
An Empirical Analysis of Compatibility Issues for
Industrial Mobile Games

(Practical Experience Report)
Zihe Song§, Yingfeng Chen†, Lei Ma∥, Shangjie Lu‡, Honglei Lin‡, Changjie Fan†, Wei Yang§

§ University of Texas at Dallas, United States, {zihe.song, wei.yang}@utdallas.edu
∥ University of Alberta, Canada, ma.lei@acm.org

† NetEase Fuxi AI Lab, Hangzhou, China, {chenyingfeng1, fanchangjie}@corp.netease.com
‡ NetEase Inc., Hangzhou, China, {lushangjie, hzlinhonglei3}@corp.netease.com

Abstract—Detecting and fixing compatibility issues become
increasingly important for mobile game development. The con-
stant evolution of mobile operating systems and the severe
fragmentation of mobile devices makes it challenging for game
developers to detect and fix compatibility issues in time for
various device models. The undetected compatibility issues can
ruin the user experience, and cause financial loss to game
companies and players. Unfortunately, up to the present, mobile
game testing is still rather challenging in general. The pressing
compatibility issue of mobile games is largely untouched in the
research community so far.

To bridge the gap, in this experience paper, we perform
an empirical study on common compatibility issues of popular
commercial mobile games. In particular, we select four active and
representative mobile games with well-documented bug reports,
containing over seven million lines of code and over 20,000
commits over the past several years. We successfully create a
dataset with complete information about bugs and bug fixing
details, to investigate the common compatibility issues and fixing
strategies. We performed an in-depth manual inspection of the
most common symptoms and root causes of these compatibility
issues, and analyzed the common fixing strategies of issues under
each root cause category. We believe our findings and implications
are useful for developers in addressing compatibility hurdles
during the developing process. Our results also provide insights
for future research on compatibility issue testing and bug fixing
for mobile games.

Index Terms—Mobile games, compatibility issues, UI testing

I. INTRODUCTION

With the leap of mobile hardware performance in the
past decades, mobile game industry has achieved huge mo-
mentum. More and more computational-intensive games that
were provided only on PC/laptops before, are currently well
supported by mobile devices. According to Newzoo’s 2020
Global Games Market Report [1], mobile game is the largest
segment by far among all gaming platforms, i.e. mobile game
revenues grew 13.3% year on year and occupied 49% of
the global games market. The booming market makes the
quality assurance for mobile game software of great impor-
tance. However, quality assurance of mobile video games is
rather challenging, which requires heavy user interaction and a
certain level of intelligence [2], [3], [4]. Even to this moment,

the major industrial mobile game producers still heavily rely
on human testers for game testing [5].

Compatibility issue is one of the most pressing quality
problems and pain points in mobile game quality assurance.
Generally, mobile compatibility issues refer to the problems
that the app cannot run as expected on some specific operating
systems, hardware, or devices. Compatibility issues on general
mobile applications were well-studied in recent years [6],
[7], [8], many of which are mainly caused by severe system
fragmentation.

Currently, there are five versions of Apple systems (include
iOS and iPadOS) and nine versions of Android systems
still in concurrent usage. API specifications and development
guidelines are constantly changing with the system evolution.
Moreover, mobile manufacturers choose to equip Android
systems on their models with distinct customization, these
modified versions may contain bugs, or do not fully comply
with the original Android specifications. For software devel-
opers, designing and testing their apps to adapt to all kinds of
APIs and model combinations is a huge and even impractical
challenge. According to study in 2020 [9], only 60% of apps
could be adapted to the newly released Android version in a
month. Most apps could be adapted after 12 months of release.

However, the compatibility analysis of general mobile soft-
ware is not fully applicable to mobile games[10], [11]. The
complicated user interface (UI) layouts and artistic styles make
mobile games prone to two other types of compatibility issues
caused by hardware, screen shape adaption and computation
units adaption. Mobile manufacturers prefer to customize their
screen shapes to create a full-screen immersion. Different
resolutions and front camera positions are prone to cause com-
patibility issues such as UI blocking or element dislocation.
Also, exquisite game graphics relies on rendering techniques,
the performance bottlenecks in computation units on specific
hardware or low-configuration models may bring compatibility
issues.

Game compatibility issues caused by System fragmentation
and hardware adaptation occur frequently, taking developers’
tons of time and manual efforts on compatibility testing.
An effective automated compatibility testing tool for mobile



games is in urgent demand. To make the first step in automated
compatibility testing of mobile games, we conduct an in-
depth empirical study to investigate the common compatibility
issues of mobile games. We collect and analyze compatibility
issues from four representative industrial mobile games. These
games are of different types, currently still operating with a
large number of daily activeusers, and containing more than
seven million lines of code and 20,000 commits in total. With
these collected industrial mobile game codebases, we mainly
investigate the following research questions:
• RQ1: What are the most common symptoms of mobile

game compatibility issues? Finding the common symp-
toms of compatibility issues can facilitate the design and
development of better automated detection techniques.

• RQ2: What are the most common root causes of mobile
game compatibility issues? Analyzing the root causes
of compatibility issues can help game developers avoid
creating compatibility issues during development phase, also
benefit the further automated debugging techniques.

• RQ3: What are the most common fixing strategies
for mobile game compatibility issues? By summarizing
common fixing strategies of compatibility issues, we provide
some insights that hope to help mobile game developers
fix related issues and guide future researchers to design
automatically detecting and fixing techniques.
We hope the reported results of this experience paper

could raise the attention of researchers and practitioners to
propose more effective testing and analysis techniques towards
addressing mobile game compatibility challenges.

II. BACKGROUND

In this section, we introduce the real-world mobile game
compatibility testing practice at NetEase, Inc., which is one
of the world-leading game companies.

Compatibility testing is an important indicator of mobile
game quality. Different from functional testing, compatibility
issues affect only parts of devices and players in general.
However, if an issue happens on a mainstream model that
occupies a large market partition, the problem will escalate
and potentially lead to severe consequences. Based on this
consideration, compatibility testing become a general require-
ment for various types of mobile apps.

Compatibility testing is performed at some critical mile-
stones, such as the pre-Beta or closed-Beta stage, rather than
being implemented as a regular regression test suite (i.e.,
compiled with batched commits by game developers). Because
if an app passes the compatibility testing but fails the other
testing procedures (e.g., functional testing or weak network
testing), then passing compatibility tests can be meaningless
because fixing other testing issues may introduce new com-
patibility issues.

In general, there are three candidate methods for testing mo-
bile games, physical models, emulators, and cloud platforms.
• Physical models: Using physical devices is a reasonable

approach because it will be the real environment for game

playing. However, the expenditure on the purchase and
maintenance of the device pool could be expensive.

• Emulators: Using emulators for compatibility testing is an
economical choice. But it is insufficient and incomplete to
solely relying on emulators, because emulators cannot fully
simulate real devices, resulting in missing potential issues
that could have been observed on real models.

