three public NMT systems as our evaluation models: Google’s
T5 [37], AllenAI’s WMT14 Transformer [34], and Helsinki-NLP’s
H-NLP Translator [28]. T5 is released by Google, which is first
pre-trained with multiple language problems, and then fine-tuned
on the English-German translation task. We apply English sen-
tences from dataset ZH19 as seed inputs to generate test samples.
AllenAI’s WMT14 is one of the NMT models from the company
AllenAI, which is trained on the WMT19 shared news translation
task based on the transformer architecture. We select the WMT14
en-de model as our evaluation model, which is designed for the
English-German translation task. H-NLP is a seq2seq model, where
the source language is English and the target language is Chinese.
For each experimental subject, we randomly select 1,000 inputs
from the test dataset as the seed inputs.
Comparison Baselines. A branch of existing works have been
proposed for testing NMT systems [3, 7, 15, 21, 22, 39]. However,

Table 4: The NMT systems under test in our experiments

Model Source Target Vocab Size max_length

H-NLP En De 65,001 512
AllenAi En De 42,024 200

T5 En Zh 32,100 200

all of them focus on testing NMT systems’ correctness. To the
best of our knowledge, we are the first to study NMT systems’
efficiency degradation issue. To show that existing correctness test-
ing methods can not generate test inputs that trigger efficiency
degradation for NMT systems. We compare NMTSloth against four
state-of-the-art correctness testing methods, which are designed to
generate testing inputs that produce incorrect translation results.
Specifically, we choose SIT [21], TransRepair [39], Seq2Sick [7],
and SynError [3] as our comparison baselines. SIT proposes a
structure-invariant testing method, which is a metamorphic test-
ing approach for validating machine translation software. Given
a seed sentence, SIT first generates a list of similar sentences by
modifying tokens in the seed sentence. After that, SIT compares
the structure of the original outputs and the generated outputs
to detect translation errors. TransRepair is similar to SIT, with
a difference that the unperturbed parts of the sentences preserve
their adequacy and fluency modulo the mutated tokens. Thus, any
perturbed input sentence violating this assumption will be treated
as incorrect. Seq2Sick replaces the tokens in seed inputs to pro-
duce adversarial translation outputs that are entirely different from
the original outputs. SynError is a character-level testing method,
which minimizes the NMT system’s accuracy (BLUE score) by in-
troducing synthetic noise. Specifically, SynError introduces four
character-level perturbations: swap, fully random, and keyboard
typos to perturb seed inputs to decrease the BLUE score.
Experimental Procedure. We run NMTSloth to test the above-
mentioned three NMT systems. Given a seed input, NMTSloth per-
turbs the seed input with different types of perturbations. NMTSloth
has one hyper-parameter (𝜖) that is configurable. In our experi-
ments, we follow existing works [31] and set perturbation size (i.e.,
𝜖) from 1 to 3, representing different degrees of perturbation. For
RQ1 (severity), we measure the percentage of the increased compu-
tational resource, in terms of iteration loops, latency, and energy
consumption (Eq.(4)), due to the generated test inputs compared to
the seed inputs. For RQ2 (effectiveness), we measure the degrada-
tion success ratio (Eq.(5)), which quantifies the percentage of the
test inputs out of all generated by NMTSloth that can degrade the
efficiency to a degree that is larger than a pre-defined threshold. A
higher ratio would imply better efficacy in generating useful test in-
puts. For RQ3 (sensitivity), we run NMTSloth on NMT systems with
different configurations to study whether the efficacy of NMTSloth
is sensitive to configurations. For RQ4 (overheads), we measure the
average overheads of running NMTSloth to generate test inputs.
Implementation.We implement NMTSloth with the PyTorch li-
brary, using a server with Intel Xeon E5-26 CPU and eight Nvidia
1080Ti GPUs. For the baseline methods, we implement SIT and
TransRepair using the authors’ open sourced code [20, 21]. We
re-implement Seq2sick and SynError according to the correspond-
ing papers as the original implementations are not open sourced.
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For the NMT models used in our evaluation, we download the
pre-trained models using the HuggingFace APIs, and we configure
the NMT systems using both default configurations and varied
configurations to answer RQ3.

