
Perturbations, Optimization, and Statistics

Neural Information Processing Series

Michael I. Jordan and Thomas Dietterich, editors

Advances in Large Margin Classifiers, Alexander J. Smola, Peter L. Bartlett,
Bernhard Schölkopf, and Dale Schuurmans, eds., 2000

Advanced Mean Field Methods: Theory and Practice, Manfred Opper and David
Saad, eds., 2001

Probabilistic Models of the Brain: Perception and Neural Function, Rajesh P. N.
Rao, Bruno A. Olshausen, and Michael S. Lewicki, eds., 2002

Exploratory Analysis and Data Modeling in Functional Neuroimaging, Friedrich T.
Sommer and Andrzej Wichert, eds., 2003

Advances in Minimum Description Length: Theory and Applications, Peter D.
Grünwald, In Jae Myung, and Mark A. Pitt, eds., 2005

Nearest-Neighbor Methods in Learning and Vision: Theory and Practice, Gregory
Shakhnarovich, Piotr Indyk, and Trevor Darrell, eds., 2006

New Directions in Statistical Signal Processing: From Systems to Brains, Simon
Haykin, José C. Pŕıncipe, Terrence J. Sejnowski, and John McWhirter, eds., 2007

Predicting Structured Data, Gökhan Bakır, Thomas Hofmann, Bernhard Schölkopf,
Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan, eds., 2007

Toward Brain-Computer Interfacing, Guido Dornhege, José del R. Millán, Thilo
Hinterberger, Dennis J. McFarland, and Klaus-Robert Müller, eds., 2007

Large-Scale Kernel Machines, Léon Bottou, Olivier Chapelle, Denis DeCoste, and
Jason Weston, eds., 2007

Learning Machine Translation, Cyril Goutte, Nicola Cancedda, Marc Dymetman,
and George Foster, eds., 2009

Dataset Shift in Machine Learning, Joaquin Quiñonero-Candela, Masashi
Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, eds., 2009

Optimization for Machine Learning, Suvrit Sra, Sebastian Nowozin, and Stephen
J. Wright, eds., 2012

Practical Applications of Sparse Modeling, Irina Rish, Guillermo A. Cecchi, Aurelie
Lozano, and Alexandru Niculescu-Mizil, eds., 2014

Advanced Structured Prediction, Sebastian Nowozin, Peter V. Gehler, Jeremy Janc-
sary, and Christoph H. Lampert, eds., 2014

Perturbations, Optimization, and Statistics, Tamir Hazan, George Papandreou, and

Daniel Tarlow, eds., 2016

Perturbations, Optimization, and Statistics

Edited by Tamir Hazan, George Papandreou, and Daniel Tarlow

The MIT Press

Cambridge, Massachusetts

London, England

© 2016 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in LATEX by the authors and editors. Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Hazan, Tamir, editor. | Papandreou, George, editor. | Tarlow, Daniel,
 editor.

Title: Perturbations, optimization and statistics / edited by Tamir Hazan, George
 Papandreou, and Daniel Tarlow.

Description: Cambridge, MA : The MIT Press, [2016] | Series: Neural information
 processing series | Includes bibliographical references.

Identifiers: LCCN 2016023007 | ISBN 9780262035644 (hardcover : alk. paper)

Subjects: LCSH: Machine learning. | Perturbation (Mathematics) | Mathematical
 optimization.

Classification: LCC Q325.5 .P47 2016 | DDC 515/.392--dc23 LC record available
at https://lccn.loc.gov/2016023007

10 9 8 7 6 5 4 3 2 1

Contents

Preface ix

1 Introduction 1

Tamir Hazan, George Papandreou, and Daniel Tarlow

1.1 Scope . 1

1.2 Regularization . 4

1.3 Modeling . 9

1.4 Roadmap . 12

1.5 References . 14

2 Perturb-and-MAP Random Fields 17

George Papandreou and Alan L. Yuille

2.1 Energy-Based Models: Deterministic vs. Probabilistic Ap-

proaches . 19

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 23

2.3 Perturb-and-MAP for MRFs with Discrete Labels 28

2.4 On the Representation Power of the Perturb-and-MAP Model 35

2.5 Related Work and Recent Developments 38

2.6 Discussion . 40

2.7 References . 41

3 Factorizing Shortest Paths with Randomized Optimum

Models 45

Daniel Tarlow, Alexander Gaunt, Ryan Adams,

and Richard S. Zemel

3.1 Introduction . 45

3.2 Building Structured Models: Design Considerations 47

3.3 Randomized Optimum Models (RandOMs) 48

3.4 Learning RandOMs . 54

3.5 RandOMs for Image Registration 56

3.6 Shortest Path Factorization 56

3.7 Shortest Path Factorization with RandOMs 58

vi

3.8 Experiments . 63

3.9 Related Work . 68

3.10 Discussion . 70

3.11 References . 70

4 Herding as a Learning System with Edge-of-Chaos

Dynamics 73

Yutian Chen and Max Welling

4.1 Introduction . 74

4.2 Herding Model Parameters . 77

4.3 Generalized Herding . 99

4.4 Experiments . 109

4.5 Summary . 118

4.6 Conclusion . 120

4.8 References . 123

5 Learning Maximum A-Posteriori Perturbation Models 127

Andreea Gane, Tamir Hazan, and Tommi Jaakkola

5.1 Introduction . 128

5.2 Background and Notation . 130

5.3 Expressive Power of Perturbation Models 131

5.4 Higher Order Dependencies 132

5.5 Markov Properties and Perturbation Models 134

5.6 Conditional Distributions . 136

5.7 Learning Perturbation Models 141

5.8 Empirical Results . 149

5.9 Perturbation Models and Stability 152

5.10 Related Work . 155

5.11 References . 156

6 On the Expected Value of Random Maximum A-Posteriori

Perturbations 161

Tamir Hazan and Tommi Jaakkola

6.1 Introduction . 161

6.2 Inference and Random Perturbations 164

6.3 Low-Dimensional Perturbations 169

6.4 Empirical Evaluation . 182

6.5 References . 188

7 A Poisson Process Model for Monte Carlo 193

Chris J. Maddison

vii

7.1 Introduction . 193

7.2 Poisson Processes . 196

7.3 Exponential Races . 203

7.4 Gumbel Processes . 210

7.5 Monte Carlo Methods That Use Bounds 216

7.6 Conclusion . 226

7.9 References . 230

8 Perturbation Techniques in Online Learning and

Optimization 233

Jacob Abernethy, Chansoo Lee, and Ambuj Tewari

8.1 Introduction . 233

8.2 Preliminaries . 235

8.3 Gradient-Based Prediction Algorithm 237

8.4 Generic Bounds . 245

8.5 Experts Setting . 247

8.6 Euclidean Balls Setting . 252

8.7 The Multi-Armed Bandit Setting 254

8.9 References . 262

9 Probabilistic Inference by Hashing and Optimization 265

Stefano Ermon

9.1 Introduction . 265

9.2 Problem Statement and Assumptions 268

9.3 Approximate Model Counting via Randomized Hashing 270

9.4 Probabilistic Models and Approximate Inference: The WISH

Algorithm . 274

9.5 Optimization Subject to Parity Constraints 279

9.6 Applications . 281

9.7 Open Problems and Research Challenges 282

9.8 Conclusion . 284

9.9 References . 285

10 Perturbation Models and PAC-Bayesian Generalization

Bounds 289

Joseph Keshet, Subhransu Maji, Tamir Hazan, and Tommi Jaakkola

10.1 Introduction . 290

10.2 Background . 292

10.3 PAC-Bayesian Generalization Bounds 294

10.4 Algorithms . 296

10.5 The Bayesian Perspective . 298

viii

10.6 Approximate Inference . 301

10.7 Empirical Evaluation . 302

10.8 Discussion . 306

10.9 References . 307

11 Adversarial Perturbations of Deep Neural Networks 311

David Warde-Farley and Ian Goodfellow

11.1 Introduction . 312

11.2 Adversarial Examples . 312

11.3 Adversarial Training . 329

11.4 Generative Adversarial Networks 330

11.5 Discussion . 338

11.6 References . 339

12 Data Augmentation via Lévy Processes 343

Stefan Wager, William Fithian, and Percy Liang

12.1 Introduction . 343

12.2 Lévy Thinning . 349

12.3 Examples . 361

12.4 Simulation Experiments . 365

12.5 Discussion . 368

12.6 Appendix: Proof of Theorem 12.4 369

12.7 References . 371

13 Bilu-Linial Stability 375

Konstantin Makarychev and Yury Makarychev

13.1 Introduction . 375

13.2 Stable Instances of Graph Partitioning Problems 380

13.3 Stable Instances of Clustering Problems 391

13.4 References . 400

Preface

In nearly all machine learning tasks, decisions must be made given current

knowledge (e.g., choose which label to predict). Perhaps surprisingly, always

making what is believed to be the best decision is not always the best strat-

egy, even when learning in a supervised learning setting. Recently, there is

an emerging body of work on learning under different rules that apply per-

turbations to the decision and learning procedures. These methods provide

simple and efficient learning rules with improved theoretical guarantees.

At the three highly successful workshops on Perturbations, Optimization,

and Statistics at Advances in Neural Information Processing Systems (NIPS-

2012, NIPS-2013, NIPS-2014), we looked at how injecting perturbations

(whether it be random or adversarial “noise”) into learning and inference

procedures can be beneficial. The focus was on two angles: first, on how

perturbations can be used to construct new types of probability models for

structured data and, second, how perturbations affect the regularization and

the generalization properties of learning algorithms.

This book is an expanded collection of the ideas presented at the work-

shops.

Tamir Hazan, George Papandreou, and Daniel Tarlow

April 2016

1 Introduction

Tamir Hazan tamir.hazan@technion.ac.il

Technion

Haifa, Israel

George Papandreou gpapan@google.com

Google Inc.

340 Main St., Los Angeles, CA 90291 USA

Daniel Tarlow dtarlow@microsoft.com

Microsoft Research

Cambridge, UK

1.1 Scope

Modeling and regularization lie at the foundation of statistics and machine

learning. They are avenues by which a practitioner can express assumptions

that guide the learning process. Assumptions are critical, as without as-

sumptions, learning is not possible. Without assumptions, a model will not

be able to make nontrivial predictions beyond the set of examples that was

used to train it. Assumptions can come in many forms. From the modeling

perspective, assumptions describe the process by which data is generated

and/or (soft) constraints on joint configurations of parameters and data

that are plausible. Once a model is expressed, there is a large toolbox of

methodologies for combining assumptions with observed data so that new

predictions can be made and uncertainty can be quantified. Regularization

is about expressing assumptions over which models are preferred to others

2 Introduction

so as to learn models that generalize beyond the training sample to novel

settings.

There are strong connections between modeling and regularization. At a

high level, they both narrow the space of possible hypotheses for how pre-

viously seen data relates to data that will be encountered in the future.

At a lower level, they are often thought of interchangeably. For example,

`2 regularization is commonly thought of both as a prior belief that pa-

rameters are distributed as zero-mean Gaussian distributions (probabilistic

modeling assumption) and as a regularizer that controls model capacity so

as to improve generalization (regularization assumption). More generally,

we can think of estimating the maximum a posteriori (MAP) parameters

in a Bayesian model as solving a regularized maximum likelihood problem,

which gives a correspondence between the probabilistic modeling and regu-

larization viewpoints. PAC-Bayesian generalization bounds further connect

regularization and generalization to prior and posterior distributions in the

probabilistic modeling setting.

While the foundations are still crucially important, machine learning is

changing, primarily along two axes. First, the quality of systems being built

is improving dramatically, enabled by easier access to larger data sets and

computational power. Tasks that were considered infeasible only several

years ago (e.g., real-time speech recognition and machine translation, plau-

sible claims of beating human performance on nontrivial image classification

tasks, systems that learn to play video games just by watching raw pixels

on the screen, a professional-caliber Go player) are becoming reality. As

the field progresses, we must revisit assumptions and recognize that certain

assumptions of the past are crude in the modern light. These crude assump-

tions apply to both modeling (e.g., using a linear classifier with hand-crafted

features for image classification) and regularization (e.g., `2 regularization

for all parameters in a model). We must then look to models that either

have higher model capacity or which are more carefully specified. Similarly,

we must look for regularizers that give finer-grained preferences over which

configurations of parameter should be preferred.

The second axis of change is that statistical machine learning systems are

being applied in a broader range of domains than ever before, including bi-

ology, medicine, chemistry, marketing, archaeology, government, education,

and programming languages. Along with these domains come new problems

of different shapes. There is demand for machine learning systems that in-

put or output highly structured objects like chemical molecules, scans of

human bodies, paths that cars take through a city, essays, videos, computer

programs, and DNA. As the field seeks to find success in this broad range of

domains, the challenge is again about assumptions: what assumptions need

1.1 Scope 3

to be made so that our learning systems correctly interpret and produce

highly structured data? Making crude assumptions in highly structured do-

mains can lead to a breakdown in learning. See Chapter 3 for an example.

So why are crude assumptions used? A key issue is that there is a conflict

between making good assumptions and being able to efficiently compute:

richer assumptions typically lead to harder computational problems. Con-

sider modeling paths that salespeople take when visiting homes in a city

under the assumption that each salesperson starts and ends at the same

location and visits each home exactly once. A plausible parameterization

of the problem would be to specify that there is an unknown cost associ-

ated with each road segment that connects the homes. A natural query is

which route is most likely under the current setting of model parameters.

However, this is the well-known Traveling Salesman problem, which is com-

putationally hard to solve in the worst case. There is then a temptation to

reformulate the problem with cruder assumptions.

Computational considerations do not just mean distinguishing between ex-

ponential and polynomial time algorithms. Often times, large datasets mean

that computation must not only be efficient asymptotically, but it must be

implemented in an optimized way. This may mean using specialized soft-

ware like highly tuned combinatorial optimization algorithms or leveraging

specialized hardware like Graphics Processing Units (GPUs), large scale dis-

tributed systems, and whatever powerful hardware is readily available. To

scale learning systems up, we need to make use of the highly optimized

computational primitives that current technology is capable of building.

With this background laid out, we can now state the central point of this

book. This book is about how to build the fundamentals of modeling and

regularization around highly optimized computational primitives. The phi-

losophy is a departure from traditional viewpoints that focus on defining

an aesthetically pleasing modeling and learning paradigm, then looking for

efficient ways to compute the needed quantities, introducing approximations

when intractable quantities arise. In this book, we seek to turn these con-

siderations around: start with highly efficient computational primitives, and

commit to using them as the core of the learning and inference procedure.

Under this constraint, build the fundamentals of probabilistic modeling and

regularization.

The key idea that ties together the work in this book is using perturbations

to build these new foundations. Perturbations pair perfectly with efficient

computational primitives, because they simply involve perturbing the inputs

— either stochastically or adversarially — to the efficient computational

routine. Consequently, no efficiency is lost when applying the computational

routine to perturbed inputs. We can then ask what can be built upon this

4 Introduction

simple idea. Can we develop modeling and regularization paradigms upon a

foundation of perturbations? How does such a paradigm relate to traditional

paradigms? The results are surprisingly positive from both theoretical and

empirical perspectives.

1.2 Regularization

Regularization is a fundamental concept in machine learning. Regulariza-

tion constrains the learning process and prevents the learning algorithm

from overfitting the data. Traditional machine learning approaches to clas-

sification, both in statistical machine learning and online learning, used the

`2−norm as a regularizer. In recent years, novel perturbation methods were

developed to regularize the learning process. In the following we describe

these traditional approaches for classification. Subsequently, we describe

how perturbation methods imply similar regularization properties. Regular-

ization through perturbation is computationally appealing since it locally

perturbs the learning process therefore it is easily integrated into complex

learners such as structured predictors (e.g., Chapter 8 and Chapter 10) and

deep learners (e.g., Chapter 11).

1.2.1 Statistical Machine Learning

Statistical machine learning utilizes non-asymptotic statistics in the form of

generalization bounds. Such bounds measure the ability of a learning rule to

generalize from a finite training dataset. Broadly, an algorithm generalizes

well if its misclassification rate on a finite training dataset approaches to

its expected misclassification error over all data instances in the world. To

formalize this statement, we assume that the world consists of instance-label

pairs, which we denote by (x, y). For example, the data-instance element

x ∈ Rd is an image and its label y ∈ {−1,+1} indicates if the image

contains a person or not. We assume that there is a distribution D that

generates instance-label pairs and that the training sample S consists of m

pairs {(x1, y1), ..., (xm, ym)} that are sampled independently according to the

distribution D. We say that a hyperplane w ∈ Rd classifies a data-instance x

according to sign, namely yw(x) = sign(〈w, x〉). A hyperplane misclassifies

a training pair (xi, yi) if yw(xi) 6= yi. Therefore, the misclassification rate

over the training set is

RS(w) =
1

m

m∑
i=1

1[yw(xi) 6= yi] (1.1)

1.2 Regularization 5

The function 1[yw(xi) 6= yi] gets the value one if yw(xi) 6= yi and zero oth-

erwise. RS(w) is said to be the zero-one empirical risk of the hyperplane w.

The overall zero-one risk of a hyperplane w is its expected misclassification

rate, with respect to the distribution D, namely:

R(w) = E(x,y)∼D1[yw(x) 6= y] (1.2)

One of the earliest generalization bounds for classification considers sep-

arating hyperplanes, cf. (Mohri et al. (2012) Chapter 4 and Shalev-Shwartz

and Ben-David (2014) Chapter 15). The classifying hyperplane is determined

to maximize its distance from all training data points, namely its margin.

For simplicity, assume that the world consists of separable data, i.e., there

exists a hyperplane w that correctly labels all data with a margin α, namely

y〈w, x〉 ≥ α.

Denote by ws the hyperplane that maximizes the margin over the training

dataset S

ws = arg min
w
‖w‖2 s.t. ∀i yi〈w, xi〉 ≥ 1 (1.3)

Assume that ‖x‖ ≤ 1, then with probability of at least 1− δ over the draw

of a training data set of size m holds

R(ws)−RS(ws) ≤
√

4/α

m
+

√
2 log(2/δ)

m
(1.4)

A proof for this statement appears in (Shalev-Shwartz and Ben-David, 2014,

Theorem 26.13).

The above bound holds for separable data thus it also satisfies a simpler

form since RS(ws) = 0. In the non-separable case the program is infeasible

and ws does not exist. To learn non-separable data sets it is customary to

relax the hard separability constraints by penalizing non-separable instances:

min
w

1

2
‖w‖2 +

m∑
i=1

max{0, 1− yi〈w, xi〉}. (1.5)

The function max{0, 1− yi〈w, xi〉} is called the hinge-loss since it a convex

upper bound on the misclassification error. It penalizes points that are mis-

classified with respect to the margin. The regularization ‖w‖2 corresponds

to the margin of the hyperplane, which is a global geometric concept. The

data points that are closest to the hyperplane are called support vectors and

the framework is widely known as the support vector machine (SVM).

Perturbation methods, specifically data perturbation and parameter per-

turbation, present other regularizations which are more local in nature.

Therefore, regularization using perturbation methods is easier to apply.

6 Introduction

Data perturbation amounts to shifting the data points during learning.
This approach stems from robust optimization, a subarea of optimization
that amounts to minimax learning—finding the minimizing parameters that
separate the worst data perturbation under some restriction. Learning with
data perturbation targets a classifier that gives the same result even if there
are slight changes of the data points, e.g., the colors of an image. To enforce
such a behavior there are random perturbations and adversarial
perturbations, both related to SVMs in classification tasks, (Xu et al., 2009;
Livni et al., 2012).

Random data perturbations consider an uncertainty in the data point mea-

surement xi using a probability distribution whose mean is xi. To formalize

the robust optimization program, define the set P(xi) of all probability dis-

tribution pi(x) satisfying Ex∼pi [x] = xi and Ex∼pi‖x − xi‖ = 1. Then the

following robust optimization program corresponds to the support vector

machine program in Equation (1.5), (Livni et al., 2012):

min
w

1

m

m∑
i=1

max
p∼P(xi)

Ex∼p[max{0, 1− yi〈w, x〉}] (1.6)

The above robust optimization program only consists of the hinge-loss that

penalizes wrongly misclassified points. Although it does not explicitly use

the `2−norm as regularization, this robust optimization program implicitly

regularizes the learning by locally perturbing the training data. Therefore,

in classification one can refrain from globally maximizing the margin from

all data points and instead to locally perturb the data points (Livni et al.,

2012).

Regularization can also be enforced using adversarial perturbation, which

also leads to new generalization bounds (Xu et al., 2009). Both random

and adversarial perturbations can generate margin-like behavior for linear

classifiers, by implicitly enforcing the `2 regularization. The power of reg-

ularization through perturbation is in its locality. Therefore, they can be

easily integrated into non-linear learners, such deep learners. Chapter 11

demonstrates regularization by data perturbation in deep learning.

Parameter perturbation amounts to shifting the parameters of the clas-

sifier. By doing so, parameter perturbation averages over infinitely many

classifiers and obtain a robust prediction. This approach relates to Bayesian

learning as it accounts for the uncertainty of the learning process by av-

eraging predictions. By taking into account infinitely many predictions one

stabilizes the learning process and augments the learning process with PAC-

guarantees. A PAC-Bayesian generalization bound (McAllester, 2003; Ger-

main et al., 2009; Seldin et al., 2012) asserts that with probability of at least

1− δ over the draw of a training data set of size m holds simultaneously for

1.2 Regularization 7

all distributions q

Ew∼qR(w)− Ew∼qRS(w) ≤ KL(q||p) + log(1/δ) + 1√
8m

(1.7)

KL(q||p) =
∫
q(w) log(q(w)/p(w)) is the KL-divergence between distribu-

tions q, p. The distribution q(w) is called a posterior distribution since it

may be determined after seeing the training examples. For example, the ex-

pected value of q(w) can be set to the empirical risk minimizer, e.g., ws in

Equation 1.3, and thus to encode the learning information. The distribution

p(w) is called the prior distribution since it is set before seeing the training

data. If both the posterior and the prior distributions represent Gaussian

random variables, the KL-divergence is the `2 regularization. Chapter 10 de-

scribes PAC-Bayesian generalization bounds and their applications to visual

and language recognition tasks.

1.2.2 Online Learning

Online learning, or sequential prediction, is a game played between a learner

and an omniscient adversary, also known as the environment. The game is

played for T rounds. In each round t the learner predicts an element xt from

a predetermined set X.

Simultaneously, the environment decides on a loss function ft : X → [0, 1]

and the learner suffers a loss of ft(xt). The performance of the learner is

typically measured by her regret, defined as

Regret =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) (1.8)

which the learner would like to minimize. The learner’s regret is the dif-

ference between her cumulative loss over all T rounds and the cumulative

loss of the best fixed x ∈ X in hindsight. We say that a strategy of the

learner learns a problem if it achieves a regret that is sublinear in T , namely

Regret ≤ o(T).

The literature typically discusses two important special cases of online

learning. The first of which is prediction with expert advice. Here, the learner

has access to K experts. At every round, the learner chooses one expert and

follows its advice; then the loss of the learner on this round is the loss

that is associated with the expert that she chose. This can be formulated

as following: the set X = {1, 2, . . . ,K} is the set of K experts and each

function ft assigns an arbitrary loss between 0 and 1 to each expert.

The second special case that we consider is the one of online convex opti-

mization. Here the set X ⊆ Rd is convex and the loss functions f1, . . . , fT are

8 Introduction

also convex. An important observation is that in general, any online learn-

ing problem can be formulated as an online convex optimization problem

via randomization. For example take the setting of prediction with expert

advice; by letting X be the (K−1)-dimensional probability simplex, we can

associate every expert with a vertex of the simplex and think of the loss

functions f1, . . . , fT as linear functions over X. On every round the learner

selects xt ∈ X — a probability distribution over experts, and then randomly

selects an expert by sampling from xt. Since the learner is now randomized,

we will measure her performance by her expected regret.

A first attempt at a learning algorithm is the Follow the Leader (FTL)

algorithm. Denote the cumulative loss at time t by Ft(x) =
∑t−1

τ=1 fτ (x), then

FTL involves picking xt to be a minimizer of Ft(x). FTL cannot achieve

sublinear regret.1 The problem with FTL is that greedy decisions may

change too rapidly. If the environment changes the best x ∈ X frequently

throughout the game, then the learner must suffer high regret. If, on the

other extreme, the learner always picks a single fixed x ∈ X, the environment

can choose some other x as the best throughout the entire game, and once

again the learner suffers high regret. Therefore, intuitively, the optimal

strategy for the learner is one that interpolates between FTL and a strategy

that picks a single fixed x.

There are several ways of stabilizing FTL to achieve such a strategy. The

first of which is for the case of online convex optimization and is called

Follow the Regularized Leader (FTRL). Here we assume that X is endowed

with a convex regularizer R : X → R and at every round t the learner

predicts xt = argminx∈X ηFt(x)+R(x), where η > 0 is a step-size parameter.

Intuitively, if η is large then we expect xt to be close to the minimizer

of Ft and if η is small then we expect xt to be close to the minimizer

of R. Another possible algorithm is Follow the Perturbed Leader (FTPL).

FTPL is the scheme of predicting an x ∈ X that minimizes the perturbed

cumulative loss, namely xt ∈ argminx∈X ηFt(x) + 〈Γ, x〉 where Γ is some

random variable. Similarly to FTRL, η controls the size of the steps that xt
makes in expectation; if η is large then we expect E[xt] to be close to the

minimizer of Ft and if η is small then we expect E[xt] to be close to the

1. Consider X = [0, 1], f1(x) = x/2 and on other rounds ft(x) = |x− zt|, where zt = 0 on
odd rounds and zt = 1 on even rounds. After an even number of rounds T , the best fixed
x ∈ X is x = 1 with a cumulative loss of (T −1)/2. On the other hand, with the exception
of the first round, the learner plays x = 1 on odd rounds and x = 0 on even rounds and
thus suffers a loss of 1 at every round. Then the regret of the learner is at least (T − 1)/2
which is not sublinear in T .

1.3 Modeling 9

fixed point of E[argminx∈X〈Γ, x〉]. Chapter 8 presents the state-of-the-art in

FTRL and FTPL.

1.3 Modeling

Structured prediction refers to a class of machine learning methods that

describe systems of multiple inter-related variables. Structured prediction

models are very popular in computer vision, speech recognition, natural

language processing, computational biology, and other fields characterized

by highly-dimensional state spaces with rich domain-specific structure.

Given an input vector of noisy measurements x, our goal is to estimate

the latent state output vector y = (y1, . . . , yN). The elements of the state

vector yi ∈ L can take either continuous or discrete values from the

label sets L. In image processing applications such as image inpainting

or deblurring the state vector y corresponds to a real-valued clean image

that we wish to recover from its partial or degraded version x. In computer

vision applications such as image segmentation or labeling the state vector

y corresponds to an assignment of image areas to different image segments

or semantic object classes. In natural language processing, the state vector

y may correspond to a syntactic parsing of a sentence x.

Structured prediction is typically formulated as an optimization problem,

either in terms of either energy minimization or utility maximization. The

two viewpoints are equivalent and are roughly equally common in the

literature. In this introductory Chapter we follow the former viewpoint but

some of the other Chapters follow the latter viewpoint.

In the energy minimization framework, given a specific measurement x,

we quantify the quality of a particular interpretation y by means of a

deterministic energy function E(y|x). We will often be working with energy

functions of the form

E(y|x;θ) = 〈θ, φ(y,x)〉 =

M∑
j=1

θjφj(y,x) , (1.9)

where θ ∈ Rm is a vector of parameters and φ(y,x) is a vector of features

or potential functions extracted from the data. Sometimes, for notational

convenience, we will be suppressing the dependence of the energy function

or features on the measurements x.

The energy function assigns lower energies to more preferable configura-

tions, encouraging solutions y which are both compatible with local mea-

surements x and satisfy domain-specific global constraints on y, such as so-

10 Introduction

lution smoothness or syntactic validity. Fully specifying the energy function

requires selecting both the features φ and parameters θ. Feature selection is

usually informed by domain-specific considerations. Setting the parameters

is typically done with the help of typical labeled training data, in the form of

paired latent variable and measurement examples (yk,xk)
K
k=1. Such labeled

training data allow us to tune the parameters θ so as the resulting model can

faithfully represent real-world examples. Parameter learning plays a central

role in both theory and practice of structured machine learning.Energy Minimization vs. Gibbs MRF

Deterministic MAP

ŷ = argmin E(y)

Probabilistic Gibbs

ỹ ∼ fG(y) ∝ e−E(y)

states y

e
n

e
rg

y
states y

e
n

e
rg

y

9 / 1

Figure 1.1: Deterministic energy minimization vs. probabilistic Gibbs modeling.
Perturb-and-MAP attempts to bridge the gap between these two approaches.

As illustrated in Figure 1.1, there are two quite distinct ways to work

with energy-based models. The first is entirely deterministic and amounts

to finding a single most probable (MAP) configuration of minimum energy,

ŷ = argminy E(y). The second class of methods is probabilistic, assigning

to each state a Gibbs probability fG(y) ∝ e−E(y). Their key advantage over

MAP inference is that they also allow uncertainty quantification, which is

particularly important when we interpret ambiguous data. The probabilistic

framework also enables learning model parameters from training examples

using maximum likelihood.

The fact that the energy function (1.9) couples together multiple variables

induces a combinatorial nature to structure prediction problems. Both en-

ergy minimization and probabilistic inference in their general form require

solving computationally intractable problems. However, several important

families of energy functions involving both continuous and discrete-valued

variables can be efficiently tackled with fast energy minimization algorithms,

1.3 Modeling 11

which can find exact or approximate solutions even for large scale problems

involving millions of variables. On the other hand, probabilistic inference

is considerably more difficult than optimization, since it requires captur-

ing multiple solutions plausible under the posterior distribution instead of

just a single MAP configuration. For example, submodular potentials, an

important class of energy functions which favor solution smoothness, are

amenable to fast optimization yet probabilistic inference under the induced

Gibbs model is provably hard (Goldberg and Jerrum, 2007).

The observation that energy minimization is often computationally advan-

tageous compared to sampling from the Gibbs distribution provides the key

motivation for building probabilistic models on top of optimization prob-

lems, which constitutes one of the key themes of this volume. We introduce

randomness to the optimization problem by randomly perturbing the pa-

rameter vector, followed by finding the minimizing assignment of the per-

turbed energy function. This Perturb-and-MAP technique (see Papandreou

and Yuille (2011) and Chapter 2) establishes a link between the optimization

and probabilistic inference approaches to energy-based modeling and allows

us to repurpose the powerful computational arsenal of energy minimization

algorithms for the task of probabilistic inference in structured prediction

problems.

Two natural questions arise: Can the Perturb-and-MAP approach lead to

probabilistic models that resemble their Gibbs counterparts? How to best

design the perturbation process so as to minimize the mismatch between the

two models?

It turns out that extreme value statistics (Gumbel and Lieblein, 1954),

the field of statistics studying the properties of extrema of optimization

problems, offers the right tools for tackling these questions. The Gum-

bel extreme value distribution is a continuous univariate distribution with

log-concave density g(z) = exp(−(−z + ez)). We can efficiently draw in-

dependent Gumbel variates by transforming standard uniform samples by

u→ log(− log(u)).2 The Gumbel density naturally fits into the Perturb-and-

MAP model, thanks to the following key property:

Lemma 1.1 (Gumbel Lemma). Let (θ1, . . . , θm), with θn ∈ R, n = 1, . . . ,m.

