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Abstract

With the increasing number of layers and parameters
in neural networks, the energy consumption of neural net-
works has become a great concern to society, especially
to users of handheld or embedded devices. In this paper,
we investigate the robustness of neural networks against
energy-oriented attacks. Specifically, we propose ILFO (In-
termediate Output-Based Loss Function Optimization) at-
tack against a common type of energy-saving neural net-
works, Adaptive Neural Networks (AdNN). AdNNs save en-
ergy consumption by dynamically deactivating part of its
model based on the need of the inputs. ILFO leverages in-
termediate output as a proxy to infer the relation between
input and its corresponding energy consumption. ILFO has
shown an increase up to 100 % of the FLOPs (floating-point
operations per second) reduced by AdNNs with minimum
noise added to input images. To our knowledge, this is the
first attempt to attack the energy consumption of an AdNN.

1. Introduction

Deep neural networks (DNNs) have enabled impressive
accuracy improvements over traditional machine learning
techniques in a variety of tasks, such as object and speech
recognition, and machine translation. However, these ac-
curacy improvements depend on the availability of power-
ful computational resources that necessitate substantial en-
ergy consumption [25]. The computation required for deep
learning research doubles every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [23]. The
ResNet152 architecture [12] with 152 layers, increases the
accuracy by 4.4% over GoogLeNet[26] on the ImageNet
dataset but the test-time becomes 14 times slower. The in-
creasing test-time cost has become a problem, especially in
cases where faster inference is required (e.g. mobile apps).
For example, a visually impaired user may use an app based
on DNNs for object detection. The prolonged response time
of DNNs will cause fatal issues for the user relying on the
app.

To address these issues, extensive research has studied
and proposed models called energy-saving models. There
are two types of energy-saving models: On-Device Neu-
ral Networks (ODNNs) and Adaptive Neural Networks
(AdNNs). ODNN models [16, 15, 30] use lower dimen-
sions of filters or change the dimension of input to the fil-
ters to decrease the number of computations, while AdNNs
dynamically deactivate a certain part of the model based on
different inputs to reduce the number of computations.

Due to aforementioned damaging consequences, attack-
ers are motivated to attack the energy-saving models. For
example, SkipNet [29], an AdNN model, can reduce 50
% of floating-point operations in a ResNet model for the
CIFAR-10 dataset. If an attack on the input can increase
35 - 40 % of the reduced flops, the purpose of the SkipNet
model would not be served. This type of decrease in perfor-
mance will eventually jeopardize the reputation of the app
or software, which uses the energy-saving model.

Investigating the robustness of these energy-saving mod-
els in terms of energy consumption is needed. The robust-
ness of a machine learning model can be defined as the
stability of the model accuracy after adding some noise to
input data, i.e., a robust model’s accuracy will not deteri-
orate against noisy inputs. We define a new term energy
robustness as the stability of the model’s energy consump-
tion after getting a perturbed input. Traditional adversarial
machine learning techniques formulate their attacks based
on the relation between input and output. However, energy
robustness considers the relation between input and its cor-
responding energy consumption. In Section 4.1, we show
that the attack formulation for energy robustness requires
detailed knowledge about the model and needs to define the
target values for different AdNNs. Before this work, there
has not been any technique that can investigate the energy-
robustness of a model. In this paper, we are motivated to
investigate the robustness of the energy-saving models by
generating perturbed images to increase the energy con-
sumption of these models. Specifically, we use AdNN as an
example to perform such investigation. In our knowledge,
this is the first attempt in this direction.
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However, attacking a model with respect to energy con-
sumption is complicated because it is impossible to find a
trail from input to energy consumption during inference.
There are multiple systems (e.g., Nvidia TX2 server, FogN-
ode, Raspberry Pi), which can measure the energy con-
sumption of machine learning model inference. Although
the energy consumption measured using these systems is
not dependent on only the model. The measurement is also
dependent on the system environment. This also makes it
impossible to find out the pattern in energy consumption
in different images. If an image inference consumes less
amount of energy, then it is difficult to conclude if it is be-
cause of the input or the system environment.