6.2 RQ 2.1: Severity
Metrics. Our evaluation considers both hardware-independent
metrics (i.e., number of iteration loops) and hardware-dependent
metrics (i.e., latency and energy consumption), which quantitatively
represent NMT systems’ efficiency. The number of iteration loops is
a widely used hardware-independent metric for measuring software
computational efficiency [47]. More iteration loops imply that more
computations are required to be performed to handle an input, rep-
resenting less efficiency. Response latency and energy consumption
are two widely-used hardware-dependent metrics for measuring
systems efficiency. Larger latency and energy consumption clearly
indicate less efficiency.

I-Loops =
Loops(𝑥 ′) − Loops(𝑥)

Loops(𝑥) × 100%

I-Latency =
Latency(𝑥 ′) − Latency(𝑥)

Latency(𝑥) × 100%

I-Energy =
Energy(𝑥 ′) − Energy(𝑥)

Energy(𝑥) × 100%

(4)

We use I-Loops, I-Latency, and I-energy to denote number of itera-
tion loops, response latency, and energy consumption respectively.
The formal definitions of I-Loops, I-Latency, and I-energy are shown
in Eq.(4), where 𝑥 denotes the seed input and 𝑥 ′ represents the per-
turbed input under NMTSloth, Loops(·), Latency(·) and Energy(·)
denote the functions which calculate the average number of itera-
tion loops, latency, and energy consumption, respectively. Larger
values of I-Loops, I-Latency, I-energy indicate a more severe ef-
ficiency degradation caused by the test inputs generated under
NMTSloth. In our evaluation, we measure the hardware-dependent
efficiency metrics (i.e., latency and energy consumption) on two
popular hardware platforms: Intel Xeon E5-2660v3 CPU and Nvidia
1080Ti GPU, and we measure the energy consumption on CPU and
GPU using Intel’s RAPL interface and Nvidia’s PyNVML library.
Results. The results of degrading NMT systems’ efficiency are
shown in Table 5, where NMTSloth (C), NMTSloth (T), NMTSloth
(S) represent the character-level, token-level, structure-level per-
turbations, respectively. From the results, we have the following
observations: (i) For all NMT systems under test, NMTSloth gener-
ates test samples that trigger more severe efficiency degradation
by a large margin compared to the baseline methods. For instance,
NMTSloth generates test inputs that on average increase NMT sys-
tems’ CPU latency, CPU energy consumption, GPU latency, and
GPU energy consumption by 85% to 3153%, 86% to 3052%, 76% to
1953% , and 68% to 1532%, respectively, through only perturbing one
character or token in any seed input sentences. However, baseline
methods could not effectively impact efficiency, since they are de-
signed to reduce NMT systems’ accuracy, not efficiency. (ii)With an
increased perturbation size, the corresponding test samples gener-
ated by NMTSloth effectively degrade the NMT systems’ efficiency
to a larger degree.

Answers to RQ2.1: Test samples generated by NMTSloth
significantly degrade NMT systems efficiency in number of
iteration loops, latency, and energy consumption.

6.3 RQ2.2: Effectiveness
This section evaluates the effectiveness of NMTSloth in generating
useful test samples that successfully degrade the efficiency of NMT.
Metrics. We define a metric of degradation success ratio (𝜂) to
evaluate the effectiveness of NMTSloth.

𝜂 =

∑
𝑥∈X I( [Loop(𝑥 ′) − Loop(𝑥)] ≥ 𝜆 ×MSE𝑜𝑟𝑖𝑔)

| |X|| × 100% (5)

As shown in Eq.(5),X is a randomly selected seed input set, Loop(𝑥 )
is the function that measures the iteration number of NMT systems
in handling input 𝑥 , MSE𝑜𝑟𝑖𝑔 is the Mean Squared Error of the itera-
tion number in the seed datasets that have the same input length as
𝑥 , and I(·) is the indicator function, which returns one if the state-
ment is true, zero otherwise. The above equation assumes that the
computational costs required by an NMT system given perturbed
inputs shall be within 𝜆 times the MSE produced by the seed inputs
with the same input length. Otherwise, the perturbed inputs trigger
efficiency degradation. Note that this same assumption is also used
in existing works [41].
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Figure 6: Degradation success ratio under different settings