We additively perturb them by θ̃n = θn+ εn, with εn i.i.d. zero-mode Gumbel

samples. Then:

2. This is the min-stable version of the Gumbel distribution, appropriate for the energy
minimization setup. In the dual utility maximization setup one needs to use the max-
stable version of the Gumbel distribution. The latter has density g̃(z) = exp(−(z + e−z))
and can be sampled from by u→ − log(− log(u)).

12 Introduction

(Min-Stability) The minimum of the perturbed parameters θ̃min ,
minn=1:m{θ̃n} follows a Gumbel distribution with mode θ0, where e−θ0 =∑m

n=1 e
−θn. Note that θ0 = − logZ, where Z is the partition function.

(Arg-Min) The probability that θ̃n is the minimum value is

Pr{argmin(θ̃1, . . . , θ̃m) = n} = e−θn/e−θ0.

The Gumbel Lemma above plays such a central role in this book that we

find it noteworthy to discuss some of its history. The Min-Stability property

is a result of the study of asymptotic behavior of extreme value statistics,

which was pioneered by Fisher and Tippett (1928) and Gnedenko (1943). A

standard reference on extreme value theory is Gumbel and Lieblein (1954).

To our knowledge, the Arg-Min property was discovered by mathematical

psychologists (Luce, 1959; Yellott, 1977) and economists (McFadden, 1973)

in the context of discrete choice theory. We refer the interested reader to

Luce (1994) for a full historical discussion.

The Gumbel distribution gives an elegant exact solution to perturbation

design for unstructured prediction models over discrete domains. A natu-

ral question to ask is if similar results are achievable in structured domains

where enumeration of configurations is intractable, and in continuous do-

mains. In the case of structured domains, lower dimensional perturbations

that give rise to efficient algorithms can be employed (Chapter 2). The re-

sulting Perturb-and-MAP models are no longer equivalent to their Gibbs

counterparts. However, both experimental evidence and theoretical results

presented in this volume suggest that this design choice has strong merits.

In the case of real-valued domains, it may not be immediately clear what

the analog of Gumbel perturbations should be. However, the Gumbel Process

(see Maddison et al. (2014) and Chapter 7) is a generalization of Gumbel

perturbations in the discrete domains that has the analogous properties in

real-valued domains. In real-valued domains (and in structured domains),

the maximum perturbed value can no longer be found by enumeration.

However, A* Sampling (Maddison et al., 2014) is an algorithm that uses

bounds and A* search to solve this problem, which allows the exact optimum

to be found in many instances. Kim et al. (2016) develops related ideas for

the case of integer linear programs.

1.4 Roadmap

There are many research questions that arise upon adopting the pertur-

bations viewpoint, and this book gives an overview of the state of the art.

1.4 Roadmap 13

Roughly, the work can be split into (a) the development of new perturbation

models and learning algorithms, and (b) developing an understanding of per-

turbation models, and (c) developing and understanding new perturbation-

based regularization techniques.

There are many recent modeling ideas that have arisen within the per-

turbations framework, many of which are developed in this book. Perturb

& MAP (Chapter 2) and Randomized Optimum models (Chapter 3) define

probabilistic models that include an efficient deterministic optimizer within

the model definition. Herding (Chapter 4) develops a framework around

chaotic deterministic sequences. In Chapter 10, randomized classifiers imply

a modeling framework that is similar to P&M and RandOMs, but which is

framed directly in terms of PAC-Bayesian generalization bounds. In Chap-

ter 11, Generative Adversarial Networks use neural networks to map generic

noise to a distribution over highly structured data like images.

Perturbation models often have the property that samples are efficient to

generate, but evaluating likelihoods is difficult. This has led to a range of

interesting learning procedures for these models. Chapter 3 describes how

EM algorithms can take advantage of structure in combinatorial optimiza-

tion algorithms to speed up learning. Chapter 5 develops an improved hard

EM algorithm. Chapter 10 suggests biasing the perturbations in an impor-

tance sampling framework during learning in order to reduce the variance

in a stochastic gradient-based learning algorithm. In Chapter 2, a learning

algorithm is given that aims to directly match moments of model samples to

moments of data. Chapter 11 suggests using a discriminator neural network

to distinguish between samples from the model and data instances in such a

way that the whole system is differentiable. Follow-up work (Li et al., 2015;

Dziugaite et al., 2015) draws inspiration from statistical tests of whether

two sets of samples are drawn from the same distribution in order to de-

velop a training objective for perturbation models that again is based on

matching moments. A related problem that arises in perturbation models is

that conditioning on values of a subset of variables becomes trickier. This

is one of the most important open problems in the area. Chapter 5 studies

this problem and gives a condition under which simply fixing the observed

value is correct, but much more study is needed here.

There has also been significant progress in understanding perturbation

models and how they relate to traditional counterparts. In certain settings

there are precise relationships between the perturbations viewpoint and tra-

ditional viewpoints, which are discussed in Chapter 5, Chapter 6, and Chap-

ter 8. The perturbation viewpoint can lead to computational guarantees on

problems which are provably hard in general (Chapter 13). The perturba-

tions viewpoint can even lead to new algorithms for solving problems in the

14 Introduction

traditional setting, such as is the case with A* Sampling, which is discussed

in Chapter 7.

Empirically, dropout (Srivastava et al., 2014) is perhaps the best known

perturbation-based regularization technique, and it is credited for many

gains in the performance of recent large-scale deep learning systems. Ana-

lytic understandings of perturbation-based regularization in neural networks

were developed in Bishop (1995) and developed in the context of dropout

by Wager et al. (2013). This gives an understanding of how dropout differs

from `2 regularization, for example. Chapter 12 develops an extension of

Wager et al. (2013), giving deeper understandings of dropout and a general

framework for understanding dropout-like perturbations. Chapter 11 further

studies perturbations in the context of deep neural networks, considering the

effect of adversarial perturbations and using stochastic perturbations as the

basis for a generative neural network model.

Put together, this book aims to introduce the reader to a new way

of thinking about the fundamentals of statistical learning. While many

connections are made and many ideas have been developed, we still believe

there to be much more to discover in this space, and the hope is that this

book is a launch pad that helps the interested researcher jump into this

exciting area.

1.5 References

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108–116, 1995.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. In Proc. Int. Conf. on
Uncertainty in Artificial Intelligence, 2015.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Mathematical Proceedings of
the Cambridge Philosophical Society, 24(02):180–190, April 1928. doi: 10.1017/
S0305004100015681.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In ICML, pages 353–360. ACM, 2009.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics, 44(3):423–453, July 1943. doi: 10.2307/1968974.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

E. Gumbel and J. Lieblein. Statistical theory of extreme values and some practical
applications: a series of lectures, volume 33. US Govt. Print. Office, 1954.

C. Kim, A. Sabharwal, and S. Ermon. Exact sampling with integer linear pro-
grams and random perturbations. In Proc. 30th AAAI Conference on Artificial
Intelligence, 2016.

1.5 References 15

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In Proc.
Int. Conf. on Machine Learning, 2015.

R. Livni, K. Crammer, A. Globerson, E.-I. Edmond, and L. Safra. A simple
geometric interpretation of svm using stochastic adversaries. In AISTATS, pages
722–730, 2012.

R. Luce. Individual choice behavior. 1959.

R. D. Luce. Thurstone and sensory scaling: Then and now. 1994.

C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 3086–3094. Curran As-
sociates, Inc., 2014. URL http://papers.nips.cc/paper/5449-a-sampling.
pdf.

D. McAllester. Simplified PAC-Bayesian margin bounds. Learning Theory and
Kernel Machines, pages 203–215, 2003.

D. McFadden. Conditional logit analysis of qualitative choice behavior. 1973.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2012.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCV, Barcelona,
Spain, Nov. 2011. doi: 10.1109/ICCV.2011.

Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer. Pac-
bayesian inequalities for martingales. Information Theory, IEEE Transactions
on, 58(12):7086–7093, 2012.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

S. Wager, S. Wang, and P. S. Liang. Dropout training as adaptive regularization.
In Advances in neural information processing systems, pages 351–359, 2013.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support
vector machines. The Journal of Machine Learning Research, 10:1485–1510, 2009.

J. I. Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory
of comparative judgment, and the double exponential distribution. Journal of
Mathematical Psychology, 15(2), 1977.

2 Perturb-and-MAP Random Fields

George Papandreou gpapan@google.com

Google Inc.

340 Main St., Los Angeles, CA 90291 USA

Alan L. Yuille alan.yuille@jhu.edu

Johns Hopkins University

Baltimore, MD, 21218 USA

Probabilistic Bayesian methods such as Markov random fields are well suited

for modeling structured data, providing a natural conceptual framework for

capturing the uncertainty in interpreting them and automatically learning

model parameters from training examples. However, Bayesian methods are

often computationally too expensive for large-scale applications compared to

deterministic energy minimization techniques.

This chapter presents an overview of the “Perturb-and-MAP” generative

probabilistic random field model, which produces in a single shot a random

sample from the whole field by first injecting noise into the energy function,

then solving an optimization problem to find the least energy configuration of

the perturbed system. Perturb-and-MAP random fields thus turn fast deter-

ministic energy minimization methods into computationally efficient proba-

bilistic inference machines and make Bayesian inference practically tractable

for large-scale problems, as illustrated in challenging computer vision appli-

cations such as image inpainting and deblurring, image segmentation, and

scene labeling.

We also present a new theoretical result. Specifically, we study the

representation power of the Perturb-and-MAP model, showing that it is

expressive enough to reproduce the sufficient statistics of arbitrary observed

data.

Keywords: MRF, energy minimization, Perturb-and-MAP, extreme value

statistics, graph cuts, random sampling.

18 Perturb-and-MAP Random Fields

Structured prediction models are typically built around an energy func-

tion, which assigns to each possible configuration vector y = (y1, . . . , yN) a

real-valued energy E(y), with more preferable configurations getting lower

energies. As explained in Chapter 1, one can approach energy-based prob-

lems in a purely deterministic fashion, which amounts to finding a single

most probable (MAP) configuration of minimum energy, ŷ = argminy E(y).

Alternatively, one can build probabilistic models around the energy function,

assigning to each state a Gibbs probability fG(y) ∝ e−E(y).

This chapter presents an overview of the Perturb-and-MAP method (Pa-

pandreou and Yuille, 2011a), which attempts to reduce probabilistic infer-

ence to an energy minimization problem, thus establishing a link between the

optimization and probabilistic inference approaches to energy-based model-

ing, set up in Chapter 1. As illustrated in Figure 2.1, Perturb-and-MAP is

a two-step generative process: (1) In a Perturb step, we inject additive ran-

dom noise N(y) into the system’s energy function, followed by (2) a MAP

step in which we find the minimum energy configuration of the perturbed

system. By properly designing the noise injection process we can generate

exact Gibbs samples from Gaussian MRFs and good approximate samples

from discrete-label MRFs.

function Perturb-and-MAP
Ẽ(y) = E(y) +N(y) . Perturb
ỹ = argminy Ẽ(y) . MAP
return ỹ . Random sample

end function

Perturb-and-MAP Random Field

Perturb-and-MAP: Probability model via energy minimization.

Generative model:

1. Perturb-... : Ẽ(y) = E(y) + N(y), with

N(y) a sample from a noise distribution.

2. -and-MAP : ỹ = argminy Ẽ(y) states y

e
n

e
rg

y

10 / 1

Perturb-and-MAP Random Field

Perturb-and-MAP: Probability model via energy minimization.

Generative model:

1. Perturb-... : Ẽ(y) = E(y) + N(y), with

N(y) a sample from a noise distribution.

2. -and-MAP : ỹ = argminy Ẽ(y) states y

e
n

e
rg

y

10 / 1

(a) (b) (c)

Figure 2.1: (a) The generic Perturb-and-MAP random sampling algorithm. (b)
Original energies E(y). (c) Perturbed energies Ẽ(y). The MAP state ŷ and the
Perturb-and-MAP sample ỹ are shown shaded in (b) and (c), respectively.

While deterministic MAP inference summarizes the solution space into

a single most probable estimate, Perturb-and-MAP gives other low energy

states the chance to arise as random samples for some instantiations of the

perturbation noise and is thus able to represent the whole probability land-

scape. Perturb-and-MAP follows a fundamentally different approach com-

pared to other approximate probabilistic inference methods such as Markov

Chain Monte-Carlo (MCMC) and Variational Bayes (VB), which are con-

trasted with Perturb-and-MAP in Figure 2.2. MCMC is broadly applica-

ble and can provide very accurate results but is typically computationally

very expensive for large scale problems. When the distribution has multiple

modes, MCMC mixes slowly and becomes particularly ineffective because it

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches 19

moves in small steps through the state space. Crucially, Perturb-and-MAP

generates samples in a single shot, completely bypassing the Markov Chain

slow mixing problem, and thus has no difficulty in dealing with multimodal

distributions. Variational Bayesian methods such as mean field or variational

bounding approximate a complicated probability landscape with a simpler

parametric distribution. VB is typically faster yet less accurate than MCMC,

and also faces difficulties in the presence of multiple modes.

(a) (b) (c) (d)

Figure 2.2: Capturing a complicated probability landscape (in dashed lines) with
standard approximate inference methods vs. Perturb-and-MAP. (a) Deterministic
MAP. (b) Markov Chain Monte-Carlo. (c) Variational Bayes. (d) Perturb-and-MAP.

Perturb-and-MAP was initially developed for drawing exact random sam-

ples from Gaussian MRFs (Papandreou and Yuille, 2010). This efficient

Gaussian sampling algorithm can also be used as sub-routine and consider-

ably accellerate both MCMC and VB in applications involving continuous

sparse potentials. We discuss these in Section 2.2. This line of research led to

the development of Perturb-and-MAP for discrete MRFs (Papandreou and

Yuille, 2011a), which we discuss in Section 2.3. We summarize some related

work in Section 2.5.

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches

2.1.1 Energies and Gibbs MRFs for Modeling Inverse Problems

Structured prediction for solving inverse problems is typically formulated in

terms of energy functions. Given an input vector of noisy measurements x,

our goal is to estimate the latent state output vector y = (y1, . . . , yN).

The elements of the state vector yi ∈ L can take either continuous or

discrete values from the label set L. As shown in Figure 2.3, in image

processing applications such as image inpainting or deblurring the state

vector y corresponds to a real-valued clean image that we wish to recover

20 Perturb-and-MAP Random Fields

from its partial or degraded version x. In computer vision applications such

as image segmentation or labeling the state vector y corresponds to an

assignment of image areas to different image segments or semantic object

classes. Probabilistic Bayesian techniques offer a natural framework for

combining the measurements with prior information in tackling such inverse

problems.

(a) (b) (c) (d)

Figure 2.3: In inverse modeling we use observations x (top row) to infer a latent
interpretation y (bottom row). Image processing examples: (a) Inpainting. (b)
Deblurring. Computer vision examples: (c) Figure-ground segmentation. (d) Scene
labeling.

Given a specific measurement x, we quantify a particular interpretation

y by means of a deterministic energy function E(y), where for notational

convenience we are suppressing its dependence on the measurements x. We

will be working with energy functions of the general form

E(y;θ) = 〈θ, φ(y)〉 =

M∑
j=1

θjφj(y) , (2.1)

where θ ∈ RM is a real-valued parameter vector of length M , and φ(y) =

(φ1(y), . . . , φM (y))T is a vector of potentials or “sufficient statistics”. We

can interpret θj as the weight assigned to the feature φj(y): we have many

different design goals or sources of information (e.g., smoothness prior,

measurements), each giving rise to some features, whose weighted linear

combination constitutes the overall energy function. Each potential often

depends on a small subset of the latent variables, which is made explicit in

a factor graph representation of the energy function shown in Figure 2.4.

The Gibbs distribution is the standard way to induce a probabilistic model

from the energy function. It defines a Markov random field whose probability

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches 21

φ1 φ2 φ3 φM

y1 y2 yN

y1 y2

yN

yi yj

Vi

Vij

(a) (b)

Figure 2.4: (a) The factor graph representation of the energy makes explicit which
variables affect each potential. (b) A standard nearest neighbor 2-D grid MRF with
unary and pairwise potentials, φ = ({Vi}, {Vij}).

density/mass function has the exponential family form

fG(y;θ) = Z−1(θ) exp (−E(y;θ)) , (2.2)

where Z(θ) =
∑
y exp (−E(y;θ)) is the partition function and summation

over y should be interpreted as integration in the case of a continuous label

space L.

MAP inference in the Gibbs model, i.e., computing the most probable

configuration, ŷ = argmaxy fG(y), is equivalent to solving the energy

minimization problem ŷ = argminy E(y). Thanks to powerful modern

energy minimization algorithms, exact or high-quality approximate MAP

inference can be performed efficiently for several important energy models.

However, other key queries on the Gibbs model such as computing the

marginals fG(yi) =
∑
y\yi fG(y) or random sampling are computationally

hard.

2.1.2 Probabilistic Parameter Learning from Training Examples

While we typically select the feature set φ by hand, we can exercise much

control on the behavior of the energy-based model by setting the parameters

θ to appropriate values. The high-level goal is to select the weight vector θ

in a way that the model assigns low energies to desirable configurations and

high energies to “everything else”.

When the number of parameters M is small, we can set them to reason-

able values by hand. However, a more principled way is to automatically

learn the parameters from a training set of K structured labeled exam-

ples {yk}Kk=1. Discriminative learning criteria such as structured max-margin

(Taskar et al., 2003; LeCun et al., 2007; Szummer et al., 2008; Koller and

Friedman, 2009) are very powerful and described in detail in other chap-

22 Perturb-and-MAP Random Fields

ters of this volume. Computationally, they are iterative and they typically

require modified MAP inference at each parameter update step, which is

computationally efficient for many energy models often used in practice.

In the probabilistic setting that is the focus of this chapter, max-

imum (penalized) likelihood (ML) is the natural criterion for learning

the weights. Given the labeled training set {yk}Kk=1, we fit the pa-

rameters θ by maximizing the Gibbs log-likelihood function LG(θ) =

− logZ(θ)− (1/K)
∑K

k=1E(yk;θ), possibly also including an extra penalty

term regularizing the weights. For fully observed models and energies of

the form (2.1) the log-likelihood is a concave function of the weights θ

and thus the global maximum can be found by gradient ascent (Hin-

ton and Sejnowski, 1983; Zhu et al., 1998; Koller and Friedman, 2009).

The gradient is ∂LG/∂θj = EGθ {φj(y)} − ED{φj(y)}. Here EGθ {φj(y)} ,∑
y fG(y;θ)φj(y) = −∂(logZ)/∂θj and ED{φj(y)} , (1/K)

∑K
k=1 φj(yk)

are, respectively, the expected sufficient statistics under the Gibbs model and

the data distribution. Upon convergence, EGθ {φj(y)} = ED{φj(y)}. Thus,

ML estimation of the Gibbs model can be thought of as moment match-

ing: random samples drawn from the trained model reproduce the sufficient

statistics observed in the training data.

The chief computational challenge in ML parameter learning of the Gibbs

model lies in estimating the model sufficient statistics EGθ {φj(y)}. Note that

this inference step needs to be repeated at each parameter update step. The

model sufficient statistics can be computed exactly in tree-structured (and

low tree-width) graphs, but in general graphs one needs to resort to MCMC

techniques for approximating them (Hinton and Sejnowski, 1983; Zhu et al.,

1998; Hinton, 2002), an avenue considered too costly for many computer

vision applications. Deterministic approximations such as variational tech-

niques or loopy sum-product belief propagation do exist, but often are not

accurate enough. Simplified criteria such as pseudo-likelihood (Besag, 1975)

have been applied as substitutes to ML, but they can sometimes give results

grossly different to ML.

Beyond model training, random sampling is very useful in itself, to reveal

what are typical instances of the model – what the model has in its “mind” –

and in applications such as texture synthesis (Zhu et al., 1998). Further, we

might be interested not only in the global minimum energy configuration,

but in the marginal densities or posterior means as well (Schmidt et al.,

2010). In loopy graphs these quantities are typically intractable to compute,

the only viable way being through sampling. Our Perturb-and-MAP random

field model is designed specifically so as to be amenable to rapid sampling.

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 23

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs

Gaussian Markov random fields (GMRFs) are an important MRF class

describing continuous variables linked by quadratic potentials (Besag, 1974;

Szeliski, 1990; Weiss and Freeman, 2001; Rue and Held, 2005). They are very

useful both for modeling inherently Gaussian data and as building blocks

for constructing more complex models.

2.2.1 Exact Gaussian MRF Sampling by Local Perturbations

We will be working with a GMRF defined by the energy function

E(y;θ) =
1

2
(Fy−µ0)TΣ−1

0 (Fy−µ0) =
1

2
yTJy−kTy+ (const) (2.3)

where J = F TΣ−1
0 F , k = F TΣ−1

0 µ0. The energy can be cast in the

generic inner product form of Equation (2.1) by defining the parameters

θ = (k, vec(J)) and features φ(y) = (−y, 1
2 vec(yyT). We assume a diago-

nal matrix Σ0 = Diag(Σ1, . . . ,ΣM), implying that the energy can be decom-

posed as a sum of M independent terms E(y;θ) =
∑M

j=1
1

2Σj
(fTj y − µj)2,

where fTj is the j-th row of the measurement matrix F and µj is the j-th

entry of the vector µ0.

The corresponding Gibbs distribution fG(y) is a multivariate Gaussian

N(µ,Σ) with covariance matrix Σ = J−1 and mean vector µ = J−1k.

The MAP estimate ŷ = argminy
1
2y

TJy − kTy under this Gaussian model

coincides with the mean and amounts to solving the N×N linear system

Jµ = k. Solving this linear system with direct exact methods requires a

Cholesky factorization of J , whose complexity is O(N2) for banded system

matrices with tree-width O(
√
N) arising in typical image analysis problems

on 2-D grids. We can perform approximate MAP inference much faster using

iterative techniques such as preconditioned conjugate gradients (Golub and

Van Loan, 1996) or multigrid (Terzopoulos, 1988), whose complexity for

many computer vision models is O(N3/2) or even O(N).

Standard algorithms for sampling from the Gaussian MRF also require a

Cholesky factorization of J and thus have the same large time and memory

complexity of direct system solvers. The following result though shows that

we can draw exact GMRF samples by Perturb-and-MAP:

Proposition 2.1. Assume that we replace the quadratic potential mean µ0

by its perturbed version µ̃0 ∼ N(µ0,Σ0), followed by finding the MAP of

the perturbed model ỹ = F TΣ−1
0 µ̃0. Then ỹ is an exact sample from the

original GMRF N(µ,Σ).

24 Perturb-and-MAP Random Fields

Proof. Since µ̃0 is Gaussian, ỹ = J−1F TΣ−1
0 µ̃0 also follows a multivariate

Gaussian distribution. It has mean E{ỹ} = µ and covariance matrix E{(ỹ−
µ)(ỹ − µ)T } = J−1F TΣ−1

0 FJ−1 = Σ.

It is noteworthy that the algorithm only involves locally perturbing each

potential separately, µ̃j ∼ N(µj ,Σj), and turns any existing GMRF MAP

algorithm into an effective random sampler.

As an example, we show in Figure 2.5 an image inpainting application

in which we fill in the flat areas of an image given the values at its edges

under a 2-D thin-membrane prior GMRF model (Terzopoulos, 1988; Szeliski,

1990; Malioutov et al., 2008), which involves pairwise quadratic potentials

Vij = 1
2Σ(yi− yj)2 between nearest neighbors connected as in Figure 2.4(b).

We show both the posterior mean/MAP estimate and a random sample

under the model, both computed in a fraction of a second by solving a

Poisson equation by a O(N) multigrid solver originally developed for solving

PDE problems (Terzopoulos, 1988).

Figure 2.5: Reconstructing an image from its value on edges under a nearest-
neighbor Gaussian MRF model. (a) Masked image. (b) Posterior mean/MAP
estimate ŷ. (c) Random sample ỹ.

2.2.2 Efficient MCMC Inference in Conditionally Gaussian Models

Gaussian models have proven inadequate for image modeling as they fail to

capture important aspects of natural image statistics such as the heavy tails

in marginal histograms of linear filter responses. Nevertheless, much richer

statistical image tools can be built if we also incorporate into our models

latent variables or allow nonlinear interactions between multiple Gaussian

fields and thus the GMRF sampling technique we describe here is very useful

within this wider setting (Weiss and Freeman, 2007; Roth and Black, 2009;

Papandreou et al., 2008).

In (Papandreou and Yuille, 2010) we discuss the integration of our GMRF

sampling algorithm in a block-Gibbs sampling context, where the condition-

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 25

ally Gaussian continuous variables and the conditionally independent latent

variables are sampled alternately. The most straightforward way to capture

the heavy tailed histograms of natural images is to model each filter response

with a Gaussian mixture expert, thus using a single discrete assignment vari-

able at each factor (Papandreou et al., 2008; Schmidt et al., 2010). We show

in Figure 2.6 an image inpainting example following this approach in which

a wavelet domain hidden Markov tree model is used (Papandreou et al.,

2008).

Figure 2.6: Filling in missing image parts from the ancient wall-paintings of Thera
(Papandreou, 2009). Image inpainting with a wavelet domain model and block
Gibbs sampling inference (Papandreou et al., 2008).

Efficient GMRF Perturb-and-MAP sampling can also be used in conjunc-

tion with Gaussian scale mixture (GSM) models for which the latent scale

variable is continuous (Andrews and Mallows, 1974). We demonstrate this

in the context of Bayesian signal restoration by sampling from the posterior

distribution under a total variation (TV) prior, employing the GSM char-

acterization of the Laplacian density. We show in Figure 2.7 an example

of 1-D signal restoration under a TV signal model. The standard MAP es-

timator features characteristic staircasing artifacts (Nikolova, 2007). Block

Gibbs sampling from the posterior distribution allows us to efficiently ap-

proximate the posterior mean estimator, which outperforms the MAP esti-

mator in terms of mean square error/PSNR. Although individual posterior

random samples are worse in terms of PSNR, they accurately capture the

micro-texture of the original clean signal.

2.2.3 Variational Inference for Bayesian Compressed Sensing

Variational inference is increasingly popular for probabilistic inference in

sparse models, providing the basis for many modern Bayesian compressed

sensing methods. At a high level, variational techniques in this setting

26 Perturb-and-MAP Random Fields

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

ORIGINAL

NOISY, 21.9 dB

TV−MAP, 29.0 dB

GIBBS SAMPLE, 28.4 dB

SAMPLE MEAN, 30.0 dB

RAO−BLACK, 30.3 dB

Figure 2.7: Signal denoising under a total variation prior model and alternative
estimation criteria. From top to bottom, the graphs show: (a) Original latent clean
signal, synthesized by adding Laplacian noise increments to a piece-wise constant
signal. (b) Noisy version of the signal, corrupted by Gaussian i.i.d. noise. (c) MAP
estimator under a TV prior model. (d) A single sample from the TV posterior Gibbs
distribution. (e) Posterior mean estimator obtained by averaging multiple samples.
(f) Rao-Blackwellized posterior mean estimator (Papandreou and Yuille, 2010).

typically approximate the true posterior distribution with a parameterized

Gaussian which allows closed-form computations. Inference amounts to

adjusting the variational parameters to make the fit as tight as possible

(Wainwright and Jordan, 2008). Mostly related to our work are (Attias, 1999;

Lewicki and Sejnowski, 2000; Girolami, 2001; Chantas et al., 2010; Seeger

and Nickisch, 2011a). There exist multiple alternative criteria to quantify

the fit quality, giving rise to approximations such as variational bounding

(Jordan et al., 1999), mean field or ensemble learning, and, expectation

propagation (EP) (Minka, 2001), as well as different iterative algorithms for

optimizing each specific criterion. See (Bishop, 2006; Palmer et al., 2005) for

further discussions about the relations among these variational approaches.

All variational algorithms we study in this chapter are of a double-loop

nature, requiring Gaussian variance estimation in the outer loop and sparse

point estimation in the inner loop (Seeger and Nickisch, 2011a; van Gerven

et al., 2010; Seeger and Nickisch, 2011b). The ubiquity of the Gaussian vari-

ance computation routine is not coincidental. Variational approximations

try to capture uncertainty in the intractable posterior distribution along the

directions of sparsity. These are naturally encoded in the covariance ma-

trix of the proxy Gaussian variational approximation. Marginal Gaussian

variance computation is also required in automatic relevance determination

algorithms for sparse Bayesian learning (MacKay, 1992) and relevance vec-

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 27

tor machine training (Tipping, 2001); the methods we review here could also

be applied in that context.

It turns out that variance computation in large-scale Gaussian models

is computationally challenging and a host of sophisticated techniques have

been developed for this purpose, which often only apply to restricted classes

of models (Schneider and Willsky, 2001; Sudderth et al., 2004; Malioutov

et al., 2008).

(a) (b)

Blind Image Deblurring Example

Blind deblurring with variational Bayes.
Sparse

MCMC

Variational

ground truth blurred

our result learned kernel

[Papandreou & Yuille, ICCVW-11]

16 / 1

(c) (d)

Figure 2.8: Blind image deblurring with variational inference. (a) Ground truth.
(b) Blurred input image. (c) Estimated clean image. (d) Ground truth (top-left)
and iteratively estimated blur kernel (clock-wise, starting from a diffuse Gaussian
profile at top-right).

Perturb-and-MAP allows us to efficiently sample from the GMRF model

and thus makes it practical to employ the generic sample-based estimator

for computing Gaussian variances. More specifically, we repeatedly draw

K independent GMRF samples {ỹk}Kk=1 from which we can estimate the

28 Perturb-and-MAP Random Fields

covariance matrix

Σ̂ =
1

K

K∑
k=1

(ỹk − µ)(ỹk − µ)T (2.4)

This Monte-Carlo estimator, whose accuracy is independent of the problem

size, is particularly attractive if only relatively rough variance estimates

suffice, as is often the case in practice. We show in Figure 2.8 an example of

applying this variational Bayesian estimation methodology in the problem

of blind image deblurring (Papandreou and Yuille, 2011b).

2.3 Perturb-and-MAP for MRFs with Discrete Labels

2.3.1 Introduction

We now turn our attention to Markov random fields on discrete labels, which

go back to the classic Ising and Potts models in statistical physics. Discrete-

valued MRFs offer a natural and sound probabilistic modeling framework

for a host of image analysis and computer vision problems involving discrete

labels, such as image segmentation and labeling, texture synthesis, and

deep learning (Besag, 1974; Geman and Geman, 1984; Zhu et al., 1998;

Hinton, 2002; Koller and Friedman, 2009). Exact probabilistic inference and

maximum likelihood model parameter fitting is intractable in general MRFs

defined on 2-D domains and one has to employ random sampling schemes

to perform these tasks (Geman and Geman, 1984; Hinton, 2002).

Recent powerful discrete energy minimization algorithms such as graph

cuts, linear programming relaxations, or loopy belief propagation (Boykov

et al., 2001; Kolmogorov and Zabih, 2004; Kolmogorov and Rother, 2007;

Koller and Friedman, 2009) can efficiently find or well approximate the most

probable (MAP) configuration for certain important classes of MRFs. They

have had a particularly big impact on computer vision; for a recent overview,

see the volume edited by Blake et al. (2011).

Our work on the Perturb-and-MAP discrete random field model has been

motivated by the exact Gaussian MRF sampling algorithm described in

Section 2.2. While the underlying mathematics and methods are completely

different in the discrete setup, we have shown in (Papandreou and Yuille,

2011a) that the intuition of local perturbations followed by global optimiza-

tion can also lead to powerful sampling algorithms for discrete label MRFs.