• Cloud platforms: Cloud platforms can be a good candidate
for compatibility testing. There exist several available busi-
ness platforms for compatibility testing, but these platforms
provide only the test results without testing methodologies
and the incidents during testing. As the end-user, testers
may not be aware of the detailed information once an error
occurs.

Considering that testing with physical models is fully
transparent and the device pool can be shared by multiple
development teams, NetEase, Inc. chose to maintain a mobile
device pool with a wide range of models. Due to limited
resources, not all models will be used while testing an app.
The testers will follow a series of processes to acquire the
testing set of models. The decision is driven by the market
circumstances, in particular, selecting the most popular devices
for each game based on the main user group of the game,
which combines multiple factors such as model price range,
players’ survey information, and the model information of
registered players, etc.

Currently, compatibility testing for all the games is per-
formed by a single team in NetEase, Inc.. Most of the system-
atic non-random compatibility tests are performed manually
by the team members, some of which are also outsourcing
to other specialized testing companies. Certain routine pro-
cedures in compatibility testing are automated, e.g., installa-
tion, uninstallation, and random testing. Therefore, building a
fully automated and intelligent testing infrastructure to enable
systematic and synergistic compatibility testing is an urgent
demand.

According to NetEase, Inc.’s experience, mobile games have
several unique challenges that require special attention. First,
the functional logic of mobile games is often complicated
due to frequent interactions between players and apps, which
leads to sophisticated testing procedures. Because the available
resource is limited, it is quite a challenge to incorporate
compatibility testing into already complex game testing proce-
dures. Second, fixing compatibility issues is also challenging.
It involves not only game source code, but also large amounts
of multi-media resources such as graphic models and shaders.
As a result, mobile game compatibility issues cannot be hot
patched (i.e., patching the app without reinstalling).

III. METHODOLOGY

The goal of this paper is to conduct a comprehensive study
of the compatibility issues in real-world industrial mobile
games, hoping to draw the attention of the research commu-
nity to investigate and propose effective mobile compatibility
testing techniques as the first essential step.



A. Subject Mobile Game Selection

To be representative, we collect relevant compatibility issue
data from four real-world commercial mobile games released
by industrial collaborator NetEase, Inc., which covers different
game types, having various amounts of code size and down-
loads, and still being active with different development time
scopes (from months to years). All four games have been
released, attracting more than two million regular players in
total.

Fig. 1 shows the game screenshots and Table I summarizes
the detailed information of these four mobile games. Overall,
these four games contain more than seven million lines of
code.
• BS (Fig. 1 (a)) is an Instant Action game (ACT). The

ACT game often adopts a large number of hitting effects,
potentially causing GPU issues across mobile devices.

• LJ (Fig. 1 (b)) is a lover Role Play Game (RPG). The RPG
games are composed of a series of UI, commonly causing
UI display problems.

• EI (Fig. 1 (c)) is a Battle Royale game (BR), which is among
the most prevalent type of games in recent years attracting
millions of players.

• GS (Fig. 1 (d)) is a Massively Multi-player Online Role-
Playing Game (MMORPG), MMORPG games usually have
a large open world for players to battle and socialize, and
all kinds of compatibility issues may appear in MMORPG
games. GS is a popular game and has been in service and
maintenance for more than four years, providing a long
timeline of bug reports for our analysis.

(a) ACT Game BS (b) RPG Game LJ

(c) BR Game EI (d) MMORPG Game GS

Fig. 1. Screenshots of the four investigated mobile games

B. Subject Dataset Collection

For this study, we reach out and eventually obtain the inter-
nal bug reports of four selected games from the testing team
of NetEase, Inc. First, we discard issues that are duplicated or
happening at the early development stage, because during this
time slot the game package is not stable and the root causes
are hard to be traced. We mainly focus on the bug report in
the Alpha test stage, where compatibility tests are generally
concentrated. To be noticed, during the game development
process, the compatibility testing is not closely associated with

the commits, since compatibility tests are performed at certain
milestones instead of each regular commit. As a result, our
bug reports come from the bug report database instead of the
commit report database. In order to collect effective samples
for empirical analysis, we retrieve the bug reports in two
different ways. We (a) extract all the bug reports with the tag
“compatibility issue”, obtaining about 100 reports, and (b) run
a keyword search with keywords related to compatibility is-
sues (e.g., “compatibility”, “corruption”, “black screen”, etc.),
finding over 280 reports. Because the bug report descriptions
are not highly standardized, some compatibility issues may not
be correctly labeled with the “compatibility issue” tag. We put
these two retrieved results together for the manual inspection.
Two experienced game testers manually check each bug report
respectively in order to increase the confidence of the inspec-
tion. As the result, 274 non-duplicated compatibility issues
are eventually manually confirmed, forming our study subject
dataset of mobile game compatibility issues. To answer the
three research questions posed in Section I, for each sample,
we analyze the corresponding source code and commits in
terms of (a) the symptoms of the issue, (b) the main root
cause of the issue, and (c) a brief fixing solution. Because the
needed information of some examples is not well recorded
in the bug reports, we have to further communicate with the
game developers to get sufficient information. Eventually, we
end up with 91 distinct compatibility issues with sufficient
information that allow us to perform the study. To help future
research and development, we open source our dataset used in
this paper [12].

C. Analysis Overview

For each of the 91 compatibility issues, our goal is to answer
the following set of questions: (a) What is the symptom of
the issue? (b) What is the root cause of the compatibility
issue? (c) How is the issue fixed according to the root
cause? Fig. 2 shows the overview of our findings on these
three questions. The common symptoms of these compatibility
issues can be summarized into three categories, UI layout
issues, performance issues, and functional issues. Each of the
symptom categories is related to one type of root cause and
common fixing patterns. For example, most of the performance
issues are caused by incompatible GPUs, so the developers
could adjust related UI shaders or disable high-level rendering
techniques to avoid certain issues. By mapping the relationship
between issue symptoms, root causes and common fixing
strategies, developers and human testers can quickly locate
the root causes and design the fixing strategies for certain
symptoms, speeding up the development process. Moreover,
we think these findings can help future researchers develop
automated testing tools. The details of each question will be
discussed in the following sections.

IV. RQ1: SYMPTOM ANALYSIS

To facilitate the automated detection of compatibility issues,
in this section, we reproduce and analyze the symptoms of
the selected compatibility issues and classify them into three



TABLE I
A SUMMARY OF THE FOUR INVESTIGATED MOBILE GAMES

Game
Name

Game
Type

Lines Of
Code

Development
Time

Compatibility
Issues

Bug Report In
Alpha Test Phase

BS ACT 1,470,000 2017.6 ∼ Present 36 2,868
LJ RPG 400,000 2019.12 ∼ Present 85 2,102
EI BR 810,000 2017.5 ∼ Present 93 9,080
GS MMORPG 4,600,000 2015.4 ∼ Present 60 650

Performance

Functional

UI Layout Adjust Related 
Images

Fix API Access

Fixing StrategiesRoot Causes

Display

Lag

Crash

Installation

Adjust or Disable 
Related Shaders

Fix Anchor Settings

Add 32-bit 
System Support

Reduce Resource
Quality

Screen Customization

Screen Shape

Resolution

Anchor

Others

Material

Computation Units

GPU

CPU & RAM

Others
API

Symptoms

Layout

Others

Fig. 2. A bird view on relationship of issue symptoms, root causes and fixing strategies

main categories: UI layout issues, performance issues, and
functional issues. Understanding the common symptoms of
mobile game compatibility issues can help developers and
manual testers detect and repair such problems. Furthermore,
the findings from our analysis can facilitate the development
of automatic techniques for compatibility issue detection. We
summarize our categories and distribution in Table II. In the
rest of this section, we elaborate on each of them in detail.