Results. The results on the degradation successful ratio (𝜂) under
different 𝜆 values are shown in Fig. 6. We observe that for all exper-
imental settings, NMTSloth outperforms the baseline methods by a
significant margin. For example, for H-NLP and 𝜆 = 5, NMTSloth
achieves a degradation success ratio of 76% and 98% with token
and character level perturbations, respectively; while all the com-
passion baseline methods’ degradation success ratios are below 5%.
The results indicate that NMTSloth effectively generates useful test
samples to trigger NMT systems’ efficiency degradation. Another
observation is that when 𝜆 = 0, baselines may generate some test
samples that require more computations than seed inputs (𝜂 ≥ 50
for H-NLP). However, such extra computations are not significant
enough to indicate efficiency degradation. As we studied in Sec. 3,
the natural efficiency variance in the NMT task could be significant,
and the degree of extra computations incurred under baseline meth-
ods are within the range of natural efficiency variance. As 𝜆 grows,
𝜂 under baseline methods drop quickly. However, this observation
does not hold for NMTSloth, where the average degradation success
ratio of NMTSloth is still 68.9% when 𝜆 = 3. Recall that from the
statistical prospective [26], 99.73% of the inputs will locate in the
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Table 5: The Effectiveness Results of Test Samples in Degrading NMT Performance

Subject Method
I-Loops I-Latency(CPU) I-Energy(CPU) I-Latency(GPU) I-Energy(GPU)

𝜖 = 1 𝜖 =2 𝜖 =3 𝜖 =1 𝜖 =2 𝜖 =3 𝜖 =1 𝜖 =2 𝜖 =3 𝜖 =1 𝜖 =2 𝜖 =3 𝜖 =1 𝜖 =2 𝜖 =3

H-NLP

Seq2Sick 4.31 5.84 12.28 4.83 8.85 19.55 4.84 8.85 21.47 3.73 5.90 13.24 3.77 5.96 13.33
SynError 19.09 19.59 19.59 19.35 19.82 19.82 19.63 20.10 20.10 14.14 14.52 14.52 14.27 14.65 14.65

SIT 11.83 5.99 5.35 -1.68 -8.53 -11.21 8.17 6.32 7.41 9.84 5.50 5.75 9.90 5.58 5.83
TransRepair 0.17 0.17 0.17 0.76 0.10 0.10 0.93 0.33 0.33 -0.07 0.00 0.00 -0.07 0.00 0.00
NMTSloth (C) 564.45 995.45 1357.77 764.92 1487.92 2015.70 785.60 1471.26 1967.05 462.24 851.80 1116.80 406.39 755.18 972.92
NMTSloth (T) 2697.77 3735.38 3917.91 3153.97 4481.93 4681.28 3052.62 4544.65 4759.71 1953.57 2729.83 2854.89 1532.91 2137.53 2221.66
NMTSloth (S) 142.31 311.06 612.08 146.51 451.93 877.79 147.70 461.30 870.72 101.21 275.58 523.04 95.05 259.88 508.80

AllenAI

Seq2Sick 1.72 2.22 2.15 1.48 2.06 1.35 1.19 1.76 1.10 1.57 1.41 0.38 1.70 1.57 0.57
SynError 0.38 0.38 0.38 1.89 1.89 1.89 1.75 1.75 1.75 -0.85 -0.85 -0.85 -0.71 -0.71 -0.71

SIT 7.06 4.12 6.67 1.73 -3.24 -4.64 1.73 -3.24 -4.60 3.95 14.25 -2.05 4.12 14.64 -1.60
TransRepair 0.08 0.08 0.08 -0.37 -0.37 -0.37 -0.55 -0.55 -0.55 -0.15 -0.15 -0.15 -0.14 -0.14 -0.14
NMTSloth (C) 35.16 74.90 103.36 26.69 45.77 85.09 27.48 48.09 86.00 21.82 35.43 91.48 22.12 43.21 98.46
NMTSloth (T) 24.83 42.04 56.75 49.12 62.84 67.98 49.99 62.65 69.06 30.65 41.32 46.09 31.00 41.81 49.66
NMTSloth (S) 66.21 108.67 128.60 86.05 139.03 164.57 84.17 135.71 160.95 69.57 112.88 132.68 68.79 115.23 137.06

