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ABSTRACT
Graphically-rich applications such as games are ubiquitous with at-
tractive visual effects of Graphical User Interface (GUI) that offers a
bridge between software applications and end-users. However, vari-
ous types of graphical glitches may arise from such GUI complexity
and have become one of the main component of software compat-
ibility issues. Our study on bug reports from game development
teams in NetEase Inc. indicates that graphical glitches frequently
occur during the GUI rendering and severely degrade the qual-
ity of graphically-rich applications such as video games. Existing
automated testing techniques for such applications focus mainly
on generating various GUI test sequences and check whether the
test sequences can cause crashes. These techniques require con-
stant human attention to captures non-crashing bugs such as bugs
causing graphical glitches. In this paper, we present the first step
in automating the test oracle for detecting non-crashing bugs in
graphically-rich applications. Specifically, we propose GLIB based
on a code-based data augmentation technique to detect game GUI
glitches. We perform an evaluation of GLIB on 20 real-world game
apps (with bug reports available) and the result shows that GLIB can
achieve 100% precision and 99.5% recall in detecting non-crashing
bugs such as game GUI glitches. Practical application of GLIB on
another 14 real-world games (without bug reports) further demon-
strates that GLIB can effectively uncover GUI glitches, with 48 of
53 bugs reported by GLIB having been confirmed and fixed so far.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies→ Neural networks.

∗The first two authors contributed equally to this research.
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1 INTRODUCTION
Graphically-rich applications (also short for apps) have been popu-
lar on mobile and personal computer (PC) platforms. With a grow-
ing number of complex visual effects such as advanced rendering,
light and shadows, animation, and intensive media embedding be-
ing used to enhance the quality of GUI (also short for UI) [18],
various graphical glitches may occur in the apps and severely im-
pact user experience. Existing automatic UI testing techniques [34]
detect bugs by generating test sequences and check whether some
crashes are caused. Therefore, these techniques require constant
human attention to capture the UI glitch-inducing bugs. How-
ever, there are quantities of UI glitches that can severely degrade
graphically-rich apps’ usability but not induce crashes in practical
scenarios. Hence, in this paper, we make a first step in addressing
the lack of oracle problem for graphically-rich apps. Specifically,
we propose an automated test oracle for detecting UI glitches in
game apps.

Figure 1: Examples of game UI glitches.

Recent image-based UI testing techniques [18, 33] demonstrate
that adding images with versatile UI display issues to the training
datasets can help improve the performance of Convolutional Neu-
ral Network (CNN)-based detection models in non-game mobile
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apps. For example, Owl Eyes [18] designs a heuristic-based data
augmentation approach for generating abnormal screenshots on
Rico dataset [12] by mimicking the symptom of real-world UI dis-
play issues. Its main methodology is to classify UI display issues
into five classes and design each issue generation rule according
to its features. With a large amount of generated UI screenshots,
Owl Eyes improves the effectiveness of detecting UI glitches in
non-game apps significantly.

However, we observe that the existing heuristic-based data aug-
mentation approach applied in Owl Eyes cannot accurately reflect
the UI glitch issues in graphically-rich applications, especially in
game scenarios due to three main reasons. First, their manually-
defined rules require human inspection on screenshots of UI glitches
and humans may miss certain unnoticeable but important patterns.
Moreover, their generation process is to mimic the screenshots
of UI glitches, thus the generated images may be infeasible to be
generated by the real bugs in the program code. This approxima-
tion may cause false positives in the detection process. Last, Owl
Eyes mainly focuses on text-related UI display issues, whereas in
game scenario, the UI display issues are typically text-irrelevant
graphical glitches which may not be generalized by the heuristic
rules defined by Owl Eyes.

To address these issues, we propose GLIB, an automated test
oracle to detect UI glitch-related bugs. To enable better performance
of GLIB, we develop a code-based data augmentation approach to
augment the training data for GLIB by injecting the buggy code
snippets to the game apps and record the manifestation of the bugs
(i.e., UI glitches). In this way, our generated screenshots contain
real UI glitches so that the DL model can be trained with more
precise datasets and potentially learn subtle patterns that humans
may not observe. Moreover, our study of bugs’ root causes can
guide developers to debug with some empirical knowledge after
detecting the UI glitches. Because some UI glitch issues occur in
only parts of the UI screen area and human inspectors may miss the
issues, we develop a technique based on the saliency map [26] to
localize the glitch regions with different bug categories so that the
developers can easily determine whether and where our detected
images have UI glitches.

To better evaluate the effectiveness of GLIB, we create a testing
dataset consisting app screenshots with and without UI glitches
from real-world game bug reports. Evaluation on the testing dataset
demonstrates that GLIB can achieve 0.9% and 76.7% boost in pre-
cision and recall compared to the prediction results of the model
trained without data augmentation, leading to 100% precision, 99.5%
recall, and 99.8% F-1. Moreover, we evaluate the practical useful-
ness of GLIB by detecting UI glitches in 14 real-world games with
different platforms and engines, the practical application result
shows that our model can successfully spot previously undetected
UI glitch issues and help developers to fix the bug.

The contributions of this article are as follows:
• Our work1 is the first to systematically investigate UI glitch
issues in real-world graphically-rich apps. We create a large-
scale dataset of screenshots with UI glitches and release the
data for follow-up studies.

1Code to reproduce our experiments is available at https://github.com/GLIB-game/
GLIB.git

• Based on our characteristic study on the root causes of graph-
ical UI glitches, we propose a code-based training data aug-
mentation approach that can be applied in real-world game
apps to generate UI glitches. Our study can also guide devel-
opers to find and fix the bug after detecting game UI glitches.

• We propose a CNN-based model for detecting images with
UI display issues, and leverage saliency map to localize the
glitch region in the UI.