Answer to RQ1. The symptom of game compatibility
issues can be categorized into three main categories: UI
layout issues, performance issues, and functional issues.
The most common symptom of mobile game compatibil-
ity issues is UI layout issues, having as many as 53% of
the studied issues (i.e., 48 out of 91). Performance and
functional issues account for 26% and 21% respectively.
The distribution of compatibility issues in mobile games
is different from general Android software, where func-
tional and performance issues account for 84% and 4%
of 191 Android compatibility issues, respectively [6].

A. UI Layout Issues

Screen layout issues refer to the situation in that UI com-
ponents are displayed in unusual layouts. This is the most
common symptom shown in compatibility issues, we found

that 48 out of 91 (53%) issues belong to this type. In most
cases, these compatibility issues appear as tiny layout issues
of UI components and do not interrupt the game process.
Based on our analysis, these issues can be classified into three
subcategories:

1) Irregular-shaped screen blocking UI components issues:
Full-screen devices by various manufacturers may have

different arrangements of the front camera, which can block
some top UI components. Fig. 3 (a) shows an example of such
issues. The screen title is fully blocked by the front camera
and speaker.

2) UI components incorrectly overlapping issues:
In some issues, UI components overlap with each other,

causing the users unable to obtain information or interact
with the blocked buttons in the underlying UI elements. For
example, in Fig. 3 (b), the purchase panel is overlapping with
the player information interface, so the player cannot touch
buttons on the interface.

3) Incomplete occlusion of UI components issues:
Due to the different resolutions and sizes of different de-

vices, UI panel cannot completely cover the expected interface,
leaving a blank area on the screen and making the underlying
image visible. Fig. 3 (c) shows an example of this type
of issue. The grey transparent layer does not completely
cover the underlying background image. In other cases, if the



(a) (b) (c) (d)

Fig. 3. Examples of screen layout issues. (a) Front camera and speaker are blocking the screen title; (b) UI panel overlaps with an information panel, blocking
other buttons; (c) Shadow bar fails to cover the top of screen; (d) Background image fails to cover the whole phone screen, leaving black borders on both
sides.

background image of the game cannot completely cover the
device screen, black borders will appear on one or both sides of
the screen. This problem can occur in both horizontal-screen
and vertical-screen modes. Fig. 3 (d) shows an example in
horizontal mode.

Implication. For different symptoms, we believe that
different automated detection techniques can be applied
to UI layout issues: (a) Layout issues caused by irregular-
shaped screens are usually not directly detectable by
image recognition on device screenshots. One straight-
forward automated solution is to check whether any
content will be located in the area of the front camera
and speaker. (b) Currently, there are detection techniques
based on image recognition for component occlusion, text
overlap and other layout problems existing in general
android apps [11]. General mobile apps normally have
standardized UI layouts, such as upper and lower menu
bars, consistent image size and text format, etc. However,
the large number of irregular UI components makes it
challenging to detect overlapping components in mobile
games, especially on 3D game scenes or those games that
focus on plot and art style. A potential way is to compare
the UI layout of the same gaming scenario on multiple
devices [10]. (c) For incomplete-occlusion component
issues, because it usually has a clear separation line
around the screen borders, we suggest that edge detection
techniques can be applied to detect this type of issue
automatically.

B. Performance Issues

The second kind of common symptom appears as per-
formance issues. Unlike UI layout issues, UI exceptions in
performance issues are not related to layouts, but display
exceptions of a single component or even entire screen, e.g.,
components disappearing or screen blurred, etc. These issues
are mostly related to the GPU performance that can slow down
the game process. There are 24 out of 91(26%) issues in this
category. According to different manifestations, performance
issues can be divided into three subcategories.

1) Material issues:
14 out of 24 performance issues belong to this subcategory.

Different from the screen adaption issues, the size and position
of UI components are correct here, but the material texture of

UI components are rendered abnormally, which mainly falls
into the following two types:
• Material exception. 13 of 14 material issues belong to this

category. A UI component is displaying on the screen, but
its texture does not match the expected performance. As
Fig. 4 (a), the grass is shown as white glowing texture
instead of matte light green.

• Material missing. Only one of the 14 material issues falls
into this category. Since the symptom is inconsistent with
others, we separate it out. As the example in Fig. 4 (b),
the UI material of the character body in the red rectangle
disappears on the screen, players can only see the head of
the character.

TABLE II
THE DISTRIBUTION OF ISSUE SYMPTOMS

Category Subcategory Count Total

UI
Layout

Screen block 18
48Overlap 16

Incomplete occlusion 14

Performance
Material 14
Display 5 24
Lag 5

Functional
Startup & Installation 9
Crash & ANR 5 19
Others 5

2) Display issues:
Five out of 24 performance issues are display issues. Dis-

play issues refer to the circumstances in which the display is
abnormal on the whole screen. This is a rarely happened issue,
but once occurs, it will immediately interrupt the gameplay and
severely harms players’ gaming experience. Commonly, since
the display issue cannot resume automatically, players must
restart the whole game to restore the display, which is likely
to cause the player to lose current game progress. These five
display issues have two different manifestations:
• Screen corruption. Screen corruption shows as all UI com-

ponents on the screen are displayed incorrectly, including
various aspects such as color, position, texture, etc. Fig. 5 (a)
shows an example of screen corruption. It may occur when:
(a) loading into a new game interface, (b) reactivating the
game after screen locking, or (c) switching back to the game
interface from external pages. We can set specific detecting
scenarios for this type of issue based on the happening
frequency.

• Screen color exception. Abnormal screen color includes
overexposure screens and gray-scale screens. Fig. 5 (b)



(a) (b)

Fig. 4. Examples of material issues. (a) Grass material appear as glowing
white instead of matte green; (b) Body materials of the character are missing.

shows an example of an overexposure screen, the overexpo-
sure texture makes players unable to distinguish the position
and action of the character.
3) Lag issues:
Five issues can cause game lag problems. The games

can be stuttering or dropping frames, which affects users’
game experience, especially for the games that require quick
responses, such as ACT game BS.