T5

Seq2Sick 7.09 6.28 -6.03 7.21 6.04 -5.97 8.55 6.88 -5.16 9.01 8.00 -3.97 8.85 16.94 4.50
SynError 2.18 2.18 2.18 3.20 3.20 3.20 2.11 2.11 2.11 1.02 1.02 1.02 1.13 1.13 1.13

SIT -8.06 1.05 6.27 -4.51 7.79 7.38 -3.79 9.84 10.59 -10.99 3.57 7.74 -10.90 3.78 8.07
TransRepair 3.73 8.06 8.06 4.90 9.47 9.26 6.42 11.39 10.74 3.70 8.34 8.35 3.76 8.42 8.39
NMTSloth (C) 168.92 198.36 205.37 191.05 225.48 233.01 194.45 228.02 234.04 164.61 194.79 202.28 165.38 195.77 203.29
NMTSloth (T) 307.27 328.94 328.94 352.14 376.55 376.55 347.74 373.85 373.85 305.37 325.61 325.61 331.85 352.25 352.25
NMTSloth (S) 77.67 80.56 82.52 85.72 89.11 91.38 86.90 90.29 92.56 75.77 78.68 80.66 68.79 73.03 74.56

range of 3MSE𝑜𝑟𝑖𝑔 . Thus, these results clearly show that NMTSloth
successfully triggers NMT systems’ efficiency degradation.

Answers to RQ2.2: NMTSloth effectively generates test
samples that trigger NMT systems’ efficiency degradation.

6.4 RQ2.3: Sensitivity
As we introduced in Sec. 2, modern NMT systems apply the beam
search algorithm to generate the output token. The beam search
algorithm requires one hyper-parameter, the beam search size
(num_beams), to define the search space. In Sec. 6.3, we evaluate
the effectiveness of NMTSloth under each NMT systems’ default
num_beams. In this section, we evaluate whether NMTSloth is sen-
sitive to the configuration of num_beams. We configure each NMT
system under test with different num_beams (ranging from 1 to 5)
and measure the I-Loops of the generated test samples. The experi-
mental results are shown in Fig. 7. From the results, we observe that
when the beam search size num_beams is set to 1, the test samples
generated by NMTSloth can degrade the NMT systems efficiency
slightly more than other beam search size settings. This is because
when num_beams=1, the token generation process is a gradient-
smooth process, and the token search space is limited. Thus, our
gradient-guided approach can trigger more severe efficiency degra-
dation under this configuration. Importantly, under other config-
urations where num_beams ranges from 2 to 5, NMTSloth can still
trigger NMT systems’ efficiency degradation in a stable and severe
manner (e.g., T5 requires more than 100% and 300% computations).

Answers to RQ2.3: NMTSloth can generate test samples
that degrade NMT systems efficiency under different beam
search size configurations. Moreover, the efficiency degra-
dation is more severe when the beam search size is config-
ured as one.
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Figure 7: I-Loops under different beam search size

6.5 RQ2.4: Overheads
Table 6 shows the average overhead of NMTSloth in generating a
test input, we report only the overhead of NMTSloth because the
comparison baselines cannot degrade NMT systems’ efficiency. The
measured overhead of NMTSloth is rather reasonable (ranging from
7.5s to 106.35s) and may increase linearly as the perturbation size
increases. The linearly increasing overheads are due to the fact that
NMTSloth is an iterative approach (iteration number equals to 𝜖),
and the overhead within each iteration is stable. Note that such
reasonable overhead is not a concern since perturbed test inputs
are generated by NMTSloth offline.

Table 6: Average overheads of NMTSloth (s)

Method 𝜖 H-NLP AllenAI T5 Average

NMTSloth (C)
1 11.40 21.14 18.50 17.01
2 31.80 44.66 45.59 40.68
3 59.76 69.56 74.48 67.93

NMTSloth (T)
1 7.50 18.45 22.62 16.19
2 31.41 39.48 61.86 44.25
3 62.50 62.54 100.01 75.02

NMTSloth (S)
1 10.52 39.19 6.73 18.81
2 23.33 75.21 17.45 38.66
3 38.93 106.35 27.71 57.66



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei Yang

Answers to RQ2.4: The overheads of NMTSloth are rea-
sonable and may increase linearly as the perturbation size
increase. Specifically, when 𝜖 = 1, NMTSloth costs 17.01,
16.19, and 18.81 seconds to generate character-level, token-
level, and structure-level test samples.