2 BACKGROUND
Game testing company TestBird2 collected and tested 11,476 mo-
bile game apps in 2020 and reported 552,851 relevant compatibility
issues. According to the statistics of 300 terminals tested for each
game, the average number of game compatibility issues is 44 and
the average pass rate is 86.41%. TestBird analyzed all these compati-
bility issues and classified them into 10 categories, namely, UI glitch,
install failed, start failed, crash, app freeze, UI lags, black screen, net-
work error and other problems. Among them, UI glitch and game
crash are the two largest categories with UI glitch accounting for
39.95% and game crash occupying 28.76% of compatibility issues.
The detailed compatibility issue distribution is shown in Figure 2a.
Particularly, UI glitch occurs and has been the most severe com-
patibility issue in nearly every tested mobile game. TestBird also
investigated the proportion of game engines on mobile game appli-
cations as shown in Figure 2b, among which Unity3d (also short for
Unity) is the most prevalent one and hence our following study is
based on the Unity game engine. Another game company WeTest3
tested all Tencent4 mobile games and summarized the compatibility
issues into eight categories among which UI glitch is also the largest
issue and accounts for 47.5% of all the problems. Specifically, the
percentage of UI glitches increased by 11% compared to last year
and among them the proportion of problems such as abnormal color
block and random noise has increased.

(a) Game issue proportion (b) Game engine proportion

Figure 2: Test report from TestBird.

3 CHARACTERISTIC STUDY
Before we build a model to detect game UI glitches, we collected
quantities of UI glitch issues that appeared in the real-world game
apps. Our study aims to answer the following two questions:
• RQ1: What is the general manifestation of UI graphical glitches
in mobile game apps?

• RQ2: What are the bug causes of these Game UI glitches?
2https://www.testbird.com/
3https://wetest.qq.com/
4https://www.tencent.com/en-us

https://github.com/GLIB-game/GLIB.git
https://github.com/GLIB-game/GLIB.git
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(a) Abnormal color block (b) Random noise (c) Partial repetition (d) Frame overlay

(e) Object missing (f) Abnormal text (g) Overexposed (h) Black border

Figure 3: Examples of eight categories of game UI glitches.

3.1 Data Collection
To better understand the UI glitch issues in real-world mobile game
apps, we collect the 466 bug reports of 20 NetEase5 Android games
belonging to different categories such as Adventure Game, Action
Game, First-Person Shooter Game, Role Playing Game, etc. with
2,418 UI glitch images. The main reason we focus on mobile game
UI display issues is that compatibility issues between software and
hardware frequently appear on mobile devices. Take Android as an
example, nowadays more than 10 major versions of the Android
operating system (OS) run on 24,000+ distinct device models with
different screen resolutions [29]. Because most of the abnormal
images are photos captured from the external camera with some
annotation rather than the screenshots, we preprocess these images
by remaining the screenshots and excluding photos and images
with system-related bugs. Finally, we obtain 201 filtered graphical
glitch screenshots and use them for our characteristic study.

3.2 Manifestation of Game UI Glitches (RQ1)
Given those collected screenshots, we found that UI glitches are
actually versatile in terms of their manifestation and that different
types of UI glitches may appear with different frequencies thus
has a different level of impact on the game usability. Therefore,
categorization of these issues would facilitate our study, design, and
evaluation of the related approach. Following the Card Sorting [27]
and adapt the technique to the game scenario, we categorize these
bugs into 8 categories, namely, abnormal color block, random pixel
noise, partial repetition, frame overlay, model missing, abnormal
text, overexposed and black border , and statistic their proportion of
occurrence with details as follows:
Abnormal Color Block (56%). As shown in Figure 3a, abnormal
color blocks stretch and cover the UI graph. The main cause is that
some material is missing or the camera responsible for rendering
pixel RGB values is incorrectly turned off.
Random Noise (17%). As shown in Figure 3b, quantities of color
pixels randomly distribute over the whole screen or specific area.
The main cause is that the camera is incorrectly turned off.

5https://leihuo.163.com/en/

Partial Repetition (12%). As shown in Figure 3c, part of the UI
area is repeated or mirrored. Disabling camera or post-processing
error (GPU does not support the rendering effect or incorrect render
logic) may result in this glitch issue.
Frame Overlay (6%). As shown in Figure 3d, the frame in the
previous time step overlaps the current frame. The wrong value of
the camera’s clearflag might be the main reason.
Object Missing (3%). As shown in Figure 3e, the UI model lacks
part of its component. This may be caused by the incorrect values
of the alpha channel in the model texture.
Abnormal Text (2%). As shown in Figure 3f, multiple pieces of
texts are located in the wrong area and may cover the characters
or other objects. The main reason for this glitch issue is that the UI
is not adapted to the screen resolution.
Overexposed (2%). As shown in Figure 3g, the whole (or part of)
UI scene is too bright or overexposed. The main reason is that the
intermediate result is stored in a low precision variable and the
result is clipped or overflows.
Black Border (2%). As shown in Figure 3h, the UI image is not
flattened to cover the whole screen and leaves the black borders
on the two sides due to that the display resolution (e.g., 854 × 480)
and aspect ratio of some special devices are not considered by the
developer.

To ensure the completeness of our study, we asked several game
testing experts from the company’s development teams to confirm
that our summarized UI glitches cover all the common UI issues in
their games including not only mobile apps but also other platforms
such as PC and PS4. We also demonstrate that our GLIB can be
applied to various types of games on distinct platforms and precisely
detect UI bug issues in RQ4.

