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ABSTRACT
Modern mobile malware tend to conduct their malicious exploits
through sophisticated patterns of interactions that involve multi-
ple entities, e.g., the mobile platform, human users, and network
locations. Such malware often evade the detection by existing ap-
proaches due to their limited expressiveness and accuracy in char-
acterizing and detecting these malware. To address these issues, in
this paper, we recognize entities in the environment of an app, the
app’s interactions with such entities, and the provenance of these
interactions, i.e., the intent and ownership of each interaction, as the
key to comprehensively characterizing modern mobile apps, and
mobile malware in particular. With this insight, we propose a novel
approach named EnMobile including a new entity-based character-
ization of mobile-app behaviors, and corresponding static analyses,
to accurately characterize an app’s interactions with entities. We
implement EnMobile and provide a practical application of EnMo-
bile in a signature-based scheme for detecting mobile malware. We
evaluate EnMobile on a set of 6614 apps consisting of malware
from Genome and Drebin along with benign apps from Google Play.
Our results show that EnMobile detects malware with substantially
higher precision and recall than four state-of-the-art approaches,
namely Apposcopy, Drebin, MUDFLOW, and AppContext.

CCS CONCEPTS
•Program reasoning→Programanalysis; • Systems security
→ Mobile security;
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1 INTRODUCTION
The explosive growth in mobile devices and mobile applications,
or ‘apps’, has spurred the growth of mobile malware. A case in
point is the number of unique Android malware samples, which in-
creased from 10.7 million samples in 2015 to more than 19.2 million
in December 2016 [3]. Malware detection based on behaviors is a
prominent class of malware-detection approaches where character-
istics of known malware samples are used as a basis of identifying
new malware [4, 7, 21, 32, 39, 41–43, 52]. These approaches typ-
ically work in two phases: malicious-behavior characterization
and malicious-behavior detection. The behavior-characterization
phase creates a specification of the malicious behaviors, in the
form of manually specified malware signatures or as automatically
minedmalwaremodels, in a suitable representation. In the behavior-
detection phase, techniques based on static or dynamic program
analysis are used to analyze a given mobile app for possible matches
against the specified signatures or mined models.

Limitations of existing approaches. Existing malware detec-
tion approaches [6, 8, 9, 11, 21, 21, 22, 25, 29, 45, 50, 51] suffer from
the overfitting problem – these approaches are tailored to detect
only the malware samples used for deriving the signatures or mod-
els. The two main reasons are the limited expressiveness and limited
accuracy of these approaches.

Limited expressiveness. The existing approaches primarily use
information-leaking dataflows within the app as the basis of a mali-
cious behavior. However, the existing approaches typically fail to
capture malicious behaviors initiated and controlled by malicious
servers, such as initiating spams or launching denial-of-service
attacks. In these exploits, the intent is not information leakage. Fur-
ther, a key indicator of the malicious intent in these cases is the
control of the malicious interactions by an external server. With-
out a proper characterization for these key aspects, the existing
approaches turn to easily mutable features (shared across malware
samples of the same family) such as network addresses or other
string constants to detect these behaviors, allowing malware devel-
opers to easily change these features to evade detection.

Limited accuracy. The existing approaches fail to recognize and
express end-to-end interactions between a malware sample and en-
tities in its environment. Instead they characterize segments of
these interactions using implementation-specific structures (e.g.,
API methods, objects) as end-points. For example, consider a sam-
ple of the GingerMaster malware with the following four-phase
malicious behavior: (1) the app retrieves and preprocesses a phone
number from the telephony manager (entity A); (2) the app writes
the preprocessed phone number into a temporary file (entity B);
(3) the app reads the preprocessed phone number from the same
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temporary file (entity B); (4) the app sends the preprocessed phone
number to a (malicious) server (entity C). A typical malware sig-
nature based on the existing approaches would characterize this
behavior as four interactions. Further, the existing approaches see
the app interacting with some Java File object in Phases 2 and 3,
without recognizing that such File object is the same file written
to and later read from.

Therefore, the existing approaches can produce false positives by
matching the preceding behavior with that of a benign app where
the preprocessed phone number is saved to a file, and non-sensitive
information read from a different file is sent to a server. In addition,
the GingerMaster malware family has seven variations (i.e., differ-
ent implementations) during the period of 2011–2013 [46]. These
variations can either skip Phases 2 and 3 by directly sending the
preprocessed phone number to the malicious server or replace the
temporary file entity in Phases 2 and 3 to be a temporary database.
Thus, the existing approaches can also produce false negatives by
making their malware signature very specific to Phases 1-4.

To address these limitations of the existing approaches, in this
paper, we present a novel approach, EnMobile. The EnMobile ap-
proach is motivated by the finding [8, 46, 52] that more than 90% of
current mobile malware have a command-and-control (C&C) archi-
tecture, where the malware receive and respond to commands from
an external actor, e.g., a remote server. Thus, EnMobile is built to
directly characterize the underlying C&C structure of the malware.
In particular, EnMobile improves the existing malware-behavior
characterization in three main aspects.

Entity-based characterization. Rather than using implementation-
specific structures (e.g., API methods, objects) or easily mutable
features in an app, EnMobile expresses the app’s behaviors in terms
of interactions among entities. Entities are a host of actors on the
mobile platform including mobile system components (e.g., the tele-
phony manager, SMS manager, contacts provider), local on-device
resources (e.g., files, databases), other mobile apps and libraries, hu-
man users, and network locations, etc. EnMobile recognizes entities
through their identities. For example, files with different names are
different entities.

Furthermore, introducing the concept of entity allows security
analysts to express an entity interaction in an end-to-end fashion,
making it much more independent of specific realizations of that
interaction (e.g., specifics of Phases 2 and 3 in GingerMaster), and
hence more robust. For example, for the GingerMastermalware fam-
ily, security analysts can simply specify the end-to-end information
flow from the telephony manager (entity A) to the malicious server
(entity C), without enumerating all possible intermediate-point
entities (e.g., files, databases).

Flow-provenance predicates. Going beyond using information-
leaking dataflows within the app, EnMobile enriches interactions
among entities with provenance information. Provenance in our
context refers to who controls the flow, and why, i.e., the specific
intended purpose of the flow [18, 23, 38, 50]. For example, the ex-
isting approaches may produce an information flow (file  
sendTextMessage). Such flow can match both the behavior of send-
ing contents of a file out through SMS (a benign action of sending
predefined messages) and the behavior of specifying which phone
numbers that the SMS should be sent to (a malicious action of send-
ing premium messages). To distinguish such scenarios, we propose

a set of data flow predicates (Section 4.1.1) to reflect the intended
purpose of an information flow (e.g., passing configuration parame-
ters vs. purely transmitting information to another entity), and a set
of control flow predicates (Section 4.1.2) to specify the ownership
of information flows, i.e., the entity that initiates or controls the
information flow.