7 DISCUSSION
In this section, we further present a real-world case study to discuss
how NMT systems’ efficiency degradation will impact real-world
devices’ battery power. After that, we show how developers could
apply NMTSloth to improve NMT systems’ efficiency robustness
and mitigate computational resource waste. Finally, we discuss
potential threats that might threaten the applicability of NMTSloth
and how we alleviate them.

7.1 Real-World Case Study

Table 7: Input sentences for experiments on mobile devices

Seed Input
Death comes often to the soldiers and marines who are
fighting in anbar province, which is roughly the size of
louisiana and is the most intractable region in iraq.

Test Input
Death comes often to the soldiers and marines who are
fighting in anbar province, which is roughly the (size of
of louisiana and is the most intractable region in iraq.

Experimental Setup.We select Google T5 as our evaluation NMT
model in this case study. We first deploy the model on the Samsung
Galaxy S9+, which has 6GB RAM and a battery capacity of 3500
mAh. After that, we select one sentence from the dataset ZH19 as
our seed input; we then apply NMTSloth to perturb the seed input
with character-level perturbation and obtain the corresponding test
sample. The seed sentence and the corresponding test sample are
shown in Table 7, where the perturbation is colored in red. Notice
the test sample inserts only one character in the seed sentence. This
one-character perturbation is very common in the real world due
to a user’s typo. Finally, we feed the seed input and test sample to
the deployed NMT system and measure the mobile device’s battery
consumption rate.
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Figure 8: Remaining battery power of the mobile device after
T5 translating seed and perturbed sentences

Experimental Results. The mobile phone’s battery consumption
status is shown in Fig. 8. The red line is for the perturbed input, and

the blue one is for the original seed input. The results show that the
perturbed input consumes the mobile’s battery power significantly
more quickly than the seed input. Specifically, after 300 iterations,
the perturbed input consumes 30% of the battery power, while
the seed input consumes less than 1%. The results demonstrate the
vulnerability of the efficiency degradation for mobile devices. Recall
that the perturbed example used in our experiment only inserts one
character in the seed sentence, which would mimic many practical
scenarios (e.g., typo). Thus, the results suggest the criticality and
the necessity of improving NMT systems’ efficiency robustness.

7.2 Mitigation.
This section shows how developers leverage NMTSloth to develop
runtime abnormal input detector, which mitigates possible effi-
ciency degradation and computational waste under the adversary
scenario (e.g., DOS attack). In detail, we propose a approach to filter
out test inputs that require abnormal computational resources at
runtime. Because the abnormal inputs are forced to quit at early
stage, thus the computational resources waste are avoided. The
idea of applying input validation to improve DNNs correctness
robustness has been studied in recent works [44, 45]. However, ex-
isting input validation techniques may not be suitable for improving
NMT systems efficiency robustness due to the high overheads. Our
intuition is that although normal inputs and the computational
resource heavy inputs look similar in human eyes, the latent repre-
sentations of these two categories of inputs are quite different [44].
Thus, we can leverage the latent representations of these two cat-
egory inputs to train a light-weighted SVM classifier and apply
the classifier to distinguish abnormal inputs at runtime. Because
the classifier should be light-weighted, getting each input’s latent
representations is preferable without additional computations. As
we introduced in Sec. 2, NMT systems run the encoder once and
only once for each input sentence to get the hidden state (i.e., ℎ in
Fig. 1), we propose to use the output of the encoder as the latent
representation to train a lighted-weighted SVM classifier.
Experimental Setup. For each NMT system in our evaluation, we
randomly choose 1,000 seed inputs and apply NMTSloth to generate
1,000 abnormal inputs for each perturbation types. We randomly
select 80% of the seed inputs and the abnormal inputs as the training
data to train the SVM classifier, and use the rest 20% for testing. We
run the trained SVM classifier on the testing dataset and measure
the detectors’ AUC score, extra computation overheads.
Experimental Results. The experimental results are shown in
Table 8. Each column in Table 8 represents the performance in de-
tecting one specific perturbation type and “Mixed” represents the
performance in detecting a mixed set of three perturbation types.
We observe that the proposed detector achieves almost perfect de-
tection accuracy with a lowest accuracy of 87.00%. Moreover, the
proposed detector’s overheads and energy consumption are negli-
gible compared to those incurred under the NMT system. All exper-
imental subjects’ extra overheads and the energy consumption are
merely at most 1% of the original NMT systems’ overheads in trans-
lation normal sentences. The results show that our validation-based
approach can effectively filter out the abnormal input sentences
with negligible overheads.
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Table 8: The accuracy and extra overheads of the detector