3.3 Bug Causes of Game UI Glitches (RQ2)
After we collect quantities of game UI glitch samples and have a
common sense of UI display issues and their threat to the user’s
game experience, a more important thing is to understand the bug
causes of these glitch issues. To common sense, the reason for game
UI display issues might be the defects of hardware (e.g.,GPU-related
issues) or the wrong setting of rendering special effects. To facilitate
the visual understanding in detecting UI display issues, we focus

https://leihuo.163.com/en/
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on explaining the root causes in terms of source-code level (bugs).
By doing so, we collect the historical commit diff of various game
apps and categorize the bug issues into 4 major types. For each bug
fix example, the code marked with green color is the missing part
of the original bug code.
Rendering Cameras are Turned Off Incorrectly. Cameras in
the Unity engine are the devices that capture the color and depth
information of the game world and display the whole scene to the
players. A game scene can hold an unlimited number of cameras,
with different objects probably rendered by different cameras. If
one camera is turned off unexpectedly, the render results may be
substituted by any memory block which has not been initialized,
thus the RGB values of the corresponding objects in the image can
be randomized, and the manifestation of these random pixel values
in game UI display issues will most likely be abnormal color block,
random noise or object missing. The bug fix procedure of camera
enabled error is shown in Listing 1.
1 targetCamera.targetTexture = originRT;

2 + targetCamera.enabled = true;

3 if (UIManager.inst != null && UIManager.inst.uiCamera

!= null)

4 {

5 UIManager.inst.uiCamera.enabled = true;

6 }

Listing 1: Bug fix procedure of camera enable error.

Figure 4: Effect of incorrect camera turned off.

Wrong Settings of Camera Clearflag. Cameras in the Unity en-
gine typically clear the color and depth information on the screen
before rendering image frames, and the clearflag function of a cam-
era determines how the color buffer and depth buffer are cleared. If
the clearflag instruction is modified incorrectly, the depth and color
information of the scene may get chaotic, e.g., if there is a cube
moving randomly in the scene with the blue and gray parts as the
background (i.e., the depth is infinite), and the camera’s clearflag is
incorrectly set as "Don’t Clear", the color and depth buffers of the
previous frame will remain and cause frame repeatedly appear at
each time step. The white and red objects in Figure 5a are camera
and cube to be rendered, respectively, the rendering result is in Fig-
ure 5b and this bug is regarded as the main cause of frame overlay.
The bug fix procedure of camera clearflag error is shown in Listing
2.
1 var originRT = targetCamera.targetTexture;

2 targetCamera.targetTexture = rt;

3 targetCamera.Render ();

4 CameraPostEffect.instance.doPostEffects(rt, postRT);

5 if (UIManager.inst != null && UIManager.inst.uiCamera

!= null)

6 {

7 if (uiCameraOn)

8 {

9 UIManager.inst.uiCamera.Render ();

10 var originUIRT = UIManager.inst.uiCamera.

targetTexture;

11 UIManager.inst.uiCamera.targetTexture = postRT;

12 UIManager.inst.uiCamera.Render ();

13 + UIManager.inst.uiCamera.clearFlags =

CameraClearFlags.Depth;

14 UIManager.inst.uiCamera.targetTexture =

originUIRT;

15 }

16 }

Listing 2: Bug fix procedure of camera clearflag error.

(a) Rendering components (b) Rendering effect

Figure 5: Frame overlay generation process.

Figure 6: Effect of wrong settings of camera clearflag.

Post-Processing Special Effects of the Previous Scene areNot
Cleared in Time. Adding post-processing can apply various kinds
of filters or effects to the camera’s image buffer before an image is
displayed on the screen, and this post-processing technique drasti-
cally improves the visual expression of the scene. But if the post-
processing effect is added incorrectly or if the effect is not cleared
in time when the scene changes, the image content will become
scrambled, even mess up the whole scene. For example, when one
enters a scene without any post-process effects as in Figure 7a, it
looks like a man is standing on the ground. However, if a game de-
veloper adds a mirror effect to the previous scene (e.g., a lake scene
in Figure 7b), and steps into the scene without clearing the post-
process effect in time, the image then becomes symmetric as shown
in Figure 9c as if there is a lake in the scene. This post-processing
special effect bug is likely to cause partial repetition issue and the
bug fix code is shown in Listing 3.
1 private static LuaFunction m_hookOnDisable = null;

2 private void OnDisable () {

3 if (m_hookOnDisable != null) { if(GameBaseObject.Inst

.InvokeNewHook(m_hookOnDisable , this)) return; }

4 if (CameraPostEffect.instance == null || image.

texture == null)

5 {

6 return;
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7 }

8 CameraPostEffect.instance.ReleaseUIBloomTarget ();

9 + CameraPostEffect.instance.ClearPostRenderRT ();

10 }

Listing 3: Bug fix procedure of incorrect camera post-
processing effect error.

(a) Raw scene (b) Mirror effect (c) Synthetic scene

Figure 7: Effect of post-processing error.

GPU-Related Rendering Bugs. Some UI glitches are caused by
GPU driver bugs or GPU-related rendering bugs. For instance, the
version of the operating system (e.g., Android, iOS) on the mobile
device might be too old and its handling palettes on the GPU cause
UI display issues or the wrong GPU rendering settings like skipping
some buffering effect for faster program running might cause object
missing issue. Wrong GPU rendering settings may also lead to
resolution adaption problem and text out of position issue.

4 MAIN APPROACH
Our main approach GLIB consists of three parts, first, we propose a
source-code based augmentation approach for generating quantities
of abnormal game UI display images, then we design a CNN-based
image recognition model to learn the pattern of various categories
of game UI glitch issues and detect those screenshots with UI dis-
play issues, finally, we come up with a saliency map for automatic
problem localization. Our GLIB frame is shown in Figure 8.

4.1 Code-Based Data Augmentation
Training a powerful CNN model for visual recognition and UI is-
sue detection requires quantities of data samples. For example,
DenseNet [14, 15] uses 50,000 samples from CIFAR [16], 73,257 im-
ages from SVHN [22] and 1.2 million images from ImageNet [13] for
training. Similarly, our proposed CNN model for UI glitch detection
requires a large number of screenshots with versatile UI glitches.
Nevertheless, our collected real-world game UI screenshots contain
a small proportion of glitch images which also do not fully cover di-
verse categories of game UI glitches as we mentioned in Section 3.2.
Therefore, we propose a code-based data augmentation approach
based on the root causes we study in Section 3.3 for generating UI
glitch problems by modifying the source code of various mobile
game apps and making screenshots for typical scenes.