Identification of entities and entity references. In order to charac-
terize an app’s behaviors directly in terms of its interactions with
entities of the app, one challenge is to extract the correspondence
between an in-program object (termed as an entity reference) and
the entity with which the object may interact in a given execution
context (e.g., calling context). To infer the entities that each Java
object can point to, we develop an identity-propagation algorithm
that conducts a flow- and context-sensitive analysis. It extends
and adapts modern taint analysis algorithms [9]. Our algorithm
needs to correctly resolve two core scenarios. First, multiple objects
could point to the same entity. Second, a given program object can
interact with different entities under different execution contexts.

As discussed earlier, malware typically perform malicious behav-
iors segmented into multiple phases (e.g., downloading, preprocess-
ing), storing intermediate computation results in temporary files or
databases. This segmentation gives rise to multiple segments of in-
formation flow, punctuated with interactions with entities (e.g., files
or databases). These segments would need to be “stitched together”
in order to be properly matched against a signature specified to
characterize the end-to-end interaction. To address the challenge,
we propose a flow-sensitive stitching algorithm to ensure that the
connected information flows are feasible in the actual execution.

This paper makes the following main contributions:

• Characterization. We identify malware interaction patterns
with entities and provenance information of the interactions as a
corner stone of comprehensively characterizing mobile malware.
We also propose a novel signature-specification language, based
on this characterization, that enables security analysts to create
robust, abstract specifications.

• Detection.We design static analyses to derive the entity-based
characterization by analyzing bytecode of a given app, including
identifying entities and entity references, extracting provenance
information for flows, and matching against signatures in the
face of segmented flows.

• Implementation and Evaluation. We present a practical im-
plementation of our approach and evaluate its effectiveness, on
a set of 6614 apps consisting of malware from Genome [52]
and Drebin [8] along with benign apps from Google Play. Our
results show that EnMobile achieves substantially higher preci-
sion and recall than four state-of-the-art approaches, namely Ap-
poscopy [21], Drebin [8], MudFLow [11], and AppContext [50].

2 RELATEDWORK
Existing malware detection approaches characterize malware be-
haviors by features that commonly exist in malware but not in
benign apps. These approaches include mining (MUDFLOW [11]),
clustering (CHABADA [25]), classification (AppContext [50]), graph
matching (Astroid [22], Apposcopy [21]), and natural language pro-
cessing (AsDroid [26], WHYPER [35]) etc. The practice of copy-and-
paste is pervasive in the malware industry, resulting in many code
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clones in malware samples [16]. Because the same code snippet
has appeared in many malware samples (but not in benign apps),
these existing approaches may regard non-essential features (e.g.,
component type, file name, unrelated information flows) in code
clones as discriminative features. EnMobile provides security an-
alysts a way to directly characterize malware behaviors through
the high-level interactions among entities rather than relying on
implementation-specific characteristics of the malware.

EnMobile also falls into the general category of techniques based
on information flow analysis. Much work has been proposed to en-
hance static analysis of mobile apps [12, 13, 15, 24, 28–31, 33, 34, 38,
47–49]. Information flow analysis tracks whether privacy-sensitive
data (i.e., sources) flows to outgoing channels or sensitive outlets
(i.e., sinks). EnMobile complements existing analysis by adding
entity-based characterization to the information flow. AAPL [30]
uses enhanced data flow analysis techniques to increase the num-
ber of data flows that can be detected by information flow analysis
and then uses the peer-voting mechanism to lower the false pos-
itive rate to report illegitimate information leakages. AAPL fails
to handle obfuscation techniques, such as string encryption, since
it employs constant propagation analysis. Further, it incurs high
false positive rate, by matching all sources with all potential sinks.
EnMobile resolves these two limitations by precisely computing
the identity of an entity. SPARTA [20] and FlowDroid [9] are two
general information flow analysis frameworks. SPARTA enables the
flow-policy checking by providing an integrity type system to anno-
tate source code with information-flow type qualifiers. FlowDroid
is a static taint analysis tool for Android apps based on Soot [27]
and Heros [14]. EnMobile complements SPARTA and FlowDroid
by analyzing all types of data flows to detect malicious behaviors
that are not information leakage, e.g., bot-driven C&C behaviors.

3 A MOTIVATING EXAMPLE
We illustrate our approach using amalware example TrickMe, shown
in Figure 1. TrickMe is derived from several real pieces of malware.
Its C&C structure comes from Geinimi [2], its downloading behav-
iors mimic Answerbot [1], and its information leakage behaviors
follow BeanBot [5]. TrickMe has three malicious behaviors: sending
the user’s SMS to the C&C server through Internet, performing
click fraud based on coordinates provided by the C&C server, and
downloading and renaming malicious payloads. All three behaviors
reside in an Activity component MainActivity, TrickMe’s MAIN Ac-
tivity component, which is invoked when the malware is launched.

TrickMe receives commands and prepares necessary informa-
tion for future malicious behaviors in the onCreate method of
MainActivity (Figure 1a). It first opens a network connection to a
malicious server (Lines 3 - 5), and reads a message from the server to
file server.xml (Line 12). It then parses the server.xml into the four
files commandFile, coordinateFile, downloadFile, and fileNameFile

(Line 13). Finally, it reads a list of SMSs into file infoFile (Line 14).
In the onStopmethod of MainActivity (Figure 1b), TrickMe launches

one of three different malicious behaviors based on different com-
mands received earlier from the server. On command sendInfo it
sends the content of infoFile to the server, on command click it
computes and clicks on the X-Y coordinates computed based on the
numbers in coordinateFile to incur click fraud [17], and on com-
mand install it downloads malicious payloads from URL addresses

1 public void onCreate(Bundle b) {
2 ...
3 String v0 = "http://www.malicious.com";
4 URL url = new java.net.URL(v0); //<url, CON_1>
5 HttpURLConnection n = url.openConnection(); //<n, CON_1>
6 f_s = new File("server.xml"); //<f_s, FILE_1>
7 f_c = new File("commandFile");//<f_c, FILE_2>
8 f_info = new File("infoFile");
9 f_n = new File("coordinateFile"); //<f_n, FILE_3>
10 f_d = new File("downloadFile");
11 f_f = new File("fileNameFile");
12 read(f_s, n); // Reading message from n to f_s
13 parse(f_s, f_c, f_n, f_d, f_f); //Parsing f_s into four files
14 readSMS(f_info); ... }

(a) onCreate method of MainActivity

1 public void onStop() {
2 ...
3 for(String command: readLine(f_c)){
4 if(command.equals("click")){
5 float [] axis = getAxis(readLine(f_n));
6 MotionEvent down = MotionEvent.obtain(...,0, axis[0],axis[1],0);
7 MotionEvent up = MotionEvent.obtain(...,1, axis[0],axis[1],0);
8 ...
9 Activity adActivity = ...; //<s,AdsPlatform>
10 Webview adView = adActivity.findViewbyID (...);
11 adView.dispatchTouchEvent(down);
12 adView.dispatchTouchEvent(up);
13 }
14 if(command.equals("sendInfo")){
15 sendFile("http://www.malicious.com",f_info);
16 }
17 if(command.equals("install")){
18 String [] filename = readLine(f_f);
19 int i = 0;
20 for(String url: readLine(f_d)){
21 File f_i = new RandomAccessFile(filename[i++],"rw");
22 read(f_i, new java.net.URL(url).openConnection());
23 }}}...}

(b) onStop method of MainActivity

1 public String [] readLine(File file){ //<file, FILE_2>, <file, FILE_3>
2 FileReader r = new FileReader(file); //<r, FILE_2>, <r, FILE_3>
3 BufferedReader br = new BufferedReader(r);//<br, FILE_2>, <br, FILE_3>
4 String line = br.readLine(); ...
5 return line; }

(c) readLine method of MainActivity

Figure 1: Motivating Example: TrickMe malware

listed in downloadFile, and names the downloaded files according
to the list of names in fileNameFile. The downloaded payloads are
used by TrickMe to launch other malicious behaviors.