Implication. Human testers can easily distinguish all
three types of performance issues from normal game
screens or frames. However, there are no generalized
rules for automated testing tools to identify performance
issues for all games. (a) The current solution to missing
images or text in general mobile apps is to train the
detector with datasets of screenshots that contain icons
representing image broken or the NULL string in the
TextView component [11]. The material exception or
missing issues in games usually don’t give obvious signs
like icons or strings. Moreover, even with large training
samples, learning-based techniques may not work well
for detecting performance issues without proper human
prior knowledge. Due to different game settings, the
issue-looking material in one game scenario may be
perfectly normal in other game scenes. For example, the
erroneous regions shown in Fig. 4 (a) could be normal
in other scenarios, e.g. representing interactive materials.
(b) Screen corruption or lagging issues rarely happen in
general mobile apps. According to a recent study [11],
among the 4,470 screenshots with UI issues, only 1%
of UI issues are related to blurred screen. The current
method for general app performance problem detection is
to identify unusual battery and heap usage by recording
usage on multiple devices [10].

C. Functional Issues

Compared with general mobile phone software [6], there are
fewer functional issues in mobile games. Among 91 issues,
only 19 (21%) fall into this category. Functional issues refer
to the situation that the game fails to install, start, or run as
expected, e.g., crashing during the gameplay.

1) Installation & Startup issues:
Nine out of 19 issues are happening during installation or

startup. issues are classified into this type when: (a) the game
package fails to install, (b) the installation process does not
end even though the package has been installed successfully,
(c) the game is successfully installed but cannot open, (d)

(a) (b)

Fig. 5. The examples of display issues. (a) Screen corruption; (b) Screen
overexposure.

the game crashes immediately after startup, (e) the game
keeps showing a black screen after startup. Same as other
applications, this type of issue can be detected easily with
testing scripts.

2) Crash & ANR issues:
Five of 19 functional issues will cause app crash or ap-

plication not responding (ANR). According to the behaviors
during crashes, crash issues have two types: (a) game crashes
with throwing an exception, these issues are easier to catch
and repair based on the log, and (b) game suddenly quit and
back to the device home screen without any notification. These
issues are difficult to catch and figure out the root cause. ANR
issue refers to the situation where the game is stuck. If a certain
game activity has not been completed in a certain time period,
the game will freeze, then an ANR notice will appear on the
screen. These issues normally have detailed logs and stack
information that can help developers locate and repair bugs.

Crash and ANR issues often appear when players are:
(a) playing or skipping the opening CG after startup, (b)
loading into the new game scene, (c) playing in multi-player
battle scenes, (d) switching game resolution, (e) selecting and
logging in to the game server, (f) downloading and updating
in the game.

Implication. Similar to general mobile software, func-
tional issues have obvious symptoms, such as installation
failure or game crashes, which makes it easy to capture
and trace [6], [13]. At the same time, functional issues
commonly appear in specific scenarios, which is also
conducive to applying automatic detection techniques.

V. RQ2: ROOT CAUSE ANALYSIS

In this section, we analyze the root causes of these compat-
ibility issues and classify them into three categories. Figuring
out the root causes of game compatibility issues can help fix
related issues and avoid such problems from happening again.

At first, we followed an approach adopted by Wei et al. [6],
categorizing the issues into two general types: device-specific
and non-device-specific. The device-specific issues only appear
on a certain device model, while non-device-specific issues
occur on most device models, which are usually caused by a
certain API level. Then we further categorized issues in each
type into subcategories based on respective root causes.

However, according to our observation, only three samples
in our dataset are non-device-specific. In this work, we divided
device-specific issues into two main categories (Display and
Computation Units) and put the non-device-specific issues



(a) (b)

Fig. 6. Examples of display issues. (a) Four buttons are blocked by the camera
notch; (b) The button of game menu is blocked by the rounded screen corner.

caused by certain systems or API versions into the third
category Others. We summarize categories and distribution in
Table III.

Answer to RQ2. In this study, the root causes of mobile
game compatibility issues are basically relevant to the
symptoms. As a result, the root causes can also be clas-
sified into three main categories: screen customization,
computation units, and other reasons including API or
system version. Among the 91 issues, 53% issues (i.e., 48)
are due to screen customization, and 30% issues (i.e., 27)
are caused by computation units. Different from normal
Android software, most compatibility issues in mobile
games are caused by hardware rather than software.

TABLE III
THE DISTRIBUTION OF ISSUE ROOT CAUSES

Category Subcategory Count Total

Screen
Customization

Screen Shape 18
48Anchor 16

Resolution 14
Computation
Units

GPU 21 27CPU & RAM 6

Others
API 5

16Android & System 3
Others 8

A. Compatibility of Screen Customization

The majority of compatibility issues are caused by screen
customization, we found 48 out of 91 (53%) compatibility
issues belong to this type. This root cause category is exactly
corresponding to the screen adaptation issues in Section IV-A.
These issues can be divided into three subcategories.

1) Irregular screen shape:
18 out of 48 issues are in this subcategory, mainly be-

cause different manufacturers have launched full-screen mo-
bile phones with different display screen shape designs (e.g.,
the top-notch and bottom home indicator of iPhone full-
screen models). These designs could cover the nearby game UI
elements, preventing game players to get the game information
or press relevant buttons. For example, in Fig. 6 (a), four
buttons on screen are blocked by the front camera notch on
Samsung W20 model, causing the players unable to open
menus. Fig. 6 (b) shows another example that the game button
is blocked by rounded screen corner. 18 issues in this subcat-
egory indicate that developers should consider the irregular
screen shape carefully during the development process.

2) Incompatible resolution:
16 out of 48 issues occurred due to incompatible image

resolution. For instance, as we mentioned in Section IV-A,
the black bars in Fig. 3 (d) appear on both sides of the
screen because the background image was prepared for earlier
devices instead of full-screen models. This issue occurs quite
frequently in recent models.

3) Anchor dislocation:
14 out of 48 issues occur because of Anchor Dislocation.

Many game engines (e.g., Unity and Cocos), use anchors to
set up the position of UI components on the screen. Fig. 7 (a)
shows the anchor panel in Unity engine. If the anchor of UI
element is set in an improper way like hard-codding, the UI
element may appear in the wrong position on certain model
screens. For example, Fig. 7 (b) is a screenshot of an iPad
screen, the black panel in the red rectangle should have been
located on the right bottom corner, as the same location in
Fig. 7 (c). The panel was dislocated because its anchor was
set by fixed values, which are calculated with a regular-sized
screen.

(a) (b)

(c)

Fig. 7. Examples of anchor dislocation issues. (a) The anchor setting panel
in Unity. (b) The black panel in the red rectangle is in the wrong location on
the iPad screen due to fixed anchor settings. (c) The correct position for the
black panel on a regular resolution screen.

Implication. Screen customization issues are strongly
relevant to the symptom category layout issues. Therefore,
once UI layout issues are detected, we can quickly locate
and debug them based on the relevant root causes. At the
same time, for certain issues caused by anchor dislocation
and incompatible resolution, we can perform static analy-
sis techniques to detect and debug them without running
the game to save testing costs.