Particularly, when we inject the corresponding bug code into
mobile game execution programs to force UI glitches to occur so
that we can collect quantities of screenshots with UI display issues,
we must ensure that only UI-related issues happen and other func-
tions of the game apps are not affected (e.g., do not crash) after
their programs get updated. We wrap the bug code with execution
parameter settings (which we also refer to as patch code) so that the
execution program could get updated to the bug-injected version,
and this patching technique is called hotfix.

Our code-based UI glitch generation approach is automated and
can be well-generalized to other games. With hotfix, we only need
to download the patch code that is pushed to the execution server
and the execution programs will get updated automatically rather
than reinstalling and recompiling the game apps. Therefore, most
mobile apps support hotfix for fixing code-related bugs. Particularly,
for Unity games, we can insert bug code with the help of hotfix
without authority and knowledge of the source programs. We inject
bug code by changing certain global variables or executing global
functions from the Unity native interface. In this way, our code in-
jection approach can be generalized to all Unity engine-based apps
and even be easily adapted to graphics engines other than Unity by
modifying the global variables and functions in the corresponding
engines. Figure 9 illustrate examples of augmented screenshots
with UI glitch issues in which the first row shows the normal UI
scenes and the second row displays the generated UI glitch scenes.

To be mentioned that GPU-related rendering bugs are typically
bottom-layer issues or hardware setting problems and may vary
differently from each game, also the manifestation of UI glitches
caused by GPU-related rendering bugs is versatile depending on
the device itself. Hence, we put this root cause in the future work,
and our approach focuses on generating UI glitch scenes with the
following three categories.
Turn off cameras in the scene. As we discussed before, the cam-
era is used to capture the objects in the scene, we hence disable
some cameras to force the UI glitches to appear in the game apps,
we save the screenshots in different scenes as the abnormal samples.
The patch code is shown in Listing 4.
1 local cameraobjs =

CS.UnityEngine.Object.FindObjectsOfType(typeof(

CS.UnityEngine.Camera))

2 for i = 0, cameraobjs.Length -1

3 do

4 cameraobjs[i].enabled=false

5 end

Listing 4: Lua patch for turning off all cameras.

Modify cameras’ clearflag. Camera Clearflag, an enum type, de-
termines how to clear the depth buffer and color buffer before
rendering the scene. There are four pre-defined values for clearflag:
SkyBox, SolidColor, DepthOnly, and Nothing. a) SkyBox: clear the
color buffer and depth buffer with SkyBox; b) SolidColor : clear the
color buffer and depth buffer with SolidColor; c) DepthOnly: only
clear the depth buffer; d) Nothing: don’t clear either color buffer or
depth buffer. When we enter a scene, we traverse the camera, set
the clearflag as one of the enum values we list above, and check
the UI display state, if UI glitches occur, we save the screenshot as
an abnormal example. The patch code is shown in Listing 5.
1 local cameraobjs =

CS.UnityEngine.Object.FindObjectsOfType(typeof(

CS.UnityEngine.Camera))

2 for i = 0, cameraobjs.Length -1

3 do

4 cameraobjs[i].clearFlags=

UnityEngine.CameraClearFlags.DepthOnly

5 end

Listing 5: Lua patch for changing clearflag as DepthOnly for
all existing camera in the scene.
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UI Sampling
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Input Pixel

Normal Screenshots

UI Glitch Screenshots

Detect

CNN-based UI Glitch Detection (Sec 4.2)

Saliency Map

UI Issue Localization (Sec 4.3)

Figure 8: Overview of GLIB.

(a) Camera enabled (b) Camera clearflag (c) Post-processing

Figure 9: Examples of code-based data augmentation.

Add incorrect post-processing effect. Adding post-processing
effects is the last step in the Unity render pipeline, and the effects
can modify the scene style easily. HDR and background blurring
are two common post-processing effects. The UI image frame could
become scrambled if we add incorrect post-processing effects to
the scene (e.g., adding the mirror effect to the button can lead
to partial repetition). We randomly choose some post-processing
effects and add them to different scenes and save the screenshot as
the abnormal sample if the UI scene is messed up. The patch code
is shown in Listing 6.
1 local detectCamera = GameObject.Find("UICamera")

2 if (detectCamera ~= nil)

3 then

4 detectCamera.gameObject: AddComponent(typeof(

CameraFilterPack_3D_Mirror))

5 end

Listing 6: Lua patch example for adding mirror post-
processing effect to current scene.

Note that there are two main reasons why we do not directly
apply our summarized code patches to find bugs in game source
code. First, injecting a type of bug requires to know only one code
pattern of such bug type but detecting bugs requires knowing all
patterns of this type of bug. In our patch, we only need to change
some global variables or functions to generate UI glitches. However,
for each bug type, there may be thousands of relevant statements
and the correctness of each statement depends on other context
codes. Second, even if one can figure out a code-analysis DL model

for detecting bugs, the source code of the application under test is
not always available (noted that our bug injection needs access to
the source code of the training applications only). Thus, our GLIB is
a more general and effective approach for real-world testing cases.

4.2 CNN-based UI Glitch Detection Model
Deep Learning has achieved remarkable success in computer vision
tasks such as image classification, object detection, object tracking,
etc. and we hence choose the CNN architecture for detecting ab-
normal UI display images which can be regarded as one kind of
image classification tasks.

Given the screenshot as input to our CNNmodel, we firstly resize
the input to a fixed size whose width and height is𝑤×ℎ, then we use
convolutional kernels to extract feature maps of the input followed
by pooling layer which can progressively reduce the spatial size of
feature representation meanwhile control overfitting. To improve
the stability of CNN, the Batch Normalization (BN) is added after
each convolutional layer. We obtain feature maps from the last
convolutional layer and send them to the multiple full-connection
(FC) layers to train a classifier with the 𝐾-dimensional vector as
the output. Finally, the probability distribution of each class c is
computed by softmax function:

𝑃 (𝑦 = 𝑐 |𝑥) = 𝑒 𝑓𝑐 (𝑥)∑𝐾
𝑘=1 𝑒

𝑓𝑘 (𝑥)
(1)

The classification result is given by the argmax function:

𝑙𝑎𝑏𝑒𝑙 = argmax
𝑐

𝑃 (𝑦 = 𝑐 |𝑥) . (2)

To increase the nonlinearity of the CNN model, an activation func-
tion is added after the BN layer and FC layer.