Due to the difficulty of relating input and energy con-
sumption, we attack the energy-saving models by increas-
ing the number of computations during inference. For tradi-
tional DNNs and ODNNs, the number of computations dur-
ing inference is constant i.e., we can not relate the number
of computations with input. Although AdNNs change the
number of computations based on intermediate layer-wise
outputs. Creating a relation between input and intermedi-
ate outputs relates input and the number of computations.
In this paper, we have explored the relation between inputs
and intermediate outputs of AdNNs and attack these mod-
els.

We are proposing ILFO (Intermediate Output-Based
Loss Function Optimization) to attack AdNNs. Using the
gradient between intermediate outputs and inputs, we create
a loss function and optimize that function. Function opti-
mization changes the intermediate outputs and the changed
intermediate outputs activate the deactivated part of the
AdNN model, increasing the number of computations. In
this paper, after giving a brief idea about the different AdNN
models (Section 3), we have formulated the idea of ILFO
(Section 4.1). In Section 4.2, we have explained the ap-
proach ILFO. We have evaluated ILFO based on three char-
acteristics - effectiveness, quality, and efficiency. Our re-
sults show that ILFO could increase the reduced Floating-
Point Operations (FLOPs) by AdNNs during inference of
the input up to 100 %.

Our paper makes the following contributions:
(i) This is the first work investigating the robustness of

neural networks in terms of energy consumption.
(ii) ILFO could increase the reduced FLOPs by AdNNs

during inference up to 100 %.
(iii) ILFO tries to formulate a generic approach towards

attacking all types of AdNNs.

2. Related Works
AdNNs. There has been an extensive amount of research

in the field of decreasing energy consumption during the
test-time of CNNs. AdNNs are part of that research. Be-
fore proposing AdNNs, many of the earlier works use mod-
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Figure 1. Working mechanism of an AdNN

els [6, 11, 13, 20, 14] to transfer knowledge to shallower
networks. These techniques are not used in training but as
the post-processing. Although these networks are not dy-
namic with respect to the changing inputs. Recently, there
has been a number of AdNN models proposed. A few ver-
sions of the AdNNs have modified the traditional AdNN
model to save energy. Graves et al. [9] explore the halts
in Recurrent Neural Networks while Figurnov et al. [7] and
Teerapittayanon et al. [28] propose the use of early termina-
tion in CNNs. Recently, Wang et al. [29] propose SkipNet
that uses gates between the layers to skip a particular layer.
Few of the AdNNs are constructed by cascading multiple
networks through a simple computation unit. Bolukbasi et
al.[2] train a termination policy for cascades of pre-trained
CNNs arranged in order of increasing costs. Guan et al.
[10] use reinforcement learning to choose between multiple
classifiers. Nan et al. [22] use gating techniques to choose
a high-cost or low-cost model.

Adversarial Examples. Adversarial Examples are the
input that is fed to machine learning models to change the
prediction of the model. In earlier works [4, 21, 5], ‘good
word attacks’ or spelling modifications have long been used
to bypass the spam filters. More recently, Szegedy et al.
[27] and Goodfellow et al. [8] propose adversarial attacks
on deep computer vision models. Karmon et al. [19] pro-
pose a technique to attack CNNs in which a localized patch
is introduced in an image instead of adding noise to the full
image. With a similar approach, adversarial attacks have
been extended to various fields like text and speech process-
ing [3, 18], and graph models [31, 1]. Although, all these
attacks focus on changing the prediction and do not con-
centrate on increasing test-time. Our approach is the first to
explore that direction.

3. Background
In this paper, we focus on attacking AdNNs. Figure 1

represents the working mechanism of an AdNN. The main
goal of this type of network is to refrain from executing
a few layers in a DNN. The AdNNs generate intermedi-



ate outputs before each layer or block. To calculate these
outputs, generally, a shallow computing unit (simple CNN,
RNN, or linear classifier) is added between two layers or
blocks, as shown in the Figure 1. These intermediate out-
puts are evaluated against predefined conditions and if the
output reaches a certain threshold, the condition is fulfilled.
Fulfilling the condition can result in two ways. First, AdNN
determines that certain layers or blocks are not required for
the inference, and those layers or blocks are skipped. That
type of AdNN is called Conditional-skipping AdNN [29].
Second, AdNN terminates the operations within a block or
network early by deciding that later part of the operations
are not required. We call those AdNNs as Early-termination
AdNNs [7, 2].