B. Compatibility of Computation Units

The difference in computation units equipped on the mod-
els also has a huge impact on game compatibility testing.
Complicated games commonly require high-end device con-
figurations. If the issue is caused by the computation units



(e.g., CPU, GPU, and RAM) which cannot afford the game
performance or be incompatible with game components, we
will classify it into this category. As a result, we found 27
(30%) compatibility issues.

(a) (b)

Fig. 8. Examples of GPU performance issue. (a) Sunlight in red rectangle
exhibits wave texture due to low GPU configuration; (b) Screen shows gray
scale due to incompatible shaders.

1) GPU issues:
21 of 27 issues in this root cause category are related to

GPU. They can be classified into the following two categories:

• Insufficient GPU. 11 cases belong to this subcategory.
This kind of case commonly arises in old models and low-
configuration models, they will perform as abnormal game
displays, such as in Fig. 8 (a), the sunlight in the red rect-
angle has wave texture because the old GPU cannot support
high-precision floating numbers. Also, if the game display
uses rendering techniques that require high GPU compute
capability, many low-configuration models will suffer from
game lag. For instance, the grass in Fig. 4 (a) uses GPU
Instancing technique to enhance realism, this technique
can cause obvious lag on low-configuration models, which
seriously affects the game experience of players.

• Incompatible GPU. In other cases, GPU on the specific
model may be incompatible with game settings. For ex-
ample, the developer of game LJ designed unique shaders
for the game, but the game will show gray-scale screens
on the model VIVO X5M due to different floating-point
calculations, as shown in Fig. 8 (b).

2) CPU & RAM issues:
In addition to GPU performance issues, CPU and RAM can

also affect game compatibility. Six out of 27 issues are related
to CPU or RAM. When the game process needs high memory
usage, the game may quit unexpectedly on models with small
RAM capacity. High CPU overhead will also lead to this
problem, like the game scene in Fig. 9 (a). This scene contains
lots of UI components, which is prone to cause crashes on
non-flagship and low-configuration models because loading a
large number of UI components needs expensive draw calls.
Fig. 9 (b), plotted by Unity Profiler [14], shows the number
of draw calls for loading this scene, which is up to 400.

Implication. Most performance issues are caused by
GPU. For the game components that require high-level
configuration, developers are recommended to optimize
computation algorithms or providing low-level alterna-
tives. In addition, the mobile games should be extensively
tested on broad coverage of various devices with different
computational power, so that to identify and address
performance issues at an early stage.

C. Others

16 out of 91 issues are classified into this category. Among
them, three are caused by incompatible APIs, and five are
related to incompatible mobile systems or Android SDK
versions. Android ecosystem fragmentation exacerbates this
situation. Cases under this category can cause failed installa-
tion or crashes during gameplay. We give examples below to
describe two main types in this category.

1) Incompatible system & Android SDK version:
Incompatible system issues often happen when installing

recent games on legacy systems. Some earlier mobile models
still used 32-bit systems, which is not compatible with current
64-bit game installation packages. Games can not be installed
successfully under such circumstances. In order to fix it,
developers need to recompile the game application, making
it compatible with 32-bit systems, which greatly increases
the package size. Also, the distribution channel plays an
important role in the release stage of mobile games. The
game distributors (e.g., Google Store), usually have their
own development kits, so game developers need to integrate
development kits to support account login. However, the API
level of development kits may not match mobile games. For
example, if the development kit of a certain distributor only
supports Android APIs under level 21, an error message will
pop up when installing mobile packages with a higher API
level.

2) Incompatible API:
Incompatible API can be a problem on some customized

OS. For example, game LJ is unable to switch to landscape
mode on Google Nexus 6P. Because the related APIs are
incompatible.

Implication. Compatibility issues due to incompatible
APIs are very common in general mobile apps. There are
several existing works that can detect and fix incompatible
APIs through techniques such as static analysis [15], [16],
[17], which can also be applied to game testing.

VI. RQ3: ISSUE FIXING

In this section, we elaborate on the strategies that game
developers apply to fix compatibility issues of the various
categories.

A. Fixing Screen Customization Issues

1) Irregular screen shape issues:
For the layout issues caused by irregular shapes of devices,

the developers often adopt the following fixing strategies:



(a) (b)

Fig. 9. Example of CPU performance issue. (a) Screenshot of game scenario
with a large number of UI components. (b) The number of draw calls when
loading the game scene in (a).

Answer to RQ3. Besides some API adaption issues, most
compatibility issues can be fixed on the developer side.
Depending on different root causes, there are various
fixing strategies for different issues. Most fixing strategies
are still workarounds instead of the complete solutions.
Moreover, most of the issues this study involved are fixed
manually by developers. We hope that the common fixing
patterns of each root cause category can be used as a
reference and benefit the further design and development
of automated testing techniques for mobile games.

Modify UI layouts based on related models. 14 out of 18
irregular shape issues are fixed by adjusting UI layouts. For
issues that appear on different models, developers adjust UI
layouts based on specific situations. For example, on models
with small camera notches (e.g., VIVO X21S model) and
rounded corners (e.g., MEIZU 16th model), developers only
adjust the UI components near notches to save effort because
the occlusion is minor. In our dataset, 12 related issues are
fixed in this way.

On other models with large notches (e.g., iPhone) or unique
screen ratios (e.g., iPad), developers often modify the whole
UI layout, moving the buttons and panels on sides closer to
the center to ensure notches do not obscure anything.

Design screen size SDK. To save effort, developers design
a Notch SDK to automatically obtain the information of screen
notches. The below code snippet is an example message
returned by Notch SDK. If the notch (cutout) exists, SDK
will send back its size and location.

1 "methodId": "getCutoutInfo",
2 "hasCutout": true,
3 "width": 300,
4 "height": 100,
5 "left": 400,
6 ...

Call API for iPhone home indicator. In particular, Apple
Full-screen models since iPhone X replace the home button
with a home indicator (i.e., a white bar at the bottom of the
screen). This home indicator is likely to block information. To
avoid blocking game UI, developers will call the related API
from game engines to make the home indicator translucent.

2) Resolution issues:
For the layout issues caused by incompatible resolution, the

developers have two main fixing strategies:

Change background image size. 14 of 16 (88%) incom-
patible resolution issues can be fixed by manually modifying
the background image size, stretching the image to make it
compatible with the irregular-shaped screens, or replacing the
background image with a wider one.

Add mask image on the uncovered part. For circum-
stances where images cannot be stretched or replaced, devel-
opers will add mask images on the uncovered parts to ensure
a good appearance of the whole game scene. Fig. 10 shows
an example on the iPad version, fixed by adding a wide pink
texture under the core image to cover the black background.

(a) (b)

Fig. 10. Example of Fixing resolution issue. (a) Before fixing, the screen has
black bars on both side; (b) Adding image in similar style to cover the black
bars.

3) Dislocation issues:
Modify anchor position. Adjusting the anchor position can

fix all the dislocation issues. During the development phase, in
order to avoid anchor dislocation issues, game developers can
choose some components which will not be affected by screen
sizes, and locate them at first, then use them as references to
set other anchors.