4.3 Saliency map
The CNN model only determines whether the image is abnormal,
however, we are more concerned about which part of an image
is abnormal thus can help the developer to fix the bug. Moreover,
the saliency map [26] can help to understand whether the model
is accurate and how the model works. We simply compute the
derivative of the label to the input by

𝜕𝑓 (𝐼 )
𝜕𝐼

(3)
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Max-Pooling

FC Layer

Output
Conv-BN-ReLU

Screenshot

normal
UI Glitch

Figure 10: The architecture of CNN.

where 𝑓 represents the CNN model and 𝐼 is the input image. The
bigger gradient value indicates a larger contribution to the classifi-
cation result. If the output shows that the image is abnormal, the
pixel with a large gradient value indicates the abnormal area.

4.4 Implementation
We resize the input to a fixed size 512 × 256, if the image is vertical,
we will rotate it to horizontal then resize it to the fixed size. Our
CNN model consists of 10 convolutional layers whose kernel size is
3 × 3 followed by batch normalization layers, 5 MaxPooling layers,
and 4 fully connected (FC) layers with the output size of the last
layer 𝐾 = 2, the activation function we adopt is ReLU. We set the
number of kernel as 16 for convolutional layer 1 ∼ 4, 32 for layer
5 ∼ 6, 64 for layer 7 ∼ 8 and 128 for layer 9 ∼ 10. The model updates
its parameter by minimizing the CrossEntropy loss for the two-label
classification task. The network is trained by Adam optimizer over
batches of 16 input images with an initial learning rate 𝜆 as 0.001.
The detail of our ConvNet configurations is shown in Figure 10. We
implement our model based on the Pytorch framework.

5 EXPERIMENT DESIGN
Our experiment is designed to answer the following questions:
• RQ3:How effective is GLIB in terms of detecting gameUI glitches?
• RQ4: How well does GLIB perform in real-world game applica-
tions?

5.1 Experimental Setup
The game UI screenshots in our experiment are composed of 2 parts:
screenshots without UI glitches (normal images) and screenshots
generated by code-based augmentation approach (glitch images).
We combine the two parts of data samples to train our GLIB.

To balance the distribution of our training data, we roughly
set the number of normal images and that of glitch images as 1:
1, particularly, we randomly select 6,841 screenshots from all the
code-based generated glitch images for training, among which 2,511
of them are generated by setting the wrong clearflag of the scene
camera, 3,763 of them are generated by turning the camera off and
567 of them are generated by adding incorrect post-processing effect.
There are 6,817 normal screenshots and 6,817 glitch screenshots in
the training dataset, 783 normal screenshots, and 759 glitch images
in the validation dataset where 278 of them are generated by setting
the incorrect camera clearflag, 418 are generated by turning the
camera off and 63 are generated by adding incorrect post-processing
effect.

Table 1: Data Distribution

Data Type Augmentation Approach(s) Game1 Game2

Normal – 1654 6186
UI Glitch – 47 85

Partial Repetition 1654 6186
Solid Color Block 1654 6186

Rule Mosaic Effect 1654 6186
Random Noise 1654 6186

Camera Turned Off 1506 3056
Code Incorrect Camera Clearflag 3144 1076

Incorrect Post-Processing 330 300

The screenshots are collected from two games, we manually
traverse the scene in the mobile game app by clicking randomly
on the mobile screen, capture the screenshots until UI components
are stable, and save the screenshots as bug-free data. Then we
apply three patches in Section 4.1 to the game, if the screen is
blurred, we capture the screen as the code augmentation result.
Note that game scenes are typically dynamic rather than static.
In each scene there may be multiple moving UI objects which
produce a different screenshot in the next frame, thus there are
quantities of different screenshots in each scene. Given that each
game contains abundant different scenes, we can produce sufficient
diverse abnormal screenshots for well-fitting the model. The rule-
based data augmentation is an offline approach thus is processed
after all the bug-free screenshots are collected. Table 1 shows the
distribution of screenshots we collected.

The test dataset that we use to evaluate the model is collected
from 466 historical bug reports. We exclude the screenshots of
game1 and game2 as well as some low-quality images and finally
get 192 glitch images.

Table 2: Experiment Setup

Approach Glitch Image Normal Image Total

Base 107/25 6817/300 6924/325
Rule 6817/783 6817/783 13634/1566
Code 6841/759 6817/783 13658/1542
Code+Rule 13658/1542 13634/1566 27292/3108

5.2 Baselines
To further demonstrate the advantage of our proposed data aug-
mentation approach, we compare GLIB with five baselines utilizing
deep learning techniques to examine the UI glitch detection effect.
Because our goal is to detect UI glitches via bug understanding, for
all the baseline we use the same CNNmodel and only with different
data handling techniques. The dataset size of each baseline is listed
in Table 2.

Base. We search the historical test reports of game1 as well
as game2 and collect 132 screenshots which are truly bug images
confirmed by the development teams.We select 125 of the 132 glitch
screenshots and combine them with 6,817 normal images that we
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Figure 11: Examples of rule-based data augmentation, the
four rows from top to bottom correspond to image partial
repetition, adding solid color block, adding mosaic effect
and adding random noise, respectively.

collect from game1 and game2 to build the training dataset without
any augmentation approach, and our evaluation dataset consists of
left 25 glitches screenshots and 300 normal images. We exclude the
game1 and game2 screenshots from the 201 filtered graphical glitch
screenshots which are collected from 20 game apps and remain 192
glitch screenshots for the test procedure.