Subject Metric (%)
Perturbation Type

NMTSloth (C) NMTSloth (T) NMTSloth (S) Mixed

H-NLP

Acc 99.98 99.99 99.98 99.98
AUC 100.00 100.00 100.00 100.00

Overheads 0.17 0.32 0.18 0.74
Energy 0.09 0.17 0.12 0.48

AllenAI

Acc 100.00 100.00 87.00 98.00
AUC 100.00 100.00 98.32 100.00

Overheads 0.17 0.08 0.49 0.86
Energy 0.11 0.05 0.30 0.79

T5

Acc 99.97 100.00 99.99 100.00
AUC 100.00 100.00 100.00 100.00

Overheads 0.08 0.06 0.03 0.18
Energy 0.05 0.04 0.02 0.11

7.3 Threat Analyses.
Our selection of the three NMT systems, namely, Google T5, AllenAI
WMT14, and H-NLP, might threaten the external validity of our
experimental conclusions. We alleviate this threat by the following
efforts: (1) the three NMT systems are very popular and have been
widely used among developers (with more than 592,793 downloads
in Jan 2022); (2) their underlying DNN models are state-of-the-art
models; (3) these systems differ from each other by diverse topics
(e.g.,model architecture, language, training corpus, training process)
Therefore, our experimental conclusions should generally hold, al-
though specific data could be inevitably different for other subjects.
Our internal threat mainly comes from our definition of different
perturbation types. Our introduced perturbation may not always
be grammatically correct (e.g., inserting one character may result in
an unknown token). However, as discussed in Sec. 2, such perturba-
tions may not be typical but exist in the real-world (e.g., user typos,
adversarial manner). Thus, it is meaningful to understand NMT
systems’ efficiency degradation with such realistic perturbations.
Moreover, all three perturbation types are well studied in related
works [8, 9, 15, 21, 22, 38, 39, 49, 50, 52].

8 RELATEDWORK
NMT Systems. A detailed overview of recent works on NMT sys-
tems and testing NMT systems have been given in Sec. 2.
DNN’s Efficiency. Recently, the efficiency of DNNs has raised
much concern due to their substantial inference-time costs. To im-
prove DNN’ inference-time efficiency, many existing works have
been proposed, categorized into two major techniques. The first
category [25, 51] of techniques prune the DNNs offline to identify
important neurons and remove unimportant ones. After pruning,
the smaller size DNNs could achieve competitive accuracy com-
pared to the original DNNs while incurring significantly less com-
putational costs. Another category of techniques [11, 13, 46], called
input-adaptive techniques, dynamically skip a certain part of the
DNNs to reduce the number of computations during inference time.
By skipping certain parts of the DNNs, the input-adaptive DNNs
can trade-off between accuracy and computational costs. However,
recent studies [6, 16, 24] show input-adaptive DNNs are not robust-
ness against the adversary attack, which implies the input-adaptive
will not save computational costs under attacks.

9 CONCLUSIONS
In this work, we study the efficiency robustness of NMT systems.
Specifically, we propose NMTSloth, a framework that introduces im-
perceptible perturbations to perturb seed inputs to reduce NMT sys-
tems’ computation efficiency. Evaluation on three public-available
NMT systems shows that NMTSloth can generate effective test in-
puts that may significantly decrease NMT systems’ efficiency.
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