Comparison of signatures in Apposcopy and EnMobile.
In a signature-based scheme for malware detection, such as Ap-
poscopy [21], security analysts can specify the control-flow and
data-flow properties shown in Figure 2 as the signature for the
TrickMe malware.
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activity(a), icc(SYSTEM, a, MAIN, _),
flow(a, URLConnection, a, file),
flow(a, BufferedReader, a, URLConnection),
flow(a, BufferedReader, a, file),
flow(a, SMS, a, file)

Figure 2: Characterization of TrickMe in Apposcopy [21]

The activity(a) predicate declares an activity component a.
The icc(SYSTEM, a, MAIN, _) predicate states an inter-component
communication from the system to the activity a, and the content of
the communication is a “MAIN” intent message. The flow(a, SMS,

a, file) predicate represents an information flow from source SMS

in component a to sink file in component a (Figure 1a, Line 14).
Although the specified predicates do represent valid information

flows and triggering events in TrickMe, these predicates are insuffi-
cient for representing the unique characteristics of themalware, and
therefore may be unable to differentiate malware from a benign app.
For example, a benign SMS manager app can sync the app’s configu-
rationwith a server (BufferedReader URLConnection), (URLConnect
ion file), and back up SMSs (SMS  file) where indicates an
information flow. Such an app also possesses the same control-flow
and data-flow properties as TrickMe, as per Apposcopy’s character-
ization, and would therefore be indistinguishable from TrickMe.

Figure 3 presents the signature of TrickMe specified by security
analysts in EnMobile. EnMobile enables an accurate characteriza-
tion of TrickMe, in three respects. First, EnMobile allows designating
the entities that certain behaviors may be attributed to, thereby
precisely characterizing the purpose of the behavior. For example,
a unique behavior of TrickMe is its use of the “command” read from
“commandFile” sent from the C&C server, to direct the launching of
different malicious behaviors. Identifying and implicating the entity,
the remote C&C server, rather than the local file “commandFile” (as
the existing approaches would do), is key to recognizing the true
nature of this behavior.

Second, EnMobile allows stitching segments of the end-to-end
flow behavior exhibited by TrickMe. For example, the signature in
Apposcopy includes only the benign-looking flows (SMS file)
and (BufferedReader URLConnection), while EnMobile infers
these flows as segments of a larger, and potentially malicious flow
(i.e., Transmit*(s, n_2) of UploadMessage in Figure 3 indicating
the behavior of sending SMSs to a web server).

Third, EnMobile detects malicious behaviors beyond informa-
tion leakage. EnMobile captures a number of non-leakage behaviors
in TrickMe, such as click fraud, downloading and renaming files.
Capturing such behaviors requires a nuanced characterization of
information flows. As shown in our results (Section 6.3), character-
ization can significantly impact the accuracy of malware detection.

4 ENTITY-BASED CHARACTERIZATION
Broadly, EnMobile aims to characterize an app in terms of its

relevant interactions with entities. To this end, it tracks and pre-
cisely characterizes information flows associated with the security-
sensitive behaviors of an app. We next illustrate some preliminaries
before presenting characterization in EnMobile.

Security-sensitive Behavior. A security-sensitive behavior is
an invocation of a security-sensitive method.We consider two types
of methods as security sensitive: permission-protected methods and

TrickMe(a) :- Download(a), SendMessage(a), UploadMessage(a).

ClickAds(a):- Connection(n), AdsPlatform(s), SysUIEvent(e),
Config*(n, s, TOUCH), Control*(n, s, TOUCH), Trigger(e, s, TOUCH).

Download(a) :- Connection(n), SysUIEvent(e), Connection(n_i),
Initiate*(n, n_i), File(f_i), Initiate*(n, f_i), Transmit(n_i, f_i),
Trigger(e, f_i, WRITE), Control*(n, f_i, WRITE).

UploadMessage(a) :- Connection(n), SysUIEvent(e), Connection(n_2),
SmsInbox(s), Transmit*(s, n_2), Control*(n, n_2, WRITE),
Trigger(e, n_2, WRITE).

Figure 3: Characterization of TrickMe in EnMobile

other source/sink methods that read/write information. Permission-
protected methods are API methods that require permissions to
access security-sensitive resources and data. We use the list of
permission-protected methods specified in PScout [10], and the list
of source/sink methods specified in SuSi [36]. Further, we follow
PScout [10] to label each security-sensitive method call with one
of a small set of abstract actions (e.g., SEND, RECEIVE, READ, WRITE),
based on its overall behavior. These action labels are used in our
characterization (Section 4.1).

Entity. An entity is an external resource that an app interacts
with during its execution. Entities may include network locations
(e.g., URLs or phone numbers) external to the device running the
app, such as the URL of a C&C server. They may also include on-
device intermediate storage sites (e.g., files, databases) or specific
Android system resources (e.g., the SMS Manager), with which
the app may interact during execution. Entities form the sources
(providing information) or targets/sinks (consuming information)
of information flows to/from the app. An entity is defined by a
tuple: < entity type, entity identifier >.

Entity type. The type identifies the category of entity, such as a
file or a network location (File, UrlConnect), as well as the type of
communication channel of the app with the entity, such as an SMS
communication with a phone number (SmsTarget) and a phone call
to a number (PhoneTarget).

Entity identifier. The identifier is the name or address of the entity,
such as a file name, a URL, or a phone number, which together
with the entity type can be used to uniquely identify the entity. In
EnMobile, entity identifier values are stored and propagated in the
program via (primitive-type or string-type) constants or symbolic
expressions (involving variables provided by the external input, e.g.,
network message, user input).

Entity reference. An entity reference is an in-program object
or variable that serves as a proxy of the entity within the app and
through which the app communicates with the entity. For example,
variable f_s, in Figure 1a, Line 6, is a reference of a File entity with
identifier “server.xml”. An entity may have multiple references.
Conversely, a single object, such as the Android SMS Manager, may
instantiate different entities (e.g., SMSs to different phone numbers)
at different points during the app’s execution.