Subsequent work by other groups, summarized in 2.5, has extended our re-

sults and explored related directions.

2.3 Perturb-and-MAP for MRFs with Discrete Labels 29

A surprising finding of our study has been the identification of a pertur-

bation process from extreme value statistics which turns the Perturb-and-

MAP model identical to its Gibbs counterpart even in the discrete setting.

Although this perturbation is too expensive to be applicable in large-scale

models, it nevertheless suggests low-order perturbations that result in per-

turbed energies that are effectively as easy to minimize as the original un-

perturbed one, while producing high-quality random samples.

Perturb-and-MAP endows discrete energy minimization algorithms such

as graph cuts with probabilistic capabilities that allow them to support

qualitatively new computer vision applications. We illustrate some of them

in image segmentation and scene labeling experiments experiments: First,

drawing several posterior samples from the model allows us to compute

posterior marginal probabilities and quantify our confidence in the MAP

solution. Second, efficient random sampling allows learning of MRF or CRF

parameters using the moment matching rule, in which the model parameters

are updated until the generated samples reproduce the (weighted) sufficient

statistics of the observed data.

2.3.2 Model Definition and Weight Space Geometry

We assume a deterministic energy function which takes the inner product

form of Equation (2.1), i.e., E(y;θ) = 〈θ, φ(y)〉, with yi taking values in

a discrete label set L. A Perturb-and-MAP random sample is obtained

by ỹ = argminy E(y;θ + ε), where ε is a real-valued random additive

parameter perturbation vector. By construction, we can efficiently draw

exact one-shot samples from the Perturb-and-MAP model by solving an

energy minimization problem.

Thanks to the inner product form of the energy function, the Perturb-and-

MAP model has a simple geometric interpretation in the parameter space.

In particular, a state y ∈ LN will be minimizing the deterministic energy if,

and only if, E(y;θ) ≤ E(q;θ),∀q ∈ LN . This set of |L|N linear inequalities

defines a polyhedron Py in the weight space

Py = {θ ∈ RM : 〈θ, φ(y)− φ(q)〉 ≤ 0,∀q ∈ LN} . (2.5)

Actually, Py is a polyhedral cone (Boyd and Vandenberghe, 2004), since

θ ∈ Py implies αθ ∈ Py, for all α ≥ 0. These polyhedral cones are dually

related to the marginal polytope M = conv({φ(y)},y ∈ LN), as illustrated

in Figure 2.9; see (Wainwright and Jordan, 2008) for background on the

marginal polytope. The polyhedra Py partition the weight space RM into

regions of influence of each discrete state y ∈ LN . Under the Perturb-

and-MAP model, y will be assigned to a particular state y if, and only

30 Perturb-and-MAP Random Fields

Figure 2.9: Perturb-and-MAP geometry. (a) The polyhedral cones Py are dual to
the corner cones of the marginal polytope M. (b) The Ising P-M model with N = 2
nodes and perturbations only in the unary terms, β̃i = βi + εi, for parameter values
β1 = −1, β2 = 0, and λ = 1. The ε-space is split into four polyhedra, with y(ε) = y
iff ε ∈ Py − θ.

if, θ + ε ∈ Py or, equivalently, ε ∈ Py − θ , {ε ∈ RM : θ + ε ∈ Py}.
In other words, if a specific instantiation of the perturbation ε falls in the

shifted polyhedron Py − θ, then the Perturb-and-MAP model generates y

as sample.

We assume that perturbations are drawn from a density fε(ε) which does

not depend on the parameters θ. The probability mass of a state y under the

Perturb-and-MAP model is then the weighted volume of the corresponding

shifted polyhedron under the perturbation measure

fPM (y;θ) =

∫
Py−θ

fε(ε)dε , (2.6)

which is the counterpart of the Gibbs density in Equation (2.2). It is

intractable (NP-hard) to compute the volume of general polyhedra in a

high-dimensional space; see, e.g., (Ben-Tal et al., 2009, p. 29). However, for

the class of perturbed energy functions which can be globally minimized

efficiently, we can readily draw exact samples from the Perturb-and-MAP

model, without ever explicitly evaluating the integrals in Equation (2.6).

2.3.3 Example: The Perturb-and-MAP Ising Model

Let us illustrate these ideas by considering the Perturb-and-MAP version

of the classic Ising model. The Ising energy over the discrete “spins” yi ∈
{−1, 1} is defined as

E(y;θ) =
−1

2

N∑
i=1

(
βiyi +

N∑
i′=i+1

λii′yiyi′
)
, (2.7)

2.3 Perturb-and-MAP for MRFs with Discrete Labels 31

where βi is the external field strength (βi > 0 favors yi = 1) and λii′ is

the coupling strength, with attractive coupling λii′ > 0 favoring the same

spin for yi and yi′ . This energy function can be written in the standard

inner product form of Equation (2.1) with θ = ({βi}, {λii′})T and φ(y) =
−1
2 ({yi}, {yiyi′})T . The MRF defined by Equation (2.2) is the Ising Gibbs

random field.

Defining a Perturb-and-MAP Ising random field requires specifying the

parameter perturbation density. In this example, we leave the binary term

parameters λii′ intact and only perturb the unary term parameters βi.

In particular, for each unary factor, we set β̃i = βi + εi, with εi i.i.d.

samples from the logistic distribution with density l(z) = 1
4 sech2(z2). This

corresponds to the order-1 Gumbel perturbation we discuss in Section 2.3.5

and ensures that if a particular node yi is completely isolated, it will then

follow the same Bernoulli distribution Pr{yi = 1} = 1/(1 + e−βi) as in the

Gibbs case. The ε-space geometry in the case of two labels (N = 2) under

the Ising energy E(y;θ) = −0.5(β1y1 + β2y2 + λy1y2) for a specific value

of the parameters θ and perturbations only to unary terms is depicted in

Figure 2.9.

−4

−3.5

−3

−2.5

−2

−1.5

−1

−4

−3.5

−3

−2.5

−2

−1.5

−1

(a) (b) (c) (d)

−5 −4 −3 −2 −1

−4

−3

−2

−1

log10 fG(x)

lo
g 1

0
f P

M
(x

)

100 200 300 400 500

100

200

300

400

500

GIBBS RANK

P
E

R
T

U
R

B
−

M
A

P
 R

A
N

K

(e) (f)

Figure 2.10: We compare the Gibbs (exact computation) and the Perturb-and-
MAP (106 Monte-Carlo runs) models induced from an Ising energy on 3×3 grid, with
βi and λii′ i.i.d. from N(0, 1). (a) Gibbs log-probabilities log10 fG(y) for each of the
29 states, arranged as a 25×24 matrix. (b) Gibbs marginal probabilities fG(yi = 1)
for each of the 9 nodes. (c) Perturb-and-MAP log-probabilities log10 fPM (y). (d)
Perturb-and-MAP marginal probabilities fPM (yi = 1). (e) Scatter-plot of state
log probabilities under the two models. (f) Scatter-plot of states ranked by their
probabilities under the two models.

32 Perturb-and-MAP Random Fields

We compare in Figure 2.10 the Gibbs and Perturb-and-MAP models for

a small-scale Ising energy involving 9 variables on a 3×3 grid with 4-nearest

neighbors connectivity and randomly generated parameters. The probability

landscape (i.e., the probabilities of each of the 29 states) looks quite similar

under the two models, see Figure 2.10 (a) and (c). The same holds for the

corresponding marginal probabilities, shown in Figure 2.10 (b) and (d). To

further compare the probability landscape under the two models, we show

a scatter plot of their log probabilities in Figure 2.10(e), as well as a scatter

plot of the states ranked by their probability in Figure 2.10(f). Perturb-and-

MAP in this example is particularly close to Gibbs for the leading (most

probable) states but tends to under-estimate the least probable states.

2.3.4 Parameter Estimation by Moment Matching

We would like to estimate the parameters θ of the Perturb-and-MAP model

from a labeled training set {yk}Kk=1 by maximizing the log-likelihood

LPM (θ) = (1/K)

K∑
k=1

log fPM (yk;θ) . (2.8)

We can design the perturbations so as the Perturb-and-MAP log-likelihood

LPM is a concave function of θ. This ensures that the likelihood landscape

is well-behaved and allows the use of local search techniques for parameter

estimation, exactly as in the Gibbs case. Specifically, the following result is

shown in (Papandreou and Yuille, 2011a):

Proposition 2.2. If the perturbations ε are drawn from a log-concave

density fε(ε), the log-likelihood LPM (θ) is a concave function of the energy

parameters θ.

The family of log-concave distributions (Boyd and Vandenberghe, 2004),

i.e., log fε(ε) is a concave function of ε, includes the Gaussian, the logistic,

the Gumbel, and other commonly used distributions.

The gradient of LPM (θ) is in general hard to compute. Motivated by the

parameter update formula in the Gibbs case from Section 2.1.2, we opt for

the moment matching learning rule, θj(t+ 1) = θj(t) + r(t)∆θj , where

∆θj = EPMθ {φj(y)} − ED{φj(y)} . (2.9)

Here EPMθ {φj(y)} ,∑y fPM (y;θ)φj(y) is the expected sufficient statistic

under the Perturb-and-MAP model for the current parameter values θ,

which we can efficiently estimate by drawing exact samples from it. We

typically adjust the learning rate by a Robbins-Monro type schedule, e.g.,

2.3 Perturb-and-MAP for MRFs with Discrete Labels 33

r(t) = r1/(r2 + t). Figure 2.11 illustrates parameter learning by moment

matching in a spatially homogeneous Ising energy model.

While the above moment matching rule was originally motivated by

analogy to the Gibbs case (Papandreou and Yuille, 2011a), its fixed points do

not need to be exact minima of the Perturb-and-MAP log-likelihood (2.8).

Subsequent work has shown that moment matching performs gradient ascent

for an objective function that lower bounds the Gibbs likelihood function

(Hazan and Jaakkola, 2012). Moreover, this lower bound turns out to be

concave even for perturbation densities fε(ε) which are not log-concave.

0 10 20 30
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Iteration

M
o

m
e

n
t

V
a

lu
e

s

E
m

{x
i
!=x

j
}

E
d
{x

i
!=x

j
}

E
m

{x
i
}

E
d
{x

i
}

(a) (b) (c) (d)

Figure 2.11: Perturb-and-MAP Ising random field parameter learning. The two
model parameters, the global coupling strength λ and field strength β are fitted
by moment matching. (a) Gibbs Ising model sample, used as training image. (b)
Perturb-and-MAP Ising sample at initial parameter values. (c) Perturb-and-MAP
Ising sample at final parameter values. (d) Model moments as they converge to
training data moments.

2.3.5 Perturb-and-MAP Perturbation Design

Although any perturbation density induces a legitimate Perturb-and-MAP

model, it is desirable to carefully design it so as the Perturb-and-MAP model

approximates as closely as possible the corresponding Gibbs MRF. The

Gibbs MRF has important structural properties that are not automatically

satisfied by the Perturb-and-MAP model under arbitrary perturbations: (a)

Unlike the Gibbs MRF, the Perturb-and-MAP model is not guaranteed to

respect the state ranking induced by the energy, i.e., E(y) ≤ E(y′) does not

necessarily imply fPM (y) ≥ fPM (y′), see Figure 2.10(f). (b) The Markov

dependence structure of the Gibbs MRF follows directly from the support of

the potentials φj(y), while the Perturb-and-MAP might give rise to longer-

range probabilistic dependencies. (c) The maximum entropy distribution

under moment constraints E{φj(y)} = φ̄j has the Gibbs form; the Perturb-

and-MAP model trained by moment matching can reproduce these moments

but will in general have smaller entropy than its Gibbs counterpart.

34 Perturb-and-MAP Random Fields

The Gumbel distribution arising in extreme value theory (Steutel and

Van Harn, 2004) turns out to play an important role in our effort to design

a perturbation mechanism that yields a Perturb-and-MAP model closely

resembling the Gibbs MRF. We can use the Arg-Min aspect of the Gumbel

Lemma 1.1 (p. 12) to construct a Perturb-and-MAP model that exactly

replicates the Gibbs distribution, as follows. The Gibbs random field on N

sites yi, i = 1, . . . , N , each allowed to take a value from the discrete label set

L, can be considered as a discrete distribution with |L|N states. This can

be made explicit if we enumerate {yj , j = 1, . . . , M̄ = |L|N} all the states

and consider the maximal equivalent re-parameterization of Equation (2.1)

Ē(y; θ̄) , 〈θ̄, φ̄(y)〉 = 〈θ, φ(y)〉 , (2.10)

where θ̄j = E(yj ;θ) = 〈θ, φ(yj)〉, j = 1, . . . , M̄ , is the fully-expanded

potential table and φ̄j(y) is the indicator function of the state yj (i.e., equals

1, if y = yj and 0 otherwise). Using the Gumbel Lemma 1.1 we can show:

Proposition 2.3. If we perturb each entry of the fully expanded LN po-

tential table with i.i.d. Gumbel noise samples εj , j = 1, . . . , M̄ , then the

Perturb-and-MAP and Gibbs models coincide, i.e., fPM (y;θ) = fG(y;θ).

This order-N perturbation is not practically applicable when N is large

since it independently perturbs all M̄ = |L|N entries of the fully expanded

potential table and effectively destroys the local Markov structure of the

energy function, rendering it too hard to minimize. Nevertheless, it shows

that it is possible to design a Perturb-and-MAP model that exactly replicates

the Gibbs MRF.

In practice, we employ low-order Gumbel perturbations. In our simplest

order-1 design, we only add Gumbel noise to the unary potential tables.

More specifically, for an energy function E(y) =
∑N

i=1 Vi(yi) +
∑

j Vj(yj)

which includes potentials Vi(yi) of order-1 and potentials Vj(yj) of order-

2 or higher, we add i.i.d. Gumbel noise to each of the |L| entries of each

order-1 potential, while leaving the higher order potentials intact. This

yields perturbed energies effectively as easy to minimize as the original

unperturbed one, while producing random samples closely resembling Gibbs

MRF samples. We can improve the Perturb-and-MAP sample quality by

Gumbel perturbations of order-2 or higher, as described in (Papandreou

and Yuille, 2011a). However, high order perturbations typically make the

perturbed energy minimization problem harder to solve.

2.4 On the Representation Power of the Perturb-and-MAP Model 35

2.4 On the Representation Power of the Perturb-and-MAP Model

The moment matching parameter learning criterion in Section 2.3.4 leads

us to the following fundamental question about the representation power of

the Perturb-and-MAP model on MRFs with Discrete Labels: Is the model

expressive enough to reproduce the statistics of arbitrary observed data?

More formally, let µ , ED{φ(y)} = (1/K)
∑K

k=1φ(yk) be the vector

of sufficient statistics observed in a dataset {yk}Kk=1. The set of all such

possible sufficient statistics vectors for every realizable dataset forms the

marginal polytope M, which can also be expressed as the convex hull of

all possible feature vectors, i.e., M = conv({φ(y)},y ∈ LN) ⊂ RM . We

can then pose the representation power question mathematically as follows:

Given a sufficient statistics vector µ ∈M, does a parameter vector θ ∈ RM
exist such that EPMθ {φ(y)} = µ?

The answer to the representation power problem for the Gibbs distribution

is positive. Specifically, for every µ ∈ ri(M), there exists θ ∈ RM such

that EGθ {φ(y)} = µ. Here ri(M) denotes the relative interior of M, which

essentially includes every interior point in M. Moreover, the corresponding

Gibbs distribution has the largest entropy among all distributions satisfying

the same moment matching constraints. We refer to Wainwright and Jordan

(2008) for a detailed treatment of the classic Gibbs exponential family

representation problem.

It turns out that the answer to the representation power problem for the

Perturb-and-MAP model is also positive. We can prove this building on a

key Theorem of Hazan and Jaakkola (2012) which associates Perturb-and-

MAP moment matching with a maximization problem. We restate in our

notation their Theorem 3:

Proposition 2.4. Let µ ∈ RM . We define the maximization problem

maxθ∈RM J(θ), where

J(θ) =

∫
fε(ε) min

y
〈θ + ε, φ(y)〉dε− 〈θ, µ〉 . (2.11)

If the perturbation density fε(ε) is differentiable in RM , then (1) J(θ) is

concave and differentiable in RM and (2) ∇J(θ) = EPMθ {φ(y)} − µ.

We are now ready to state and prove our Proposition on the representation

power of Perturb-and-MAP.

Proposition 2.5. If the perturbation density fε(ε) is differentiable in RM ,

then for every µ ∈ ri(M) there exists a θ ∈ RM such that EPMθ {φ(y)} = µ.

36 Perturb-and-MAP Random Fields

Proof. Based on Proposition 2.4, it suffices to show that there exists a

θ ∈ RM such that ∇J(θ) = 0. Since J(θ) is concave and differentiable

in RM , it suffices to show that it is coercive, i.e., J(θ) → −∞, when

‖θ‖ → +∞.

To show that, we start by recentering the feature vector to φ̄(y) ,
φ(y) − µ, which allows us to express J(θ) without the linear ramp term

dependence on θ:

J(θ) =

∫
fε(ε) min

y
〈θ + ε, φ(y)− µ〉dε+ 〈ε̄, µ〉 , (2.12)

where ε̄ =
∫
fε(ε)εdε is the perturbation mean. Next, let’s write θ = ‖θ‖θ̂

and define yθ = argminy〈θ, φ(y)− µ〉. Note that yθ̂ = yθ. Critically,

cθ̂ , 〈θ̂, φ(yθ̂)− µ〉 < 0 because µ ∈ ri(M). Then, since fε(ε) ≥ 0 and∫
fε(ε)dε = 1, we can upper bound J(θ) as follows:

J(θ) ≤
∫
fε(ε)〈θ + ε, φ(yθ)− µ〉dε+ 〈ε̄, µ〉 (2.13)

=

∫
fε(ε)〈θ, φ(yθ)− µ〉dε+ 〈ε̄, φ(yθ)− µ〉+ 〈ε̄, µ〉 (2.14)

= 〈θ, φ(yθ)− µ〉+ 〈ε̄, φ(yθ)〉 (2.15)

= ‖θ‖〈θ̂, φ(yθ̂)− µ〉+ 〈ε̄, φ(yθ̂)〉 (2.16)

= cθ̂‖θ‖+ 〈ε̄, φ(yθ̂)〉 . (2.17)

Since cθ̂ < 0, J(θ) ≤ cθ̂‖θ‖+ 〈ε̄, φ(yθ̂)〉 → −∞ as ‖θ‖ → +∞.

Our Proposition has been stated under the assumption that the perturba-

tion density fε(ε) is differentiable in RM but it also applies more generally

whenever the function J(θ) is differentiable in RM .

2.4.1 Applications and Experiments

We present experiments with the Perturb-and-MAP model applied to image

segmentation and scene labeling.

Our interactive image segmentation experiments have been performed

on the Grabcut dataset which includes human annotated ground truth

segmentations (Rother et al., 2004). The task is to segment a foreground

object, given a relatively tight tri-map imitating user input obtained by a

lasso or pen tool.

In our implementation we closely follow the CRF formulation of (Rother

et al., 2011), using the same parameters for defining the image-based CRF

terms and considering pixel interactions in a 8-neighborhood. We used

our Perturb-and-MAP sampling algorithm with order-2 Gumbel perturba-

2.4 On the Representation Power of the Perturb-and-MAP Model 37

tion and QPBO optimization (Kolmogorov and Rother, 2007) to learn the

weights of the potentials – 5 weights in total, one for the unary and one for

each of the 4 pairwise connections of the center pixel with its S, E, NE, SE

neighbors. Using these parameters, we obtained a classification error rate of

5.6% with the global MAP decision rule. This is similar to the best results

attainable with the particular CRF model and hand-tuned weights.

In Figure 2.12 we illustrate the ability of the Perturb-and-MAP model

to produce soft segmentation maps. The soft segmentation map (average

over 20 posterior samples) gives a qualitatively accurate estimate of the

segmentation uncertainty, which could potentially be useful in guiding user

interaction in an interactive segmentation application.

(a) (b)

(c) (d)

Figure 2.12: Interactive image segmentation results on the Grabcut dataset.
Parameters learned by Perturb-and-MAP moment matching. (a) Original image.
(b) Least energy MAP solution. (c) Soft Perturb-and-MAP segmentation. (d) The
corresponding segmentation mask.

We next consider an application of Perturb-and-MAP random fields in

scene layout labeling (Hoiem et al., 2007). We use the tiered layout model

of (Felzenszwalb and Veksler, 2010), which allows exact global inference by

efficient dynamic programming (Felzenszwalb and Veksler, 2010). The model

has a relatively large number of parameters, making it difficult to hand

tune. Training them with the proposed techniques illustrates our ability to

effectively learn model parameters from labeled data.

We closely follow the evaluation approach of (Felzenszwalb and Veksler,

2010) in setting up the experiment: We use the dataset of 300 outdoor images

(and the standard cross-validation splits into training/test sets) with ground

truth from (Hoiem et al., 2007). Similarly to (Felzenszwalb and Veksler,

2010), we use five labels: T (sky), B (ground), and three labels for the

middle region, L (facing left), R (facing right), C (front facing), while we

38 Perturb-and-MAP Random Fields

exclude the classes “porous” and “solid”. The unary scores are produced

using classifiers that we trained using the dataset and software provided by

Hoiem et al. (2007) following the standard five-fold cross-validation protocol.

We first fit the tiered scene model parameters (pairwise compatibility

tables between the different classes) on the training data using Perturb-

and-MAP moment matching (order-1 Gumbel perturbation). Weights are

initialized as Potts CRF potentials and refined by moment matching rule;

we separated the training set in batches of 10 images each and stopped after

50 epochs over the training set. We have measured the performance of the

trained model in terms of average accuracy on the test set. We have tried

two decision criteria, MAP (least energy configuration) and marginal MODE

(i.e., assign each pixel to the label that appears most frequently in 20 random

Perturb-And-Map conditional samples from the model), obtaining accuracy

82.7% and 82.6%, respectively. Our results are better than the unary-only

baseline mean accuracy of 82.1% (Hoiem et al., 2007), and the MAP and

MODE results of 82.1% and 81.8%, respectively, that we obtained with the

hand-set weights of (Felzenszwalb and Veksler, 2010).

In Figure 2.13 we show some indicative examples of different scene layout

labelings obtained by the unary-only, the tiered MAP, and the Perturb-and-

MAP model. The uncertainty of the solution is indicated by entropy maps.

The marginal mode and entropies shown are Monte Carlo estimates using

20 Perturb-and-MAP samples.

Figure 2.13: Tiered scene labeling results with pairwise potentials learned by our
Perturb-and-MAP moment matching algorithm. Left to right: image; unary-only
MAP; tiered MAP; one tiered Perturb-and-MAP sample; tiered Perturb-and-MAP
marginal mode; tiered Perturb-and-MAP marginal entropy.

2.5 Related Work and Recent Developments

Studying the output sensitivity to input perturbations is omnipresent under

many different guises not only in machine learning but also in optimiza-

2.5 Related Work and Recent Developments 39

tion, signal processing, control, computer science, and theoretical psychol-

ogy, among others. However, Perturb-and-MAP is unique in using random

perturbations as the defining building block of a structured probabilistic

model and setting the ambitious goal of replicating the Gibbs distribution

using this approach.

To our knowledge, adding noise to the weighted edges of a graph so as

to randomize the minimum energy configuration found by mincuts was first

proposed by Blum et al. (2004) in the context of a submodular binary MRF

energy arising in semi-supervised learning. Their goal was to break graph

symmetries and allow the standard mincut algorithm to produce a different

solution at each run. They interpret the relative frequency of each node

receiving one or the other label as a confidence score for binary classification.

However, beyond randomizing the deterministic mincut algorithm, they

do not study the implied probabilistic model as a standalone object nor

attempt to design the perturbation mechanism so as to approximate the

corresponding Gibbs model. Indeed, the choice of perturbation distribution

is not discussed at all in (Blum et al., 2004).

Herding (Welling, 2009) builds a deterministic dynamical system on the

model parameters designed so as to reproduce the data sufficient statistics,

which is similar in spirit to the moment-matching algorithm we use for

learning. However, herding is still not a probabilistic model and cannot

summarize the data into a concise set of model parameters.

As pointed out to us by McAllester (2012), Perturb-and-MAP is closely

related to PAC-Bayes (McAllester, 1998) and PAC-Bayesian theorems such

as those in (Germain et al., 2009) can be adapted to the Perturb-and-MAP

setting. Model perturbations through the associated concept of stochastic

Gibbs classifier play a key role to PAC-Bayesian theory, but PAC-Bayes

typically aims at producing generalization guarantees for the deterministic

classifier instead of capturing the uncertainty in the posterior distribution.

Averaging over multiple samples, Perturb-and-MAP allows efficiently es-

timating (sum-) marginal densities and thus quantifying the per-node solu-

tion uncertainty even in graphs with loops. Max-product belief propagation

(Wainwright et al., 2005) and dynamic graph-cuts (Kohli and Torr, 2008)

can compute max-marginals, which give some indication of the uncertainty

in label assignments (Kohli and Torr, 2008) but cannot directly estimate

marginal densities.

A number of different groups have followed up on our work (Papandreou

and Yuille, 2011a) and further developed it in different directions. In their

randomized optimum models, Tarlow et al. (2012) introduce variants of the

Perturb-and-MAP model for discrete problems such as bi-partite matching

40 Perturb-and-MAP Random Fields

and pursue maximum-likelihood learning of the model parameters using

efficient MCMC algorithms.

The work in (Hazan and Jaakkola, 2012) has offered a better understand-

ing of the Perturb-and-MAP moment matching learning rule, showing that it

optimizes a well-defined concave lower bound of the Gibbs likelihood func-

tion. Moreover, they have shown how Perturb-and-MAP can be used for

computing approximations to the partition function. This connection di-

rectly relates Perturb-and-MAP to the standard MRF inference problem

and forms the basis of our study of the Perturb-and-MAP representation

power presented in Section 2.4.

Another related partition function estimation algorithm is proposed in

(Ermon et al., 2013). Interestingly, their method amounts to progressively

introducing more random constraints, followed by energy minimization, in

a randomized Constrain-and-MAP scheme.

While probabilistic random sampling allows one to explore alternative

plausible solutions, Batra et al. (2012) propose to explicitly enforce diversity

in generating a sequence of deterministic solutions.

The work in (Roig et al., 2013) is an excellent demonstration of how

uncertainty quantification can yield practical benefits in a semantic image

labeling setting. They employ Perturb-and-MAP to identify on the fly image

areas with ambiguous labeling and only compute expensive features when

their addition is likely to considerably decrease labeling entropy.

2.6 Discussion

This chapter has presented an overview of the Perturb-and-MAP method,

which turns established deterministic energy minimization algorithms into

efficient probabilistic inference machines. This is a promising new direction

with many important open questions for both theoretical and application-

driven research: (1) An in-depth systematic comparison of Perturb-and-

MAP and more established approximate inference techniques such as

MCMC or Variational Bayes is still lacking. (2) Unlike MCMC which al-

lows trading off approximation quality with computation time by simply

running the Markov chain for longer, there is currently no way to iteratively

improve the quality of Perturb-and-MAP samples. (3) The modeling ca-

pacity of Perturb-and-MAP needs to be explored in several more computer

vision and machine learning applications.

2.7 References 41

Acknowledgements

This work was done while both authors were affiliated with the Depart-

ment of Statistics at the University of California, Los Angeles. It has

been supported by the U.S. Office of Naval Research under MURI grant

N000141010933; the NSF under award 0917141; the AFOSR under grant

9550-08-1-0489; and the Korean Ministry of Education, Science, and Tech-

nology, under the Korean National Research Foundation WCU program

R31-10008. We would like to thank M. Welling, M. Seeger, T. Hazan, D.

Tarlow, D. McAllester, A. Montanari, S. Roth, I. Kokkinos, M. Raptis, M.

Ranzato, and C. Lampert for their feedback at various stages of this project.

2.7 References

D. Andrews and C. Mallows. Scale mixtures of normal distributions. J. of Royal
Stat. Soc. (Series B), 36(1):99–102, 1974.

H. Attias. Independent factor analysis. Neural Computation, 11:803–851, 1999.

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-
best solutions in Markov random fields. In Proc. European Conf. on Computer
Vision, 2012.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
Univ. Press, 2009.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. of
Royal Stat. Soc. (Series B), 36(2):192–236, 1974.

J. Besag. Statistical analysis of non-lattice data. J. of Royal Stat. Soc. Series D
(The Statistician), 24(3):179–195, 1975.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

A. Blake, P. Kohli, and C. Rother, editors. Markov Random Fields for Vision and
Image Processing. MIT Press, 2011.

A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using
randomized mincuts. In Proc. Int. Conf. on Machine Learning, 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

G. Chantas, N. Galatsanos, R. Molina, and A. Katsaggelos. Variational Bayesian
image restoration with a product of spatially weighted total variation image
priors. IEEE Trans. Image Process., 19(2):351–362, 2010.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization. In Proc. Int. Conf.
on Machine Learning, 2013.

P. Felzenszwalb and O. Veksler. Tiered scene labeling with dynamic programming.
In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2010.

42 Perturb-and-MAP Random Fields

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):
721–741, 1984.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In Proc. Int. Conf. on Machine Learning, 2009.

M. Girolami. A variational method for learning sparse and overcomplete represen-
tations. Neural Computation, 13:2517–2532, 2001.

G. Golub and C. Van Loan. Matrix Computations. John Hopkins Press, 1996.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. In Proc. Int. Conf. on Machine Learning, 2012.

G. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.

G. Hinton and T. Sejnowski. Optimal perceptual inference. In Proc. IEEE Int.
Conf. on Computer Vision and Pattern Recognition, 1983.

D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from an image. Int.
J. of Comp. Vis., 75(1):151–172, 2007.

M. Jordan, J. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37:183–233, 1999.

P. Kohli and P. Torr. Measuring uncertainty in graph cut solutions. Computer
Vision and Image Understanding, 112(1):30–38, 2008.

D. Koller and N. Friedman. Probabilistic Graphical Models. MIT Press, 2009.

V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph
cuts – a review. IEEE Trans. Pattern Anal. Mach. Intell., 29(7):1274–1279, 2007.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147–159, 2004.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.-J. Huang. A tutorial
on energy-based learning. In G. Bakir, T. Hofmann, B. Schölkopf, A. Smola,
B. Taskar, and S. Vishwanathan, editors, Predicting Structured Data. MIT Press,
2007.

M. Lewicki and T. Sejnowski. Learning overcomplete representations. Neural
Computation, 12:337–365, 2000.

D. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Low-rank variance approxi-
mation in GMRF models: Single and multiscale approaches. IEEE Trans. Signal
Process., 56(10):4621–4634, 2008.

D. McAllester. Some PAC-Bayesian theorems. In Proc. Conf. on Learning Theory,
1998.

D. McAllester. Connections between Perturb-and-MAP and PAC-Bayes. Personal
communication, 2012.

T. Minka. Expectation propagation for approximate Bayesian inference. In Proc.
Int. Conf. on Uncertainty in Artificial Intelligence, 2001.

M. Nikolova. Model distortions in Bayesian MAP reconstruction. Inv. Pr. and
Imag., 1(2):399–422, 2007.

J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for
non-Gaussian latent variable models. In Proc. Advances in Neural Information
Processing Systems, 2005.

2.7 References 43

G. Papandreou. Image Analysis and Computer Vision: Theory and Applications in
the Restoration of Ancient Wall Paintings. PhD thesis, NTUA, School of ECE,
2009.