The two AdNNs we have attacked are SkipNet [29] and
SACT [7]. Both models are created by modifying ResNet
model architecture. In the following Section 4.1, we will
discuss the working mechanism of these two models. Skip-
Net uses gate-based computing units to selectively choose
residual blocks. To decide if a block will be skipped or
not, SkipNet relies on the gate output corresponding to the
block. SACT examines each position of the block input and
decides if that position is needed to be processed in the next
layer within the block. Halting scores are calculated for
each position of the input after each layer for this purpose.

4. ILFO

4.1. Problem Formulation

Our objective is to attack AdNNs by creating modified
inputs which will increase the number of computations of
AdNNs during inference. The attack should concentrate on
two factors. First, the attacked image should increase the
number of computations during inference. Second, the at-
tacked image and original image can not be differentiated.
For every AdNN, we define two states of the intermediate
outputs - desirable state (des) and current state (cur). State
des defines the state of the intermediate outputs for which
computations during inference will be maximum. State cur
is the current state of the intermediate outputs. For an input
x, we search for the perturbation δ for which f(x + δ) is
minimum. f(x+ δ) is a loss function which represents the
difference between des and cur. The optimization function
can be represented as,

minimize(δ + c · f(x+ δ)) such that, (x+ δ) ∈ [0, 1]n

(1)

where c is a suitably chosen positive constant. Our approach
formulates the attack for both types of AdNNs and converts
the attack in the form of equation (1).

4.1.1 Attacking Early-termination AdNN

Figure 2 represents the working mechanism of a residual
block in SACT. SACT calculates halting scores as the in-
termediate outputs. Within a residual block, these halting
scores are calculated for each position after each layer. In
SACT, the condition is the cumulative halting score for a
position within a block should be less than 1 to make the
position active. In Figure 2, Deep green positions are active
while light green positions are inactive. To increase the en-
ergy consumption in SACT, the principle approach should
be minimizing the halting scores generated at each layer for
each position. In that way, the position will be active for
more number of layers. Formulating an attack based on the
halting score would require a large number of intermediate
outputs upon which the computations will depend. 1 Be-
cause of this reason, we would use the ponder cost of each
position to formulate the attack. Ponder cost (ρ) of a posi-
tion is the summation of the number of residual units(layers)
for which the position is active and the remainder value of
the cumulative halting score after exceeding 1. The ponder
cost map will store the ponder costs of all input positions for
a residual block. In Figure 2, P0, P1, P2, P3 are four spatial
positions, ρ0, ρ1, ρ2, ρ3 are the ponder costs of those four
positions. The value of ρ0 will be 1 because P0 is active for
only one layer, and there is no remainder of the cumulative
halting score after exceeding 1. Similarly for ρ2, the value
will be 3.1 because P2 is active for 3 layers and the remain-
der is 0.1 (0.2+0.1+0.8-1.0=0.1). ρ1 and ρ3 will be 1.0 and
2.1 respectively. Increasing the ponder cost of each position
will increase the computation of each position.

Creating an attack using the ponder cost maps can
be complex because the ponder cost maps are multi-
dimensional arrays, which the dimensions can be different
for depending on residual blocks. Using resizing and ad-
dition, we create a smaller size 2D array to represent the
ponder costs. As shown in Figure 3, ρarr represents the
generated array and ρarr[i][j] represents the ponder cost in
the ith row and jth column of the ρarr. To represent our
formulated attack using (1), we need to define the ideal be-
havior of ρarr. We want each ponder cost of the ρarr to
get increased and reach a certain predefined threshold rep-
resented by ρT . With each iteration, Perturbation can be
added to the input such that, each ponder cost in ρarr ex-
ceeds ρT at the end of the iterations. Before inserting per-
turbation at an iteration, if ρarr[i][j] has exceeded ρT , then
the value at ρarr[i][j] should remain the same after adding
perturbation. Otherwise, the value at ρarr[i][j] should in-
crease. We represent the principle for each iteration in the
following way.

1For each position of each layer input, halting scores are calculated.
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Figure 2. Working mechanism of a residual block in SACT.

ρarr[i][j](x+δ′+∆) =


ρarr[i][j](x+ δ′), if
ρarr[i][j](x+ δ′) >= ρT

ρarr[i][j](x+ δ′) + ∆ρ, otherwise
(2)

Here, δ′ represents accumulative perturbation before the
current iteration, ∆ is the perturbation being added at the
current iteration, x is input, ∆ρ is the value added at po-
sition ρarr[i][j]. Figure 3 represents the approach through
example.