Implication. Device screen SDK could be helpful for the
automated game testing tool. With proper knowledge of
device screen shape and resolution, layout-related issues
could be automatically fixed, e.g., dynamically adjusting
background image size, setting the anchor position ac-
cording to screen shape, etc.

B. Fixing Computation Unit Issues
1) GPU issues:
For the issues caused by GPU performance, the developers

basically have the following two fixing strategies:
Developing specific shaders for related models. Adapting

low-precision shaders to certain models can fix most UI mate-
rial issues caused by poor GPU computation performance. For
the incompatible GPU, developers choose to modify shaders.
For example, as we mentioned in Section V-B, game LJ shows
gray-scale screens because developers designed unique gray-
scale shaders in NGUI (UI kit for Unity), which is highlighted
in the former code snippet in Fig. 11. And developers found
that the floating-point calculation in this model has a problem
that z-axis values of coordinate would be transformed as
negative. The NGUI shader will shade the screen in gray-
scale when receives negative z-axis values. This issue is fixed



by removing the gray-scale shader and each time outputting a
gray-scale photo to replace it then, as shown in the latter code
snippet in Fig. 11.

1 fixed4 frag (v2f IN) : COLOR
2 {
3 half4 col = tex2D(_MainTex, IN, texcoord) *

IN.color;↪→

4 fixed grey = dot.rgb, fixed3(0.299, 0.587,
0.114);↪→

5 col.rgb = lerp(fixed3(grey,grey,grey),
col.rgb, step(IN.grey, 0));↪→

6 return col;
7 }

1 fixed4 frag (v2f IN) : COLOR
2 {
3 return tex2D(_MainTex, IN, texcoord) *

IN.color;↪→

4 }

Fig. 11. Code snippet of the gray-scale screen problem.

Disable rendering techniques. Disabling those rendering
techniques that require high GPU computing performance on
low-configuration models can improve lag issues caused by
GPU. For example, game lag problem mentioned in sec-
tion V-B can be solved by disabling GPU Instancing technique
from Unity engine.

2) Other computation unit issues:
To deal with limited CPU overheads and RAM capacity,

developers adopt two strategies on related models.
Optimize related algorithms. Issues caused by limited

CPU overheads can be fixed by optimizing related algorithms.
For example, the crash issue in Fig. 9 (a) can be fixed by
using Draw Call Batching technique to merge multiple UI
components into one draw call. This optimization reduces the
number of draw calls, thereby reducing the CPU graphics
interface overhead.

Reduce resource quality. For complicated scenes with
many images, reducing the resource quality can fix the insuf-
ficient RAM issues. This approach is useful for small memory
size models, such as iPhone 6 model with 1 GB Memory.

Implication. Providing alternative and multiple candidate
game settings under different configurations can be a
feasible way to avoid performance issues. Given that the
same type of issues on a certain device can appear at
different games, testers are recommended to pay more
attention to these typical devices.

C. Others

Fixing API access. For the issues caused by incompatible
APIs, developers will choose to adjust related parameters or
change the API versions. If some APIs cannot be fixed, devel-
opers will add workarounds to keep the main functionalities
of game continually working.

Add support for 32-bit systems. Installation issues on
32-bit systems can be fixed by recompiling the installation
package and adding support for 32-bit systems. However, this

approach will enlarge the installation package. For example,
the game package of game BS increases 30 MB after adding
support for 32-bit systems.

VII. THREATS TO VALIDITY

Our study is empirical and the result is subject to several
common threats, including internal, external, and construct
validity.

Subject Games. The validity of our empirical analysis may
be subject to the threat that our study was only conducted
on four mobile games. However, to alleviate this threat, we
choose four popular mobile games, all that have been released
for more than a year, have large player bases and high daily
activity index. The games are also diverse, covering four
common types of games (i.e., ACT, RPG, MMORPG, and
BR) and containing a bunch of compatibility issues.

Selection Criteria. Our issue selection may also be a poten-
tial threat to the validity. As we mentioned in Section III. We
collected cases from the bug report database by two strategies,
(a) collecting all cases with the tag “compatibility issue”, and
(b) using specific keywords to search through bug reports, such
as“compatibility”, “corruption”, “black screen”, etc. Also, we
narrow down the time frame to only the Alpha test, because the
Alpha test is the most intensive time for compatibility testing.
We understand that our searching strategy may miss some
potential compatibility issues from the database. For example,
our keyword search did not include device information, which
may cause us to miss some compatibility issues. The reason
we did not adopt this strategy is that it is inefficient for our
circumstances. Each bug report in the database is suggested
to contain the device information. If we use device series as
keywords, our result will contain plenty of false positives,
greatly increasing the time-consuming of manual inspection.
The selection of our search strategies can be justified by their
effectiveness and efficiency. Finally, we obtained a total of 274
candidate compatibility issues for further analysis.

Manual Inspection. In order to prevent false positives
from our searching results, two experienced game testers
from relevant game development teams manually checked
each bug report. To be noticed, we followed the widely-used
open coding methodology and cross-validated all the cases for
consistency.

VIII. RELATED WORK

A. Mobile Compatibility Testing

Han et al. [7] analyze issue reports from two famous mobile
device manufacturers, HTC and Motorola, to study Android
compatibility issues. They propose that the main cause of
compatibility issues is Android Fragmentation. Fazzini et
al. [18] propose the technique that can help developers auto-
matically find cross-platform inconsistencies (CPI) in mobile
applications which uses input generation and difference testing
to compare software behaviors on different platforms. Zhang et
al. [19] and Cai et al. [13] carry out empirical research on
Android compatibility, respectively. Zhang et al. [19] examine
the intentions of developers regarding how to achieve software



compatibility and avoid potential compatibility issues from
benign and malicious apps. Cai et al. [13] investigate only
benign apps and find that compatibility issues are prevalent
and persistent at both installation and run time, most instal-
lation incompatibilities are due to API changes during SDK
evolution. Wei et al. [6] analyze 191 fragmentation-induced
compatibility (FIC) issues from real-world open-source An-
droid applications and categorize fragmentation issues accord-
ing to specific device model, functionalities or performance.
They find that most FIC problems are functional problems
caused by API incompatibility and propose FicFinder to au-
tomatically detect API-related compatibility issues. Huang et
al. [20] conduct research on Callback Compatibility Issues
and subsequently design a static analysis technique Cider to
detect related callback compatibility issues. In the follow-up
work, Huang et al. [21] investigate configuration compatibility
issues in Android apps and propose ConfDroid analyze XML
configuration files to detect compatibility issues automatically.
Xia et al. [16] propose RAPID to automatically determine
whether an API-related compatibility issue has been addressed
by combining machine learning with static analysis techniques.
Mahmud et al. [15] also focus on API-related compatibility
issues, they propose ACID to leverage API differences and
use static analysis to detect both API invocation and callback
compatibility issues. Liu et al. [22] reproduce nine state-of-
the-art tools that are proposed to detect compatibility issues
in Android apps, they summarize five types of incompatible
issues from the results, which indicates that compatibility
issues detection is still at an early stage.