G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In Proc.
Advances in Neural Information Processing Systems, 2010.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proc. IEEE Int. Conf.
on Computer Vision, 2011a.

G. Papandreou and A. Yuille. Efficient variational inference in large-scale Bayesian
compressed sensing. In Proc. IEEE Workshop on Information Theory in Com-
puter Vision and Pattern Recognition (in conjunction with ICCV), 2011b.

G. Papandreou, P. Maragos, and A. Kokaram. Image inpainting with a wavelet
domain hidden Markov tree model. In Proc. IEEE Int. Conf. Acous., Speech,
and Signal Processing, 2008.

G. Roig, X. Boix, S. Ramos, R. de Nijs, and L. Van Gool. Active MAP inference in
CRFs for efficient semantic segmentation. In Proc. IEEE Int. Conf. on Computer
Vision, 2013.

S. Roth and M. Black. Fields of experts. Int. J. of Comp. Vis., 82(2):205–229,
2009.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground ex-
traction using iterated graph cuts. In Proc. ACM Int. Conference on Computer
Graphics and Interactive Techniques, pages 309–314, 2004.

C. Rother, V. Kolmogorov, Y. Boykov, and A. Blake. Interactive foreground
extraction using graph cut. In Advances in Markov Random Fields for Vision
and Image Processing. MIT Press, 2011.

H. Rue and L. Held. Gaussian Markov random fields. Theory and Applications.
Chapman & Hall, 2005.

U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level
vision. In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2010.

M. Schneider and A. Willsky. Krylov subspace estimation. SIAM J. Sci. Comp.,
22(5):1840–1864, 2001.

M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design
for sparse linear models. SIAM J. Imaging Sci., 4(1):166–199, 2011a.

M. Seeger and H. Nickisch. Fast convergent algorithms for expectation propagation
approximate Bayesian inference. In Proc. Int. Conf. on Artificial Intelligence and
Statistics, 2011b.

F. Steutel and K. Van Harn. Infinite divisibility of probability distributions on the
real line. Dekker, 2004.

E. Sudderth, M. Wainwright, and A. Willsky. Embedded trees: Estimation of
Gaussian processes on graphs with cycles. IEEE Trans. Signal Process., 52(11):
3136–3150, 2004.

R. Szeliski. Bayesian modeling of uncertainty in low-level vision. Int. J. of Comp.
Vis., 5(3):271–301, 1990.

M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In Proc.
European Conf. on Computer Vision, 2008.

44 Perturb-and-MAP Random Fields

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In Proc. Int. Conf. on Artificial Intelligence and Statistics, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Proc.
Advances in Neural Information Processing Systems, 2003.

D. Terzopoulos. The computation of visible-surface representations. IEEE Trans.
Pattern Anal. Mach. Intell., 10(4):417–438, 1988.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211–244, 2001.

M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian multi-
variate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage, 50:
150–161, 2010.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Found. and Trends in Machine Learning, 1(1-2):1–305,
2008.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on
trees: Message-passing and linear programming. IEEE Trans. Inf. Theory, 51
(11):3697–3717, 2005.

Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical
models of arbitrary topology. Neural Computation, 13(10):2173–2200, 2001.

Y. Weiss and W. Freeman. What makes a good model of natural images? In Proc.
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2007.

M. Welling. Herding dynamical weights to learn. In Proc. Int. Conf. on Machine
Learning, 2009.

S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy
(FRAME): Towards a unified theory for texture modeling. Int. J. of Comp. Vis.,
27(2):107–126, 1998.

3 Factorizing Shortest Paths with

Randomized Optimum Models

Daniel Tarlow dtarlow@microsoft.com

Alexander Gaunt t-algaun@microsoft.com

Microsoft Research

Cambridge, UK

Ryan Adams rpa@seas.harvard.edu

Harvard University and Twitter

Cambridge, MA, USA

Richard S. Zemel zemel@cs.toronto.edu

University of Toronto

Toronto, ON, Canada

Randomized Optimum Models (RandOMs) are probabilistic models that de-

fine distributions over structured outputs by making use of structured opti-

mization procedures within the model definition. This chapter reviews Ran-

dOMs and develops a new application of RandOMs to the problem of fac-

torizing shortest paths; that is, given observations of paths that users take

to get from one node to another on a graph, learn edge-specific and user-

specific trait vectors such that inner products of the two define user-specific

edge costs, and the distribution of observed paths can be explained as users

taking shortest paths according to noisy samples from their cost function.

3.1 Introduction

A broad challenge in statistics and machine learning is to build probabilistic

models of structured data. This includes abstract structures like segmenta-

tions, colorings, matchings, and paths on graphs, and natural structures like

46 Factorizing Shortest Paths with Randomized Optimum Models

images, text, source code, and chemical molecules. The main difficulty is

that estimating the normalizing constant for commonly-used modeling dis-

tributions over these objects is often computationally hard. An interesting

computational phenomenon is that in some cases where it is challenging to

compute a sum over the entire space, it is efficient to find the maximum (or

minimum). For example, the problem of computing a matrix permanent,

which is #-P hard (Valiant, 1979), corresponds to computing a normalizing

constant for a probabilistic model where the most probable configuration

can be computed efficiently as a bipartite matching. More specifically, given

an energy function f(·) over structures y (e.g., a path on a graph G) from an

output space Y (e.g., all paths on G), the normalizing constant or partition

function is Z =
∑
y∈Y exp{−f(y)}. This chapter focuses on the case where

the output space is a combinatorial set, by which we mean that membership

can be tested efficiently but enumeration is intractable (Bouchard-Côté and

Jordan, 2010); however, in principle, the output space could also be contin-

uous. The corresponding optimization problem is to find the most probable

structure: argminy∈Y f(y).

The typical approach for defining probability distributions over structured

objects is to use a Gibbs distribution. That is, make sensible assumptions

about the structure of an energy function f(y) and combinatorial set Y, and

then define p(y) ∝ 1{y ∈ Y} exp{f(y)}. For example, to define a model of

foreground-background segmentations of an image with D pixels, a common

choice might be y ∈ {0, 1}D and to define an energy function according to

a graph structure G = (V,E) as

f(y) = f(y; g) =
∑
i∈V

gi · yi +
∑
ij∈E

gij · 1{yi = yj} ,

which encodes the assumption that there are node-specific costs gi for each

pixel i to be labeled 1 (foreground) and that edges in the graph encourage

neighboring nodes to take on the same label with an edge-dependent cost

for differing gij . A typical choice of edge structure would be a 4-connected

grid, where there are edges between nearest neighbor pixels.

While the above assumptions are sensible, they immediately lead to com-

putational difficulty. Consider making test-time predictions, which depend

on p(y) and therefore require the intractable Z. There are two common

choices: (1) use approximate inference like belief propagation (see e.g., Koller

and Friedman (2009)) to compute approximate marginals, or (2) use Markov

chain Monte Carlo (MCMC) to draw approximate samples (see e.g., (Robert

and Casella, 2013)). The focus of this chapter is on cases where the combina-

torial structure of the object is important, so marginals do not suffice. The

point of Randomized Optimum Models (RandOMs) is to provide an effi-

3.2 Building Structured Models: Design Considerations 47

cient alternative to MCMC at test time without sacrificing the well-founded

probabilistic model.

The outline is as follows:

Background on structured prediction, and design considerations for build-

ing probabilistic models of structured objects

A review of RandOMs

Shortest Path Factorization with RandOMs

Experiments

Related work

Discussion

3.2 Building Structured Models: Design Considerations

Structured prediction is a large field, and there are many approaches for

learning models of structured objects. This section describes a high level

overview of the key considerations, with a bias towards probabilistic models

of structured objects.

A key issue that affects the choice of model is what the utility function

will be. That is, how will we evaluate the quality of a test-time output? Is

the system going to be used by some downstream process, or is it going to

be used to make a single prediction? In the former case, a natural output

for the system is a probability distribution (e.g., a probability that a patient

has cancer); in the latter case, the utility function needs to be considered by

the system (e.g., how unpleasant the patient finds the treatment, and how

much value they would place on being cured).

A second question is about the structure of the utility function, which is

relevant even if the system is producing a probability distribution, because

it has bearing on how the probability distribution should be represented.

In a structured prediction setting, a key property of utility functions to

consider is whether they are sensitive to high order structure or not. For

example, if an image segmentation system is judged based on the number

of pixel-level classifications that it gets correct, then the utility function

depends only on low order statistics of the output probability distribution,

i.e., it can be shown that the expected utility of a predictive distribution

depends only on the marginal distributions of each pixel’s label. In this

case, representing a probability distribution over pixel labelings as a set

of marginal distributions is perfectly reasonable. Even in cases where the

utility function appears at first glance to have high order interactions, such

48 Factorizing Shortest Paths with Randomized Optimum Models

as with the intersection-over-union measure that is common in evaluating

image segmentations (Everingham et al., 2010), Nowozin (2014) has shown

that marginal distributions contain enough information to make accurate

utility-aware predictions.

However, there are cases where the utility function truly is high order,

and in fact, these are very common cases. One might even argue that

most natural utility functions over structured objects depend heavily on

high order structure, and it is only computational convenience that leads to

utility functions based on low order structure. Examples of utility functions

that depend on high order structure include perceptual measures of the

naturalness of an image or image segmentation when outputting images or

pixel-wise labels (Movahedi and Elder, 2010; Lubin, 1998; Wang et al., 2004),

measures of whether code compiles when outputting source code (Nguyen

et al., 2014), measures of the meaningfulness of a generated sentence when

outputting language, and measures of whether a driver could follow a path

that is output by the model.

When the utility function has high order structure and we wish to directly

output a single prediction, then in some cases max-margin learning (Taskar

et al., 2004; Tsochantaridis et al., 2005) can be a good option. High order

utility functions present challenges, but can sometimes be handled efficiently,

such as in certain image segmentation settings (Tarlow and Zemel, 2012;

Pletscher and Kohli, 2012).

When the utility function has high order structure and we wish to output

a probability distribution, sample-based representations of the output distri-

bution are the natural choice. This is the setting that motivates RandOMs,

along with several other works, including some in this book, such as Perturb

& MAP (Chapter 2), PAC-Bayesian perturbation models (Chapter 10), and

MAP-perturbation models (Chapter 5); see Section 3.9 for a discussion of

the similarities and differences between RandOMs and other works that fo-

cus on this regime. Our focus is to train models such that at test time, we

can efficiently produce perfect samples from the model without resorting to

MCMC or rejection sampling.

3.3 Randomized Optimum Models (RandOMs)

This section introduces notation and then develops the RandOM model.

RandOMs implicitly define a probability distribution over an output

space Y via a generative procedure that includes a call to an algorithm

that performs optimization over Y. In the typical instantiation, Y is a

3.3 Randomized Optimum Models (RandOMs) 49

combinatorial set and the optimization algorithm is a discrete optimization

procedure.

3.3.1 Notation

Let fw : Y→ R be a family of scoring functions indexed by w ∈ RP , each

of which maps a structure y to a real-valued cost. Let Y be the set of legal

structures. For example, w may be node weights for a weighted vertex cover

algorithm or edge costs for a graph cut algorithm, and Y would be the set

of all vertex covers or the set of all graph cuts, respectively. In these cases,

the individual dimensions of w might be costs of specific nodes or edges in

some graph. A further description of f ’s dependence on w appears below.

It will then be useful to define F : RP → Y as the function that executes an

optimization algorithm given parameters w and returns a cost-minimizing

configuration y∗; i.e., F (w;Y) = argminy∈Y fw(y). Also useful will be the

inverse set F−1(y;Y), which is defined as F−1(y;Y) = {w | F (w;Y) = y}.
When the appropriate Y is clear from context, it will be dropped from the

notation, resulting in F (y) and F−1(y).

In some problems there is a notion of legal settings of w. For example, a

shortest path algorithm might reasonably assert that all edge costs should

be non-negative, or a graph cut algorithm may assert that edge potentials

are submodular. To handle these cases, the predicate L : RP → {0, 1} will

be used to indicate whether a w is legal.

3.3.2 RandOM Model

The key idea of RandOM models is to define probabilistic models where

parameters w are latent variables. That is, a probabilistic model p(y;ψ) is

defined via a distribution over w, parameterized by ψ; the link between y

and w values is a deterministic relationship that comes from running the

optimization algorithm:

p(y;ψ) ∝
∫
p(w;ψ) 1{F (w) = y} 1{L(w)} dw. (3.1)

The design space of distributions over w is large and flexible. Many varia-

tions are possible, such as conditioning on inputs x:

p(y | x;ψ) ∝
∫
p(w | x;ψ) 1{F (w) = y} 1{L(w)}dw, (3.2)

which is the form that was the focus of Tarlow et al. (2012). It would

also be straightforward to treat ψ as random variables which themselves

have prior distributions. The key to test-time tractability is that a sample

50 Factorizing Shortest Paths with Randomized Optimum Models

from p′(w) ∝ p(w)1{L(w)} can be drawn efficiently. Given the sample

of w, the optimization algorithm can be executed to yield a sample y; i.e.,

set y = F (w).

3.3.3 Constructing Conditional Random Field-Like f

This section describes a pattern for constructing p(w | x;ψ) that parallels

the energy function used in conditional random field (CRF) models. To

illustrate how this works within the RandOM formulation, we focus on a

pairwise CRF with binary variables, as would be used for the foreground-

background segmentation example in the introduction.

To review, CRFs define distributions over Y via the Gibbs distribution. For

pairwise CRFs with binary variables, the energy function f(y) is constructed

as a sum of unary and pairwise terms:

f(y) =
∑
i∈V

gi(yi,x;ψ) +
∑
ij∈E

gij(yi, yj ,x;ψ). (3.3)

The g(·) terms are parameterized by weights ψ and can depend arbitrarily

on the input x, but have only local dependence on y. The g(·) functions

are usually constructed as a weighted sum of unary features and pairwise

features. An example unary feature would be an affinity for the average color

of image x around pixel i to class yi. An example pairwise feature would be

a cost for neighboring pixels i and j to take different classes with strength

depending on the difference of appearance of the pixels.

Finally, the probability of a configuration is defined by the Gibbs distri-

bution: p(y) ∝ exp {−f(y)}.

3.3.3.1 CRF Energy Functions in RandOM Notation

First, a vector of sufficient statistics of y are chosen, de-

noted ρ(y) = (ρp(y))Pp=1 where ρp : Y→ {0, 1}. Each ρp(·) is an indicator

function that selects out some statistic of y that is relevant for the model.

Example indicator functions are whether a particular subset of dimensions

of y take on a particular joint configuration, or they could indicate whether

the number of dimensions of y taking on a particular value (say a) is equal

to some value (say b); i.e., ρp(y) = 1{(∑i 1{yi = a}) = b}.
As another example, in a pairwise graphical model, there are unary

and pairwise sufficient statistics. The unary sufficient statistics are func-

tions indicating if yi = a for each variable i and each possible value a.

Pairwise sufficient statistics are defined over all edges and might in-

dicate all joint configurations of a pair of neighboring variables, i.e.,

3.3 Randomized Optimum Models (RandOMs) 51

(1{yi = 0 ∧ yj = 0}, · · · , 1{yi = 1 ∧ yj = 1}), or just whether neighboring

variables take on the same label, i.e., (1{yi = yj}). There is flexibility in

the choice of sufficient statistics. The main issue to be mindful of is that the

choice of sufficient statistics can impact the tractability of the minimization

problem, so some care must be taken. More examples of choices of sufficient

statistics that lead to tractable optimization appear below.

Given a vector of sufficient statistics, the definition of fw(y) is then simply

that each dimension of w weights the sufficient statistic in the corresponding

dimension:

fw(y) = w>ρ(y). (3.4)

To produce an equivalent fw using the RandOM formulation, de-

fine p(w | x;ψ) to be a deterministic function of input x and parameters ψ

as follows.

First, rewrite f as

f(y) =
∑
i∈V

∑
ŷi

1{yi = ŷi}gi(ŷi,x;ψ) (3.5)

+
∑
ij∈E

∑
ŷi,ŷj

1{yi = ŷi ∧ yj = ŷj}gij(ŷi, ŷj ,x;ψ). (3.6)

Then it becomes clear that by defining sufficient statistics vector ρ(y) to

be a concatenation of (1{yi = a}) for all i and a with (1{yi = 0 ∧ yj =

0}, 1{yi = 0 ∧ yj = 1}, 1{yi = 1 ∧ yj = 0}, 1{yi = 1 ∧ yj = 1}) for

all ij ∈ E, and analogously defining g to be a vector of the gi(·) or gij(·)
functions corresponding to the entries of ρ(y), then setting w = g ensures

that f(y) = fw(y) for all y.

Of course, if w is a deterministic function of x and ψ, then the output

distribution will be degenerate and assign nonzero probability to a single y.

Instead, to induce a meaningful distribution over outputs, w must be

random. This is in contrast to CRFs, which define an energy function to be

deterministically constructed from inputs, but then the distribution over y

given the energy function is random.

3.3.3.2 Example: The Gibbs Distribution

As noted by Papandreou and Yuille (2011) and extended by Hazan and

Jaakkola (2012), it is possible to leverage properties of Gumbel distributions

in order to exactly represent the Gibbs distributions that arises in standard

CRF models. While this connection is of theoretical interest, it is not

a practical construction because it requires the set of sufficient statistics

52 Factorizing Shortest Paths with Randomized Optimum Models

to be exponentially large, with one sufficient statistic for each possible

configuration of y. The connection is presented here for completeness. See

Chapters 2, 6 and 7 for additional discussions of related issues.

A random variable G is said to have a Gumbel distribution with loca-

tion m ∈ R if the CDF is p(G < g) = exp (− exp(−g +m)). The key

property of Gumbel distributions is that for a collection of independent

Gumbels G1, . . . , GK with locations m1, . . . ,mK respectively, the distribu-

tion of the maximum is also Gumbel-distributed but with location equal to

the logsumexp of the locations, and the argmax is distributed according to

the Gibbs distribution where mk is the negative energy of configuration k.

More precisely,

max
k

Gk ∼ Gumbel

(
log

K∑
k=1

exp(mk)

)
, and (3.7)

argmax
k

Gk ∼
exp(mk)∑K

k′=1 exp(mk′)
. (3.8)

Letting p = 1, . . . , |Y| index all configurations and ŷ(p) be the pth con-

figuration under this ordering, we can then let ρ(y) = (1{y = ŷ(p)})|Y|p=1;

i.e., there is one sufficient statistic for each ŷ ∈ Y indicating whether y

is exactly equal to ŷ(p). Finally, let w̄ = (−f(ŷ(p)))
|Y|
p=1 be the vec-

tor that puts the negative energy of configuration p in dimension p, and

let −wp ∼ Gumbel(w̄p) for all p. Then

argmin
p

w>ρ(ŷ(p)) = argmax
p
−wp ∼

exp(w̄p)∑
p′ exp(w̄p′)

=
exp(−f(ŷ(p)))∑
p′ exp(−f(ŷ(p′)))

,

(3.9)

which shows the equivalence to the Gibbs distribution.

3.3.3.3 Example: Bipartite Matching f

The weighted perfect bipartite matching problem is defined in terms of a

bipartite graph G with partite sets A and B with J = |A| = |B|. The only

edges in G are between a node v ∈ A and v′ ∈ B; we will additionally

assume that all possible edges exists, so there is an edge from each v ∈ A to

each v′ ∈ B.

A perfect matching is a one-to-one mapping between nodes in A and nodes

in B. Each edge (v, v′) is assigned a cost wvv′ , and the cost of a matching is

the sum of the costs of edges that are included in the matching.

To formalize this in terms of above notation, let yvv′ ∈ {0, 1} be an

indicator that edge (v, v′) is used in a matching. Let y be an ordered list

3.3 Randomized Optimum Models (RandOMs) 53

of indicators for each edge {yvv′ : v ∈ A, v′ ∈ B}. Let w be an analogous

ordered list {wvv′ : v ∈ A, v′ ∈ B} such that element p of w is the weight

for edge being indicated by element p of y. Finally, let Y be the set of

binary vectors of length J2 that correspond to valid matchings according

to the encoding of y above. Then the cost of any matching y ∈ Y is

simply fw(y) = w>y. (To match the general form in (3.4), ρ could be

set to be the identity ρ(y) = y, and then fw(y) = w>ρ(y) as above.)

3.3.3.4 Example: Shortest Paths f

An encoding of a shortest paths problem is similar. The shortest path

problem is defined in terms of a weighted graph G, and a start-end node

pair (s, t). The combinatorial problem is to find the shortest path in G from s

to t, where the cost of a path is a sum of the costs of the edges traversed by

the path.

To encode an f function corresponding to this problem, let y be a vector

of indicators of edges (as above), with dimension p indicating whether edge p

is used in the path. Let w be the corresponding vector of edge costs. Then

as in the bipartite matching case, fw(y) = w>y.

The combinatorial set Y = Y(s, t) is the set of all simple paths from s to t

(i.e., paths with no repeating vertices).

3.3.4 Other Types of f

In all of the above examples, f has been defined as an inner product between

w and a vector of sufficient statistics ρ(y). It is always possible to define

ρ(y) = (1{y = ŷ})ŷ∈Y, and thus if fw(y) = w>ρ(y) then each y ∈ Y has an

independent entry of w and all possible energy functions can be expressed;

this is the equivalent of representing an energy function in a tabular form

that assigns some cost to each configuration.

While such a construction is as flexible as possible, it does not mean

that all interesting fw(y) are of the form w>ρ(y). Indeed, for F (w) to

be implemented efficiently, w must be represented in some compact form

(such as edge costs in the above example), and each efficient combinatorial

optimization routine expects an input of a particular form.

3.3.4.1 Example: Connected Components f

For example, consider the weighted connected components problem. Given

a weighted graph G, cut all edges with weight less than some parameter τ

to get an unweighted graph G′ that contains the uncut edges in G, then

54 Factorizing Shortest Paths with Randomized Optimum Models

partition the nodes into connected components; that is, two nodes v and v′

are in the same connected component iff there is a path from v to v′ in G′.
For a given τ , the natural parameterization of the problem is to have one

dimension of w to represent each edge cost in G. There is some flexibility

in how to represent y, but one reasonable choice is to let yi ∈ {1, . . . , |V|}
be equal to the smallest index j such that nodes i and j are in the same

connected component. Then Y is the set of all y such that all nodes with

a given label l are connected via edges where both endpoints are labeled

l. One might then ask if there is some choice of sufficient statistics ρ such

that fw(y) = w>ρ(y) and argminy fw(y) gives the same output as the

connected components algorithm described above. It turns out that this is

not possible.

Lemma 3.1. Let G : R|E| → Y be the function that maps w to the solution to

the above weighted connected component problem with parameter τ . There is

no choice of sufficient statistics ρ(y) such that for all w, argminyw
>ρ(y) =

G(w; τ).

Proof. (By contradiction). Suppose there were a choice of ρ(y) such that

for all w, argminyw
>ρ(y) = G(w). Then F−1(y) is an intersection of

halfspaces {w : w>ρ(y) ≤ w>ρ(y′)} for each y′ ∈ Y, and is thus a convex

set. However, G−1(y) is not a convex set, and thus F cannot be equivalent

to G.

To see that G−1(y) is not a convex set, consider the fully connected graph

on three vertices 1, 2, 3 with edges (1, 2), (1, 3), (2, 3) and τ = 1−ε. Let wA =

(1, 1, 0),wB = (0, 1, 1), and y∗ be the configuration where all nodes belong to

a single connected component. Clearly wA ∈ G−1(y∗) and wB ∈ G−1(y∗).
However, consider wC = 1

2w
A + 1

2w
B = (.5, 1, .5). G(wC) assigns node 2

to its own connected component, and thus wC 6∈ G−1(y) and G−1(·) is not

always a convex set.

3.4 Learning RandOMs

There are two main approaches to learning RandOMs. Both are based on an

Expectation Maximization (EM) algorithm (Dempster et al., 1977) with w

as latent variables. A fully Bayesian treatment would also be straightforward,

in which case the M step in the Monte Carlo EM variant would be replaced

with an MCMC update, but this approach is not discussed further.

The difference between the two EM approaches is how distributions overw

are estimated. In the Monte Carlo EM algorithm (MCEM) (Wei and Tanner,

3.4 Learning RandOMs 55

1990), values of w are sampled from a posterior distribution over w; in the

Hard EM algorithm, a single most likely estimate of w is used.

In more detail, the EM algorithm can be understood as optimizing a

single objective (Neal and Hinton, 1998) via an alternating maximization

scheme. In the case of general RandOMs (3.1), the objective given a data

set D = {y(n)}Nn=1 is J(ψ, {Q(n)}Nn=1)

=

N∑
n=1

Eŵ∼Q(n)(·)
[
log
(
p(y(n) | ŵ)p(ŵ;ψ)

)
− logQ(n)(ŵ)

]
(3.10)

=

N∑
n=1

Eŵ∼Q(n)(·)
[
log 1{y(n) = F (ŵ)}+ log p(ŵ;ψ)− logQ(n)(ŵ)

]
.

(3.11)

EM algorithms alternate between maximizing J with respect to {Q(n)}Nn=1

(E step) and with respect to ψ (M step). Note that the E step is amenable

to embarassingly parallel computation.

3.4.1 M Step

In both the MCEM and Hard EM algorithms, Q(n)(·) is represented via

a set of L samples ŵ(n1), . . . , ŵ(nL). The M step is an incremental M

step (Neal and Hinton, 1998), meaning that rather than updating ψ to

optimality, an update is made that just increases J . Note that given fixed

samples from {Q(n)}Nn=1 where each sample is in the corresponding inverse

set F−1(y(n)), the M step objective (dropping terms that do not depend

on ψ) is

N∑
n=1

1

L

L∑
l=1

log p(ŵ(nl);ψ). (3.12)

This is a standard maximum likelihood objective with parameters ψ and

data w(nl), which can be optimized with whatever standard optimizer is

most appropriate for the specific form of p(w;ψ) that is chosen. For example,

if p(w;ψ) is a neural network, then stochastic gradient ascent can be used.

3.4.2 Monte Carlo E Step

The optimal choice for Q(n)(·) in the E step is to set it equal to the

posterior distribution p(w | y(n);ψ) ∝ p(w;ψ)1{F (w) = y(n)}L(w). For

most RandOMs, it does not appear possible to represent this posterior in

closed form. Instead, in Monte Carlo EM, Q(n)(·) is represented via a set

56 Factorizing Shortest Paths with Randomized Optimum Models

of L samples from this posterior. In principle, any MCMC method can be

used in the E step, but Slice Sampling (Neal, 2003) is particularly well suited

to handle the structure of the problem, as will be discussed in more detail

in Section 3.7.3.

3.4.3 Hard E Step

In the Hard EM algorithm, sampling from the posterior is replaced with a

maximization step: ŵ is chosen so as to be the argmaxw p(w;ψ)1{F (w) =

y(n)}L(w). When fw(y) is a linear function of w (as in (3.4)) and p(w;ψ)

is a Gaussian distribution (log quadratic), then the argmax computation is

a quadratic program (QP). More details of this approach appear in Tarlow

et al. (2012). An improved Hard EM algorithm appears in Gane et al. (2014).

3.5 RandOMs for Image Registration

In Tarlow et al. (2012), RandOMs are applied to registration problems. The

main application is deformable image registration in volumetric CT scans

of human lungs. For each human subject in the data set, data consists of

scans at different stages of the respiratory process that are annotated with

landmarks. The problem is to take a pair of images with their associated

landmarks and determine the correspondences between landmarks across

the two images. To formulate this problem as a RandOM, Y is the set of all

bipartite matchings with the first (second) partite set being landmarks in

the first (second) image. The sufficient statistics indicate whether landmark

i in the first image matches to landmark j in the second image, and w

assigns a cost for each i, j pair. Features are extracted for each pair based

on the difference in appearance of the volume around the landmarks, and

parameters ψ weight the importance of different features.

Experimentally, RandOMs are compared against a Structural SVM ap-

proach (Taskar et al., 2004; Tsochantaridis et al., 2005) and Perturb & MAP

(Papandreou and Yuille, 2011). Results show that RandOMs are competitive

with the alternatives and perform best in terms of accuracy.

3.6 Shortest Path Factorization

This section introduces the problem studied in detail in this chapter.

The Shortest Path Factorization (SPF) problem is to observe a data set D

of pairs of driver ids and paths D = {(dn,yn)}Nn=1 where each yn is a path

3.6 Shortest Path Factorization 57

through a graph G = (V,E) and dn ∈ {1, . . . , D} denotes the identity of the

driver. The goal is to infer properties of the edges and drivers’ preferences for

edge properties under the assumption that drivers are taking shortest paths

according to noisy copies of an underlying cost function. Given inferred

driver preferences and edge costs, it is then possible to make predictions

about the routes that will be taken by a driver on edges that have never been

encountered by the driver before. For example, we can imagine learning from

a driver traversing the streets of London and then make predictions about

what routes the driver will prefer in Toronto. Alternatively, if city planners

were considering changing road structures and they wanted to forecast how

drivers would behave given a new road topology, a shortest path factorization

model might be a good choice. In the factorization problem, we assume that

driver-specific edge costs have a low-rank structure.

More specifically, paths are assumed to be shortest paths according to the

driver’s cost function. The cost function for a path is the sum of costs of

edges on the path. Noise-free driver-specific edge costs are computed as the

inner product of trait vector Ue ∈ RK for each edge e with a driver-specific

preference vector Vd ∈ RK for each driver d. Noisy edge costs are drawn

independently from Gaussian distributions with mean equal to the noise-free

cost that are truncated to ensure that edge costs are non-negative.

The SPF problem is to infer U and V from the observations of paths.

Intuitively, suppose that edges correspond to road segments, and drivers

are members of the driving population. Paths are the routes that drivers

take to get from home to work, from home to the grocery store, from

a family member’s house to the gas station, etc. The assumption is that

there are a small number of traits that characterize each road segment. For

example, real roads vary based on the average speed of traffic, start-stop

frequency, the risk of traffic build-ups, their crowdedness, the scenery, the

degree to which being an aggressive driver helps speed progress, etc. The

degree to which a road segment e has such traits would be the kind of

information stored in Ue. The corresponding dimensions of V would then

denote how important each of these traits is to each driver. Some drivers

may be aggresive drivers concerned only about the total transit time, while

others may prefer a minimal stress drive, even if it is slower. These different

types of drivers could be represented via different Vd vectors. As in other

matrix factorization-based algorithms like those used in recommendation

systems (Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2007), it is not

assumed that the traits are given ahead of time. The assumption is simply

that this low rank structure exists, and it is up to the learning algorithm to

discover which edges and drivers have which traits.

58 Factorizing Shortest Paths with Randomized Optimum Models

3.7 Shortest Path Factorization with RandOMs

This section describes how to apply the RandOM formulation to the

SPF problem.

3.7.1 Generative Model

The RandOM generative model for SPF given a graph G = (V,E) is as

follows:

Ue ∼ Gaussian(0, σ2I) for each e ∈ E (3.13)

Vd ∼ Gaussian(0, σ2I) for each d = 1, . . . , D (3.14)

where σ2 is a fixed variance.

Next sample each path conditional upon a driver d, a start node s, and

an end node t. To sample each path:

we ∼ TruncGaussian(U>e Vd + b, 1) for each e ∈ E (3.15)

y = ShortestPath(s, t,G,w) (3.16)

where b is a fixed bias, TruncGaussian(µ, σ2) is a Truncated Gaussian that

is constrained to be greater than 0, and ShortestPath(s, t,G,w) returns the

shortest path from s to t in G using edge costs given by w.