4.1 Language Specification
We propose a language to characterize an app based on its inter-
actions with entities. One use of such characterization is to write
signatures for recognizing malware. Figure 3 shows a signature
characterizing the TrickMe example.
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Table 1: App-behavior description language

Type Syntax Definition

Event SysEvent(v), UiEvent(v), v: event of appropriate type
Predicate SysUiEvent(v) (one of three event types: System event, UI event, or System UI event)

Entity Entity(e), File(e), UrlConnect(e), e: entity of appropriate type
Predicate SmsTarget(e), SmsInbox(e) (partial list of potential entity types)

Transmit(esource, etarдet ) esource : source entity, etarдet : target entity
Transmit*(esource, etarдet ) Transmit*(es, et ) :- Entity(ei), Transmit*(es, ei), Transmit(ei, et )

Data-flow Config(esource, etarдet , a) esource : source entity, etarдet : target entity, a: target entity’s action
Predicate Config*(esource, etarдet , a) Config*(es, et , a) :- Entity(ei), Transmit*(es, ei), Config(ei, et , a)

Initiate(esource, etarдet ) esource : source entity, etarдet : target entity
Initiate*(esource, etarдet ) Initiate*(es, et ) :- Entity(ei), Transmit*(es, ei), Initiate(ei, et )

Control-flow Trigger(vtr iддer , etarдet , a) vtr iддer : triggering event, etarдet : implicated entity, a: security action
Predicate Control(econtrol , etarдet , a) econtrol : controlling entity, etarдet : controlled entity, a: security action

Control*(econtrol , etarдet , a) Control*(ec, et , a) :- Entity(ei), Transmit*(ec, ei), Control(ei, et , a)

The characterization is a set of Datalog rules. Each rule, of the
form: head :- predicate1, predicate2, ... , is a horn clause,
defining a predicate head as the conjunction (logical AND) of one
or more other predicates (e.g., predicate1). A predicate is a relation
name with variables or constants as arguments.

Table 1 provides an informal specification of our proposed lan-
guage. It consists of four kinds of predicates, namely event, entity,
data-flow, and control-flow predicates, as described next.

Event predicate. Event predicates declare relevant events, as
one of three types: System, UI, or System UI events. A system event
is one initiated by the system-state changes, e.g., receiving an SMS,
a UI event is triggered by interactions on an app’s graphical user
interface, and a system UI event is triggered by the interactions on
the device interfaces, such as pressing an app’s icon on the system’s
screen to launch the app. This categorization follows previous work
on Android testing [50].

Entity predicate. Entity predicates declare specific entities,
each of a specific type, with which the app interacts during its
execution. For example, in Figure 3, File(f) denotes a file entity f.
Table 1 lists a few examples of currently recognized types.

4.1.1 Data-flow predicates. We make the observation that the
intent of an information flow can be determined based on a specific
parameter of the sink method that it flows into. The reason is that
each parameter of a (sink) method plays a specific role in executing
its behavior. Thus, our characterization categorizes each parameter
of a sink method into one of three types: (1) transmit parameters,
which receive data to be written to a target entity, (2) config param-
eters, which are used to configure security-sensitive behaviors, and
(3) initiate parameters, which carry identifiers, e.g., the file name, to
initialize a target entity. Based on this characterization, information
flows can also be categorized as Transmit, Config, or Initiate, and
represented using the corresponding predicates as explained below.
To implement this characterization, we pre-compile lists of trans-
mit, config, initiate parameters and their corresponding methods
for common entities in the Android SDK, as a one-time effort for
Android.

Predicate Transmit (Transmit*). The Transmit predicate en-
codes data transmission from a source entity esource to a target
entity etarдet , where the app reads information from esource and
writes it to etarдet . An information flow satisfies a Transmit pred-
icate if it flows into a designated transmit parameter of a sink
method. For example, in the TrickMe characterization (Figure 3),
predicate Transmit(n_i, f_i) encodes the behavior of downloading
payloads from given URLs (n_i) to files (f_i).

We also define the predicate Transmit*(esource, etarдet ), to
represent information transitively flowing from esource to etarдet
through a sequence of Transmit flows. For example, the Transmit*(s,
n_2) (Figure 3) encodes the behavior of reading an SMS from SM-
SInbox s, storing it into file “f_info” (Line 14, Figure 1a) and subse-
quently forwarding it to a given URL n_2 (Line 15, Figure 1b).

Predicate Config (Config*). This predicate encodes informa-
tion flows from a source entity esource to target entity etarдet initi-
ated exclusively for configuring the behavior of a security-sensitive
action a performed by etarдet . Similar to Transmit, the definition is
extended to define predicates Config*, as per Table 1. For example,
in the TrickMe malware, the number saved in the “coordinateFile”
is used to configure the behavior of dispatchTouchEvent (Lines 4-7
in Figure 1b), as the content in the “coordinateFile” is from net-
work connection n, the configuration relationship is represented
by Config*(n, s, TOUCH).

Predicate Initiate (Initiate*). This predicate represents a be-
havior where the entity identifier (e.g., a file name) of a target entity
etarдet is read from a source entity esource and flows into an ini-
tialization statement used to instantiate etarдet . Initiate can be
extended to predicate Initiate*, as defined in Table 1. In the TrickMe
signature (Figure 3), predicate Initiate*(n, f_i) represents the be-
havior that file f_i is instantiated using its identifier read from file
“filenameFile” (Lines 18-22, Figure 1b), which itself is downloaded
from network connection n (Lines 11-14, Figure 1a).

4.1.2 Control-flow predicates. These predicates capture the “who”
of security-sensitive behaviors, i.e., which entity or event controls
them, a key determinant of the maliciousness of behaviors.



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Wei Yang, Mukul R. Prasad, and Tao Xie

Predicate Trigger. The Trigger predicate asserts that a given
security-sensitive behavior is triggered by a certain event. Specif-
ically, predicate Trigger(vtr iддer , etarдet , A) is true if event
vtr iддer triggers the execution path to a method call performing
an action A (e.g., upload information), where etarдet (e.g., URL
connection) is the target entity whose reference in the program
makes the security-sensitive method call. For example, the onStop

method of TrickMe (Figure 1b), which can be triggered by a System
UI event such as pressing the HOME button, contains three specific
behaviors. The three Trigger(e,*,*) predicates in Figure 3 capture
this triggering relationship.

PredicateControl. The Control predicate asserts that a security-
sensitive action a, performed by a reference of entity etarдet , is
control-dependent on another entity econtrol . Specifically, pred-
icate Control(econtrol , etarдet , a) is true if and only if there
exists an information flow from a reference of econtrol to a con-
ditional statement guarding the execution of a security-sensitive
method call, performing action a. Control can also be extended to
predicate Control*, as defined in Table 1. In the TrickMe example, the
command sent from URLConnection n controls the three malicious
behaviors. The predicates Control*(n, *, *) in Figure 3 encode
this control relationship.