Rule(R). The heuristic-based data augmentation approach pro-
posed by Owl Eyes [18] contains several rules to approximate the
UI display issues in non-game apps. Because most of their rules
are based on text-relevant UI bugs (e.g., NULL value, text overlap)
which rarely appear in a game scenario, we adapt their rules to
our studied manifestation of game UI glitches – for each of the UI
display issues, we generate screenshots by randomly choosing one
of the following four rules. 1) Image partial repetition: we randomly
choose a rectangle area in an image, then repeat sampling in a hori-
zontal or vertical direction; 2) Adding solid color block: we generate
3 ∼ 5 blocks where all pixels share the same color in one block and
put them on an image randomly one by one, thus the former color
block may be partial covered by the latter one. Color of each block
can be arbitrary RGB value; 3) Adding mosaic effect: we randomly
choose a rectangle area in an image, dividing the area into several
small patches where every pixel has the same RGB value as the
center pixel in one patch; 4) Adding random noise: we randomly
choose a rectangle area in an image and set RGB value randomly for
every pixel in the rectangle. The four pairs of rule-based generated
screenshots are shown in Figure 11.

We generate abnormal samples based on the normal data with
four simple heuristic approaches we discuss above, note that each

normal screenshot is used only once. The final training data con-
tains 6,817 normal screenshots and 6,817 generated glitch screen-
shots where 1,701 of them are generated by image partial repetition,
1,659 of them are generated by adding solid color block, 1,752 of
them are generated by adding random noise and the left 1705 of
them are generated by adding mosaic effect to the screenshots. The
1,566 evaluation samples are composed of 189 partial repetition
glitch images, 184 abnormal color block screenshots, 220 random
noise screenshots, 190 mosaic effect screenshots, and 783 normal
screenshots.

Rule(F). For the second rule –adding solid color block–we choose
the RGB value of generated color blocks from the pre-defined four
color values (red, black, pink and cyan) rather than arbitrary value
due to the prior knowledge that these 4 color appears mostly when
the material of game objects is missing or settled during the loading
process. The other setting in this baseline is the same as Rule(R)
approach.

Code+Rule(R).We combine both code-based and rule(R)-based
generated screenshots as the training dataset for modeling the UI
glitches.

Code+Rule(F). We combine both code-based and rule(F)-based
generated screenshots as the training dataset for modeling the UI
glitches.

5.3 Evaluation Metrics
To evaluate the overall effectiveness of our proposed game UI dis-
play issue detection approach, we apply four commonly used eval-
uation metrics in image classification tasks, i.e., accuracy, precision,
recall, F1-score [19, 25]. For all the metrics, a higher value indicates
better model performance.

Accuracy. Accuracy reflects the trained model’s ability to make
correct decisions on the test set. The more correct samples the
model predicts, the higher accuracy it will output.

Precision. Precision presents the proportion of correctly classi-
fied screenshots as UI glitch among all screenshots predicted as UI
glitch.

Recall. Recall indicates the proportion of correctly classified
screenshots as UI glitches among all screenshots that have UI dis-
play issues.

F1-score (F-measure). F1-score is calculated from the precision
and recall of the test and it reflects the harmonic mean of precision
and recall. The highest possible value of an F1-score is 1 which
indicates perfect precision and recall, and the lowest possible value
is 0 if either precision or recall is zero.

6 RESULTS AND ANALYSIS
6.1 UI glitch Detection Performance (RQ3)
We evaluate the effectiveness of our GLIB and the baseline ap-
proaches on the testing dataset composed of the collected 192 ab-
normal screenshots with UI glitches and 365 normal screenshots,
the experiment results are listed in Table 3. We can see that our
code-based data augmentation approach achieves the overall best
performance (i.e., highest precision/recall/F1_score/accuracy). The
76.7% increment of recall compared to the base approach indicate
the effectiveness of our code-based data augmentation approach.
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We search for only one false negative sample and find that the error
area in this screenshot is too tiny to be recognized even for humans.

Particularly, the five baseline approaches all achieve high preci-
sion, indicating that most screenshots predicted by the model as
abnormal have UI glitches. The base approach trained without any
augmentation approach by only using the original glitch screen-
shots has the lowest recall (56.3%), indicating that almost half of
the UI glitch images are incorrectly classified by the model if not
sufficient UI glitch samples are learned. We search the classification
result and find that the model cannot detect the screenshots with
UI glitches such as partial repetition, abnormal text, and abnormal
color block. Though these categories occupy a large proportion of
UI glitch issues, the number of glitch images is too small to cover the
different patterns of these categories, and hence the model cannot
learn the UI glitch manifestation sufficiently.

Table 3: Experiment Results

Approach Precision Recall F1_score Accuracy

Base 0.991 0.563 0.718 0.803
Rule(R) 0.935 0.677 0.785 0.836
Rule(F) 0.974 0.594 0.738 0.813
Code+Rule(R) 0.990 0.984 0.987 0.988
Code+Rule(F) 0.995 0.948 0.971 0.975

GLIB 1.000 0.99 0.997 0.998

Rule(F) incorrectly classifies 78 glitch screenshots as normal.
We check these images and find that the glitch issues of them are
mainly abnormal color block and text overlap. As we mentioned
before, we only adopt four colors (black/red/pink/cyan) to generate
the Solid Color Block in Rule(F) approach, which may cause the
detection failure when a new color block appears. We check the bug
reports and find that color blocks other than the pre-defined four
types appear due to material missing. However, this unexpected
error only occurs on a special GPU that has a special order of RGB
values, which indicates that the manifestation of UI glitches on
different devices caused by the same bug can still be different. The
performance of Rule(F) is degraded by text overlap glitch issues
because we do not consider the rules of abnormal text as we cannot
localize the text area in UI screenshots without labeled JSON files
that are typically not supplied by game engines. Moreover, in game
apps some texts are displayed as Word-Arts or images but not the
order of standard characters, thus the localization technique that
uses OCR tools cannot work.