We can represent this maximization problem in equation
(2) in the form of equation (1). For this problem, the current
state (cur) can be represented by ρarr. For desirable state
(des), we define another array ρmax with the same dimen-
sion as ρarr, where, ρmax[i][j] = ρT for i = 0, 1, 2....R
and j = 0, 1, 2....C. R and C represent the dimension
of ρmax. Minimizing the difference between des and cur
would increase the number of computations. We represent
loss function f(x+ δ) as,
f(x+δ) =

∑R
i=0

∑C
j=0max(ρmax[i][j]−ρarr[i][j], 0)

Themax function ensures that any value in ρarr does not
get decreased. We can represent the formulation problem
using equation (1) replacing f(x+ δ).

4.1.2 Attacking Conditional-skipping AdNN

Figure 4 represents the working mechanism of a SkipNet
model containing N + 1 residual blocks and gates corre-
sponding to the blocks. A block becomes active if the
corresponding gate output exceeds threshold GT . In Fig-
ure 4, the gates are represented as Gi where i ∈ [0, N ].
αi(x) is a boolean variable which becomes true when
Output(Gi) >= GT , where x is the input and GT is
the threshold value to make a gate active. αi(x) =
Output(Gi) >= GT

In the model shown in Figure 4, α0(x) and αN (x) are
True while α1(x) is False. All the residual blocks will be
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active if α0(x)∧α1(x).....∧αN (x) is true. If the input im-
age is x and attacked image is x+ δ, then we can formulate
the attack in two ways. The first way is to represent it as an
optimization problem with constraints.

minimize(δ), (3)

such that, α0(x+ δ) ∧ α1(x+ δ)..... ∧ αN (x+ δ) = True

Although equation (3) can fulfill our objective, non-
linearity of the constraints can increase the complexity. The
other way is to represent the attack using equation (1).
We define Garr, a 1D array representing the gate outputs.
Garr[i] represents ith gate output. In an iterative way, we
add perturbation to the input x such that the gate outputs,
which have a value lower than GT , reach GT , and other
outputs remain the same. The representation of the princi-
ple is,
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Garr[i](x+δ′+∆) =


Garr[i](x+ δ′), if Garr[i](x+ δ′)

>= GT

Garr[i](x+ δ′) + ∆g, otherwise
(4)

Here, δ′ is the accumulative perturbation before the cur-
rent iteration, ∆ is the perturbation being added at the cur-
rent iteration, ∆g is the value added at position Garr[i].
Figure 5 shows the attack process by an example.

To formulate the attack in the form of equation (1), we
define Garr[i] as current state (cur). We define array Gmax
with same dimension as Garr. Gmax can be represented as
Gmax[i] = GT for i = 0, 1, 2....N and we define Gmax as
des. We define loss function f(x+ δ) as,
f(x+ δ) =

∑N
i=0max(0, Gmax[i]−Garr[i])

By replacing loss function, we formulate the attack using
equation (1).

4.2. Algorithm

We propose ILFO based on the equation (1). ILFO is an
iterative technique that generates the best possible pertur-
bation for which the loss function value (mentioned in 4.1)
will be minimum. ILFO needs a pre-defining stage before
the procedure, which helps to formulate the loss function.
Figure 6 represents the pre-defining stage and the overview
of ILFO. Sub-figure (a) represents the pre-defining stage.
In this stage, desirable (des) and current (cur) states are
defined based on the intermediate outputs of AdNN, and a
single or multi-dimensional array is used to represent the
states. The loss function is defined based on the differ-
ence between these two states. Sub-figure (b) represents an
overview of ILFO. ILFO takes an image as input and gener-
ates the perturbed image using optimizing the loss function,
which was defined in the pre-defining stage.

After adding perturbation to the image, it is important
to make sure that the generated values are within the max-
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Figure 6. (a) Pre-defining the loss function. (b) Overview of ILFO.

imum and minimum limit for the inference. We use tanh
function for such purpose. The tanh function can convert a
value to a new value within the range -1 and 1. We use this
property of tanh function and send the distorted image val-
ues to a tanh function. The optimization function for ILFO
is a modified version of equation (1).

minimize||1
2
· (tanh(w) + 1)− I||22+

c · f(
1

2
· (tanh(w) + 1))

(5)

Where, w is the generated perturbation and I is the input.