3.7.2 Learning

The learning problem is to observe the data set D and infer parameters U

and V. Learning is done via MCEM.

The EM objective (Neal and Hinton, 1998) for a single data

point J(U,V, Q;Dn) is

Eŵ∼Q(·) [log (p(yn | w)p(ŵ | U,V)p(U)p(V))− logQ(ŵ)] . (3.17)

The EM algorithm alternates between performing E (expectation) steps and

M (maximization) steps. In the E step, U and V are held fixed and Q(·) is

updated to optimize J . Here there is a separate Qn for each n. The standard

result is that optimal choice for Qn(·) is to set it equal to the posterior

3.7 Shortest Path Factorization with RandOMs 59

distribution

p(w | yn, dn,U,V) ∝ 1{yn = F (w)}p(w | U,V, dn) (3.18)

= 1{yn = F (w)}
∏
e∈E

TruncGaussian(we; U
>
e Vdn , 1).

(3.19)

In the M step, all Qn(·) are held fixed, and J is optimized with respect to U

and V. The objective including all n is

U,V = argmax
U′,V′

N∑
n=1

Eŵ∼Qn(·)
[
log
(
p(ŵ | U′,V′)p(U′)p(V′)

)]
. (3.20)

These updates are not tractable to perform exactly, so instead an incremen-

tal MCEM algorithm is used (Neal and Hinton, 1998). In this variant, for

each n, L samples ŵ(n1), . . . , ŵ(nL) are drawn from (3.19) using a specialized

slice sampler (described below). Then the M step objective is replaced with

a Monte Carlo approximation:

N∑
n=1

1

L

L∑
l=1

[
log
(
p(ŵ(nl) | U,V)p(U)p(V)

)]
, (3.21)

and U and V are updated using a small number of steps of gradient ascent.

3.7.3 Slice Sampling for the E Step

This section describes how to implement the Monte Carlo E step using a

specialized slice sampler. The section begins by reviewing slice sampling,

and then it describes how to combine slice sampling with combinatorial

algorithms to obtain a fast sampler. This section describes a slice sampler

tailored to the shortest paths problem, and it makes a general observation

that may lead to minor improvements over Tarlow et al. (2012) for general

RandOM slice samplers.

3.7.3.1 Review of Slice Sampling

Slice sampling (Neal, 2003) is a Markov Chain Monte Carlo (MCMC)

method. It has favorable properties over alternatives like Metropolis Hast-

ings in being less sensitive to parameters of a proposal distribution, and

it has been shown to mix in polynomial time when run on log concave

distributions (Lovász and Vempala, 2003). Tarlow et al. (2012) describe a

specialization of slice sampling to RandOM models.

60 Factorizing Shortest Paths with Randomized Optimum Models

Slice sampling is used to draw samples from an unnormalized probability

distribution p̃(w). The basic idea is to sample uniformly from the region

R = {(w, u) : 0 < u < p̃(w)} using an MCMC algorithm that alternates

between resampling w conditioned on u and resampling u conditioned on w

so as to leave the distribution invariant.

The definition of R ensures that
∫
p(w, u)du ∝ p̃(w), so it is valid to jointly

sample w and u, and then discard the u components of the sample. Starting

from a current point w0, the next point is chosen as follows:

Sample u ∼ Uniform(0, p̃(w0)) (note: this should all be implemented in

log-space).

Sample w uniformly from the slice, {w′ : p̃(w′) > u}.
We say that w is in the slice if p̃(w) > u. The second step cannot always

be implemented exactly, so Neal (2003) gives alternative updates that leave

the uniform distribution over the slice invariant. The main suggestion is to

do the following:

Construct a random initial interval [wl, wr] such that w0 ∈ [wl, wr].

Step outwards by incrementing wl = wl−α until p̃(wl) < u, where α ∈ R>0

is a parameter that controls the speed at which the interval is expanded.

Similarly, step outwards by incrementing wr = wr + α until p̃(wr) < u.

At this point, a contiguous section of the slice lies completely within the

interval.

Step inwards by sampling ŵ ∼ Uniform(wl, wr). If ŵ is in the slice, then

finish and transition to ŵ. Otherwise, shrink the interval so that w0 remains

inside the interval and ŵ is one of the endpoints. Repeat the stepping inwards

step.

The above describes how to use slice sampling with a 1D w. To handle

higher dimensions as will be needed when sampling w ∈ RP , a standard

approach is to choose a random direction ∆ ∈ RP uniformly from the

surface of a sphere centered at w, and then to sample along the line defined

by w + λ∆ for λ ∈ (−∞,∞).

3.7.3.2 Specialization to General RandOMs

This section gives guidance on how slice samplers should be implemented in

general for RandOM models.

The problem is to perform one step of slice sampling on the MCEM pos-

terior (e.g., (3.19)). We are given an initial w0 ∈ F−1(y) and a direction ∆,

3.7 Shortest Path Factorization with RandOMs 61

and would like to choose a λ that leaves the distribution invariant (i.e., do

a slice sampling update). The key idea is to define three sub-slices.

The legal slice {λ : L(w + λ∆)}.
The y-slice {λ : w + λ∆ ∈ F−1(y)}.
The prior slice {λ : p(w + λ∆ | U,V, d) > u}.

The slice is then the intersection of these three sub-slices.

There are then properties of the subslices that can be useful to improve

efficiency.

Convexity. The first source of efficiency is convexity, which can arise in

all three types of sub-slice (but in any specific model may only arise in a

subset of the sub-slices). For example:

1. If L(w) measures whether all dimensions of w are positive, then the legal

slice is a convex set.

2. F−1(y) can be defined as {w : fw(y) ≤ fw(y′) ∀y′ ∈ Y}. If fw(y) is

a CRF-like energy function as discussed in Section 3.3.3, then fw(y) is a

linear function of w (see (3.4)), so F−1(y) is an intersection of halfspaces

and thus convex set, and the y-slice is also a convex set.

3. If p(w | . . .) is a log-concave distribution, then the prior slice is a convex

set.

Convexity of the individual slices can be leveraged during the Stepping In

phase of slice sampling. Since the initial point w0 will always be inside the

slice and the interval resulting from the Stepping Out phase will always have

endpoints outside the slice, convexity implies that there is a single transition

point in between w0 and each endpoint where one leaves each convex sub-

slice. For example, suppose for some λ̂ > 0, w0 + λ̂∆ is in the y-slice but not

in the slice (maybe the point is not in the prior slice); it is then immediately

known that [0, λ̂] is fully contained in the y-slice, and there is no need for

calling an expensive combinatorial algorithm for any later λ in this range

that is encountered; it suffices to simply return true. When the union of

the subslices is substantially different from the intersection, this can provide

significant savings.

Combinatorial Algorithms for the y-slice The second type of efficiency

comes from the combinatorial optimization view of F (w) and the fact that

a slice sampling step always starts with a setting of w0 that is in the y-slice.

This source of efficiency can be leveraged in addition to convexity structure

62 Factorizing Shortest Paths with Randomized Optimum Models

if both are present. There are three ways of framing the problem of testing

whether a particular w ∈ F−1(y):

1. Run a combinatorial optimization algorithm with weights w and check

whether y is an argmin.

2. Suppose we have recently solved a combinatorial optimization algorithm

with weights w′. Use a dynamic combinatorial optimization algorithm to

update the solution to be the one for w, and check whether y is an argmin.

3. Suppose we have recently solved a combinatorial optimization algorithm

with weights w′ and that y was an argmin. Check whether the argmin

changes given weights w.

Tarlow et al. (2012) shows how to use (2) to improve efficiency for bipar-

tite matching RandOMs using dynamic combinatorial algorithms. The new

observation here is that (3) can be more efficient than (2). Details for the

shortest path case are given in the next section.

Ordering the Slices. The final suggestion is to test whether a point is

in the slice by checking each of the sub-slices in order of least expensive

to most expensive, and to short-circuit the computation as soon as a point

is determined not to be in any of the sub-slices, since this implies that

the point is not in the slice. This saves runs of the more expensive sub-

slice computations and also makes the implementation more convenient by

checking for legality of a point before calling the combinatorial optimization.

3.7.3.3 Efficiently Handling the y-Slice with Shortest Path Trees

Given a source node s in a weighted graph G with all edge costs > 0, we

can run Dijkstra’s algorithm to get a shortest path tree. A shortest path tree

is represented via a pointer from each node v 6= s to a parent pa(v), and

a cost c(v) for each node. Such a structure is a shortest path tree if c(v)

represents the distance from s to v via the shortest path in G and if the last

step in the shortest path from s to v is to go from v’s parent to v. This

implies c(v) = c(pa(v)) + wpa(v),v, where wuv is the cost of edge uv.

An interesting property of shortest path trees is that they can be verified

more efficiently than they can be constructed. They can be constructed

in O(|V| log |V| + |E|) time using Dijkstra’s algorithm but verified in O(|E|)
time using a simple loop over edges (Cormen et al., Exercise 24.3-4 Solution).

To leverage this property within the slice sampler, we need a fast method

for proposing a shortest path tree T(w) given a shortest path tree T(w0).

The new suggestion is to keep the parent structure of T(w) fixed and update

3.8 Experiments 63

the node costs c(v) so that c(v) = c(pa(v))+wpa(v),v. By iterating over nodes

in topological order, this can be done in one loop over nodes (O(|V|) time).

We can then run the verification algorithm on the newly proposed shortest

path tree. If the verification algorithm succeeds, then we have proven that w

is in the y-slice. If the verification algorithm fails, then it is necessary to run

a more expensive check (e.g., run Dijkstra’s algorithm from scratch), since it

is possible for the structure of the shortest path tree to change while leaving

the shortest path from s to some target node v unchanged. However, perhaps

there is a more efficient method for determining whether the shortest path

has changed; this could be studied in future work. In general, the suggestion

when working with RandOMs is to focus on the dynamic combinatorial

verification problem (which returns true or false as to whether the argmin

has changed) instead of focusing on the dynamic combinatorial optimization

problem (which returns a full configuration).

The verification procedure is most useful in the Stepping Out phase of slice

sampling. If α is chosen to be small, then it will induce small changes in w

that do not affect the structure of the shortest path tree. In these cases, the

above procedure provides a fast way of verifying that a particular λ remains

in the y-slice.

3.8 Experiments

3.8.1 Baseline Model

The goal in choosing a baseline model is to illustrate a common tradeoff when

modelling structured data: models that ignore the combinatorial structure

of the data can be appealing because they are often simpler to train, and

sometimes a post-hoc cleanup step can enforce the combinatorial constraints

(e.g., using rejection sampling). The baseline model adopts this philosophy.

The baseline model ignores the combinatorial structure of paths and

produces a distribution that factorizes fully over the choice of each edge.

More specifically, the approach follows 3-way factored models (Memisevic

and Hinton, 2007; Krizhevsky et al., 2010; Kiros et al., 2014). There are

three input components: the driver d, the start and end nodes s and t, and

the edge identity e. Given the three inputs, the model produces a probability

that edge e is used p(ue) in the shortest path from s to t. The goal of the

model is to assign high probability to edges that are used on an observed

path and low probability to edges that are not used. A training instance is

then composed of the tuple (d, s, t, u∗e).

64 Factorizing Shortest Paths with Randomized Optimum Models

More specifically, p(ue | d, s, t) is defined as

p(ue | d, s, t) = σ
(
U>e (Vd ⊕ (Ts + Tt))

)
, (3.22)

where σ(·) is the logistic sigmoid and ⊕ is either elementwise addition

or multiplication for additive and multiplicative variants of the model,

respectively. U ∈ R|E|×K , V ∈ RD×K , and T ∈ R|V|×K are parameter

matrices for edges, drivers, and nodes respectively. Subscripts select rows,

so there is a K-dimensional real-valued representation vector for each entity.

Note that the T parameters are needed so that the distribution over which

edges are used is a function of the start and end points of the path. The

training objective is then a standard maximum likelihood objective that can

be optimized with gradient ascent.

3.8.2 Data

To test the RandOM model on the SPF problem we create a data set of N

paths describing the routes of D = 3 drivers traversing a square grid graph

with dimensions 3 × 6. We synthesize this data, by constructing K = 2

dimensional ground truth trait vectors Ugt and Vgt from which we generate

noisy edge costs

w ∼ TruncGaussian(U>gtVgt, η
2), (3.23)

where η sets the scale of the noise. For simplicity, we start by setting

the elements of the trait vectors to be random numbers uniformly drawn

from [0, 1). Later, we will consider a more carefully crafted Ugt designed to

highlight differences between the baseline and RandOM models (see Section

3.8.4).

Using these edge costs we construct an element (dn,yn) in the data set

by picking a random driver, dn ∈ {1, 2, 3}, and random distinct nodes, sn
and tn on the graph and then constructing the shortest path yn from sn
to tn according a sample from we,dn .

3.8.3 Quantitative Results as a Function of Noise and Data Size

To measure the performance of the learned parameters U and V, we

draw 3 × 103 samples from the RandOM model to obtain Monte-Carlo

estimates of log(p(yn | U,V, dn)) for each path (dn,yn) in the data. We

report the “training score” as the average of these log probabilities over the

training data and similarly compute a “test score” for 200 test paths not seen

during training. If none of the Monte-Carlo samples match yn, we remove yn

3.8 Experiments 65

from the evaluation procedure and separately report the proportion of such

failures as the sampling failure rate.

For the baseline model, we compute the equivalent training and test scores

using

p(yn | U,V,T, dn) =
∏
e∈yn

p(ue | dn, sn, tn)
∏
e/∈yn

(1− p(ue | dn, sn, tn)) .

(3.24)

We find that the baseline model assigns a significant probability to configu-

rations of edges which do not correspond to valid paths between sn and tn.

A simple fix for this is to reject these samples at test time until a valid

path is produced, but this comes at a computational cost. The score of this

rejection-sampled baseline is analytically computed on our small 3× 6 node

example by enumerating all valid paths, Y(sn, tn), between sn and tn and

then evaluating

1

N

N∑
n=1

[log (p(yn | U,V,T, dn))− log(An)] , (3.25)

where

An =
∑

y∈Y(sn,tn)

p(y | U,V,T, dn). (3.26)

The average value of An is the typical acceptance rate for the rejection

sampler which gives an indication the computational inefficiency of this

method.

Figure 3.1(a) shows the convergence of the training and test scores during

the training of a RandOM model on a data set of N = 100 paths generated

with noise η = 0.01. We find that even after the scores have plateaued, the

values of U and V continue to evolve, indicating a flat objective function

near the chosen solution. At convergence, the RandOM model considerably

Model Training Score Test Score Test Acceptance

Baseline (⊕ : multiply) -8.035 -8.655 1.0

+Rejection -0.389 -0.572 0.003

Baseline (⊕ : add) -7.594 -8.369 1.0

+Rejection -0.337 -0.542 0.003

RandOM -0.097(0%) -0.337(3.5%) 1.0

Table 3.1: Quantitative results for data size 100 and noise 0.01. Numbers in
parentheses indicate the sample failure rate.

66 Factorizing Shortest Paths with Randomized Optimum Models

-1.0

-0.5

0.0

0 50 100

Sc
o

re

Epoch / 103

Training

Test
-2.4

-1.6

-0.8

0.0

0 100 200

Te
st

 s
co

re

N

RandOM η = 0.01
RandOM η = 0.1
Baseline η = 0.01
Baseline η = 0.1

6

8

10

12

0.0001 0.01 1
η

(a) (b) (c)

ഥw

Figure 3.1: Performance of the RandOM model on the SPF problem. (a) Con-
vergence of the training and test scores for a RandOM model trained on a data
set with N = 100 and η = 0.01. (b) Comparison of the RandOM model with the
baseline (⊕ : add) as a function of N for η ∈ {0.1, 0.01}. (c) The decay of the mean
magnitude of the edge costs found by the RandOM model trained on N = 100
paths as the noise in the data set increases

outperforms the baseline models in predicting the shortest path taken by the

drivers. This superiority remains true even with costly rejection sampling

of the baseline model at test time (see table Table 3.1). We find that

surprisingly few paths are required in the training data set for the RandOM

model to achieve a good performance at test time (see Figure 3.1(b)), and

for all parameters (N , η) we tested the RandOM model outperforms the

baselines.

Besides inferring U and V, we can also ask whether the RandOM model

captures the noise in the training data. The RandOM model can represent

variability in paths with a fixed standard deviation in (3.23) by changing

the magnitude of w; smaller (larger) values cause the fixed noise to have less

(more) effect on which paths are chosen. Comparing (3.23) and (3.15), we

expect the mean magnitude, w̄, of the elements of [U>V+b] to scale as η−1.

In Figure 3.1(c) we do not see this precise scaling, but we can correctly

observe the decay of w̄ with increasing η.

Here we have shown that the RandOM model quantitatively outperforms

the baseline in a simple scenario. In the next section we describe a different

scenario, which is engineered to highlight the key qualitative difference

between the models.

3.8.4 Qualitative Results: Bias Resulting from Ignoring Combinatorial

Structure

In the E step, the RandOM model only samples configurations of edge

costs which are consistent with the shortest path structures observed in

the data. The baseline model, in contrast, treats each edge independently,

3.8 Experiments 67

Island 1 Island 2Bridge
[1,0]

[0,1]

[0,2]

D

-1.5

-1.0

-0.5

0.0

0 1 2 3 4 5D
ec

o
y

av
o

id
an

ce
 s

co
re

Bridge edges

RandOM
Baseline (add)
Baseline (multiply)

(a) (b)

Figure 3.2: Biasing the baseline model. (a) By carefully arranging cheap, expensive
and “impassable” edges (black lines), we implement a scenario resembling two
islands linked by a bridge (grey outline). For the case illustrated the bridge contains
2 edges. We add the avoided decoy edge (D) and create a data set of paths starting
at the circled node. (b) The score (representing the mean log probability oveer the
test set of generating valid paths avoiding the decoy edge) for the RandOM model
and baselines as a function of the bridge length.

and tries to learn to assign a high probability to edges used frequently in the

training data (conditioning on the path start and end nodes). In this section

we present an exaggerated scenario where the baseline’s ignorance of the

combinatorial structure in the data significantly hampers its performance.

We create a square grid graph that consists of three types of edge:

“cheap” edges have feature vectors [1, 0]

“expensive” edges have feature vectors [0, 1]

“impassable” edges have feature vectors [0, 2]

The appropriate qualitative properties of these edges can be obtained by

setting all driver feature vectors to [vn, 1], where vn � 1. We build two

separate “islands” of cheaply-linked nodes and connect these islands with

impassable edges. Then we allow one path of expensive edges (a “busy

bridge”) to link the islands. Finally, we place a single “decoy” expensive

edge on one of the islands which is never used in the ground truth paths

due to it’s cost (see Figure 3.2(a)). During training we give this carefully

constructed Ugt to the models and only learn the remaining parameters.

If we observe drivers crossing from one island to the other, the baseline

model will interpret the expensive edges on the bridge as being desirable,

since they are used frequently. This bias means that the baseline will

assign a significant probability for using the decoy edge even though this

is inconsistent with the observed paths when correctly interpreting the

constraints of the problem: if a driver is trying to get from one island to the

other, there is no choice but to use the bridge, so the fact that the bridge is

used should be irrelevant to determining the desirability of the decoy edge.

68 Factorizing Shortest Paths with Randomized Optimum Models

Instead, one should only look at whether the decoy edge is used or avoided,

and in the data it is always avoided. The RandOM model correctly makes

this inference and learns to avoid the decoy edge.

We generate a set of N = 100 training paths and separate set of 200 test

paths on our engineered graph with edge cost noise η = 0.01. All paths start

at one end of the decoy edge and finish at randomly chosen points on the

graph.

Here we score the models by how often they produce samples which

correctly avoid the decoy edge when trained on this data. For the Ran-

dOM model, the decoy avoidance score is computed as the average of

Monte Carlo estimates of log (p(y ∈ YD̄(sn, tn) | Ugt,V, dn)) over the test

set, where YD̄(sn, tn) is the set of valid paths between sn and tn avoiding

the decoy edge. For the baseline model, we again consider the case where

invalid paths are rejected and compute the decoy avoidance score as

1

N

∑
n

log

 ∑
y∈YD̄(sn,tn)

p(y | Ugt,V,T, dn)

− log(An)

 . (3.27)

Figure 3.2(b) shows how these scores vary as we increase the length of the

bridge between the islands. As the bridge extends there are more observa-

tions of drivers on expensive edges, which increasingly biases the baseline

towards paths containing the decoy edge. In contrast, the RandOM model

correctly interprets the shortest path structures in the data as indicating

that the decoy edge is undesirable.

3.9 Related Work

There are several areas related to RandOMs. One place where there has

been significant interest in perturbation-based models is in online learning,

and in particular on Follow the Perturbed Leader algorithms (Kalai and

Vempala, 2005). These algorithms have been applied to online learning in

combinatorial settings such as shortest paths (Takimoto and Warmuth, 2003;

Kalai and Vempala, 2005). See Chapter 8 for a detailed discussion of how

perturbations are used and can be understood in the online learning setting.

For the purpose of semi-supervised learning, Blum et al. (2004) construct

random graphs and find min-cuts that agree with labeled data. This lever-

ages the idea of solving random combinatorial optimization problems, but

no learning algorithm is presented. Perturb and MAP (P&M) (Papandreou

and Yuille, 2011) learn structured models that involve a combinatorial op-

timization algorithm within the model definition, focusing on the case of

3.9 Related Work 69

using efficient minimum cut algorithms for image segmentation. The mod-

elling formulation is very similar, although the RandOM formulation seems

to extend more naturally to a broader range of models and optimization

procedures. The main difference comes in the approach to learning. P&M

proposes a moment-matching objective that is easy to optimize and that

works well in practice, but the probabilistic underpinnings are less clear;

i.e., learning is not directly maximizing the likelihood of observed data un-

der the generative model. It is also not clear how, for example, P&M would

be extended to a fully Bayesian treatment. Hazan and Jaakkola (2012) devel-

ops an understanding of how the expected score of the argmax configuration

relates to the partition function of the more traditional Gibbs distribution.

Gane et al. (2014) delves deeper into the correlation structure that results

from using perturbation models with factorized perturbations.

There are other approaches to learning probabilistic structured prediction

models to optimize high order utility functions. As mentioned previously,

Gane et al. (2014) propose an improved Hard EM algorithm for the RandOM

formulation that avoids a degeneracy that is heuristically worked around by

Tarlow et al. (2012). Kim et al. (2015) employ an empirical risk minimization

approach that directly minimizes expected losses in RandOM-like models

using the combinatorial structure of the optimizer in order to do more

efficient integration. Premachandran et al. (2014) propose a pragmatic

approach of producing a set of diverse M-best proposals with combinatorial

optimization algorithms (Batra et al., 2012), and then re-calibrating a

probabilistic model over the proposals for use within a Bayesian decision

theory-like decision procedure. The downside of this approach is that it is

a two-stage procedure without a single objective function to optimize. For

the shortest paths application, Ratliff et al. (2006) present a max-margin

based approach that leverages efficient search procedure; however, there is

no probabilistic interpretation.

A somewhat different line of work that shares the basic motivation is vari-

ational autoencoders (Kingma and Welling, 2014), generative adversarial

networks (Goodfellow et al., 2014), and generative moment matching net-

works (Li et al., 2015). The generative adversarial networks and moment

matching networks use different learning objectives from maximum likeli-

hood. The commonality is that a generative model is built around highly

efficient deterministic primitives; in these cases, rather than using a com-

binatorial optimization algorithm, these works use neural networks as the

primitive. More precisely, if we letw = (θ,u), where θ are neural network pa-

rameters and u is random noise, then we could define F (w) to be the result

of applying a neural network parameterized by θ to inputs u. To make most

sense in this analogy, the output should be a structured discrete object, such

70 Factorizing Shortest Paths with Randomized Optimum Models

as a sentence. This formulation would apply equally if θ were a parameter

or a random quantity as in Bayesian formulations of neural networks. The

challenge with this direction is that in the RandOM formulation, F−1(y) is

typically more structured than such a neural net formulation, which makes

the sampling in the E step more plausibly effective. It is not immediately

obvious, for example, how one would find a w = (θ,u) such that F (w) = y

for a given a y, much less sample from the space of such w’s. However, if

this could be done effectively then an MCEM algorithm analogous to the

RandOM formulation would be a reasonable learning formulation.

3.10 Discussion

This chapter reviewed Randomized Optimum Models (RandOMs) and pre-

sented a new application of RandOMs to the problem of factorizing shortest

paths into edge-specific and driver-specific trait vectors. The key computa-

tional challenge in RandOM formulations is developing a sampler for the

E step of Monte Carlo EM. For this problem, slice sampling is particularly

well-suited, and this chapter gives an additional illustration beyond Tarlow

et al. (2012) about how to construct a slice sampler that takes advantage

of the combinatorial structure in the problem. While it may be appealing

to design simpler models that ignore the combinatorial structure present in

the data (such as the baseline from Section 3.8.1), it is shown in Section

3.8.4 that this can lead to biases in the learned model that cause the wrong

qualitative conclusions to be drawn from the observed data.

Looking forward, we would like to apply a similar formulation to models of

highly structured natural data such as images and text, and to explore opti-

mization routines beyond standard combinatorial optimization algorithms.

3.11 References

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-
best solutions in markov random fields. In Computer Vision–ECCV 2012, pages
1–16. Springer, 2012.

A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learn-
ing using randomized mincuts. In Proceedings of the twenty-first international
conference on Machine learning, page 13. ACM, 2004.

A. Bouchard-Côté and M. I. Jordan. Variational inference over combinatorial
spaces. In Advances in Neural Information Processing Systems, pages 280–288,
2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms.

3.11 References 71

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

A. Gane, T. Hazan, and T. Jaakkola. Learning with maximum a-posteriori pertur-
bation models. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 247–256, 2014.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. arXiv preprint arXiv:1206.6410, 2012.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

A. Kim, K. Jung, Y. Lim, D. Tarlow, and P. Kohli. Minimizing expected losses in
perturbation models with multidimensional parametric min-cuts. In Proceedings
of Uncertainty in Artificial Intelligence (UAI), 2015.

D. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In
Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 595–603, 2014.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. 2009.

A. Krizhevsky, G. E. Hinton, et al. Factored 3-way restricted boltzmann machines
for modeling natural images. In International Conference on Artificial Intelli-
gence and Statistics, pages 621–628, 2010.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. arXiv
preprint arXiv:1502.02761, 2015.

L. Lovász and S. Vempala. Hit-and-run is fast and fun. 2003.

J. Lubin. A human vision system model for objective image fidelity and target
detectability measurements. In Proc. EUSIPCO, volume 98, pages 1069–1072,
1998.

R. Memisevic and G. Hinton. Unsupervised learning of image transformations. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE, 2007.

V. Movahedi and J. H. Elder. Design and perceptual validation of performance
measures for salient object segmentation. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on,
pages 49–56. IEEE, 2010.

R. M. Neal. Slice sampling. Annals of Statistics, 31(3):705–767, 2003.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies
incremental and other variants. In M. I. Jordan, editor, Learning in Graphical
Models. Kluwer, Dordrecht, Netherlands, 1998.

72 Factorizing Shortest Paths with Randomized Optimum Models

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Migrating code with statisti-
cal machine translation. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 544–547. ACM, 2014.

S. Nowozin. Optimal decisions from probabilistic models: the intersection-over-
union case. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 548–555. IEEE, 2014.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proceedings of the
IEEE International Conference on Computer Vision, 2011.

P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order
statistics. In AISTATS, 2012.

V. Premachandran, D. Tarlow, and D. Batra. Empirical minimum bayes risk
prediction: How to extract an extra few% performance from vision models
with just three more parameters. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 1043–1050. IEEE, 2014.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In
International Conference on Machine Learning, 2006.

J. D. Rennie and N. Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2007.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. The
Journal of Machine Learning Research, 4:773–818, 2003.

D. Tarlow and R. Zemel. Structured output learning with high order loss functions.
In Artificial Intelligence and Statistics (AISTATS), 2012.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized optimum models for
structured prediction. In Artificial Intelligence and Statistics (AISTATS), 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances
in Neural Information Processing Systems 16: Proceedings of the 2003 Confer-
ence, volume 16, page 25. MIT Press, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453–1484, 2005.

L. G. Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189–201, 1979.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality as-
sessment: from error visibility to structural similarity. Image Processing, IEEE
Transactions on, 13(4):600–612, 2004.

G. C. Wei and M. A. Tanner. A monte carlo implementation of the em algorithm
and the poor man’s data augmentation algorithms. Journal of the American
statistical Association, 85(411):699–704, 1990.

4 Herding as a Learning System with

Edge-of-Chaos Dynamics

Yutian Chen yutianc@google.com

Google DeepMind

London, UK

Max Welling m.welling@uva.nl

University of Amsterdam

Amsterdam, Netherlands

Herding defines a deterministic dynamical system at the edge of chaos. It

generates a sequence of model states and parameters by alternating parame-

ter perturbations with state maximizations, where the sequence of states can

be interpreted as “samples” from an associated MRF model. Herding differs

from maximum likelihood estimation in that the sequence of parameters does

not converge to a fixed point and differs from an MCMC posterior sampling

approach in that the sequence of states is generated deterministically. Herd-

ing may be interpreted as a“perturb and map” method where the parameter

perturbations are generated using a deterministic nonlinear dynamical sys-

tem rather than randomly from a Gumbel distribution. This chapter studies

the distinct statistical characteristics of the herding algorithm and shows that

the fast convergence rate of the controlled moments may be attributed to edge

of chaos dynamics. The herding algorithm can also be generalized to models

with latent variables and to a discriminative learning setting. The perceptron

cycling theorem ensures that the fast moment matching property is preserved

in the more general framework.

74 Herding as a Learning System with Edge-of-Chaos Dynamics

4.1 Introduction

The traditional view of a learning system is one where an initial parameter

vector w0 is updated until some convergence criterion is met: w0,w1, ..,wT

with (in theory) T →∞ and w∞ = w∗ a fixed point of the updates. These

updates usually maximize some objective such as the log-likelihood of the

data. We can view this process as a dynamical system with a contractive

map wt+1 = Ft(wt) which is designed to iterate to a fixed point. The map

Ft can be either deterministic or stochastic. For instance, batch gradient

descent is an example of a deterministic map while stochastic gradient

descent is an example of a stochastic map. A natural question is whether the

existence of a fixed point w∗ is important, and whether meaningful learning

systems can exist that do not converge to any fixed point but traverse

an attractor set. To answer this question we can draw inspiration from

Markov chain Monte Carlo (MCMC) procedures which generate samples

from a posterior distribution P (w|D) (with D indicating the data). MCMC

also generates a sequence of parameter values w0, ..,wT but one that does

not converge to a fixed point. Rather the samples form an attractor set

with a measure (density) equal to the posterior distribution. One can make

meaningful predictions with MCMC chains by making predictions for every

sampled model wt separately and subsequently averaging the predictions.

There is also evidence that learning in the brain is a dynamical process. For

instance, Aihara and Matsumoto (1982) have described chaotic dynamics in

the Hodgkin-Huxley equations for membrane dynamics and studied them

experimentally in squid giant axons. Also, much evidence has now been

accumulated that synapses are subject to fast dynamical processes such as

postsynaptic depression and facilitation (Tsodyks et al., 1098).