B. GUI-related Mobile Compatibility Testing

The existing works we introduce above are mostly focusing
on API-related compatibility issues in Android applications.
With the improvement of visual effects in mobile GUI design,
UI-related compatibility issues also draw attention from both
industry and researchers. Ki et al. [10] propose Mimic, an
automated UI compatibility testing framework for Android
apps. Mimic catches UI anomalies by monitoring differ-
ences in the UI hierarchy tree during app running time and
calculating the difference between the screenshots by color
histogram difference and feature matching. However, Mimic
is not suitable for all types of mobile apps, especially for
games, because Mimic can not test sensor input. Liu et
al. [11] propose NightHawk, an automated tool to detect UI-
related compatibility issues, they combine a heuristic-based
generation method to automatically generate labeled training
data and then use deep learning techniques to model visual
information of the GUI screenshot.

C. Mobile Game Testing

In the past few years, due to the development of rein-
forcement learning, many pieces of research regarding mobile
testing appeared in the world [23], [24], [25], [26], especially
in the mobile game aspect[27], [28]. Lovreto et al. [29]
randomly choose 16 different mobile games from the list
of popular games on Google Play store and analyze mobile

game testing by using Appium testing framework and OpenCV
library. Khalid et al. [30] conclude player reviews from 99 free
mobile games and propose that developers should optimize
their limited Quality Assurance (QA) on device models with
high priority. Zheng et al. [3] propose the first game frame-
work that can systematically and automatically test real-world
games and obtain great performance. Chen et al. [31] propose
GLIB, a code-based data augmentation technique, which can
effectively uncover GUI non-crash glitches in mobile games.
Even though, it still lacks a comprehensive study on the urgent
compatibility issues of mobile game testing. This paper fills
this gap and provides important findings that may guide further
compatibility testing design for mobile games.

IX. CONCLUSION

In this paper, we conduct an empirical study to understand
and analyze the compatibility issues in mobile games. We
investigate 91 issues from 4 popular mobile games to summa-
rize the common symptoms and root causes of compatibility
issues, then study the common strategies of fixing issues under
different root cause categories. From the empirical study, we
obtained some findings and implications that can facilitate the
detecting and fixing of compatibility issues in mobile games,
hoping to guide and arouse future research for automated
compatibility issue detection and fixing.

ACKNOWLEDGMENT

This work was partially supported by Siemens Fellowship
and NSF grant CCF-2146443. We thank our industrial research
partner NetEase, Inc., especially the Fuxi AI Lab for their
discussion and support with the experiments.

REFERENCES

[1] “Newzoo global games market report,” 2019.
[Online]. Available: https://newzoo.com/insights/trend-reports/
newzoo-global-games-market-report-2019-light-version/

[2] S. Aleem, L. F. Capretz, and F. Ahmed, “Critical success factors to
improve the game development process from a developer’s perspective,”
J. Comput. Sci. Technol., vol. 31, no. 5, pp. 925–950, 2016.

[3] Y. Zheng, C. Fan, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu,
R. Shen, and Y. Chen, “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp.
772–784. [Online]. Available: https://doi.org/10.1109/ASE.2019.00077

[4] Y. Wu, Y. Chen, X. Xie, B. Yu, C. Fan, and L. Ma, “Regression
testing of massively multiplayer online role-playing games,” in IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2020, Adelaide, Australia, September 28 - October 2, 2020.
IEEE, 2020, pp. 692–696. [Online]. Available: https://doi.org/10.1109/
ICSME46990.2020.00074

[5] Y. M. Baek and D. Bae, “Automated model-based android GUI
testing using multi-level GUI comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, D. Lo,
S. Apel, and S. Khurshid, Eds. ACM, 2016, pp. 238–249. [Online].
Available: https://doi.org/10.1145/2970276.2970313

[6] L. Wei, Y. Liu, and S. Cheung, “Taming android fragmentation:
characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp.
226–237. [Online]. Available: https://doi.org/10.1145/2970276.2970312

https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2019-light-version/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2019-light-version/
https://doi.org/10.1109/ASE.2019.00077
https://doi.org/10.1109/ICSME46990.2020.00074
https://doi.org/10.1109/ICSME46990.2020.00074
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/2970276.2970312


[7] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in 19th Working Conference on Reverse Engineering,
WCRE 2012, Kingston, ON, Canada, October 15-18, 2012. IEEE
Computer Society, 2012, pp. 83–92. [Online]. Available: https:
//doi.org/10.1109/WCRE.2012.18

[8] H. K. Ham and Y. B. Park, “Designing knowledge base mobile
application compatibility test system for android fragmentation,” in
International Journal of Software Engineering and its Applications,
vol. 8, no. 1, 2014, pp. 303–314.

[9] D. Guilardi, J. Nicácio, B. M. Napoleão, and F. Petrillo, “Are apps
ready for new android releases?” in MOBILESoft ’20: IEEE/ACM 7th
International Conference on Mobile Software Engineering and Systems,
Seoul, Republic of Korea, July 13-15, 2020, D. Lo, L. Mariani,
and A. Mesbah, Eds. ACM, 2020, pp. 66–76. [Online]. Available:
https://doi.org/10.1145/3387905.3388598

[10] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, “Mimic: UI
compatibility testing system for android apps,” in Proceedings of the
41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee, T. Bultan, and
J. Whittle, Eds. IEEE / ACM, 2019, pp. 246–256. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00040

[11] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang,
“Nighthawk: Fully automated localizing UI display issues via
visual understanding,” vol. abs/2205.13945, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2205.13945

[12] “Mobile game compatibility issue list,” 2022. [Online]. Available:
https://github.com/zihesong/mobile game compatibility study

[13] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale study of
application incompatibilities in android,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, D. Zhang
and A. Møller, Eds. ACM, 2019, pp. 216–227. [Online]. Available:
https://doi.org/10.1145/3293882.3330564

[14] “Unity profiler manual,” 2019. [Online]. Available: https://docs.unity3d.
com/Manual/Profiler.html

[15] T. Mahmud, M. Che, and G. Yang, “Android compatibility issue
detection using API differences,” in 28th IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER 2021,
Honolulu, HI, USA, March 9-12, 2021. IEEE, 2021, pp. 480–490.
[Online]. Available: https://doi.org/10.1109/SANER50967.2021.00051

[16] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui,
G. Hong, X. Zhang, M. Yang, and Z. Yang, “How android developers
handle evolution-induced API compatibility issues: a large-scale study,”
in ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel
and D. Bae, Eds. ACM, 2020, pp. 886–898. [Online]. Available:
https://doi.org/10.1145/3377811.3380357

[17] Y. Zhao, L. Li, K. Liu, and J. C. Grundy, “Towards automatically
repairing compatibility issues in published android apps,” in 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022,
pp. 2142–2153. [Online]. Available: https://doi.org/10.1145/3510003.
3510128