Algorithm 1: ILFO Technique
Inputs : I : Input Image
Outputs: F : Final Perturbed Image

1 begin
2 Initialize δ, L min, δ best, des
3 T = number of iterations
4 iter no = 0
5 while iter no < T do
6 I′ = scale(δ + I)

7 cur = intermediate outputs(I′)

8 L dist = distance(I′, I)
9 L compute = loss(des, cur)

10 L = L dist+ c · L compute
11 L new, δ new = optimizer(L, δ)
12 δ = δ new
13 if L new < L min then
14 δ best = δ new
15 L min = L new

16 end
17 iter no = iter no+ 1

18 end
19 F = δ best+ I

20 end

Steps mentioned in Figure 6 (b) can be explained through
Algorithm 1. The algorithm takes an image to perturb as
input (I) and returns the perturbed image (F ).



Initializing Perturbation: This step is used for initializ-
ing variables. We initialize perturbation (δ), minimum loss
recorded (L min), most successful perturbation (δ best)
and the desired state (des) (Line 2). The desired state is
formulated manually using steps of 6 (a). Number of itera-
tions (T ) is also initialized (Line 3). This step is performed
only once in the algorithm.

Optimizing Loss Function: This is a step which gets
executed for each iteration. A perturbed image (I ′) is
generated by adding perturbation (δ) to the input image
(I) (Line 6). scale method re-scales the I ′ using tanh
function. Current output state (cur) is generated from
intermediate outputs method using inference of I ′ (Line
7). Two types of loss function values are generated. First
loss function (L dist) measures Euclidean distance be-
tween input image (I) and perturbed image (I ′) (Line 8).
Second loss function (L compute) measures distance be-
tween current (cur) and desirable (des) intermediate output
states using loss method (Line 9). loss method is defined
during last step of Figure 6 (a). The main loss function (L)
is created using both L dist and L compute (Line 10). The
main loss function is optimized and updated perturbation
(δ new) and optimized loss function (L new) is generated
(Line 11).

Update Perturbation and Record Most Successful
Perturbation: Perturbation variable (δ) is updated using
δ new (Line 12). If updated loss (L new) is lesser than the
recorded minimum loss (L min) (Line 13), L min variable
is updated (Line 15) and the current solution is recorded as
most successful perturbation (δ best) (Line 14). When the
iterations are finished, F is returned as the perturbed output
image by adding the most successful perturbation (δ best)
with input image (I) (Line 19).

5. Evaluation
We investigate the three characteristics of our attacks in

this Section: Effectiveness (Increase of computation after
attacks), Quality (Image feature preservation after attacks)
and Efficiency(Cost comparison of attacks).

5.1. Baseline Technique

We use Constraint-based technique as one of the baseline
techniques. Constraint-based technique is designed based
on the equation (3) and it uses an optimization technique
with non-linear constraints. We only add perturbation to
the border area pixels in this technique. We use this al-
gorithm to attack only SkipNet because attacking SACT in
this technique would be resource consuming. Before this
attack, we define the minimum number of gates that must
be activated (GMax) using the attack. The constraint can
be defined as NG >= GMax where NG is the number of
current active gates. The detailed implementation of this
technique is mentioned in Appendix A.

Table 1. Different parameters used for Constraint-based technique.
SkipNet

Params CIFAR-10 ImageNet
GMax 42 29
Iterations 300 10
Tolerance 1e-06 1e-06

Table 2. Different parameters used for ILFO.
SkipNet SACT

Params CIFAR-10 ImageNet CIFAR-10 ImageNet
Iteration 1,000 300 1,000 300
Constant 100,000 100,000 100,000 100,000
learning rate 0.01 0.01 0.01 0.01

Table 3. Different selection parameters used for AdNNs.

SkipNet SACT
Threshold CIFAR-10 ImageNet CIFAR-10 ImageNet
ρ Threshold for selection – – 11.5 25.0
Active gate threshold for selection 36 24 – –

5.2. Experimental Setup

Datasets. We evaluated our techniques on the CIFAR-
10 and ImageNet datasets for SkipNet and SACT models.
The reason for selecting the specific datasets was to main-
tain consistency as both the models have been previously
evaluated on the same datasets.