Herding (Welling, 2009a) is perhaps the first learning dynamical system

based on a deterministic map and with a nontrivial attractor (i.e. not a single

fixed point). It emerged from taking the limit of infinite stepsize in the usual

(maximum likelihood) updates for a Markov random field (MRF) model. It

can be observed that in this limit the parameters will not converge to a fixed

point but rather traverse a usually non-periodic trajectory in weight space.

The information contained in the data is now stored in the trajectories (or

the attractor) of this dynamical system, rather than in a point estimate of a

collection of parameters. In fact it can be shown that this dynamical system

is neither periodic (under some conditions) nor chaotic, a state which is

associated with “edge of chaos” dynamics. As illustrated in this chapter,

by slowly increasing the stepsize (or equivalently lowering the temperature)

we will move from a standard MRF maximum likelihood learning system

4.1 Introduction 75

with a single fixed point, through a series of period doublings to a system

on the edge of chaos. One can show that the attractor is sometimes fractal,

and that the Lyapunov exponents of this system are equal to 0 implying

that two nearby trajectories will eventually separate but only polynomially

fast (and not exponentially fast as with chaotic systems). Many of the

dynamical properties of this system are described by the theory of “piecewise

isometries” (Goetz, 2000).

Herding can thus be viewed as a dynamical system that generates state-

space samples s1, .., sT that are highly similar to the samples that would

be generated by a learned MRF model with the same features. The state-

space samples satisfy the usual moment matching constraints that defines

an MRF and can be used for making meaningful predictions. In a way,

herding combines learning and inference in one dynamical system. However,

the distribution from which herding generates samples is not identical to

the associated MRF because while the same moment matching constraints

are satisfied, the entropy of the herding samples is usually somewhat lower

than the (maximal) entropy of the MRF. The sequence of samples in state

space s1, .., sT has very interesting properties. First, it forms an infinite

memory sequence as every sample depends on all the previous samples and

not just the most recent sample as in Markov sequences. It can be shown

that the number of distinct subsequences of length T grows as O(log(T))

implying that their (topological) entropy vanishes. For simple systems these

sequences can be identified with “low discrepancy sequences” and Sturmian

sequences (Marston Morse, 1940). Probably related to this is the fact that

Monte Carlo averages based on these sequences converge as O(1/T). This

should be contrasted with random independent samples from the associated

MRF distribution for which the convergence follows the usual O(1/
√
T) rate.

Herding sequences thus exhibit strong negative auto-correlations leading to

the faster convergence of Monte Carlo averages. It is conjectured that this

property is related to the edge of chaos characterization of herding, and that

both stochastic systems (such as samplers) as well as fully chaotic systems

will always generate samples that can at most result in O(1/
√
T) convergence

of Monte Carlo averages.

Similar to “perturb and map” (Papandreou and Yuille, 2011), the execu-

tion of the herding map requires one to compute the maximum a posteriori

(MAP) state defined by the current parameter setting. While maximization

is sometimes easier than computing the expectations required to update the

parameters of an MRF, for complex models maximization can also be NP

hard. A natural question is therefore if one can relax the requirement of

finding the MAP state and get away with partial maximization to, say, a

local maximum instead of the global maximum. The answer to this ques-

76 Herding as a Learning System with Edge-of-Chaos Dynamics

tion comes from a theorem that was proven a long time ago in the context

of Rosenblatt’s perceptron (Rosenblatt, 1958) and is known as the “per-

ceptron cycling theorem” (PCT) (Minsky and Papert, 1969). This theorem

states precisely which conditions need to be fulfilled by herding at every

iteration in order for the algorithm to satisfy the moment constraints. The

PCT therefore allows us to relax the condition of finding the MAP state at

every iteration, and as a side effect also allows us to run herding in an online

setting or with stochastic minibatches instead of the entire dataset. A fur-

ther relaxation of the herding conditions was described in Chen et al. (2014)

where it was shown that herding with inconsistent moments as input (mo-

ments that can not be generated by a single joint probability distribution)

still makes sense and generates the Euclidean projections of these moments

on the marginal polytope.

Like MRF models can be extended to models with hidden variables and to

discriminative models such as the conditional Markov random field (CRF)

models, herding can also be generalized along these same dimensions. Herd-

ing with hidden variables was described in Welling (2009b) and shown to

increase the ability of this dynamical system to represent complex dependen-

cies. Conditional herding was described in Gelfand et al. (2010) and shown

to be equivalent to the voted perceptron algorithm Freund and Schapire

(1999) and to Collins’ “voted HMM” Collins (2002) in certain special cases.

The herding view allowed the extension of these discriminative models to

include hidden variables.

Herding is related to (or has been connected to) a number of optimiza-

tion, learning and inference methods. Herding has obvious similarities to the

concept of “fast weights” introduced by Tieleman and Hinton (2009). Fast

weights follow a dynamics that is designed to make the Markov chain embed-

ded in a MRF learning process mix fast. A similar idea was used in Breuleux

et al. (2011) to speed up the mixing rate of an (approximate) sampling pro-

cedure. By applying herding dynamics conditionally w.r.t. its parent-states

for every variable in a graphical model yet another fast mixing sampling al-

gorithm was developed, called “herded Gibbs” Bornn et al. (2013). Herding

was extended in Chen et al. (2010) to a deterministic sampling algorithm

in continuous state spaces (known as “kernel herding”). The view espoused

in that paper led to an analysis of herding as a conditional gradient opti-

mization algorithm (or Franke-Wolfe algorithm) in Bach et al. (2012) from

which an improved convergence analysis emerged as well generalizations to

versions of herding with non-uniform weights. In related work of Huszar and

Duvenaud (2012) it was shown that an optimally weighted version of (ker-

nel) herding is equivalent to Bayesian quadrature, again resulting in faster

convergence. Harvey and Samadi (2014) focused on the convergence rate of

4.2 Herding Model Parameters 77

herding with respect to the dimensionality of the feature vector and pro-

posed a new algorithm that scaled near-optimally with the dimensionality.

Perhaps the method closest related to herding is “perturb and map” esti-

mation, where the parameters of a MRF model are perturbed by sampling

from a Gumbel distribution followed by maximization over the states. Like

in herded Gibbs, the procedure is only “exact” if exponentially many pa-

rameters are perturbed. Herding is however different from perturb and map

in that the perturbations are generated sequentially and deterministically.

This chapter is built on the results reported earlier in a series of conference

papers Welling (2009a,b); Welling and Chen (2010); Chen et al. (2010);

Gelfand et al. (2010). Our current understanding of herding is far from

comprehensive but rather represents a first attempt to connect learning

systems with the theory of nonlinear dynamical systems and chaos. We

believe that it opens the door to many new directions of research with

potentially surprising and exciting discoveries.

The chapter is organized as follows. In Section 4.2 we introduce the herd-

ing algorithm and study its statistical property as both a learning algorithm

and a dynamical system. In Section 4.3 we provide a general condition for

herding to satisfy the fast moment matching properties, under which the

algorithm is extended for partially observed models and discriminative mod-

els. We evaluate the performance of the introduced algorithms empirically

in Section 6.4. The chapter is concluded with a summary in Section 4.5 and

a conclusion in Section 4.6.

4.2 Herding Model Parameters

4.2.1 The Maximum Entropy Problem and Markov Random Fields

Define x ∈ X to be a random variable in the domain X, and φ = {φα(x)} to

be a set of feature functions of x, indexed by α. In the maximum entropy

problem (MaxEnt), given a data set of D observations D = {xi}Di=1, we

want to learn a probability distribution over x, P (x), such that the expected

features, a.k.a. moments, match the average value observed in the data set,

denoted by φ̄α. For the remaining degrees of freedom in the distribution

we assume maximum ignorance which is expressed as maximum entropy.

Mathematically, the problem is to find a distribution P such that:

P = arg max
P

H(P) s.t. Ex∼P[φα(x)] = φ̄α, ∀α (4.1)

The dual form of the MaxEnt problem is known to be equivalent to finding

the maximum likelihood estimate (MLE) of the parameters w = {wα} of a

78 Herding as a Learning System with Edge-of-Chaos Dynamics

Markov Random Field (MRF) defined on x, each parameter associated with

one feature φα:

wMLE = arg max
w

P (D; w) = arg max
w

D∏
i=1

P (xi; w), (4.2)

P (x; w) =
1

Z(w)
exp

(∑
α

wαφα(x)

)
, (4.3)

where the normalization term Z(w) =
∑

x exp(
∑

αwαφα(x)) is also called

the partition function. The parameters {wα} act as Lagrange multipliers to

enforce the constraints in the primal form 4.1. Since they assign different

weights to the features in the dual form, we will also called them “weights”

below.

It is generally intractable to obtain the MLE of parameters because the

partition function involves computing the sum of potentially exponentially

many states. Take the gradient descent optimization algorithm for example.

Denote the average log-likelihood per data item by

`(w)
def
=

1

D

D∑
i=1

logP (xi; w) = wT φ̄− logZ(w) (4.4)

The gradient descent algorithm searches for the maximum of ` with the

following update step:

wt+1 = wt + η(φ̄− Ex∼P (x;wt)[φ(x)]) (4.5)

Notice however that the second term in the gradient that averages over

the model distribution, EP (x;w)[φ(x)], is derived from the partition function

and cannot be computed efficiently in general. A common solution is to

approximate that quantity by drawing samples using Markov chain Monte

Carlo (MCMC) at each gradient descent step. However, MCMC is known to

suffer from slow mixing when the state distribution has multiple modes or

variables are strongly correlated (Neal, 1993). Furthermore, we can usually

afford to run MCMC for only a few iterations in the nested loop for the sake

of efficiency (Neal, 1992; Tieleman, 2008), which makes it even harder to

obtain an accurate estimate of the gradient.

Even when the MRF is well trained, it is usually difficult to apply the

model to regular tasks such as inference, density estimation, and model

selection, because all of those tasks require the computation of the par-

tition function. One has to once more resort to running MCMC or other

approximate inference methods during the prediction phase to obtain an

approximation.

4.2 Herding Model Parameters 79

Is there a method to speed up the inference step that exists in both the

training and test phases? The herding algorithm was proposed to address

the slow mixing problem of MCMC and combine the execution of MCMC

in both training and prediction phases into a single process.

4.2.2 Learning MRFs with Herding

When there exist multiple local modes in a model distribution, an MCMC

sampler is prone to getting stuck in local modes and it becomes difficult to

explore the state space efficiently. However, that is not a serious issue at

the beginning of the MRF learning procedure as observed by, for example,

Tieleman and Hinton (2009). This is because the parameters keep being

updated with a large learning rate η at the beginning. Specifically, when the

expected feature vector is approximated by a set of samples EP (x;w)[φ(x)] ≈
1
M

∑M
m=1φ(xm) in the MCMC approach, after each update in Equation 4.5,

the parameter w is translated along the direction that tends to reduce the

inner product of wTφ(xm), and thereby reduces the state probability around

the region of the current samples. This change in the state distribution helps

the MCMC sampler escape local optima and mix faster.

This observation suggests that we can speed up the MCMC algorithm by

updating the target distribution itself with a large learning rate. However,

in order to converge to a point estimate of a model, η needs to be decreased

using some suitable annealing schedule. But one may ask if we are necessarily

interested in a fixed value for the model parameters? As discussed in the

previous subsection, for many applications one needs to compute averages

over the (converged) model which are intractable anyway. In that case, a

sequence of samples to approximate the averages is all we need. It then

becomes a waste of resources and time to nail down a single point estimate

of the parameters by decreasing η when a sequence of samples is already

available. We will actually kill two birds with one stone by obtaining samples

during the training phase and reuse them for making predictions. The idea

of the herding algorithm originates from this observation.

The herding algorithm proposed in Welling (2009a) can be considered as

an algorithm that runs a gradient descent algorithm with a constant learning

rate on an MRF in the zero-temperature limit. Define the distribution of an

MRF with a temperature by replacing w with w/T , where T is an artificial

temperature variable. The log-likelihood of a model (multiplied by T) then

becomes:

`T (w) = wT φ̄− T log

(∑
x

exp

(∑
α

wα
T
φα(x)

))
(4.6)

80 Herding as a Learning System with Edge-of-Chaos Dynamics

When T approaches 0, all the probability is absorbed into the most

probable state, denoted as s, and the expectation of the feature vector, φ̄,

equals that of state s. The herding algorithm then consists of the iterative

gradient descent updates in the limit, T → 0, with a constant learning rate,

η:

st = arg max
x

∑
α

wα,t−1φα(x) (4.7)

wt = wt−1 + η(φ̄− φ(st)) (4.8)

We usually set η = 1 except when mentioned explicitly because the herding

dynamics is invariant to the learning rate as explained in Section 4.2.3.

We treat the sequence of most probable states, {st}, as a set of “samples”

for herding and use it for inference tasks. At each iteration, we find the

most probable state in the current model distribution deterministically, and

update the parameter towards the average feature vector from the training

data subtracted by the feature vector of the current sample. Compared

to maintaining a set of random samples in the MCMC approach (see e.g.

Tieleman, 2008), updating w with a single sample state facilitates updating

the distribution at an even rate.

If we divide both sides of Equation 4.8 by T and redefine w
T → w′ in both

Equations 4.7-4.8,

wt+1

T
=

wt

T
+
η

T
(φ̄− Ex∼P (x;wt

T
)[φ(x)]) (4.9)

we see that, after taking the limit T → ∞, we can interpret herding

as maximum likelihood learning with infinitely large stepsize and rescaled

weights. The surprising observation is that the state sequence {st} generated

by this process is still meaningful and can be interpreted as approximate

samples from an MRF model with the correct moment constraints on the

features φ(x).

One can obtain an intuitive impression of the dynamics of herding by

looking at the change in the asymptotic behavior of the gradient descent

algorithm as we decrease T in Equation 4.9 from a large value towards

0. Assume that we can compute the expected feature vector w.r.t. the

model exactly. Given an initial value of w, the gradient descent update

equation 4.9 with a constant learning rate is a deterministic mapping in

the parameter space. When T is large enough (η/T is small enough), the

optimization process will converge and w/T will approach a single point

which is the MLE. As T decreases below some threshold (η/T is above some

threshold), the convergence condition is violated and the trajectory of wt

will move asymptotically into an oscillation between two points, that is,

4.2 Herding Model Parameters 81

T
thresh

+10
-7

T
thresh

+10
-5

T
thresh

+10
-3

T
thresh

+10
-1

Temperature

1

2

4

8

16

32

64

128

256

P
e

ri
o

d

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

w1

w
2

Figure 4.1: Attractor bifurcation for a model with 4 states and 2-dimensional
feature vectors. Left: Asymptotic period of the weight sequence (i.e. size of the
attractor set) repeatedly doubles as the temperature decreases towards a threshold
value (right to left). Tthresh ≈ 0.116 in this example. The dynamics transits from
periodic to aperiodic at that threshold. Right: The evolution of the attractor set of
the weight sequence. As the temperature decreases (from dark to light colors), the
attractor set split from a single point to two points, then to four, to eight, etc. The
black dot cloud in the background is the attractor set at T = 0.

the attractor set splits from a single point into two points. As T decreases

further, the asymptotic oscillation period doubles from two to four, four

to eight, etc, and eventually the process approaches an infinite period at

another temperature threshold. Figure 4.1 shows an example of the attractor

bifurcation phenomenon. The example model has 4 discrete states and each

state is associated with 2 real valued features which are randomly sampled

from N(0, 1). Starting from that second threshold, the trajectory of w is still

bounded in a finite region as shown shortly in Section 4.3.1 but will not be

periodic any more. Instead, we observe that the dynamics often converges to

a fractal attractor set as shown in the right plot of Figure 4.1. The bifurcation

process is observed very often in simulated models although it is not clear

to us if it always happens for any discrete MRF. We discuss the dynamics

related to this phenomenon in more detail in Section 4.2.6.

4.2.3 Tipi Function and Basic Properties of Herding

We will discuss a few distinguishing properties of the herding algorithm in

this subsection. When we take the zero temperature limit in Equation 4.6,

the log-likelihood function becomes

`0(w) = wT φ̄−max
x

[
wTφ(x)

]
(4.10)

82 Herding as a Learning System with Edge-of-Chaos Dynamics

-8

-7

-6

-5

-4

-3

-2

-1

0

5

l 0
(w

)

0

w
1

-50
w

2

5-5

Figure 4.2: “Tipi function”(Welling, 2009a): the log-likelihood function at the zero
temperature limit. The black dots show the attractor set of the sequence of wt.

This function has a number of interesting properties that justify the name

“Tipi function”1 (see Figure 4.2) (Welling, 2009a):

1. `0 is continuous piecewise linear (C0 but not C1). It is clearly linear in

w as long as the maximizing state s does not change. However, changing w

may in fact change the maximizing state in which case the gradient changes

discontinuously.

2. `0 is a concave, non-positive function of w with a maximum at `0(0) = 0.

This is true because the first term represents the average EP [wTφ(x)] over

some distribution P, while the second term is its maximum. Therefore, ` 5 0.

If we furthermore assume that φ is not constant on the support of P then

`0 < 0 and the maximum at w = 0 is unique. Concavity follows because the

first term is linear and the second maximization term is convex.

3. `0 is scale free. This follows because `0(βw) = β`0(w),∀β ≥ 0 as can be

easily checked. This means that the function has exactly the same structure

at any scale of w.

Herding runs gradient descent optimization on this Tipi function. There is

no need to search for the maximum as w = 0 is the trivial solution. However,

the fixed learning rate will always result in a perpetual overshooting of the

maximum and thus the sequence of weights will never converge to a fixed

point. Every flat face of the Tipi function is associated with a state. An

important property of herding is that the state sequence visited by the

1. A Tipi is a traditional native Indian dwelling.

4.2 Herding Model Parameters 83

gradient descent procedure satisfies the moment matching constraints in

Equation 4.1, which will be discussed in details in Section 4.2.5. There are

a few more properties of this procedure that are worth noticing.

Deterministic Nonlinear Dynamics

Herding is a deterministic nonlinear dynamical system. In contrast to the

stochastic MLE learning algorithm based on MCMC, the two update steps

in Equation 4.7 and 4.8 consist of a nonlinear deterministic mapping of

the weights as illustrated in Figure 4.3. In particular it is not an MCMC

procedure and it does not require random number generation.

The dynamics thus produces pseudo-samples that look random, but should

not be interpreted as random samples. Although reminiscent of the Bayesian

approach, the weights generated during this dynamics should not be in-

terpreted as samples from some Bayesian posterior distribution. We will

discuss the weakly chaotic behavior of the herding dynamics in detail in

Section 4.2.6.

Figure 4.3: Herding as a nonlinear dynamical system.

Invariance to the Learning Rate

Varying the learning rate η does not change the behavior of the herding

dynamics. The only effect is to change the scale of the invariant attractor

set of the sequence wt. This actually follows naturally from the scale-free

property of the Tipi function. More precisely, denote with vt the standard

herding sequence with η = 1 and wt the sequence with an arbitrary learning

rate. It is easy to see that if we initialize vt=0 = 1
ηwt=0 and apply the

respective herding updates for wt and vt afterwards, the relation vt = 1
ηwt

will remain true for all t > 0. In particular, the states st will be the same

for both sequences. Therefore we simply set η = 1 in the herding algorithm.

84 Herding as a Learning System with Edge-of-Chaos Dynamics

Of course, if one initializes both sequences with arbitrary different values,

then the state sequences will not be identical. However, if one accepts

the conjecture that there is a unique invariant attractor set, then this

difference can be interpreted as a difference in initialization which only

affects the transient behavior (or “burn-in” behavior) but not the (marginal)

distribution P (s) from which the states st will be sampled.

Notice however that if we assign different learning rates {ηα} across the

dimensions of the weight vector {wα}, it will change the distribution P (s).

While the moment matching constraints are still satisfied, we notice that

the entropy of the sample distribution varies as a function of {ηα}. In fact,

changing the relative ratio of learning rates among feature dimensions is

equivalent to scaling features with different factors in the greedy moment

matching algorithm interpretation of Section 4.2.4. How to choose an optimal

set of learning rates is still an open problem.

Negative Auto-correlation

A key advantage of the herding algorithm we observed in practice over sam-

pling using a Markov chain is that the dynamical system mixes very rapidly

over the attractor set. This is attributed to the fact that maximizations are

performed on an ever changing model distribution as briefly mentioned at

the beginning of this subsection. Let π(x) be the distribution of training

data D, and st be the maximizing state at time t. The distribution of an

MRF at time t with a regular temperature T = 1 is

P (x; wt−1) ∝ exp(wT
t−1φ(x)) (4.11)

After the weights are updated with Equation 4.8, the probability of the new

model becomes

P (x; wt) ∝ exp(wT
t φ(x)) = exp((wt−1 + φ̄− φ(st))

Tφ(x))

= exp

wT
t−1φ(x) +

∑
y 6=st

π(y)φ(y)Tφ(x)− (1− π(st))φ(st)
Tφ(x)

(4.12)

Comparing Equation 4.12 with 4.11 we see that probable states (with large

π(x)) are rewarded with an extra positive term π(x)φ(x)Tφ(x), except the

most recently sampled state st. This will have the effect (after normalization)

that state st will have a smaller probability of being selected again. Imagine

for instance that the sampler is stuck at a local mode. After drawing samples

at that mode for a while, weights are updated to gradually reduce that mode

4.2 Herding Model Parameters 85

and help the sampler escape it. The resulting negative auto-correlation would

help mitigate the notorious problem of positive auto-correlation in most

MCMC methods.

We illustrate the negative auto-correlation using a synthetic MRF with

10 discrete states, each associated with a 7-dimensional feature vector. The

parameters of the MRF model are randomly generated from which the

expected feature values are then computed analytically and fed into the

herding algorithm to draw T = 105 samples. We define the auto-correlation

of the sample sequence of discrete variables as follows:

R(t) =
1

T−t
∑T−t

τ=1 I[sτ = sτ+t]−
∑

s
1
2 tP (s)2

1−∑s
1
2 tP (s)2

(4.13)

where I is the indication function and 1
2 tP is the empirical distribution

of the 105 samples. It is easy to observe that R(t = 0) = 1 and if the

samples are independently distributed R(t) = 0, ∀t > 0 up to a small

error due to the finite sample size. We run herding 100 times with different

model parameters and show the mean and standard deviation of the auto-

correlation in Figure 4.4. We can see that the auto-correlation is negative

for neighboring samples, and converges to 0 as the time lag increases. This

effect exists even if we use a local optimization algorithm when a global

optimum is hard or expensive to be obtained. This type of “self-avoidance”

is also shared with other sampling methods such as over-relaxation (Young,

1954), fast-weights PCD (Tieleman and Hinton, 2009) and adaptive MCMC

(Salakhutdinov, 2010).

0 10 20 30−0.2

0

0.2

0.4

0.6

0.8

1

Time lag

Au
to

co
rre

la
tio

n

Figure 4.4: Negative auto-correlation of herding samples from a synthetic MRF.

86 Herding as a Learning System with Edge-of-Chaos Dynamics

4.2.4 Herding as a Greedy Moment Matching Algorithm

As herding does not obtain the MLE, the distribution of the generated sam-

ples does not provide a solution to the maximum entropy problem either.

However, we observe that the moment matching constraints in Equation 4.1

are still respected, that is, when we compute the sampling average of the

feature vector it will converge to the input moments. Furthermore, the neg-

ative auto-correlation in the sample sequence helps to achieve a convergence

rate that is faster than what one would get from independently drawing

samples or running MCMC at the MLE. Before providing any quantitative

results, it would be easier for us to understand herding intuitively by taking

a “dual view” of its dynamics where we remove weights w in favor of the

states x (Chen et al., 2010).

Notice that the expression of wT can be expanded recursively using the

update Equation 4.8:

wT = w0 + T φ̄−
T∑
t=1

φ(st) (4.14)

Plugging 4.14 into Equation 4.7 results in

sT+1 = arg max
x
〈w0,φ(x)〉+ T 〈φ̄,φ(x)〉 −

T∑
t=1

〈φ(st),φ(x)〉 (4.15)

For ease of intuitive understanding of herding, we temporarily make the

assumptions (which are not necessary for the propositions to hold in the

next subsection):

1. w0 = φ̄

2. ‖φ(x)‖2 = R, ∀x ∈ X

The second assumption is easily achieved, e.g. by renormalizing φ(x) ←
φ(x)
‖φ(x)‖ or by choosing a suitable feature map φ in the first place. Given the

first assumption, Equation 4.15 becomes

sT+1 = arg max
x
〈φ̄,φ(x)〉 − 1

T + 1

T∑
t=1

〈φ(st),φ(x)〉 (4.16)

Combining the second assumption one can show that the herding update

equation 4.16 is equivalent to greedily minimizing the squared error E2
T

4.2 Herding Model Parameters 87

Figure 4.5: Herding as an infinite memory process on samples.

defined as

E2
T

def
=

∥∥∥∥∥φ̄− 1

T

T∑
t=1

φ(st)

∥∥∥∥∥
2

(4.17)

We therefore see that herding will generate pseudo-samples that greedily

minimize the distance between the input moments and the sampling average

of the feature vector at every iteration (conditioned on past samples). Note

that the error function is unfortunately not submodular and the greedy

procedure does not imply that the total collection of samples at iteration T is

jointly optimal (see Huszar and Duvenaud (2012) for a detailed discussion).

We also note that herding is an “infinite memory process” on st (as opposed

to a Markov process) illustrated in Figure 4.5 because new samples depend

on the entire history of samples generated thus far.

4.2.5 Moment Matching Property

With the dual view in the previous subsection, the distance between the

moments and their sampling average in Equation 4.17 can be considered as

the objective function for the herding algorithm to minimize. We discuss

in this subsection under what condition and at what speed the moment

constraints will be eventually satisfied.

Proposition 4.1 (Proposition 1 in Welling (2009a)). ∀α,

if limτ→∞
1

τ
wατ = 0, then limτ→∞

1

τ

∑τ
t=1 φα(st) = φ̄α.

Proof. Following Equation 4.14, we have

1

τ
wατ −

1

τ
wα0 = φ̄α −

1

τ

τ∑
t=1

φα(st) (4.18)

Using the premise that the weights grow slower than linearly and observing

that wα0 is constant we see that the left hand term vanishes in the limit

τ →∞ which proves the result.

88 Herding as a Learning System with Edge-of-Chaos Dynamics

What this says is that under the very general assumption that the weights

do not grow linearly to infinity (note that due to the finite learning rate

they can not grow faster than linear either), the moment constraints will

be satisfied by the samples collected from the combined learning/sampling

procedure. In fact, we will show later that the weights are restricted in a

bounded region, which leads to a convergence rate of O(1/τ) as stated below.

Proposition 4.2. ∀α, if there exists a constant R such that |wα,t| ≤ R,∀t,
then ∣∣∣∣∣1τ

τ∑
t=1

φα(st)− φ̄α
∣∣∣∣∣ ≤ 2R

τ
.

The proof follows immediately Equation 4.18.

Note that if we want to estimate the expected feature of a trained

MRF by a Monte Carlo method, the optimal standard deviation of the

approximation error with independent and identically distributed (i.i.d.)

random samples decays as O(1√
τ
), where τ is the number of samples.

(For positively autocorrelated MCMC methods this rate could be even

slower.) Samples from herding therefore achieve a faster convergence rate

in estimating moments than i.i.d. samples.

Recurrence of the Weight Sequence

It is important to ensure that the herding dynamics does not diverge to

infinity. Welling (2009a) discovered an important property of herding, known

as recurrence, that the sequence of the weights is confined in a ball in the

parameter space. This property satisfies the premise of both Proposition 2.1

and 2.2. It was stated in a corollary of Proposition 4.3:

Proposition 4.3 (Proposition 2 in Welling (2009a)). ∃R such that a herding

update performed outside this radius will always decrease the norm ‖w‖2.

Corollary 4.4 (Corollary in Welling (2009a)). ∃R′ such that a herding

algorithm initialized inside a ball with that radius will never generate weights

w with norm ‖w‖2 > R′.

However, there was a gap in the proof of Proposition 2 in Welling (2009a).

We give the corrected proof below:

4.2 Herding Model Parameters 89

Proof of Proposition 4.3. Write the herding update equation 4.8 as wt =

wt−1 +∇w`0(wt−1) (set η = 1). Expanding the squared norm of wt leads to

‖wt‖22 = ‖wt−1‖22 + 2wT
t−1∇w`0(wt−1) + ‖∇w`0(wt−1)‖22

=⇒ δ‖w‖22 < 2`0(wt−1) + B2 (4.19)

where we define δ‖w‖22 = ‖wt‖22 − ‖wt−1‖22. B is an upper bound of

{‖∇w`0(w)‖2 : w ∈ R|w|} introduced in Lemma 1 of Welling (2009a). That

exists as long as the norm of the feature vector φ(x) is bounded in X. We

also use the fact that `0(w) = wT∇w`0(w).

Denote the unit hypersphere as U = {w|‖w‖22 = 1}. Since `0 is continuous

on U and U is a bounded closed set, `0 can achieve its supremum on U , that

is, we can find a maximum point w∗ on U where `0(w∗) ≥ `0(w),∀w ∈ U .

Combining this with the fact that `0 < 0 outside the origin, we know

the maximum of `0 on U is negative. Now taking into account the fact

that B is constant (i.e. does not scale with w), there exists some constant

R for which R`0(w∗) < −B2/2. Together with the scaling property of `0,

`0(βw) = β`0(w), we can prove that for any w with a norm larger than R,

`0 is smaller then −B2/2:

`0(w) = ‖w‖2`0(w/‖w‖2) ≤ R`0(w∗) < −B2/2, ∀‖w‖2 > R (4.20)

The proof is concluded by plugging the inequality above in Equation 4.19.

Corollary 4.4 proves the existence of a bound for ‖w‖2 and thereby the

constant R in Proposition 4.2. Harvey and Samadi (2014) further studied

the value of R and proposed a variant of herding that obtained a near-

optimal value for R = O(
√
d log2.5 ‖X‖) w.r.t. the dimensionality of the

feature vector d and the size of a finite state space X. The proposed algorithm

has a polynomial time complexity in d and ‖X‖.

The Remaining Degrees of Freedom

Both the herding and the MaxEnt methods match the moments of the

training data. But how does herding control the remaining degrees of

freedom that are otherwise controlled by maximizing the entropy in the

MaxEnt method? This is unfortunately still an open problem. Apart from

some heuristics there is currently no principled way to enforce high entropy.

In practice however, in discrete state spaces we usually observe that the

sampling distribution from herding renders high entropy. We illustrate the

behavior of herding in the example of simulating an Ising model in the next

paragraph.

90 Herding as a Learning System with Edge-of-Chaos Dynamics

An Ising model is an MRF defined on a lattice of binary nodes,G = (E, V),

with biases and pairwise features. The probability distribution is expressed

as

P (x) =
1

Z
exp

β
 ∑

(i,j)∈E
Ji,jxixj +

∑
i∈V

hixi

 , xi ∈ {−1, 1}, ∀i ∈ V

(4.21)

where hi is the bias parameter, Ji,j is the pairwise parameter and β ≥ 0 is

the inverse temperature variable. When hi = 0, Ji,j = 1 for all nodes and

edges, and β is set at the inverse critical temperature, the Ising model is

said to be at a critical phase where regular sampling algorithms fail due to

long range correlations among variables. A special algorithm, the Swendsen-

Wang algorithm (Swendsen and Wang, 1987), was designed to draw samples

efficiently in this case. In order to run herding on the Ising model, we need

to know the average features, x̄i (0 in this case) and xixj instead of the

MRF parameters. So we first run the Swendsen-Wang algorithm to obtain

an estimate of the expected cross terms, xixj , which are constant across all

edges, and then run herding with weights for every node wi and edge wi,j .