5 ENTITY-BASED STATIC ANALYSIS
In this section, we present how EnMobile matches an Android
program against the given malware signatures specified with the
entity-based characterization. At the meta-level, such process takes
four steps: (1) identify entities (i.e., entity type and entity identifier);
(2) map entities to program objects (i.e., entity references); (3) extract
entity-based flow facts through analysis on entity references and
augment the extracted flow facts with provenance information; (4)
match the flow facts against the malware signatures.

5.1 Identifying Entities and Entity References
For the purpose of analysis, EnMobile categorizes entity references
into two types: initial entity reference and alias entity reference.
Normally identifying an entity reference depends on a parameter
(e.g., file name) in the statement that initializes the reference. We
name such a parameter as an indicative parameter. If an indicative
parameter is a constant or external input (e.g., user input, network
message), we term the entity reference initialized by the parameter
as initial entity reference. If an indicative parameter is a variable that
in turn points to the initial entity reference (e.g., variable file and
r in Lines 2-3, Figure 1c), we term the entity reference initialized
by the parameter as alias entity reference.

For brevity, we use only entities related to the SMS-sending
behavior in TrickMe as examples to illustrate the techniques in the
rest of this section. For each entity reference involved in sending
SMS, we use red comments in Figure 1 to show the pair of the
entity reference (i.e., variable) and the entity that the reference
points to. For example, in TrickMe, url, f_s, f_c, f_info, f_n, f_d, f_
f in Figure 1a are initial entity references, while n in Figure 1a and
r, br in Figure 1c are alias entity references.

Identifying entities. EnMobile identifies entities via initial en-
tity references. In particular, EnMobile identifies the entity type

through the Java types of initial entity references. For example, in
Figure 1a, f_s has java Type File indicating the entity type as file.

EnMobile extracts the entity identifier through the indicative
parameter of the initial entity reference. An indicative parameter
can either be a constant or external input. For a constant identifier,
EnMobile records the constant value as the identity of the entity.
For an external-input identifier, EnMobile computes a symbolic
expression as the identity of the entity. The symbolic expression
is computed by a combination of sources of the variable (constant
or user input) and the propagation paths from the sources to the
variable. The reason why we choose to compute the symbolic ex-
pression instead of using constant propagation analysis to infer the
actual value of the identifier is to deal with the situations where
the identifier value goes through an encryption scheme.

Mapping entities to entity references. Initial entity refer-
ences are naturally mapped to entities after identifying the entities.
Mapping alias entity references to corresponding entities is still
challenging for two main reasons. First, multiple references could
point to the same entity. In Figure 1c, r and br point to the file entity
referred to by file. The identity of the entity can be propagated
from one reference to another as one reference is used to initialize
another object. Second, an entity reference may point to different
entities under different execution contexts. In Figure 1c, r and br

can point to “commandFile”, “coordinateFile”, or “downloadFile” in
different executions.

We develop an identity propagation algorithm to compute the
entities that each alias entity reference points to. For a given ini-
tial entity reference, the identity propagation computes a set of
entity references that point to the same entity as the initial entity
reference; we refer to this set as reference set. The idea of identity
propagation extends the idea of the taint propagation. The identity
taints are generated at each initial entity reference. Any entity ref-
erence being tainted points to the same entity as the initial entity
reference of the taint.

Table 2 informally presents the flow functions used in the identity
propagation algorithm. A flow function of a statement maps the
set of dataflow facts in that hold before the statement to the set of
dataflow facts out that hold after the statement. Here a dataflow
fact is the reference set of identities. In identity propagation, the
flow function maps Iin (i.e., reference set before the statement) to
Iout (i.e., reference set after the statement). After the reference set
has been calculated for each identity, EnMobile iterates through
all identities and merges the reference sets if two identities are
identical (i.e., two identities with the same identifier value and
same type).

In the TrickMe example, n in Figure 1a and r, br in Figure 1c are
alias entity references. The identity taint CON_1 is generated from
url and propagated to n by applying i○ 1. For r and br, the identity
File_2 first propagates from Line 3 in Figure 1b to variable file

on Line 1 in Figure 1c by applying iv○. Then the identity further
propagates to r and br by applying i○. Note that identity File_3

also propagates (Line 5 in Figure 1b) to file, r, and br. However,
because our analysis is context-sensitive, the later information-flow
analysis is able to tell that the variable command on Line 3 in Figure 1b

1URL is used to initialize a new HttpURLConnection object in the implementation
of HttpURLConnectionImpl.
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Table 2: Identity propagation logic

Statement Type Format Flow Functions Propagation Description

Entity Initialization x = new (ainit , a0, ..., an ), n ∈ N i○ Iout
s
= Iin ∪ x , ainit ∈ Iin Indicative parameter → Left-hand side (LHS)

Assign x = y ii○ Iout
s
= Iin ∪ x , y ∈ Iin Right-hand side (RHS)→ LHS

Identity Setter x .set (y) iii○ Iout
s
= Iin ∪ x , y ∈ Iin Tainted parameter→ Caller object (e.g., y→x)

Call c .m(a0, ..., an ), n ∈ N iv○ Iout
s
= Iin ∪ {a′i }, ∀ai ∈ Iin Caller parameter → Callee (Context switching)

Return return y ; x = c .m(a0, ..., an ), n ∈ N v○ Iout
s
= Iin ∪ x , y ∈ Iin Returned object → LHS

is tainted by the information from File_2, and variable axis[] on
Line 5 in Figure 1b is tainted by the information from File_3.

We perform two customizations in our information flow anal-
ysis. First, the sources of our identity propagation are based on a
certain type of variables (i.e., certain primitive type or string type
of variables in initialization methods) instead of certain methods
(i.e., source methods). So in addition to method matching, identity
generation requires an additional checking on method parameters.
Second, the identity propagation is field-insensitive through certain
methods (e.g., initialization methods, setter methods). For example,
in an identity setter method, an identity taint propagates from the
method parameter directly to the receiver object rather than to
the class field that is assigned by the taints in the setter method.
To address such difference, we feed predefined knowledge (e.g.,
initialization methods and parameters of entities) to help EnMobile
perform identity propagation according to the high-level semantics.

5.2 Augmenting with Provenance Information
We omit the description of extracting flow facts through entity
references given that this process is a standard information-flow
analysis. In this section, we illustrate howwe augment the extracted
flow facts with provenance information in two steps.

Classifying the type of information flows. In this step, we
classify the type of flows based on the three types of data flows de-
fined in Section 4. To differentiate the type of data flows, EnMobile
needs to track which parameter of the sink method is tainted in the
computation. EnMobile first performs traditional information flow
analysis and takes the computed flows and sink variables as input,
and checks them with the predefined method signatures to deter-
mine whether the information flow is transmit, config, or initiate.
EnMobile takes lists of method signatures that contain the infor-
mation of transmit, config, and initiate parameters in the methods.
For each information flow, EnMobile derives the flow type based
on the sink variable that the information flows into. For example,
in the SmsManager.sendTextMessage method, the first parameter
(destinationAddress) indicates that the flow is a config flow, and
the third parameter (text) indicates that the flow is a transmit flow.