Models. SkipNet and SACT models can be built us-
ing ResNet models. SkipNet uses a modified ResNet-110
model to classify the CIFAR-10 images and a modified
ResNet-101 model to classify the ImageNet images. Skip-
Net models are trained using supervised learning. SACT
uses a modified ResNet-32 model to classify the CIFAR-
10 images and a modified ResNet-101 model to classify the
ImageNet dataset.

Table 1 and Table 2 represent the parameters used by
Constraint-based technique and ILFO respectively. Toler-
ance is the acceptable relative error in satisfying constraint.
The number of iterations for the Constraint-based technique
is 10 for thr ImageNet data and 300 for the CIFAR-10 data.
Due to the higher time consumption of Constraint-based
technique, we have used a less number of iterations. Due to
lower cost of ILFO attack, we can use 300 iterations for the
ImageNet and 1,000 iterations for the CIFAR-10 dataset.
The constant (c) used here is static and kept high because
we are more concerned about f(x + δ) than δ (equation
(1)).

5.3. Experimental Results

5.3.1 Effectiveness

We measure the effectiveness of the attacks by measuring
the total increase in FLOPs 2 and increase in AdNN re-
duced FLOPs during the inference of attacked images. For
this purpose, we process all the images from the CIFAR-10
dataset and choose the images with lower inference FLOPs

2For total FLOPs calculation, we calculate FLOPs for each convolu-
tional layer [24]



count. Similarly, for the ImageNet dataset, we choose 700
images with lower inference FLOPs count. For both the
models (SACT and SkipNet), we set a threshold to know if
the inference FLOPs count of the image is low or not. For
SkipNet, this threshold is dependent on the number of ac-
tive gates, while for SACT, the threshold relies on ponder
cost (ρ). The threshold values can be found in Table 3. As
part of pre-processing, ImageNet images are converted into
shape, 224 × 224 × 3. We compare ILFO with the other
two baseline approaches (Gaussian noise and Constraint-
based) to measure effectiveness. We have used Constraint-
based attacks only on conditional-skipping AdNN (Skip-
Net) because creating Constraint-based technique for early-
termination AdNN (SACT) is time and resource consum-
ing. Figure 7 represents the percentage of the total increase
in FLOPs after attacks. ILFO has outperformed Constraint-
based technique and could increase the number of FLOPs
by 28 - 45 % in all the scenarios.

(a) (b)

(c)                                                                                                           (d)            

Figure 7. Percentage of FLOPs increased by two attacks. (a) Re-
sults after attacking SkipNet using CIFAR-10 images. (b) Results
after attacking SACT using CIFAR-10 images. (c) Results after
attacking SkipNet using ImageNet images. (d) Results after at-
tacking SACT using ImageNet images.

The effectiveness of an attack for AdNN can also be
shown by the increase in the percentage of reduced FLOPs
during inference. AdNN decreases the number of compu-
tations of a traditional DNN during inference. We measure
the percentage of the reduced FLOPs that is increased us-
ing ILFO and show the results in Figure 13 (in Appendix)
and Table 4. ILFO has been able to increase up to 100 %
of the reduced FLOPs in all four scenarios (For two models
and two datasets). The average percentage of increasing the
reduced FLOPs is between 72 - 91 %. These results also
explain that not having greater scope to increase the FLOPs
is the reason why ILFO could only increase 30 - 35 % of
FLOPs on average for the ImageNet dataset.

Table 4. Average increase of reduced AdNN FLOPs by ILFO.
SkipNet SACT

Eval CIFAR-10 ImageNet CIFAR-10 ImageNet
Inc in % 84.29 81.36 72.49 91.06

Our results indicate that higher coverage of perturbation
is more likely to increase the effectiveness of the attack.
Constraint-based technique is less effective than ILFO for
both the datasets. Coverage of perturbation is one of the
reasons for this. Constraint-based technique changes only 3
- 4 % of the total number of image pixels. For the CIFAR-10
dataset, the total number of pixels changed by Constraint-
based technique is lower than the total pixels changed for
the ImageNet dataset. This affects Constraint-based tech-
nique’s effectiveness against the CIFAR-10 images. In an-
other experiment, we have tried to change pixels of a small
patch (5 × 5) on the CIFAR-10 images. The increase in
computation does not increase beyond 5 - 10% irrespective
of the positions of the patches.