[18] M. Fazzini and A. Orso, “Automated cross-platform inconsistency
detection for mobile apps,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, G. Rosu,
M. D. Penta, and T. N. Nguyen, Eds. IEEE Computer Society,
2017, pp. 308–318. [Online]. Available: https://doi.org/10.1109/ASE.
2017.8115644

[19] Z. Zhang and H. Cai, “A look into developer intentions
for app compatibility in android,” in Proceedings of the 6th
International Conference on Mobile Software Engineering and Systems,
MOBILESoft@ICSE 2019, Montreal, QC, Canada, May 25, 2019,
E. Tilevich, Ed. IEEE / ACM, 2019, pp. 40–44. [Online]. Available:
https://doi.org/10.1109/MOBILESoft.2019.00016

[20] H. Huang, L. Wei, Y. Liu, and S. Cheung, “Understanding and detecting
callback compatibility issues for android applications,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,
M. Huchard, C. Kästner, and G. Fraser, Eds. ACM, 2018, pp.
532–542. [Online]. Available: https://doi.org/10.1145/3238147.3238181

[21] H. Huang, M. Wen, L. Wei, Y. Liu, and S. Cheung, “Characterizing
and detecting configuration compatibility issues in android apps,”
in 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021.
IEEE, 2021, pp. 517–528. [Online]. Available: https://doi.org/10.1109/
ASE51524.2021.9678556

[22] P. Liu, Y. Zhao, H. Cai, M. Fazzini, J. C. Grundy, and L. Li,
“Automatically detecting api-induced compatibility issues in android
apps: a comparative analysis (replicability study),” in ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, S. Ryu and
Y. Smaragdakis, Eds. ACM, 2022, pp. 617–628. [Online]. Available:
https://doi.org/10.1145/3533767.3534407

[23] F. Xue, “Automated mobile apps testing from visual perspective,”
in ISSTA ’20: 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020,
S. Khurshid and C. S. Pasareanu, Eds. ACM, 2020, pp. 577–581.
[Online]. Available: https://doi.org/10.1145/3395363.3402644

[24] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu,
and Z. Su, “Practical GUI testing of android applications via model
abstraction and refinement,” in Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 269–280. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00042

[25] D. Adamo, M. K. Khan, S. Koppula, and R. C. Bryce, “Reinforcement
learning for android GUI testing,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, A-TEST@SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 05, 2018, W. Prasetya, T. E. J. Vos,
and S. Getir, Eds. ACM, 2018, pp. 2–8. [Online]. Available:
https://doi.org/10.1145/3278186.3278187

[26] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang, “Owl eyes:
Spotting UI display issues via visual understanding,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia, September 21-25, 2020. IEEE, 2020, pp.
398–409. [Online]. Available: https://doi.org/10.1145/3324884.3416547

[27] M. Mozgovoy and E. Pyshkin, “A comprehensive approach to
quality assurance in a mobile game project,” in Proceedings of
the 14th Central and Eastern European Software Engineering
Conference Russia, ser. CEE-SECR ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3290621.3290835

[28] T. Wetzlmaier and R. Ramler, “Hybrid monkey testing: enhancing
automated GUI tests with random test generation,” in Proceedings
of the 8th ACM SIGSOFT International Workshop on Automated
Software Testing, A-TEST@ESEC/SIGSOFT FSE 2017, Paderborn,
Germany, September 4-5, 2017, T. E. J. Vos, S. Eldh, and
W. Prasetya, Eds. ACM, 2017, pp. 5–10. [Online]. Available:
https://doi.org/10.1145/3121245.3121247

[29] G. Lovreto, A. T. Endo, P. Nardi, and V. H. S. Durelli, “Automated
tests for mobile games: An experience report,” in 17th Brazilian
Symposium on Computer Games and Digital Entertainment, SBGames
2018, Foz do Iguaçu, Brazil, October 29 - November 1, 2018.
IEEE Computer Society, 2018, pp. 48–56. [Online]. Available:
https://doi.org/10.1109/SBGAMES.2018.00015

[30] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing
the devices to test your app on: a case study of android game
apps,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014, S. Cheung, A. Orso, and
M. D. Storey, Eds. ACM, 2014, pp. 610–620. [Online]. Available:
https://doi.org/10.1145/2635868.2635909

[31] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang, “GLIB: towards
automated test oracle for graphically-rich applications,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, D. Spinellis, G. Gousios, M. Chechik, and
M. D. Penta, Eds. ACM, 2021, pp. 1093–1104. [Online]. Available:
https://doi.org/10.1145/3468264.3468586

https://doi.org/10.1109/WCRE.2012.18
https://doi.org/10.1109/WCRE.2012.18
https://doi.org/10.1145/3387905.3388598
https://doi.org/10.1109/ICSE.2019.00040
https://doi.org/10.48550/arXiv.2205.13945
https://github.com/zihesong/mobile_game_compatibility_study
https://doi.org/10.1145/3293882.3330564
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Manual/Profiler.html
https://doi.org/10.1109/SANER50967.2021.00051
https://doi.org/10.1145/3377811.3380357
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1109/ASE.2017.8115644
https://doi.org/10.1109/ASE.2017.8115644
https://doi.org/10.1109/MOBILESoft.2019.00016
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1109/ASE51524.2021.9678556
https://doi.org/10.1109/ASE51524.2021.9678556
https://doi.org/10.1145/3533767.3534407
https://doi.org/10.1145/3395363.3402644
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3278186.3278187
https://doi.org/10.1145/3324884.3416547
https://doi.org/10.1145/3290621.3290835
https://doi.org/10.1145/3121245.3121247
https://doi.org/10.1109/SBGAMES.2018.00015
https://doi.org/10.1145/2635868.2635909
https://doi.org/10.1145/3468264.3468586

	Introduction
	Background
	Methodology
	Subject Mobile Game Selection
	Subject Dataset Collection
	Analysis Overview

	RQ1: Symptom Analysis
	UI Layout Issues
	Irregular-shaped screen blocking UI components issues
	UI components incorrectly overlapping issues
	Incomplete occlusion of UI components issues

	Performance Issues
	Material issues
	Display issues
	Lag issues

	Functional Issues
	Installation & Startup issues
	Crash & ANR issues


	RQ2: Root Cause Analysis
	Compatibility of Screen Customization
	Irregular screen shape
	Incompatible resolution
	Anchor dislocation

	Compatibility of Computation Units
	GPU issues
	CPU & RAM issues

	Others
	Incompatible system & Android SDK version
	Incompatible API


	RQ3: Issue Fixing
	Fixing Screen Customization Issues
	Irregular screen shape issues
	Resolution issues
	Dislocation issues

	Fixing Computation Unit Issues
	GPU issues
	Other computation unit issues

	Others

	Threats to Validity
	Related work
	Mobile Compatibility Testing
	GUI-related Mobile Compatibility Testing
	Mobile Game Testing

	Conclusion
	References