Computing control-flowpredicates.To identify eventsvtr iддer
that can trigger Target Entity etarдet , we first locate the security-
sensitive method called by references of etarдet . Each security-
sensitive method corresponds to an action of the entity (e.g., SEND
for sendTextMessage). Then, we analyze the call path’s entrypoints
that lead to the method calls. The entrypoints are the top nodes in
the call graph of the app. EnMobile follows the inter-component
communications to link the etarдet ’s method call to the entry-
points, and the events vtr iддer can be further inferred from the
entrypoints.

To compute control dependencies among entities, EnMobile
tracks information flows from entities to conditional statements
through inter-procedure control-flow graphs. The value of a condi-
tional statement decides which program branch to take in runtime
executions, and thus decides invocations of methods on one of the
program branches. For a given method M invoked by an entity
etarдet (M corresponds to Action A), EnMobile computes the in-
formation flows from all entities to conditional statements (that
control the invocations ofM). If an information flow from an entity
econtrol to the conditional statements exists, then econtrol controls
the ActionA of etarдet (i.e., Control (econtrol , etarдet , A) holds).

5.3 Matching Against Signatures
To perform malware detection, EnMobile compares the set of flow
facts P(M) extracted from an app M , using the aforementioned
analysis, against a pre-compiled library of signatures of known mal-
ware. Specifically, for a malware signature S (as a set of predicates)
from the malware library, the comparison checks whether the pred-
icates in S are a subset of the flow facts (also as a set of predicates)
in P(M), modulo renaming of variables. In the process of signature
matching, EnMobile enumerates all feasible combinations of the
segmented flows to match the end-to-end characterizations in the
signatures. EnMobile determines the feasibility of combinations of
segmented flows by incorporating the flow-sensitive information
(i.e., taking into account the order of the statements) in the extracted
flow facts. Please refer to our project website [19] for more details.

6 EVALUATION
We evaluate EnMobile in characterizing malware behaviors, by
investigating the following research questions:

RQ1: How effective is EnMobile in characterizing malicious be-
haviors in existing malware?

RQ2: How do entity-identity analysis and richer data flow predi-
cates in entity-based characterization contribute to the ef-
fectiveness of malicious-behavior identification?

RQ3: What is the effectiveness of EnMobile compared to other
state-of-the-art approaches of malware detection?

6.1 Evaluation Setup
Evaluation Subjects. Our subject set consists of a malware dataset
and a benign app dataset. Our malware dataset starts with all mal-
ware from the Genome [52] and Drebin [8] malware datasets, which
are commonly used in malware detection research [11, 21, 25, 26,
29, 50]. The Malware Genome dataset comprises 1, 260 malware
samples organized into 49 malware families. The Drebin dataset
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Table 3: Categorization of Malware by EnMobile

Malware Family #T
EnMob(%) Base1 (%) Base2 (%) Appo(%)

FN FP FN FP FN FP FN FP

ADRD 91 0.0 0.0 2.3 0.0 0.0 0.0 36.4 0.0
AnserverBot 184 0.6 0.1 2.2 0.0 0.6 0.4 0.0 0.0
BaseBridege 331 10.4 0.2 33.4 0.2 10.4 0.5 50.0 0.1
Boxer 27 0.0 0.2 7.4 0.2 0.0 0.2 25.9 0.4

DroidDream 97 0.0 0.1 4.4 0.1 0.0 0.2 3.1 8.5
DroidDreamL 46 1.1 0.0 1.1 0.0 1.1 0.0 0.0 0.0
DroidKungFu 668 1.8 0.0 5.1 0.0 1.6 0.7 8.1 0.0
ExploitLotoor 70 10.4 0.1 17.9 0.1 10.4 0.4 85.0 1.9
FakeDoc 132 2.3 0.1 11.0 0.1 2.4 0.2 6.3 0.3

FakeInstaller 925 1.8 0.0 5.8 0.0 1.8 0.1 68.4 0.1
FakeRun 61 0.0 0.1 4.9 0.1 0.0 0.3 11.1 0.0
Gappusin 58 8.6 0.0 12.0 0.0 8.6 0.1 58.6 0.0
Geinimi 94 0.0 0.2 4.4 0.2 0.0 0.9 0.0 0.0

GingerMaster 342 3.8 0.1 7.1 0.1 3.8 0.2 70.4 0.0
GoldDream 70 0.0 0.0 1.6 0.0 0.0 0.0 3.2 0.0
Hamob 28 4.5 0.0 18.1 0.0 4.5 0.0 3.7 5.7
Iconosys 152 0.6 0.0 2.6 0.0 0.6 0.2 69.7 0.0
Imlog 43 0.0 0.0 0.0 0.0 0.0 0.0 76.7 29.1

Jifake 29 0.0 0.0 3.4 0.0 0.0 0.0 50.0 0.5
KMin 148 3.7 0.1 5.9 0.1 3.7 0.1 34.7 19.1

MobileTx 69 0.0 0.1 8.8 0.1 0.0 0.6 31.9 0.0
Opfake 613 0.8 0.0 5.6 0.0 0.8 0.1 33.7 19.2

Pjapps 58 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Plankton 625 2.1 0.0 3.7 0.0 2.1 0.2 32.1 3.0
SendPay 59 6.9 0.0 8.6 0.0 6.9 0.0 22.4 7.9
SMSreg 41 0.0 0.0 9.8 0.0 0.0 0.3 16.2 44.6

YZHC 37 0.0 0.0 3.6 0.0 0.0 0.1 0.0 5.2
Average 188.8 2.2 0.1 7.1 0.1 2.2 0.2 29.5 5.4

#T = Total number of apps, EnMob = EnMobile, Appo = Apposcopy
FN = False negative rate, Base1 = EnMobile without entity identity
FP = False positive rate, Base2 = EnMobile without data-flow types

comprises 5, 560malware samples organized into 178malware fami-
lies. We remove families containing fewer than 20malware samples
as well as malware samples duplicated across Genome and Drebin,
yielding 27 families with 5, 098 malware samples in total. To collect
benign apps, we downloaded a total of 2, 700 apps (100 randomly
selected apps for each of the 27 categories) from Google Play, as of
December 2016. We implement EnMobile using several third-party
static analysis frameworks, including Soot [40], FlowDroid [9], and
AppContext [50]. To isolate and remove the effects of potential
limitations of these frameworks on our conclusions, we further pre-
run EnMobile on the complete subject set and filter out any apps
that cause any of the third-party frameworks to throw exceptions
or time out. This step gives us a final analyzable dataset of 4897
malware samples and 1717 benign apps.

Given the large number of unanalyzable benign apps (999), we
reassess the distribution of our final benign app dataset.We find that
it retains 52 to 77 apps in each Google Play category (originally 100);
the size range (42KB to 51, 192KB) of a final app’s file and the size

range (16KB to 8, 829KB) of a final app’s dex file (bytecode without
resource files) remain the same compared to the original dataset.
This distribution suggests that our benign app dataset remains
broadly representative of real benign apps even after removing
unanalyzable apps. All runs of EnMobile have been performed on
a desktop with 4 Intel Xeon 3.2 GHz E3-1225 processors and 16 GB
of memory with a timeout of 20 minutes per app (the same default
timeout set by Apposcopy [21]).