Based on performance, ILFO is more effective on the
CIFAR-10 dataset than the ImageNet dataset. The rea-
son for this effect is that the scope of increasing compu-
tations is higher for the CIFAR-10 dataset than the Ima-
geNet dataset. Another noticeable point is that the range
of change in FLOPs after the attack for the CIFAR-10 im-
ages is larger than the range for the ImageNet images. The
initialization of perturbation can be one of the reasons be-
hind this. We use randomized initialization of perturbation,
and for few inputs, the optimization can get stuck at a local
minima. However, we can refer to the results that there is
fewer number of inputs (represented as outliers) for which
the increment of computation is low.

5.3.2 Quality

(a) (b)

Figure 8. (a) Difference in number of edges detected in an per-
turbed image and original images after different attacks. (b) Dif-
ference in Euclidean distances between generated and perturbed
images after different attacks.

We have measured the quality of an image by the syntac-
tic and semantic values of an image. While implementing



Table 5. Time consumption of the attacks.
CIFAR-10 ImageNet

Eval ILFO Constraint-based ILFO Constraint-based
Time(sec) 229 278 800 560

ILFO, we apply more weightage on increasing computation
than minimizing perturbation by choosing a high constant
value (c). Because of this reason, the difference in quality
between original and ILFO generated images can be higher
than the Constraint-based technique generated image. To
measure quality, we select 100 generated images by ILFO
and Constraint-based technique. These images are gener-
ated by attacking SkipNet model, and the images are taken
from the ImageNet dataset.

We have followed two types of measurement: syntactic
difference and semantic difference. Euclidean distance of
pixels between two images explains the syntactic difference
between images. Canny Edge Detection (CED) and Fast
Fourier Transform (FFT) have been used to measure the se-
mantic difference of images. CED and FFT are traditional
computer-vision algorithms that have been used by Jang et
al. [17] to find out the effect of adversarial attacks on the
features of the image. Canny Edge Detection (CED) is used
to detect the change in the number of edges in the image
after the attack. Fast Fourier Transform is used to convert
signals from spatial or temporal domain to the frequency
domain and to know change in the detailed feature after the
attack (Details in Section B in Appendix).

Figure 8 and Figure 9 (in Appendix) show the com-
parison between quality of the original image and attack-
generated images. Our results show that, in spite of hav-
ing syntactic differences in generated images, the effects
of both attacks on semantic values of the image are simi-
lar. In terms of Euclidean distance between image pixels
of the original and generated image, the average change in
pixel value for ILFO is highest (Figure 8 (b)). However,
the difference in detected edges between the original and
the attacked images (Figure 8 (a)) is similar for ILFO and
Constraint-based technique (average difference of 616 and
582 respectively). Euclidean distance between generated
FFTs also shows the difference in features in the images
(Figure 9 in Appendix). The average distance measured
with generated FFTs for ILFO is higher by a magnitude of 2
than the Constraint-based technique. All these results con-

clude that, in terms of semantic difference of the generated
and original images, both attacks perform similarly.

5.3.3 Efficiency

We measure efficiency of an attack by measuring time con-
sumption, and power consumption per second of the attack.
We select ten CIFAR-10 and ImageNet images from the se-
lected images during efficiency measurement experiments
and attacked using ILFO and Constraint-based technique
for SkipNet model. We use powerstat tool to measure CPU
power consumption during both attacks, ensuring no other
process uses CPU during the experiment. The number of
iterations used for each technique is mentioned in Table 2.
We have noticed that the attacks on the first image in the
dataset are more time consuming than the attacks performed
on later images. Because of this reason, we show the power
consumption of both the attacks on the third image. Ta-
ble 5 and Figure 10 (In Appendix) show the efficiency of
two techniques for one image. Results in Figure 10 show
that, with a similar amount of time and power consumption,
ILFO performs larger number of iterations (700 more for
CIFAR-10 and 290 more for ImageNet). Discussed results
suggest that ILFO is more efficient than Constraint-based
technique.