The update equations are:

st = argmax
x

∑
(i,j)∈E

w(i,j),t−1xixj +
∑
i∈V

wi,t−1xi (4.22)

w(i,j),t = w(i,j),t−1 + xixj − si,tsj,t (4.23)

wi,t = wi,t−1 − si,t (4.24)

As finding the global optimum is an NP-hard problem we find a local

maximum for st by coordinate descent.2 Figure 4.6 shows a sample from

an Ising model on an 100 × 100 lattice at the critical temperature. We do

not observe qualitative difference between the samples generated by the Ising

model (MaxEnt) and herding, which suggests that the sample distribution

of herding may be very close to the distribution of the MRF. Furthermore,

Figure 4.7 shows the distribution of the size of connected components in the

samples. It is known that this distribution should obey a power law at the

critical temperature. We find that samples from both methods exhibit the

power law distribution with an almost identical exponent.

2. In Section 4.3.2 we show that the moment matching property still holds with a local
search as long as the found state is better than the average.

4.2 Herding Model Parameters 91

(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 4.6: Sample from an Ising model on an 100 × 100 lattice at the critical
temperature.

10
0

10
1

10
2

10
3

10
4

size of connected components

10
0

10
2

10
4

10
6

10
8

c
o

u
n

ts

Swendsen-Wang Sampling

x
-1.61

(a) Generated by Swendsen-Wang

10
0

10
1

10
2

10
3

10
4

size of connected components

10
0

10
2

10
4

10
6

c
o

u
n

ts

Herding

x
-1.55

(b) Generated by Herding

Figure 4.7: Histogram of the size of connected components in the samples of the
Ising model at the critical temperature.

4.2.6 Learning Using Weak Chaos

There are two theoretical frameworks for statistical inference: the frequentist

and the Bayesian paradigm. A frequentist assumes a true objective value

for some parameter and tries to estimate its value from samples. Except

for the simplest models, estimation usually involves an iterative procedure

where the value of the parameter is estimated with increasing precision. In

information theoretic terms, this means that more and more information

from the data is accumulated in more decimal places of the estimate. With

a finite data-set, this process should stop at some scale because there is

not enough information in the data that can be transferred into the decimal

places of the parameter. If we continue anyway, we will overfit to the dataset

92 Herding as a Learning System with Edge-of-Chaos Dynamics

at hand. In a Bayesian setting we entertain a posterior distribution over

parameters, the spread, or more technically speaking, entropy, of which

determines the amount of information it encodes. In Bayesian estimation,

the spread automatically adapts itself to the amount of available information

in the data. In both cases, the learning process itself can be viewed as

a dynamical system. For a frequentist this means a convergent series of

parameter estimates indexed by the learning iteration w1,w2, For a

Bayesian running a MCMC procedure this means a stochastic process

converging to some equilibrium distribution. Herding introduces a third

possibility by encoding all the information in a deterministic nonlinear

dynamical system. We focus on studying the weakly chaotic behavior of

the herding dynamics in this subsection. The sequence of weights never

converges but traces out a quasi-periodic trajectory on an attractor set which

is often found to be of fractal dimension. In the language of iterated maps,

wt+1 = F (wt), a (frequentist) optimization of some objective results in an

attractor set that is a single point, Bayesian posterior inference results in a

(posterior) probability distribution while herding will result in a (possibly

fractal) attractor set which seems harder to meaningfully interpret as a

probability distribution.

Example: Herding a Single Neuron

We first study an example of the herding dynamics in its simplest form and

show its equivalence to some well-studied theories in mathematics. Consider

a single (artificial) neuron, which can take on two distinct states: either

it fires (x = 1) or it does not fire (x = 0). Assume that we want to

simulate the activity of a neuron with an irrational firing rate, π ∈ [0, 1],

that is, the average firing frequency approaches limT→∞ 1
T

∑T
t=1 st = π. We

can achieve that by applying the herding algorithm with a one-dimensional

feature φ(x) = x and feeding the input moment with the desired rate φ̄ = π.

Applying the update equations 4.7-4.8 we get the following dynamics:

st = I(wt−1 > 0) (4.25)

wt = wt−1 + π − st (4.26)

where I[·] is the indicator function. With the moment matching property

we can show immediately that the firing rate converges to the desired

value π for any initial value of w. The update equations are illustrated in

Figure 4.8. This dynamics is a simple type of interval translation mapping

(ITM) problem in mathematics (Boshernitzan and Kornfeld, 1995). In a

general ITM problem, the invariant set of the dynamics often has a fractal

4.2 Herding Model Parameters 93

Figure 4.8: Herding dynamics for a single binary variable. At every iteration the
weight is first increased by π. If w was originally positive, it is then depressed by 1.

dimension. But for this simple case, the invariant set is the entire interval

(π − 1, π] if π is an irrational number and a finite set if it is rational. As a

neuron model, one can think of wt as a “synaptic strength.” At each iteration

the synaptic strength increases by an amount π. When the synaptic strength

rises above 0, the neuron fires. If it fires its synaptic strength is depressed

by a factor 1. The value of w0 only has some effect on the transient behavior

of the resulting sequence s1, s2,

It is perhaps interesting to note that by setting π = ϕ with ϕ the golden

mean ϕ = 1
2(
√

5− 1) and initializing the weights at w0 = 2ϕ− 1, we exactly

generate the “Rabbit Sequence”: a well studied Sturmian sequence which

is intimately related with Fibonacci numbers3). In Figure 4.9 we plot the

weights (a) and the states (b) resulting from herding with the “Fibonacci

neuron” model. For a proof, please see Welling and Chen (2010).

When initializing w0 = 0, one may think of the synaptic strength as an

error potential that keeps track of the total error so far. One can further

show that the sequence of states is a discrete low discrepancy sequence

(Angel et al., 2009) in the following sense:

Proposition 4.5. If w is the weight of the herding dynamics for a single

binary variable x with probability P (x = 1) = π, and wτ ∈ (π−1, π] at some

step τ ≥ 0, then wt ∈ (π − 1, π],∀t ≥ τ . Moreover, for T ∈ N, we have:∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 1]− Tπ
∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 0]− T (1− π)

∣∣∣∣∣ ≤ 1 (4.27)

Proof. We first show that (π − 1, π] is the invariant interval for herding

dynamics. Denote the mapping of the weight in Equation 4.25 and 4.26 as

3. Imagine two types of rabbits: young rabbits (0) and adult rabbits (1). At each new
generation the young rabbits grow up (0→ 1) and old rabbits produce offspring (1→ 10).
Recursively applying these rules we produce the rabbit sequence: 0 → 1 → 10 → 101 →
10110 → 10110101 etc. The total number of terms of these sequences and incidentally
also the total number of 1’s (lagged by one iteration) constitutes the Fibonacci sequence:
1, 1, 2, 3, 5, 8,

94 Herding as a Learning System with Edge-of-Chaos Dynamics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−0.4

−0.2

0

0.2

0.4

0.6

iteration

w
ei
gh
t−
va
lu
e

iteration

R
ab

bi
t
−

 H
er

di
ng

State Sequence (white=1, black = 0)

5 10 15 20 25 30

1

2

3

4

5

Figure 4.9: Sequence of weights and states generated by the “Fibonacci neuron”
based on herding dynamics. Left: Sequence of weight values. Note that the state
results by checking if the weight value is larger than 0 (in which case st = 1) or
smaller than 0 (in which case st = 0). By initializing the weights at w0 = 2ϕ − 1
and using π = ϕ, with ϕ the golden mean, we obtain the Rabbit sequence (see
main text). Right: Top stripes show the first 30 iterates of the sequence obtained
with herding. For comparison we also show the Rabbit sequence below it (white
indicates 1 and black indicates 0). Note that these two sequences are identical.

T. Then we can see that the interval (π − 1, π] is mapped to itself as

T(π−1, π] = T(π−1, 0]∪T(0, π] = (2π−1, π]∪(π−1, 2π−1] = (π−1, π] (4.28)

Consequently when wτ falls inside the invariant interval, we have wt ∈
(π − 1, π],∀t ≥ τ . Now summing up both sides of Equation 4.26 over t

immediately gives us the first inequality in 4.27 as:

Tπ −
τ+T∑
t=τ+1

I[st = 1] = wτ+T − wτ ∈ [−1, 1]. (4.29)

The second inequality follows by observing that I[st = 0] = 1−I[st = 1].

As a corollary of Proposition 4.5, when we initialize w0 = π− 1/2, we can

improve the bound of the discrepancy by a half.

Corollary 4.6. If w is the weight of the herding dynamics in Proposition

4.5 and it is initialized at w0 = π − 1/2, then for T ∈ N, we have:∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 1]− Tπ
∣∣∣∣∣ ≤ 1

2
,

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 0]− T (1− π)

∣∣∣∣∣ ≤ 1

2
(4.30)

The proof immediately follows Equation 4.29 by plugging τ = 0 and

w0 = π − 1/2. In fact, setting w0 = π − 1/2 corresponds to the condition

in the greedy algorithm interpretation in Section 4.2.4. One can see this

4.2 Herding Model Parameters 95

by constructing an equivalent herding dynamics with a feature of constant

norm as:

φ′(x) =

{
1 if x = 1

−1 if x = 0
(4.31)

When initializing the weight at the moment w′0 = φ̄′ = 2π − 1, one

can verify that this dynamics generates the same sample sequence as the

original one and their weights are the same up to a constant factor of 2,

i.e. w′t = 2wt,∀t ≥ 0. The new dynamics satisfies the two assumptions in

Section 4.2.4 and therefore the sample sequences in both dynamical systems

greedily minimize the error of the empirical probability (up to a constant

factor):∣∣∣∣∣ 1

T

T∑
t=1

φ′(x′t)− (2π − 1)

∣∣∣∣∣ = 2

∣∣∣∣∣ 1

T

T∑
t=1

I[xt = 1]− π
∣∣∣∣∣ (4.32)

This greedy algorithm actually achieves the optimal bound one can get with

herding dynamics in the 1-neuron model, which is 1/2.

Example: Herding a Discrete State Variable

The application of herding to a binary variable can be extended naturally

to a discrete state variables. Let x be a variable that can take one of the

D states, {0, 1, . . . , D − 1}. Given any distribution over these D states in

the set π ∈ RD,
∑D−1

d=0 πd = 1, we can run herding to simulate the activity

of the discrete variable. The feature function, φ(x), is defined as the 1-of-

D encoding of the discrete state, that is, a vector of D binary numbers, in

which all the numbers are 0 except for the element indexed by the value of x.

For example, for a variable with 4 states, the feature function of φ(x = 3) is

[0, 0, 1, 0]. It is easy to observe that the expected value of the feature vector

under the distribution π is exactly equal to π. Now, let us apply the herding

update equations with the feature map φ and input moment π:

st = arg max
x

wT
t−1φ(x) = arg max

x
wx,t−1 (4.33)

wt = wt−1 + π − φ(st) (4.34)

The weight variables act similarly to the synaptic strength analogy in

the neuron model example. At every iteration, the state with the highest

potential gets activated, and then the corresponding weight is depressed

after activation. Applying Proposition 4.2, we know that the empirical

distribution of the samples converges to the input distribution at a faster

96 Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.10: Cones in parameter space
{w1, w2} that correspond to the dis-
crete states s1, ..., s6. Arrows indicate
the translation vectors associated with
the cones.

Figure 4.11: Fractal attractor set for
herding with two parameters. The cir-
cles represent the feature-vectors eval-
uated at the states s1, ..., s6. Hausdorff
dimension for this example is between 0
and 1.

rate than one would get from random sampling:∣∣∣∣∣ 1

T

T∑
t=1

φ(st)− π
∣∣∣∣∣ = O

(
1

T

)
(4.35)

The dynamics of the weight vector is more complex than the case of a

binary variable in the previous subsection. However, there are still some

interesting observations one can make about the trajectory of the weights

which we explain in the appendix.

Weak Chaos in the Herding Dynamics

Now let us consider herding in a general setting with D states and each state

is associated with a K dimensional feature vector. The update equation for

the weights 4.8 can be viewed as a series of translations in the parameter

space, w → w + ρ(x), where each discrete state x ∈ X corresponds to one

translation vector (i.e. ρ(x) = φ̄−φ(x)). See Figure 4.10 for an example with

D = 6 and K = 2. The parameter space is partitioned into cones emanating

from the origin, each corresponding to a state according to Equation 4.7.

If the current location of the weights is inside cone x, then one applies the

translation corresponding to that cone and moves along ρ(x) to the next

point. This system is an example of what is known as a piecewise translation

(or piecewise isometry more generally) (Goetz, 2000).

4.2 Herding Model Parameters 97

It is clear that this system has zero Lyapunov exponents4 everywhere (ex-

cept perhaps on the boundaries between cones but since this is a measure

zero set we will ignore these). As the evolution of the weights will remain

bounded inside some finite ball the evolution will converge to some attrac-

tor set. Moreover, the dynamics is non-periodic in the typical case (more

formally, the translation vectors must form an incommensurate (possibly

over-complete) basis set; for a proof see Appendix B of Welling and Chen

(2010)). It can often be observed that this attractor has fractal dimension

(see Figure 4.11 for an example). All these facts point to the idea that herd-

ing is on the edge between full chaos (with positive Lyapunov exponents)

and regular periodic behavior (with negative Lyapunov exponents). In fact,

herding is an example of what is called “weak chaos”, which is usually defined

through its (topological) entropy discussed below. Finally, as we have illus-

trated in Figure 4.1, one can construct a sequence of iterated maps of which

herding is the limit and which exhibits period doubling. This is yet another

characteristic of systems that are classified as “edge of chaos”. Whether the

attractor set is of fractal dimension in general remains an open question. For

the case of single neuron model, the attractor is the entire interval (π−1, π]

if π is irrational but for systems with more states it remains unknown.

We will now estimate the entropy production rate of herding. This will

inform us further of the properties of this system and how it processes

information. From Figure 4.10 we see that the sequence s1, s2, ... can be

interpreted as the symbolic system of the continuous dynamical system

defined for the parameters w. A sequence of symbols (states) is sometimes

referred to as an “itinerary.” Every time w falls inside a cone we record

its label which equals the state x. The topological entropy for the symbolic

system can be defined by counting the total number of subsequences of

length T , which we will call M(T). One may think of this as a dynamical

language where the subsequences are called “words” and the topological

entropy is thus related to the number of words of length T . More precisely,

the topological entropy is defined as,

h = lim
T→∞

h(T) = lim
T→∞

logM(T)

T
(4.36)

4. The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate
of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase
space with initial separation |δZ(0)| diverge (provided that the divergence can be treated
within the linearized approximation) at a rate given by |δZ(t)| ≈ eλt|δZ(0)| where λ is
the Lyapunov exponent.

98 Herding as a Learning System with Edge-of-Chaos Dynamics

It was rigorously proven in Goetz (2000) that M(T) grows polynomially in T

for general piecewise isometries, which implies that the topological entropy

vanishes for herding. It is however interesting to study the growth of M(T)

as a function of T to get a sense of how chaotic its dynamics is.

For the simplest model of a single neruon with π being an irrational

number, it turns out M(T) = T +1, which is the absolute bare minimum for

sequences that are not eventually periodic. It implies that our neuron model

generates Sturmian sequences for irrational values of π which are precisely

defined to be the non-eventually periodic sequences of minimal complexity

(Lu and Wang, 2005). (For a proof, please see Welling and Chen (2010).)

To count the number of subsequences of length T for a general model,

we can study the T -step herding map that results from applying herding T

steps at a time. The original cones are now further subdivided into smaller

convex polygons, each one labeled with the sequence s1, s2, ..., sT that the

points inside the polygon will follow during the following T steps. Thus as we

increase T , the number of these polygons will increase and it is exactly the

number of those polygons which partition our parameter space that is equal

to the number of possible subsequences. We first claim that every polygon,

however small, will break up into smaller sub-pieces after a finite amount

of time. This is proven in Welling and Chen (2010). In fact, we expect

that in a typical herding system every pair of points will break up as well,

which, if true, would infer that the diameter of the polygons must shrink. A

partition with this property is called a generating partition. Based on some

preliminary analysis and numerical simulations, we expect that the growth of

M(T) in the typical case (a.k.a. with an incommensurate translation basis,

see Appendix B of Welling and Chen (2010)) is a polynomial function of the

time, M(T) ∼ tK , where K is the number of dimensions (which is equal to

the number of herding parameters). Since it has been rigorously proven that

any piecewise isometry has a growth rate that must have an exponent less

or equal than K (Goetz, 2000), this would mean that herding achieves the

highest possible entropy within this class of systems with H(T) = Th(T)

for a sequence of length T (for T large enough) as:

H(T) = K log(T) (4.37)

This result should be understood in comparison with regular and random

sequences. In a regular (constant or periodic) sequence, the number of

subsequences is constant with respect to the length, i.e. H(T) = const. In

contrast, the dominant part of the Kolmogorov-Sinai entropy of a random

sequence (considering, e.g., a stochastic process) or a fully chaotic sequence

4.3 Generalized Herding 99

grows linearly in time T , i.e. Hext(T) = hT due to the injected random

noise.

4.3 Generalized Herding

The moment matching property in Proposition 4.1 and 4.2 requires only

a mild condition on the L2 norm of the dynamic weights. That grants us

with great flexibility in modifying the original algorithm for more practical

implementation as well as a larger spectrum of applications. Gelfand et al.

(2010) provided a general condition on the recurrence of the weight sequence,

from which we discuss how to generalize the herding algorithm in this section

with two specific examples. Chen et al. (2014) described another extension of

herding that violated the condition but it achieved the minimum matching

distance instead in a constrained problem.

4.3.1 A General Condition for Recurrence — The Perceptron Cycling

Theorem

The moment matching property of herding relies on the recurrence of the

weight sequence (Corollary 4.4) whose proof again relies on the premise that

the maximization is carried out exactly in the herding update equation 4.7.

However, the number of model states is usually exponentially large (e.g.

|X| = Jm when x is a vector of m discrete variables each with J values) and

it is intractable to find a global maximum in practice. A local maximizer has

to be employed instead. One wonders if the features averaged over samples

will still converge to the input moments when the samples are suboptimal

states? In this subsection we give a general and verifiable condition for the

recurrence of the weight sequence based on the perceptron cycling theorem

(Minsky and Papert, 1969), which consequently suggests that the moment

matching property may still hold at the rate of O(1/T) even with a relaxed

herding algorithm.

The invention of the perceptron (Rosenblatt, 1958) goes back to the very

beginning of AI more than half a century ago. Rosenblatt’s very simple,

neurally plausible learning rule made it an attractive algorithm for learning

relations in data: for every input xi, make a linear prediction about its label:

y∗it = sign(wT
t−1xit) and update the weights as,

wt = wt−1 + xit(yit − y∗it). (4.38)

A critical evaluation by Minsky and Papert (1969) revealed the perceptron’s

limited representational power. This fact is reflected in the behavior of

100 Herding as a Learning System with Edge-of-Chaos Dynamics

Rosenblatt’s learning rule: if the data is linearly separable, then the learning

rule converges to the correct solution in a number of iterations that can

be bounded by (R/γ)2, where R represents the norm of the largest input

vector and γ represents the margin between the decision boundary and the

closest data-case. However, “for data sets that are not linearly separable,

the perceptron learning algorithm will never converge” (quoted from Bishop

et al. (2006)).

While the above result is true, the theorem in question has something

much more powerful to say. The “perceptron cycling theorem” (PCT)

(Minsky and Papert, 1969) states that for the inseparable case the weights

remain bounded and do not diverge to infinity. The PCT was initially

introduced in Minsky and Papert (1969) but had a gap in the proof that

was fixed in Block and Levin (1970).

Theorem 4.7 (Boundedness Theorem). Consider a sequence of vectors

{wt}, wt ∈ RD, t = 0, 1, . . . generated by the iterative procedure of Al-

gorithm 4.1.

Algorithm 4.1 Algorithm to generate the sequence {wt}.
V is a finite set of vectors in RD.
w0 is initialized arbitrarily in RD.
for t = 0→ T (T could be ∞) do

wt+1 = wt + vt, where vt ∈ V satisfies wT
t vt ≤ 0

end for

Then, ‖wt‖ ≤ ‖w0‖ + M,∀t ≥ 0 where M is a constant depending on V

but not on w0.

The theorem still holds when V is a finite set in a Hilbert space. The

PCT leads to the boundedness of the perceptron weights where we identify

vt = xit+1
(yit+1

− y∗it+1
), a finite set V = {xi(yi − y∗i)|yi = ±1, y∗i = ±1, i =

1, . . . , N} and observe

wT
t vt = wT

t xit+1
(yit+1

−y∗it+1
) = |wT

t xit+1
|(sign(wT

t xit+1
)yit+1

−1) ≤ 0 (4.39)

When the data is linearly separable, Rosenblatt’s learning rule will find a w

such that wTvi = 0,∀i and the sequence of wt converges. Otherwise, there

always exists some vi such that wTvi < 0 and PCT guarantees the weights

are bounded.

The same theorem also applies to the herding algorithm by identifying

vt = φ̄ − φ(st+1) with st+1 defined in Equation 4.7, a finite set V =

4.3 Generalized Herding 101

{φ̄− φ(x)|x ∈ X}, and observing that

wT
t vt = wT

t φ̄−wT
t φ(st+1) ≤ 0 (4.40)

It is now easy to see that, in general, herding does not converge because

under very mild conditions we can always find an st+1 such that wT
t vt < 0.

More importantly, the boundedness theorem (or PCT) provides a general

condition for the recurrence property and hence the moment matching

property of herding. Inequality 4.40 is easy to be verified at running time

and does not require st+1 to be the global optimum.

4.3.2 Generalizing the Herding Algorithm

PCT ensures that the average features from the samples will match the

moments at a fast convergence rate as long as the algorithm we are running

satisfies the following conditions:

1. The set V is finite,

2. wT
t vt = wT

t φ̄−wT
t φ(st) ≤ 0,∀t,

This set of mild conditions allows us to generalize the original herding

algorithm easily.

Firstly, the PCT provides a theoretical justification for using a local search

algorithm that performs partial maximization. For example, we may start

the local search from the state we ended up in during the previous itera-

tion (a so-called persistent chain (Younes, 1989; Neal, 1992; Yuille, 2004;

Tieleman, 2008)). Or, one may consider contrastive divergence-like algo-

rithms (Hinton, 2002), in which the sampling or mean field approxima-

tion is replaced by a maximization. In this case, maximizations are ini-

tialized on all data-cases and the weights are updated by the difference

between the average over the data-cases minus the average over the {si}
found after (partial) maximization. In this case, the set V is given by:

V = {φ̄ − 1
D

∑D
i=1φ(si)|si ∈ X,∀i}. For obvious reasons, it is now guar-

anteed that wT
t vt ≤ 0.

Secondly, we often use mini-batches of size d < D in practice instead

of the full data set. In this case, the cardinality of the set V is enlarged

to, e.g., |V | = C(d,D)Jm, with C(d,D) representing the “d choose D”

ways to compute the sample mean φ̄(d) based on a subset of d data-

cases. The negative term remains unaltered. Since the PCT still applies:∥∥ 1
τ

∑τ
t=1 φ̄(d),t − 1

τ

∑τ
t=1φ(st)

∥∥
2

= O(1/τ). Depending on how the mini-

batches are picked, convergence onto the overall mean φ̄ can be either

102 Herding as a Learning System with Edge-of-Chaos Dynamics

O(1/
√
τ) (random sampling with replacement) or O(1/τ) (sampling without

replacement which has picked all data-cases after dD/de rounds).

Besides changing the way we compute the positive and negative terms in

vt, generalizing the definition of features will allow us to learn a much wider

scope of models beyond the fully visible MRFs as discussed in the following

sections.

4.3.3 Herding Partially Observed Random Field Models

The original herding algorithm only works for fully visible MRFs because

in order to compute the average feature vector of the training data we have

to observe the state of all the variables in a model. In this subsection, we

generalize herding to partially observed MRFs (POMRFs) by dynamically

imputing the value of latent variables in the training data during the run

of herding. This extension allows herding to be applied to models with a

higher representative capacity.

Consider a MRF with discrete random variables (x, z) where x will be

observed and z will remain hidden. A set of feature functions is defined on x

and z, {φα(x, z)}, each associated with a weight wα. Given these quantities

we can write the following Gibbs distribution,

P (x, z; w) =
1

Z(w)
exp

(∑
α

wαφα(x, z)

)
(4.41)

The log-likelihood function with a dataset D = {xi}Di=1 is defined as

`(w) =
1

D

D∑
i=1

log

(∑
zi

exp
(
wTφ(xi, zi)

))
− logZ(w) (4.42)

Analogous to the duality relationship between MLE and MaxEnt for fully

observed MRFs, we can write the log-likelihood of a POMRF as

` = max
{Qi}

min
R

1

D

D∑
i=1

H(Qi)−H(R) (4.43)

+
∑
α

wα

(
1

D

D∑
i=1

EQi(zi)[φα(xi, zi)]− ER(x,z)[φα(x, z)]

)
(4.44)

where {Qi} are variational distributions on z, and R is a variational distri-

bution on (x, z). The dual form of MLE turns out as a minimax problem on

4.3 Generalized Herding 103

1
D

∑D
i=1 H(Qi)−H(R) with a set of constraints

1

D

D∑
i=1

EQi(zi)[φα(xi, zi)] = ER(x,z)[φα(x, z)] (4.45)

We want to achieve high entropy for the distributions {Qi} and R, and mean-

while the average feature vector on the training set with hidden variables

marginalized out should match the expected feature w.r.t. to the joint distri-

bution of the model. The weights wα act as Lagrange multipliers enforcing

those constraints.

Similar to the derivation of herding for fully observed MRFs, we now

introduce a temperature in Equation 4.42 by replacing w with w/T . Taking

the limit T → 0 of `T
def
= T`, we see that the entropy terms vanish. For a given

value of w and in the absence of entropy, the optimal distribution {Qi} and

R are delta-peaks and their averages should be replace with maximizations,

resulting in the objective,

`0(w) =
1

D

D∑
i=1

max
zi

wTφ(xi, zi)−max
s

wTφ(s) (4.46)

where we denote s = (x, z).

Taking a gradient descent update on `0 with a fixed learning rate (η = 1)

defines the herding algorithm on POMRFs (Welling, 2009b):

z∗it = arg max
zi

wT
t−1φ(xi, zi),∀i (4.47)

s∗t = arg max
s

wT
t−1φ(s) (4.48)

wt = wt−1 +

[
1

D

D∑
i=1

φ(xi, z
∗
it)

]
− φ(s∗t) (4.49)

We use a superscript “∗” to denote states obtained by maximization. These

equations are similar to herding for the fully observed case, but different in

the sense that we need to impute the unobserved variables zi for every data-

case separately through maximization. The weight update also consist of a

positive “driving term,” which is now a changing average over data-cases,

and a negative term, which is identical to the corresponding term in the

fully observed case.

Moment Matching Property

We can prove the boundedness of the weights with PCT by identifying

vt =
[

1
D

∑D
i=1φ(xi, z

∗
i,t+1)

]
− φ(s∗t+1), a finite set V = {vt({zi}, s)|zi ∈

104 Herding as a Learning System with Edge-of-Chaos Dynamics

Xz, ∀i, s ∈ X}, and observing the inequality

wT
t vt =

[
1

D

D∑
i=1

wT
t φ(xi, z

∗
i,t+1)

]
−wT

t φ(s∗t+1) (4.50)

=

[
1

D

D∑
i=1

max
zi

wT
t φ(xi, zi)

]
−max

s
wT
t φ(s) ≤ 0 (4.51)

The last inequality holds because the second term maximizes over more

variables than the first term. Again, we do not have to be able to solve the

difficult optimization problems of Equation 4.47 and 4.48. Partial progress

in the form of a few iterations of coordinate-wise descent is often enough to

satisfy the condition in Equation 4.50 which can be checked easily.

Following a similar proof as Proposition 4.2, we obtain the fast moment

matching property of herding on POMRFs:

Proposition 4.8. There exists a constant R such that herding on a partially

observed MRF satisfies∣∣∣∣∣1τ
τ∑
t=1

1

D

D∑
i=1

φα(xi, z
∗
it)−

1

τ

τ∑
t=1

φα(s∗t)

∣∣∣∣∣ ≤ 2R

τ
, ∀α (4.52)

Notice that besides a sequence of samples of the full state {s∗t } that

form the joint distribution in the herding algorithm, we also obtain a

sequence of samples of the hidden variables {z∗it} for every data case xi
that forms the conditional distribution of P (zi|xi). Those consistencies

in the limit of τ → ∞ in Proposition 4.8 are in direct analogy to the

maximum likelihood problem of Equation 4.42 for which the following

moment matching conditions hold at the MLE for all α,

1

D

D∑
i=1

EP (zi|xi;wMLE)[φα(xi, zi)] = EP (x,z;wMLE)[φα(x, z)] (4.53)

These consistency conditions alone are not sufficient to guarantee a good

model. After all, the dynamics could simply ignore the hidden variables by

keeping them constant and still satisfy the matching conditions. In this case

the hidden and visible subspaces completely decouple, defeating the purpose

of using hidden variables in the first place. Note that the same holds for the

MLE consistency conditions alone. However, an MLE solution also strives

for high entropy in the hidden states. We observe in practice that the herding

dynamics usually also induces high entropy in the distributions for z avoiding

the decoupling phenomenon described above.

4.3 Generalized Herding 105

The proof of the boundedness of weights depends on the assumption that

we can find the global maximum in Equation 4.48, which is an intractable

problem. Welling (2009b) also proposed a fully tractable herding variant

that was guaranteed to satisfy PCT.

Proposition 4.9. Call A any tractable optimization algorithm to locate a

local maximum in the product wTφ(x, z). This algorithm will be used to

compute both z∗i and s∗. Call EA(xi,w) = −wTφ(xi, z
∗
i) the energy of data-

case i (note that this definition depends on the algorithm A). Assume that

given any initialization, A always return a state with an energy no larger

than its initial state. Then the following tractable herding algorithm will

remain in a compact region of weight space: Apply the usual herding updates

with the difference that the optimization for s∗ is initialized at the state

(xi∗ , z
∗
i∗) which represents the data-case with lowest energy EA(xi,w).

Proof. The proof is trivial using the PCT condition as:

wT
t vt = −

[
1

D

D∑
i=1

EA(xi,wt)

]
+ EA(s∗,wt) (4.54)

≤ −
[

1

D

D∑
i=1

EA(xi,wt)

]
+ EA(xi∗ ,wt) ≤ 0 (4.55)

4.3.4 Herding Discriminative Models

We have been talking about running herding dynamics in an unsupervised

learning setting. The idea of driving a nonlinear dynamical system to match

moments can also be applied to discriminative learning by incorporating

labels into the feature functions. Recalling the perceptron learning algorithm

in Section 4.3.1, the learning rule in Equation 4.38 can be reformulated in

herding style:

y∗it = argmax
y∈{−1,1}

wT
t−1(xity) (4.56)

wt = wt−1 + xityit − xity
∗
it (4.57)

where we identify the feature functions as φj(x, y) = xjy, j = 1, . . . ,m,

use mini-batches of size 1 at every iteration, and do a partial maximization

of the full state (x, y) with the covariate x clamped at the input xit . The

PCT guarantees that the moments (correlation between covariates and la-

bels) ED[xy] from the training data are matched with EDxP (y∗|x)[xy
∗] where

p(y∗|x) is the model distribution implied by how the learning process gen-

106 Herding as a Learning System with Edge-of-Chaos Dynamics

erates y∗ with the sequence of weights wt. The voted perceptron algorithm

(Freund and Schapire, 1999) is an algorithm that runs exactly the same up-

date procedure, applies the weights to make a prediction on the test data at

every iteration y∗test,t, and obtains the final prediction by averaging over iter-

ations y∗test = sign(1
τ

∑τ
t=1 y

∗
test,t). This amounts to learning and predicting

based on the conditional expectation EP (y∗|x)[y
∗ = 1|xtest] in the language

of herding.