Malware Signature Library. For the purpose of the evaluation,
we develop a library of malware signatures, one per family, for each
of the 27 malware families (Table 3) in our dataset. Each malware
signature characterizes the malware samples of a given family,
using the signature language proposed in Section 4.1. The signature
is constructed by examining 10 randomly selected malware samples
from the family and 100 randomly selected benign apps. Specifically,
we first collect the security-sensitive behaviors (i.e., data-flow and
control-flow facts) of each of the apps. From these behaviors, the
behaviors common to all malware samples, but absent from the
benign apps, are identified and expressed in the signature language.
The signature-creation procedure entails fewer than six man-hours
of effort per new malware signature, as a one-time effort for each
malware family.

6.2 RQ1: Entity-Based Characterization
To evaluate the effectiveness of EnMobile’s entity-based characteri-
zation on our malware dataset, we run EnMobile on all malware
samples and benign apps, except the ones used to develop the mal-
ware signatures. We evaluate the runs in terms of two metrics.

For the first evaluation metric, we record which malware fam-
ily signatures (if any) each app matches2. Ideally, each malware
sample should match its family’s signature and no other signatures.
Note that this classification problem is qualitatively harder than
simply classifying a given app as malware or benign, and is the
true test of the accuracy of a signature-based approach, such as
EnMobile. Column “EnMobile” in Table 3 shows the results of this
evaluation metric. Here, for a given malware family, false negative
rate (FN) refers to the percentage of malware samples (out of all
samples in the malware family) that are not matched by EnMobile
to that family’s signature. Conversely, false positive (FP) refers to
the percentage of apps (out of all benign apps and malware of other
families) that are incorrectly matched by EnMobile to this family’s
signature. As shown in Table 3, EnMobile can effectively classify
malware instances into their appropriate families with on average
2.2% false negatives and around 0.1% false positives. For most mal-
ware families, EnMobile has under 5% false negatives and 0.1% false
positives.

The second evaluation metric assesses the effectiveness of En-
Mobile and other approaches, in broadly differentiating malware
from benign apps, i.e., classifying malware as malware (vs. benign)
and benign apps as such (vs. malware). Such metric is in contrast
to the family-based classification in Table 3. As shown in columns
“EnMobile” in Table 4, here too EnMobile performs quite well, cor-
rectly classifying over 97% of the malware and 99% of the benign

2While theoretically possible, no apps ended up matching multiple signatures in our
current evaluation.
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Table 4: Differentiating Malware and Benign Apps

Apps #Total #Analyzable #Analyzable EnMobile Base1 Base2 Appo
Apps. by EnMobile by Apposcopy Malicious Benign Malicious Benign Malicious Benign Malicious Benign

Benign 2716 1717 1592 1.0% 99.0% 0.9% 99.1% 4.8% 95.2% 59.1% 40.9%
Malware 5098 4897 4062 97.2% 2.8% 92.2% 7.8% 97.3% 2.7% 67.6% 32.4%

apps. Further, on manually inspecting the 1% (i.e., 17 out 1717) be-
nign apps being classified as malware, we find that 8 apps actually
possess malicious or highly suspicious behaviors. An example app
is com.genericsnippet.funnyecards, which has now been removed
from Google Play. This example demonstrates EnMobile’s capabil-
ity to detect unknown suspicious, even potentially malicious, apps.
The other 9 benign apps misclassified by EnMobile contain some
interesting suspicious-looking behaviors; for example, an app turns
a deprecated smartphone into a baby camera, sending SMS to par-
ents whenever the phone signal changes. In future work, we plan
to use app descriptions to check whether such suspicious behaviors
are in fact desirable.

6.3 RQ2: Entity Identities and Flow Predicates
Two of the key contributions of EnMobile are (1) its entity-based
characterization, built on top of entity-identity analysis (Section 5.1),
and (2) the rich set of data-flow predicates (Section 4.1) to identify
malicious intents. In this research question, we assess the effec-
tiveness of these specific features by comparing EnMobile against
two baseline versions: EnMobile without entity-identity analysis
(Base1), and EnMobile without rich data-flow types (Base2). Note
that the core information flow analysis in both Base1 and Base2, and
indeed in EnMobile itself, is at least as precise as the type and/or API-
based information flow analysis in previous work [9, 11, 21, 29, 47],
albeit implemented in our own framework.

EnMobile without entity identities (Base1). To realize Base1,
we turn off the entity-identity analysis in EnMobile. Specifically, the
analysis retains the type of the entities, but ignores the identities of
the entities in the flows. Note that we still need to perform identity
propagation to some extent to infer the entity type for some entity
references. Indeed, without entity identities, stitching segmented
information flows cannot be performed either.

For fair comparison, we also modify EnMobile’s malware signa-
ture library to make it suitable for Base1. Specifically, in each of
the signatures, we remove entity identities but retain entity types.
Further, we study malware reports from major anti-virus vendors
as well as flows extracted by EnMobile to identify (segmented) in-
formation flows common to a majority of the samples in a malware
family. We replace the original data-flow predicates, representing a
connected flow in the signature, with a set of predicates represent-
ing each of the segmented flows. When no flows match a majority
of the malware samples, we use flows with the best (highest) match.

Table 3 (evaluating characterization of malware by family) and
Table 4 (evaluating basic malware detection of malware vs. benign)
show a comparison of EnMobile (column EnMobile in both tables)
to Base1 (column Base1). The results show that Base1, i.e., EnMobile
without entity identities, produces more false negatives for most
malware families (7.1% on average vs. 2.2% for EnMobile) as well
as in overall malware detection (7.8% vs. 2.8% in Table 4).

One main reason is that different samples in a malware family
typically have different implementations of the same end-to-end
flow, through varied sets of segmented flows. Without the benefit
of the entity-identity analysis, and the flow stitching that it en-
ables, no single signature can characterize all samples of a malware
family, even with the preceding custom retrofitting of the signa-
ture library for Base1. These results demonstrate the benefit of our
entity-identity analysis for accurate malware characterization.

EnMobile without types of data flows (Base2). To realize
Base2, we simply represent the three types of data flows as a single
basic information flow, in both the signatures and in the extracted
flow facts for each app. We then perform signature matching based
on the extracted flow facts and signatures.

As shown in Tables 3 and 4, Base2 produces more false positives
for some malware families and incorrectly marks more benign apps
as malware than EnMobile (4.8% vs. just 1% in Table 4). The reason
is that the signatures lacking our provenance information incur
wrong matching of data flows. For example, the analysis may match
a Transmit flow (e.g., a flow sending an SMS) with a possible Config
flow (e.g., a flow specifying the SMS recipient’s number).