We study the 62 false-negative samples fromRule(R) and find that
the main UI glitch categories of them are text overlap and abnormal
color block, particularly, these color blocks are transparent and
can be easily recognized as part of the background object. This
transparent color block is similar to the dialog box in games and
is misclassified also because we didn’t generate the text-relevant
glitch images in our training dataset. Because the transparent color
blocks do not appear in the training dataset of the Rule approach,
it is straightforward that the model cannot this type of UI glitches.
Moreover, we find that the glitch images with blue color blocks
are detected as UI glitch images whereas Rule(F) regards them as

normal images, the reason may be that the Rule(R) approach can
generate blue color blocks that can’t be produced by Rule(F).

For Code+Rule(R) and Code+Rule(F), their recalls are largely
improved compared to the single Rule(R) and Rule(F) approach,
which demonstrates that the glitch images generated by our code-
based approach can facilitate the model to learn more effectively.
However, the reason that the combined approaches are not as effec-
tive as the single code-based augmentation approach may be that
the distribution of code-based generated samples and rule-based
generated samples are not identically consistent which may affect
the training result.

6.2 Practical Evaluation (RQ4)
To examine the practical value of our GLIB, we collect two PC games
from the official website, three iOS games from App Store6 and
nine Android games from TapTap7 & Develop Teams. These games
are developed by different game engines and None of these apps
appear in the training dataset.

Airtest8 is a cross-platform UI automatic game testing frame-
work, and testers can write test scripts in Airtest IDE to execute
specific test cases in the mobile device. Airtest IDE also provides a
screen capture API for testers to take screenshots when necessary.
We use the screen capture API to collect screenshots of various
kinds of UI events (e.g., click, swipe, long press, etc.) from the 14
games by running different test cases. We generate in total 2,100
screenshots from the 14 games, an average of 150 screenshots are
obtained for each app. We then feed those screenshots to our GLIB
for detecting abnormal UI issues. Once a UI glitch is spotted, we
record the bug and report the issue to the app development team.

Table 4: Detected Game Issues

Game Name Game Category Source Daily Active Users Download

Justice Role-Playing Official Web 300K+ 50M+
A Chinese Ghost Story Role-Playing Official Web 300K+ 50M+
Ghost Role-Playing TapTap 700K+ 100M+
Revelation Mobile Role-Playing TapTap 500K+ 10M+
Love is Justice Love TapTap 50K+ 5M+
UNO Card App Store 50K+ 5M+
Fever Basketball MOBA App Store 5K+ 5M+
Marvel Duel Card TapTap 5K+ 500K+
Oracle Civilization Simulation App Store 1k+ 100k+
Ghost World Chronicle Card Develop Team N/A N/A
Elysium Of Legends Card Develop Team N/A N/A
phase10 Card Develop Team N/A N/A
Fpus Shooting Develop Team N/A N/A
The Absolute Acting Simulation Develop Team N/A N/A

Table 5: Practical Evaluation Results

Platform GLIB Rule(R) Rule(F)

PC 7 3 1
Android 35 22 15
iOS 11 6 5
Total 53 (48 confirmed) 31 (28 confirmed) 21 (17 confirmed)

6https://www.apple.com/app-store/
7https://www.taptap.com/
8https://airtest.netease.com/

https://www.apple.com/app-store/
https://www.taptap.com/
https://airtest.netease.com/
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Table 4 lists all bug issues detected by our GLIB and Table 5 shows
the number of detected UI glitch issues on different platforms by
the three approaches. In sum, GLIB detects 53 glitch issues and 48
of them are confirmed and fixed by the game development team;
Rule(R) spots 31 glitch issues and 28 of them are confirmed and
fixed; Rule(F) detects 21 glitch issues and 17 of them are confirmed
and fixed. These confirmed and fixed bugs further demonstrate the
effectiveness of the practical value of our proposed approach in
detecting game UI glitches.

7 CASE STUDY
To demonstrate that GLIB can accurately localize the glitch area
of detected abnormal screenshots, we apply the saliency map in-
troduced in Section 4.3 to show developers more detail about our
model’s prediction. We randomly select some images that are clas-
sified by GLIB as glitch images and calculate the derivative of the
output concerning each pixel in the input image, the results are
shown in Figure 12 where the original screenshots are placed in
the left and the generated saliency maps (which are converted to
heat-maps) are listed in the right. A brighter area in the heat maps
indicates a larger gradient of corresponding pixels, i.e, these pixels
contribute more during the classify progress and are more likely to
be the UI glitch issues. The UI glitch of the first image in Figure 12
is partial repetition, and the corresponding saliency map shows
that GLIB concentrates much on these repetition areas, which is
consistent with the manifestation. The saliency maps of the sec-
ond and the third images indicate that the abnormal color blocks
rather than the other background elements are the buggy area of
the screenshots, which also agrees with the manifestation. From the
saliency map of the glitch screenshots, we can see that the model
can not only accurately detect the image with UI glitch issues, but
can also localize which part of the screenshot is abnormal.

Figure 12: The images in the left column are the glitch im-
ages and images in the right column are the corresponding
saliencymap, the red pixel contributemost to the final label.