6. Conclusion
This paper presents ILFO 3, the first work investigat-

ing the robustness of neural networks in terms of energy
consumption. ILFO opens intriguing new problems. First,
formulation about the relation between input and its cor-
responding energy consumption can be further investigated
given ILFO uses only the intermediate output as the proxy
to formulate such relation. Second, ILFO can be used to
develop universal defense for adversarial attacks. Instead
of increasing the energy consumption, we can use ILFO to
optimize images to the format that the energy consumption
is minimum. Last, locating features affecting the energy
consumption remains to be an open problem. One plausi-
ble solution is to divide the input data space into different
regions and use genetic algorithm to search the most im-
pactful features.

3https://sites.google.com/view/ilfo/home
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Appendices
A. Constraint-based attack

Constraint-based technique is designed based on equa-
tion (3). This technique tries to minimize the distortion
while constraints are responsible for increasing FLOps.
Constraint-based technique can be time or resource con-
suming because it is an optimization technique with non-
linear constraints. Because of that reason, we use a smaller
input size. We send perturbation values as the input of the
optimization technique. We only perturb selected pixels to
keep the input size low. Constraint-based technique only
perturbs pixels in the border of the image. Changing only
border pixels makes sure that the main object of the image
does not get perturbed. We divide the technique into four
steps.

Initializing Output. This step represents initializing the
output of the optimization function i.e., resultant perturba-
tion. The optimization with non-linear constraints may find
itself in a local minima without proper Initialization. Ini-
tialization is done by randomly generating 100 values for
distortion and selecting the value which generates the high-
est FLOPs increase and has the lowest absolute value.

Creating the constraints. In the equation (3), the con-
straint is designed to keep all α values True. But with our
observations from results, we notice that all the blocks can
not be made active simultaneously for every image Spe-
cially for a few images, the behaviours of two blocks are
totally opposite, i.e., making one block active makes other
inactive. Because of this reason, instead of making all the
blocks active, we have tried to make a certain number of
blocks active. If NG represents the number of active blocks
in the model, then the constraint will be NG >= GMax

where GMax is the predefined desired number of active
blocks.

Creating Minimization Function. Minimization func-
tion has been designed to minimize the difference between
the original and attacked image. For Constraint-based at-
tack, we minimize the difference between pixel values of
the original and distorted image.

Calling Optimization Function. The optimization
function for Constraint-based perturbation attack can be
represented as,

minimize(||x− x′||) (6)

such that,

(N(x′) > GMax)

Where, N is a method that returns number of active
gates, GMax is desired active number of gates, x′ is the

attacked image with changed borderline pixel values, x is
image input. We have used Sequential Least Squares Pro-
gramming (SLSQP) as the optimization algorithm.

B. Quality Measurement Algorithms
Canny Edge Detection (CED) is a method to detect edges

in an image. Pixels whose value is significantly different
from their neighbors are called edges. We use edge detec-
tion as a metric to measure quality by analyzing the change
in the number of edges in the image after the attack. Canny
edge detection follows certain steps to detect edges. After
reducing the noise from the image, CED calculates inten-
sity gradients by convolving the image with predefined So-
bel filters. We get the information about changes in values
over pixels. Next, edge thinning is performed by suppress-
ing the gradient, and finally, strong edges (higher gradient
value) are selected to represent the edges of the image.

Fourier Transform is used to convert signals from spatial
or temporal domain to the frequency domain. Fast Fourier
Transform (FFT) is an algorithm to perform Fourier Trans-
form with lower time complexity. Converted spatial fre-
quency domain can be useful in giving useful information
regarding image features. The rough shape structure of the
image generates low spatial frequency after FFT. High spa-
tial frequency corresponds to detailed features [17].

C. Euclidean distances between FFTs

Figure 9. Euclidean distances between FFTs of generated and per-
turbed images

D. CPU power consumption of the techniques
The results for CPU power consumption of different at-

tack techniques is shown in Figure 10.
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Figure 10. CPU power consumption of the attack techniques

Original                                                 Gaussian Noise Constraint-Based                                    ILFO

Figure 11. Effect of different attacks on ImageNet dataset images
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Figure 12. Effect of different attacks on CIFAR-10 dataset images.
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Figure 13. Percentage of reduced FLOPs increased by ILFO. (a) Results after attacking SkipNet using ImageNet images. (b) Results after
attacking SkipNet using CIFAR-10 images. (c) Results after attacking SACT using ImageNet images. (d) Results after attacking SACT
using CIFAR-10 images.