6.4 RQ3: Comparison with Related Approaches
We compare EnMobile with four related state-of-the-art approaches:
one signature-based approach (Apposcopy [21]) and three learning-
based approaches (MUDFLOW[11], AppContext [50], andDrebin [8]).

Comparisonwith a signature-based approach (Apposcopy).
Apposcopy leverages a list of manually-specified signatures (e.g.,
Figure 2) to match malware samples. Because Apposcopy provides
signatures for only several malware families in our dataset, we
use the following methodology to generate the best possible Ap-
poscopy signatures uniformly for all malware families. We generate
Apposcopy signatures for each family by two means: (i) we follow
the same procedure as in creating EnMobile signatures to manually
create an Apposcopy signature based on 10 malware samples and
100 benign samples; (ii) we run Astroid [22], an automatic signa-
ture generator for Apposcopy, 10 times for each family. Each time
Astroid randomly selects five samples from the malware family
and produces a signature. We pick the best signature, in terms of
the least total number of FP and FN, from among the preceding 11
signatures, to report the results. All runs of Apposcopy are on the
same machine as EnMobile with the same timeout threshold per
app, i.e., 20 minutes.

The last two columns (“Appo”) of Tables 3 and 4 report the re-
sults of Apposcopy in detecting malware. As shown in Table 3,
Apposcopy performs much worse than EnMobile for most of the
malware families, especially the malware families whose most mal-
ware samples are from the Drebin malware database. This degrada-
tion in performance is likely due to the evolution of malware. For
example, in the Kmin malware family, the functionality of a receiver
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com.km.HoldMessage in some malware samples is replaced by a ser-
vice com.km.charge.CycleServic in some other malware samples.
This kind of evolution changes the type of the Android component
hosting the malicious behavior. Such changes can easily evade Ap-
poscopy’s detection because Apposcopy’s signatures heavily rely
on the internal component structure (including a component’s type)
to characterize malware. However, EnMobile does not suffer from
the same issue because such structural changes do not affect the
end-to-end communications among entities.

Comparison with learning-based approaches.We also com-
pare EnMobile with three state-of-the-art learning-based detection
approaches: AppContext [50], Drebin [8], and MUDFLOW [11].

Both AppContext and Drebin require a large number of mal-
ware samples as training data to train a machine learning model.
However, many malware families have very few known samples –
only 42% of malware families have more than 5 samples [22]. So,
in addition to evaluating AppContext and Drebin following tradi-
tional ten-fold cross-validations (O. in Table 5), we also evaluate
their effectiveness on a smaller training set (S. in Table 5) by fol-
lowing the evaluation methodology used in Astroid [22]. As per
this methodology, instead of training malware from all families as
a whole, we perform the training and testing family by family. For
each malware family, the training set consists 10 randomly selected
samples from the family, all samples from other malware families,
and a similar number of benign apps as in the original training set.
The testing set consists of the rest of samples from the malware
family and the rest of benign apps. We report the average results
of all families in Table 5.

MUDFLOW detects malware by identifying abnormal informa-
tion flows for each category of sensitive sources. To produce the
input that MUDFLOW accepts, we use FlowDroid [9] to extract
information flows from all of our subjects. To compute the final
result, we feed to MUDFLOW the extracted information flows, with
sources and sinks of these information flows categorized using
SuSi [36], as well as the permission list of each app.

Table 5 shows the effectiveness of the existing approaches and
EnMobile. As shown in the table, EnMobile outperforms all the
existing approaches. Note that although AppContext and Drebin
reach similar effectiveness as EnMobile when training with the
original dataset (i.e., 90% training data and 10% testing data), their
effectiveness degrades a lot when using a smaller number of training
samples. This result is especially impressive for EnMobile, consid-
ering that the difference between the smaller and original training
datasets comes from much reduced malware samples in a single
malware family. This result is indicative of the overfitting nature
of these learning-based approaches. It suggests that EnMobile can
be a great substitute for learning-based approaches, in malware
detection, when security analysts have access to only a small num-
ber of malware samples. EnMobile also outperforms MUDFLOW,
exhibiting much higher recall. The advantage of EnMobile over
MUDFLOW lies in detecting those malware samples that have C&C
behaviors or behaviors of dynamic code loading (e.g., BaseBridge).
Because of the dynamic nature of such behaviors (i.e., the loaded
code is unknown before the execution), traditional information-flow
analysis often fails to detect these behaviors. EnMobile’s entity-
based characterization allows it to accurately identify the control-
ling entity of the downloading behavior and the C&C nature of the

Table 5: Identification of malware by variations of AppCon-
text, MUDFLOW, Drebin, and Apposcopy

AppContext Drebin
MUDFLOW Apposcopy EnMobile

O. S. O. S.

P.(%) 95.42 76.52 98.47 92.80 97.61 74.48 99.64
R.(%) 97.65 95.15 97.48 89.21 53.46 67.60 97.24

P. = Precision, R. = Recall, O.= Result with Original Training Samples
S.= Result with Smaller Number of Training Samples

malware. Thus, EnMobile can outperform the existing approaches
by accurately identifying these malware samples without requiring
detailed knowledge of the dynamically loaded code.

7 DISCUSSION
Limitations. Intentional obfuscations of entity identities may sab-
otage our analysis. For example, creating an alias entity by using
symbolic links (e.g., Ink, Shortcut), or using different copies of the
same encryption scheme to encrypt entity identities. In these cases,
the malware may evade detection of EnMobile. However, since
these camouflage attempts have clear patterns and are likely to be
suspicious, other techniques such as dynamic analysis [37] can be
used to complement EnMobile. Attackers can also hide malicious
behaviors matched by our signatures into dynamic loaded code to
evade EnMobile’s detection. However, security analysts can lever-
age EnMobile to further characterize the behaviors of dynamic code
loading to detect the evolved malware. In our evaluation, signa-
tures characterizing dynamic code loading can successfully match
malware of corresponding families (e.g., basebridge).

Threats to Validity. The tuning of malware signatures could
affect the results of the evaluation. To prevent EnMobile’s signatures
from being overfitting for our subjects, when constructing the
malware signatures, we strictly constrain ourselves in analyzing no
more than 10 malware samples per family. Also, EnMobile is based
on behavioral signatures rather than syntactic structures used in
much of previous work [8, 21, 44], and doing so further mitigates
against overfitting.

8 CONCLUSION
In this paper, we have presented EnMobile, a novel approach for
accurately characterizing mobile apps’ interactions with entities.
We have demonstrated a practical application of EnMobile for de-
tecting malware. Our evaluation results suggest the effectiveness of
EnMobile in characterizing differential characteristics of malware
and benign apps, and robustness of EnMobile’s specification-driven
signatures (i.e., based on intrinsic definitions of malware) over
implementation-driven ones (i.e., based on features of low-level
program structures). We envision a number of applications of En-
Mobile: with increasing uses of IoT apps, EnMobile can be extended
for characterizing broader interactions between the physical world
and apps; for human-assisted app auditing, entity-based charac-
terization can enhance security analysts’ understanding of app
behaviors.
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