8 DISCUSSION
Generality across games. Our training data are collected and
augmented from 2 Acting games, which may limit the model’s
applicability in real-world practice. However, our testing data used
in RQ3 consists of 20 games including categories such as Role-
playing games, card games, shooting games, MOBA (Multiplayer
Online Battle Arena), love games, simulation games, etc. which
nearly cover all popular daily-used game apps. The evaluation
result shows that our proposed GLIB can accurately detect (99.5%
recall) all screenshots with UI glitches. This further demonstrates
the generality of GLIB across different types of games. Moreover,
our GLIB is a black-box image augmentation approach that requires
source code only in the training phase and the well-trained model
can be directly used to detect UI glitches on other games.
Generality across languages. Another advantage of our GLIB is
that it can be applied for detecting UI glitches on game applica-
tions with different languages. Although the testing data of our
experiment for RQ3 and case study only contains the screenshots
of Chinese games, our study in Section 3.2 shows that most of
the game UI glitches are text-irrelevant, i.e., abnormal text-only
account for 2% of all the UI display issues, plus our code-based
data augmentation approach mainly focuses on UI glitches that are
language-invariant such as abnormal color block, random noise,
partial repetition and frame overlay caused by rendering effect
or post-processing effect error. Hence, our proposed GLIB can be
generalized for UI glitch detection in games with other languages.
Generality across platforms. Even though different games may
run on different platforms, the game UI content is mostly decided
by novel images which consist of 3d models as well as UI compo-
nents. To prove that our model can precisely detect glitch images in
terms of different game platforms, we collect UI screenshots from
9 Android games, 3 iOS games, and 2 PC games and use them as
our testing dataset. The experiment results in RQ3 show that our
approach can accurately detect all UI glitch images from games
with different platforms, which further demonstrates the feasibility
of our proposed GLIB.
Generality across engines. The game engine is a software de-
velopment environment that provides developers with a series of
tools to facilitate easy program writing. Games based on different
engines may have different program structures, but the game UI
rendering effect mainly depends on the low-level CPU/GPU system
calls. For the same root cause (bug error), the manifestation of glitch
images is typically similar regardless of which game engine the
game is based on. To prove that our GLIB can well recognize glitch
images across different engines, we select 2 games developed by
a self-defined engine, 1 unreal-engine-based game, and 11 Unity
games to compose our test dataset in RQ3. The experiment results
show that our model can be generated well across different game
engines.

9 RELATEDWORK
Our work, inspired by the automatic GUI testing [1, 20, 28] com-
bined with deep learning technique, proposes a game GUI bug
detection approach. GUI, a visual interface connecting users and
software programs, has been studied by many researchers on dif-
ferent topics. Automatic GUI testing dynamically explores GUIs
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of an application, and several approaches [17, 31] use computer
vision techniques to detect GUI components to make predictions
and compare different tools for GUI testing on Android applications.
Recent deep learning-based techniques [11, 30] have also been ap-
plied for automatic GUI testing. More work on GUI with computer
vision techniques such as GUI search [2–4, 6, 8, 24, 32] and GUI
code generation [5, 9, 10, 21, 23] facilitates the effective completion
of computing tasks based on image features.

On the other hand, many software linting tools aiming to flag
bugs, stylistic errors, programming errors, and suspicious con-
structs [7, 33] have been proposed to ensure the normal operation
of GUI. For example, StyleLint9 helps developers avoid errors and
enforce conventions in styles, Android Lint10 reports over 260 dif-
ferent types of Android bugs including correctness, performance,
security, usability, and accessibility. Different from static linting, our
GLIB dynamically explores GUIs of an app as what automatic GUI
testing does, but note that these GUI testing techniques concentrate
on functional testing, whereas our work focuses on non-functional
testing (i.e., GUI glitches typically do not cause app crash but nega-
tively affect the app usability). We analyze the GUI display issue in
terms of software rendering bugs such as rendering camera settings
and post-processing effects error which cause the app compatibility
problems. It is extremely difficult and expensive for the developers
to cover all the popular contexts when conducting testing. More-
over, our work only requires the screenshots as the input rather
than these works based on static or dynamic code analysis. This
crucial characteristic makes it easier for our lightweight CNN-based
model to learn the pattern of UI glitch images and localize the UI
glitches on the screenshot by a saliency map [26] and also makes
our approach more generalized to a different platform.

10 THREATS TO VALIDITY
In our GLIB framework, the only manual part is to traverse and
identify multiple diverse game scenes in each game for building our
original training dataset. Also, our defined three categories of code
injection approaches are based on study and empiricism. The code
injection data augmentation based on hotfix patching technique,
CNN-based UI glitch detection as well as UI issue localization are
all automated and can be easily adapted to other games on differ-
ent platforms. Inappropriate selection of game screenshots in the
manual part may weaken the external validity of experimental con-
clusions. We try to mitigate this threat by traversing and selecting
as many as distinct game scenes to make the dataset diverse and
abundant. Our internal threat mainly arises from the completeness
of manifestation of game UI glitches and our defined three types of
code patching approaches. We ask several game developing experts
from NetEase to confirm that our summarized eight categories of UI
glitches do cover all the common issues in their game apps. We also
show that our code injection can generate all the most common
five types of UI glitches.

11 CONCLUSION AND FUTUREWORK
Detecting and improving the quality of mobile game applications
is of great value for nowadays game developers and testers. This

9https://github.com/stylelint/stylelint
10http://tools.android.com/tips/lint

paper proposes an automated UI glitch detection approach based
on deep learning and bug analysis. Our empirical study on the
root causes of game UI glitches facilitates a code-based data aug-
mentation approach. Experimental results show that our GLIB is
effective and shows great advantage in a real-world game testing
scenario, i.e., achieving nearly 100% precision, recall, and F-1 score
for classifying screenshots collected from 20 popular games, way
better than the existing rule-based approach. Also, as the first work
on game UI testing, we contribute to a systematical investigation of
UI glitches in real-world mobile game apps, as well as a large-scale
dataset of game app UIs with display issues for follow-up studies.
Our proposed test oracle for automated UI glitch detection could
facilitate further study on game UI testing.

In the future, we will focus more on the GPU-related rendering
issues that cause game UI glitches and also keep improving the
functionality of our model. Specifically, GLIB is one part of the
game testing framework that we plan to research in the future. The
whole framework contains an IO module, a scene traverse module,
GLIB, and a log module. First, IO module captures screenshots from
a mobile device and feeds them to both GLIB and the scene traverse
module; Second, GLIB classifies the given screenshot as normal or
glitch (log module loggings the corresponding information), and the
scene traverse module recognizes UI and click to yield the next scene,
then it chooses a UI and returns the UI back to IO module; Last, we
repeat the two steps to realize the whole automated game testing.
Moreover, we hope to find a tight connection between bugs and
the characteristic of UI glitches so that we can predict the bug code
given a screenshot with UI display issues. And this bug inference
technique can be more valuable when guiding developers to fix app
compatibility issues.
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