Let us now formulate the conditional herding algorithm in a more general

way (Gelfand et al., 2010). Denote the complete state of a data-case by

(x,y, z) where x is the visible input variable, y is the label, and z is

the hidden variable. Define a set of feature functions {φα(x,y, z)} with

associated weights {wα}. Given a set of training data-cases, D = {xi,yi},
and a test set Dtest = {xtest,j}, we run the conditional herding algorithm to

learn the correlations between the inputs and the labels and make predictions

at the same time using the following update equations:

z′it = argmax
zi

wT
t−1φ(xi,yi, zi),∀(xi,yi) ∈ D (4.58)

(y∗it, z
∗
it) = argmax

(yi,zi)
wT
t−1φ(xi,yi, zi),∀xi ∈ Dx (4.59)

wt = wt−1 +

[
1

D

D∑
i=1

φ(xi,yi, z
′
it)

]
−
[

1

D

D∑
i=1

φ(xi,y
∗
it, z
∗
it)

]
(4.60)

(y∗test,j,t, z
∗
test,j,t) = arg max

(yj ,zj)
wT
t φ(xtest,j ,yj , zj),∀xtest,j ∈ Dtest

(4.61)

In the positive term of Equation 4.60, we maximize over the hidden variables

only, and in the negative term we maximize over both hidden variables and

the labels. The last equation generates a sequence of labels, y∗test,j,t, that can

be considered as samples from the conditional distribution of the test input

from which we obtain an estimate of the underlying conditional distribution:

P (y|xtest,j) ≈
1

τ

τ∑
t=1

I(y∗test,j,t = y) (4.62)

In general, herding systems perform better when we use normalized fea-

tures: ‖φ(x, z,y)‖ = R, ∀(x, z,y). The reason is that herding selects states

by maximizing the inner product wTφ and features with large norms will

therefore become more likely to be selected. In fact, one can show that

states inside the convex hull of the φ(x,y, z) are never selected. For bi-

nary (±1) variables all states live on the convex hull, but this need not be

true in general, especially when we use continuous attributes x. To rem-

4.3 Generalized Herding 107

edy this, one can either normalize features or add one additional feature5

φ0(x,y, z) =
√
R2

max − ||φ(x,y, z)||2, where Rmax = maxx,y,z ‖φ(x,y, z)‖
with x only allowed to vary over the data-cases.

We may want to use mini-batches Dt instead of the whole training set for

a more practical implementation, and the argument on the validity of using

mini-batches in Section 4.3.2 applies here as well. It is easy to observe that

Rosenblatts’s perceptron learning algorithm is a special case of conditional

herding when there are no hidden variables, y is a single binary variable,

the feature function is φ = xy, and we use a mini-batch of size 1 at every

iteration.

Compared to the herding algorithm on partially observed MRFs, the

main difference is that we do partial maximization in Equation 4.59 with

a clamped visible input x on every training data-case instead of a joint

maximization on the full state. Notice that in this particular variant of

herding, the sequence of updates may converge when all the training data-

cases are correctly predicted, that is, y∗it = yi,∀i = 1, . . . , D at some t.

For an example, the convergence is guaranteed to happen for the percepton

learning algorithm on a linearly separable data set. We adopt the strategy

in the voted perceptron algorithm (Freund and Schapire, 1999) which stops

herding when convergence occurs and uses the sequence of weights up to

that point for prediction in order to prevent the converged weights from

dominating the averaged prediction on the test data.

Clamping the input variables allows us to achieve the following moment

matching property:

Proposition 4.10. There exists a constant R such that conditional herding

with the update equations 4.58-4.60 satisfies∣∣∣∣∣ 1

D

D∑
i=1

1

τ

τ∑
t=1

φα(xi,y
∗
it, z
∗
it)−

1

D

D∑
i=1

1

τ

τ∑
t=1

φα(xi,yi, z
′
it)

∣∣∣∣∣ ≤ 2R

τ
,∀α (4.63)

The proof is straightforward by applying PCT where we identify

vt =

[
1

D

D∑
i=1

φ(xi,yi, z
′
it)

]
−
[

1

D

D∑
i=1

φ(xi,y
∗
it, z
∗
it)

]
, (4.64)

the finite set V = {v({z′i}, {y∗i }, {z∗i })|z′i ∈ Xz,y
∗
i ∈ Xy, z

∗
i ∈ Xz}, and

observe the inequality wT
t vt ≤ 0 because of the same reason as herding

on POMRFs. Note that we require V to be of a finite cardinality, which in

return requires Xy and Xz to be finite sets, but there is not any restriction on

5. If in test data this extra feature becomes imaginary we simply set it to zero.

108 Herding as a Learning System with Edge-of-Chaos Dynamics

the domain of the visible input variables x. Therefore we can run conditional

herding with input x as continuous variables.

Zero Temperature Limit of CRF

Consider a CRF with the probability distribution defined as

P (y, z|x; w) =
1

Z(w,x)
exp

(∑
α

wαφα(x,y, z)

)
(4.65)

where Z(w,x) is the partition function of the conditional distribution. The

log-likelihood function for a dataset D = {xi,yi}Di=1 is expressed as

`(w) =
1

D

D∑
i=1

(
log

(∑
zi

exp
(
wTφ(xi,yi, zi

))
− logZ(w,xi)

)
(4.66)

Let us introduce the temperature T by replacing w with w/T and take the

limit T → 0 of `T
def
= T`. We then obtain the familiar piecewise linear Tipi

function

`0(w) =
1

D

D∑
i=1

(
max
zi

wTφ(xi,yi, zi)−max
yi,zi

wTφ(xi,yi, zi)

)
(4.67)

Running gradient descent updates on `0(w) immediately gives us the update

equations of conditional herding 4.58-4.60.

Similar to the duality relationship between MLE on MRFs and the Max-

Ent problem, MLE on CRFs is the dual problem of maximizing the entropy

of the conditional distributions while enforcing the following constraints:

1

D

D∑
i=1

EP (z|xi,yi) [φα(xi,yi, z)] =
1

D

D∑
i=1

EP (y,z|xi) [φα(xi,y, z)] ,∀α (4.68)

When we run conditional herding, those constraints are satisfied with the

moment matching property in Proposition 4.10, but how to encourage high

entropy during the herding dynamics is again an open problem. We suggest

some heuristics to achieve high entropy in the next experimental section.

Note that there is a difference between MLE and conditional herding when

making predictions. While the prediction of a CRF with MLE is made with

the most probable label value at a point estimate of the parameters, con-

ditional herding resorts to a majority voting strategy as in the voted per-

ceptron algorithm. The regularization effect via averaging over predictions

often provides more robust performance as shown later.

4.4 Experiments 109

4.4 Experiments

We study the empirical performance of the herding algorithm introduced in

Section 4.2 and the extension with hidden variables in Section 4.3.3 and for

discriminative models in Section 4.3.4.

4.4.1 Herding with Fully Visible Models

In the following experiments we will determine the ability of herding to

convert information about the average value of features in the training

data into estimates of some quantities of interest. In particular the input

to herding will be joint probabilities of pairs of variables (denoted H.XX)

and sometimes triples of variables (denoted H.XXX) where all variables will

be binary valued (which is easily relaxed).

In experiment I we will consider the quantity P (k) = E[I[
∑

iXi =

k − 1]] which is the distribution of the total number of 1’s across all

attributes. This quantity involves all variables in the problem and cannot

be directly estimated from the input which consists of pairwise information

only. This experiment measures the ability of herding to generalize from

local information to global quantities of interest. In total 100K samples were

generated and used to estimate P (k). The results were compared with the

following two alternatives: 1) sampling 100K pseudo-samples from the single

variable marginals and using them to estimate P (k) (denoted “MARG”), 2)

learning a fully connected, fully visible Boltzmann machine using the pseudo-

likelihood method6 (denoted PL), then sampling 200K samples from that

model and using the last 100K to estimate P (k).

In experiment II we will estimate a discriminant function for classifying

one attribute (the label) given the values of other attributes. Our approach

was simply to perform online learning of a logistic regression function after

each pseudo-sample collected from herding. Again, local pairwise informa-

tion is turned into a global discriminant function which is then compared

with some standard classifiers learned directly from the data. In particu-

lar, we compared against Naive Bayes, 5-nearest neighbors, logistic regres-

sion and a fully observed, fully connected Boltzmann machine learned with

pseudo likelihood on the joint space of attributes and labels. The learned

model’s conditional distribution of label given the remaining attributes was

subsequently used for prediction.

We have used the following datasets in our experiments.

6. This method is close to optimal for this type of problem (Parise and Welling, 2005).

110 Herding as a Learning System with Edge-of-Chaos Dynamics

Dataset H.XXX H.XX PL MARG

Bowling 5E-3 4.1E-2 1.2E-1 4.3E-1

Abelone 8E-4 2.5E-3 2.2E-2 1.8E0

Digits - 6.2E-2 3.3E-2 4E-1

News - 2.5E-2 1.9E-2 5E-1

Table 4.1: Abelone/Digits/NewsGroups: KL divergence between true (data)
distribution and the estimates from 1) herding algorithm using all triplets, 2)
herding with all pairs, 3) samples from pseudo-likelihood model and 4) samples
from single marginals.

A) The “Bowling Data” set.7 Each binary attribute represents whether a

pin has fallen during two subsequent bowls. There are 10 pins and 298 games

in total. This data was generated by P. Cotton to make a point about the

modelling of company default dependency. Random splits of 150 train and

148 test instances were used for the classification experiments.

B) Abalone dataset.8 We converted the dataset into binary values by

subtracting the mean from all (8) attributes and labels and setting all

obtained values to 0 if smaller than 0 and 1 otherwise. For the classification

task we used random subsets of 2000 examples for training and the remaining

2177 for testing.

C) “Newsgroups-small”9 prepared by S. Roweis. It has 100 binary at-

tributes and 16, 242 instances and is highly sparse (4% of the values is 1).

Random splits of 10, 000 train and 6, 242 test instances were used for the

classification experiments.

D) Digits: 8×8 binarized handwritten digits. We used 1100 examples from

the digit classes 3 and 5 respectively (a total of 2200 instances). The dataset

contains 30% 1’s. This dataset was split randomly in 1600 train and 600 test

instances.

The results for experiment I are shown in Table 4.1 and Figure 4.12. Note

that the herding algorithms are deterministic and repetition would have

resulted in the same values.

We observe that herding is successful in turning local average statistics

into estimates of global quantities. Providing more information such as joint

probabilities over triplets does significantly improve the result (the triplet

results for Digits and News took too long to run due to the large number

of triplets involved). Also of interest is the fact that for the low dimensional

7. http://www.financialmathematics.com/wiki/Code:tenpin/data
8. Downloadable from UCI repository
9. Downloaded from: http://www.cs.toronto.edu/~roweis/data.html

4.4 Experiments 111

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

P
(k

)

Empirical
H.XXX
H.XX
PL
MARG

Figure 4.12: Estimates of P (k) for the Bowling dataset. Each group of 5 bars
represent the estimates for 1) ground truth, 2) herding with triples, 3) herding with
pairs, 4) pseudo-likelihood, 5) marginals.

Dataset H.XXY PL 5NN NB LR

Abelone 0.24± 0.004 0.24± 0.004 0.33± 0.1 0.27± 0.006 0.24± 0.004

Bowling 0.23± 0.03 0.28± 0.06 0.32± 0.05 0.23± 0.03 0.23± 0.03

Digits 0.05± 0.01 0.06± 0.01 0.05± 0.01 0.09± 0.01 0.06± 0.02

News 0.11± 0.005 0.04± 0.001 0.13± 0.006 0.12± 0.003 0.11± 0.004

Table 4.2: Average classification results averaged over 5 runs.

data H.XX outperformed PL but for the high-D datasets the opposite was

true while both methods seem to leverage the same second order statistics

(even though PL needs the actual data to learn its model).

The results for the classification experiment are shown in Table 4.2. On

all tasks the online learning of a linear logistic regression classifier did just

as well as running logistic regression on the original data directly. This

implies that the herding algorithm generates the information necessary

for classification and that the decision boundary can be learned online

during herding. Interestingly, the PL procedure significantly outperformed

all standard classifiers as well as herding on the Newsgroup data. This

implies that a more sophisticated decision boundary is warranted for this

data.

To see if the herding sequence contained the information necessary to

estimate such a decision boundary we reran PL on the first 10,000 pseudo-

112 Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.13: Top half: Sequence of 300 pseudo-samples generated from a herding
algorithm for the “Newsgroup” dataset. White dots indicate the presence of certain
word-types in documents (represented as columns). Bottom half: Newsgroup data
(in random order). Data and pseudo-samples have the same first and second order
statistics.

samples generated by herding resulting in an error of 0.04, answering the

question in the affirmative. A plot of the herding pseudo-samples as com-

pared to the original data is shown in Figure 1.

4.4.2 Herding with Hidden Variables

We studied generalized herding on the architecture of a restricted Boltzmann

machine (Hinton, 2002) (RBM). We used features φ(x, z) = {xj , zk, xjzk},
where j and k are indices of variables, and the {−1,+1} representation be-

cause we found it worked significantly better than the {0, 1} representation.

To increase the entropy of the hidden units we left out the growth update

for the features {zk} implying that p(zk = 1) ≈ 0.5. The intuition is the

same as for bagging: we want to create a high diversity of (almost inde-

pendent) ways to reconstruct the data because it will reduce the variance

when making predictions. We observed that high entropy hidden represen-

tations automatically emerged when using a large number of hidden units.

In contrast, for a small number of hidden units (say K < 30) there is a

tendency for the system to converge on low entropy representations and the

trick delivers some improvement.

We applied herding to the USPS Handwritten Digits dataset10 which

consists of 1100 examples of each digit 0 through 9 (totaling 11, 000 ex-

10. Downloaded from http://www.cs.toronto.edu/~roweis/data.html

4.4 Experiments 113

amples). Each image has 256 pixels and each pixel has a value between

[1..256] which we turned into a binary representation through the mapping

x′j = 2Θ(xj256 − 0.2)− 1 with Θ(x > 0) = 1 and 0 otherwise. Each digit class

was randomly split into 700 train, 300 validation and 100 test examples.

As benchmarks we used 1NN using Manhattan distance and multinomial

logistic regression, both in pixel space.

We used two versions of herding, one where the maximization over s was

initialized at the value from the previous time step (H) and one where we

initialize at the data-case with the lowest energy (SH — the tractable al-

gorithm). In both cases we ran herding for 2000 iterations for each class

individually. During the second 1000 iterations we computed the energies

for the training data in that class, as well as for all validation and test data

across all classes. At each iteration we then used the training energies to

standardize the validation and test energies by computing their Z-scores:

E′i = (Ei − µtrn)/σtrn where µtrn and σtrn represent the mean and standard

deviation of the energies of the training data at that iteration. The standard-

ized energies for test and validation data were subsequently averaged over

herding iterations (using online averaging). Once we have collected these

average standardized energies across all digit classes we fit a multinomial

logistic regression classifier to the validation data, using the 10 class-specific

energies as features.

We also compared these results against models learned with contrastive

divergence (Hinton, 2002) (CD) and persistent CD (Tieleman, 2008) (PCD).

For both CD and PCD we first applied (P)CD learning for 1000 iterations

in batch mode, using a stepsize of η = 10−3. A momentum parameter of 0.9

and 1-step reconstructions were used for CD. No momentum and a single

sample in the negative phase was used for PCD. In the second 1000 iterations

we continued learning but also collected standardized validation and test

energies as before which we subsequently used for classification. We have also

experimented with chains of length 10 and found that it did not improved

the results but became prohibitively inefficient. To improve efficiency we

experimented with learning in mini-batches but this degraded the results

significantly, presumably because the number of training examples used to

standardize the energy scores became less reliable.

The results reported in Figure 4.14 show the classification results averaged

across 4 runs with different splits and for different values of hidden units.

Without trying to claim superior performance we merely want to make the

case that herding can be leveraged to achieve state-of-the-art performance

(note that USPS error rates are higher than MNIST error rates). We also see

that the tractable version of herding did not perform as well as the herding

using local optimization, which in turn performed equally well as learning a

114 Herding as a Learning System with Edge-of-Chaos Dynamics

MLR1NN H1 H2 H3 H4 H5 SH1SH2SH3SH4SH5CD1CD2CD3PCD
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Method

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

Figure 4.14: Classification results on USPS digits. 700 digits per class were used
for training, 300 for validation and 100 for testing. Shown are average results over
4 different splits and their standard errors. From left to right: MLR (multinomial
logistic regression), 1NN (1-nearest neighbor), H1-H5 (herding using local opti-
mization with 50,100,250,500 and 1000 hidden units respectively), SH1-SH5 (safe,
tractable herding from section 7 with 50,100,250,500 and 1000 hidden units respec-
tively), CD1-CD3 (contrastive divergence with 50,100,250 hidden units respectively)
and PCD (persistent CD with 500 hidden units).

xi1 xi2 xiD... yi1 yi2 yiC...

zi1 zi2 ziK...

W B

�

Figure 4.15: Discriminative Restricted Boltzmann Machine model of distribution
p(y, z|x).

model using CD. Persistent CD did not give very good results presumably

because we did not use optimal settings for step-size, weight-decay etc.. It

is finally interesting to observe that there does not seem to be any sign of

over-fitting for herding. For the model with 1000 hidden units, the total

number of real parameters involved is around 1.5 million which represents

more capacity than the 1.5 million binary pixel values in the data.

4.4.3 Discriminative Herding

We studied the behavior of conditional herding on two artificial and four real-

world data sets, comparing its performance to that of the voted perceptron

(Freund and Schapire, 1999) and that of discriminative RBMs (Larochelle

and Bengio, 2008). All the experiment results in this subsection are accred-

ited to the authors of Gelfand et al. (2010).

4.4 Experiments 115

Voted perceptron
Discr. RBM
Cond. herding

(a) Banana data set.

(b) Lithuanian data set.

Figure 4.16: Decision boundaries of VP, CH, and dRBMs on two artificial data
sets.

We studied conditional herding in the discriminative RBM (dRBM) ar-

chitecture illustrated in Figure 4.15, that is, we use the following parame-

terization

wTφ(x,y, z) = xTWz + yTBz + θT z +αTy. (4.69)

where W, B, θ and α are the weights, z is a binary vector and y is a binary

vector in a 1-of-K scheme.

Per the discussion in Section 4.3.4, we added an additional feature φ0(x) =√
R2

max − ||x||2 with Rmax = maxi ‖xi‖ in all experiments.

Experiments on Artificial Data

To investigate the characteristics of the voted perceptron (VP), discrimina-

tive RBM (dRBM) and conditional herding (CH), we used the techniques

discussed in Section 4.3.4 to construct decision boundaries on two artificial

data sets: (1) the banana data set; and (2) the Lithuanian data set. We ran

VP and CH for 1, 000 epochs using mini-batches of size 100. The decision

boundary for VP and CH is located at the location where the sign of the

prediction y∗test changes. We used conditional herders with 20 hidden units.

The dRBMs also had 20 hidden units and were trained by running conjugate

gradients until convergence. The weights of the dRBMs were initialized by

sampling from a Gaussian distribution with a variance of 10−4. The decision

boundary for the dRBMs is located at the point where both class posteriors

are equal, i.e., where p(y∗test = −1|x̃test) = p(y∗test = +1|x̃test) = 0.5.

Plots of the decision boundary for the artificial data sets are shown in

Figure 4.16. The results on the banana data set illustrate the representa-

116 Herding as a Learning System with Edge-of-Chaos Dynamics

tional advantages of hidden units. Since VP selects data points at random to

update the weights, on the banana data set, the weight vector of VP tends

to oscillate back and forth yielding a nearly linear decision boundary.11 This

happens because VP can regress on only 2+1 = 3 fixed features. In contrast,

for CH the simple predictor in the top layer can regress onto M = 20 hidden

features. This prevents the same oscillatory behavior from occurring.

Experiments on Real-World Data

In addition to the experiments on synthetic data, we also performed experi-

ments on four real-world data sets - namely, (1) the USPS data set, (2) the

MNIST data set, (3) the UCI Pendigits data set, and (4) the 20-Newsgroups

data set. The USPS data set consists of 11,000, 16× 16 grayscale images of

handwritten digits (1, 100 images of each digit 0 through 9) with no fixed

division. The MNIST data set contains 70, 000, 28× 28 grayscale images of

digits, with a fixed division into 60, 000 training and 10, 000 test instances.

The UCI Pendigits consists of 16 (integer-valued) features extracted from

the movement of a stylus. It contains 10, 992 instances, with a fixed division

into 7, 494 training and 3, 498 test instances. The 20-Newsgroups data set

contains bag-of-words representations of 18, 774 documents gathered from

20 different newsgroups. Since the bag-of-words representation comprises of

over 60, 000 words, we identified the 5, 000 most frequently occurring words.

From this set, we created a data set of 4, 900 binary word-presence features

by binarizing the word counts and removing the 100 most frequently occur-

ring words. The 20-Newsgroups data has a fixed division into 11, 269 training

and 7, 505 test instances. On all data sets with real-valued input attributes

we used the ‘normalizing’ feature described above.

The data sets used in the experiments are multi-class. We adopted a 1-of-K

encoding, where if yi is the label for data point xi, then yi = {yi,1, ..., yi,K}
is a binary vector such that yi,k = 1 if the label of the ith data point is k

and yi,k = −1 otherwise. Performing the maximization in Equation 4.59 is

difficult when K > 2. We investigated two different procedures for doing

so. In the first procedure, we reduce the multi-class problem to a series of

binary decision problems using a one-versus-all scheme. The prediction on

a test point is taken as the label with the largest online average. In the

second procedure, we make predictions on all K labels jointly. To perform

the maximization in Equation 4.59, we explore all states of y in a one-of-K

encoding - i.e. one unit is activated and all others are inactive. This partial

11. On the Lithuanian data set, VP constructs a good boundary by exploiting the added
‘normalizing’ feature.

4.4 Experiments 117

maximization is not a problem as long as the ensuing configuration satisfies

wT
t vt ≤ 0.12 The main difference between the two procedures is that in

the second procedure the weights W are shared amongst the K classifiers.

The primary advantage of the latter procedure is its less computationally

demanding than the one-versus-all scheme.

We trained the dRBMs by performing iterations of conjugate gradients

(using 3 line searches) on mini-batches of size 100 until the error on a

small held-out validation set started increasing (i.e., we employed early

stopping) or until the negative conditional log-likelihood on the training

data stopped coming down. Following Larochelle and Bengio (2008), we use

L2-regularization on the weights of the dRBMs; the regularization parameter

was determined based on the generalization error on the same held-out

validation set. The weights of the dRBMs were initialized from a Gaussian

distribution with variance of 10−4.

CH used mini-batches of size 100. For the USPS and Pendigits data sets

CH used a burn-in period of 1, 000 updates; on MNIST it was 5, 000 updates;

and on 20 Newsgroups it was 20, 000 updates. Herding was stopped when

the error on the training set became zero.13

The parameters of the conditional herders were initialized by sampling

from a Gaussian distribution. Ideally, we would like each of the terms in

the energy function in Equation 4.69 to contribute equally during updating.

However, since the dimension of the data is typically much greater than the

number of classes, the dynamics of the conditional herding system will be

largely driven by W. To negate this effect, we rescaled the standard deviation

of the Gaussian by a factor 1/M with M the total number of elements of

the parameter involved (e.g. σW = σ/(dim(x) dim(z)) etc.). We also scale

the learning rates η by the same factor so the updates will retain this scale

during herding. The relative scale between η and σ was chosen by cross-

validation. Recall that the absolute scale is unimportant (see Section 4.3.4

for details).

In addition, during the early stages of herding, we adapted the param-

eter update for the bias on the hidden units θ in such a way that the

marginal distribution over the hidden units was nearly uniform. This has

the advantage that it encourages high entropy in the hidden units, lead-

ing to more useful dynamics of the system. In practice, we update θ as

12. Local maxima can also be found by iterating over y∗,ktest, z
∗,k
test,j , but the proposed

procedure is more efficient.
13. We use a fixed order of the mini-batches, so that if there are D data cases and the
batch size is d, if the training error is 0 for dD/de iterations, the error for the whole
training set is 0.

118 Herding as a Learning System with Edge-of-Chaos Dynamics

θt+1 = θt + η
Dt

∑
it

(1−λ) 〈zit〉− z∗it , where it indexes the data points in the

mini-batch at time t, Dt is the size of the mini-batch, and 〈zit〉 is the batch

mean. λ is initialized to 1 and we gradually half its value every 500 updates,

slowly moving from an entropy-encouraging update to the standard update

for the biases of the hidden units.

VP was also run on mini-batches of size 100 (with a learning rate of 1).

VP was run until the predictor started overfitting on a validation set. No

burn-in was considered for VP.

The results of our experiments are shown in Table 4.3. In the table,

the best performance on each data set using each procedure is typeset

in boldface. The results reveal that the addition of hidden units to the

voted perceptron leads to significant improvements in terms of generalization

error. Furthermore, the results of our experiments indicate that conditional

herding performs on par with discriminative RBMs on the MNIST and USPS

data sets and better on the 20 Newsgroups data set. The 20 Newsgroups data

is high dimensional and sparse and both VP and CH appear to perform quite

well in this regime. Techniques to promote sparsity in the hidden layer when

training dRBMs exist (see Larochelle and Bengio (2008)), but we did not

investigate them here. It is also worth noting that CH is rather resilient to

overfitting. This is particularly evident in the low-dimensional UCI Pendigits

data set, where the dRBMs start to badly overfit with 500 hidden units,

while the test error for CH remains level. This phenomenon is the benefit of

averaging over many different predictors.

4.5 Summary

We introduce the herding algorithm in this chapter as an alternative to

the maximum likelihood estimation for Markov random fields. It skips the

parameter estimation step and directly converts a set of moments from

the training data into a sequence of model parameters accompanied by a

sequence of pseudo-samples. By integrating the intractable training and

testing steps in the regular machine learning paradigm, herding provides

a more efficient way of learning and predicting in MRFs.

We study the statistical properties of herding and show that herding

dynamics introduces negative auto-correlation in the sample sequence which

helps to speed up the mixing rate of the sampler in the state space.

Quantitatively, the negative auto-correlation leads to a fast convergence rate

of O(1/T) between the sampling statistics and the input moments. That is

significantly faster than the rate of O(1/
√
T) that an ideal random sampler

would obtain for an MRF at MLE. This distinctive property of herding

4.5 Summary 119

One-Versus-All Procedure

Data Set
VP Discriminative RBM Conditional herding

100 200 100 200

MNIST 7.69% 3.57% 3.58% 3.97% 3.99%

USPS
5.03% 3.97% 4.02% 3.49% 3.35%

(0.4%) (0.38%) (0.68%) (0.45%) (0.48%)

UCI Pendigits 10.92% 5.32% 5.00% 3.37% 3.00%

20 Newsgroups 27.75% 34.78% 34.36% 29.78% 25.96%

Joint Procedure

Data Set
VP Discriminative RBM Conditional herding

50 100 500 50 100 500

MNIST 8.84% 3.88% 2.93% 1.98% 2.89% 2.09% 2.09%

USPS
4.86% 3.13% 2.84% 4.06% 3.36% 3.07% 2.81%

(0.52%) (0.73%) (0.59%) (1.09%) (0.48%) (0.52%) (0.50%)

UCI Pendigits 6.78% 3.80% 3.23% 8.89% 3.14% 2.57% 2.86%

20 Newsgroups 24.89% – 30.57% 30.07% – 25.76% 24.93%

Table 4.3: Generalization errors of VP, dRBMs, and CH on 4 real-world data
sets. dRBMs and CH results are shown for various numbers of hidden units. The
best performance on each data set is typeset in boldface; missing values are shown
as ‘-’. The std. dev. of the error on the 10-fold cross validation of the USPS data
set is reported in parentheses.

should also be attributed to its weak-chaotic behavior as a deterministic

dynamic system, whose characteristics deserve its own interest for future

research.

Experiments confirms that the information contained in the pseudo-

samples of herding can be used for inference and prediction. It achieves

comparable performance with traditional machine learning algorithms in-

cluding the MRFs, even though the sampling distribution of herding does

not guarantee the maximum entropy.

We further provide a general condition, PCT, for the fast moment match-

ing property. That condition allows more practical implementations of herd-

ing. We also use it to derive extensions of the herding algorithm for a wider

range of applications. As more flexible feature functions defined on both vis-

ible and latent variables can now be handled in the generalized algorithm,

we apply herding to training partially observed MRFs. Experiments on the

USPS dataset show a classification accuracy on par with the state-of-art

training algorithms on the same model. Furthermore, we propose a discrim-

inative learning variant of herding for supervised problems by including la-

belling information in the feature definition. The resulting conditional herd-

120 Herding as a Learning System with Edge-of-Chaos Dynamics

ing provides an alternative to training CRFs. Empirical evaluation shows

competitive performance of herding compared with standard algorithms.

4.6 Conclusion

The view espoused in this chapter is that we can view learning as an iterated

map: wt+1 = F (wt) and that we can study the properties of this map using

the tools of nonlinear dynamics systems. The usual learning approaches

based on point estimates form a contractive map where all of parameter

space is eventually mapped to a point. In Bayesian approaches we seek to find

a posterior distribution over parameters and the map should thus converge

to a distribution (or measure). For MCMC for instance the map consists

of convolving the current distribution with a kernel. Herding offers a third

possibility where the attractor is neither a point, nor a measure in the usual

sense, but rather a highly complex, possibly fractal set. Interestingly, the

more recent approach “perturb and map” is related to herding in the sense

that it consists of a sequence of perturbations of the parameters followed by

an optimization over the state space. However, it is different from herding

in the sense the perturbations are generated randomly and IID, while in

herding the perturbations are deterministic and dynamic (i.e. depend on

the previous parameters).

The surprising and powerful insight is that we can use a new set of tools

from the mathematics literature to study these maps. For instance, it was

shown in this chapter that herding dynamics is a special instance of the class

of piecewise isometry maps, and should neither be classified as regular nor

chaotic, but rather as what is known as “edge of chaos”. We suspect that

this type of dynamics has useful properties in the context of learning from

data. For instance, it seems related to the fact that the certain empirical

moments averages exhibit very fast convergence. This is supported by the

observations that 1) piecewise isometries have vanishing topological entropy,

2) exhibit the “period doubling route to chaos” and 3) have vanishing

Lyapunov exponents. We believe that these type of concepts from the field

of nonlinear dynamical systems may one day play an important role in the

field of machine learning.

4.6 Conclusion 121

Appendix:

Some Results on Herding in Discrete Spaces

The following proposition shows that the weight vectors move inside a D−1

dimensional subspace.

Proposition 4.11. For any herding dynamics with D states and K dimen-

sional feature vectors, the trajectory of the weight vector lies in a subspace of

a dimension K∗ ≤ max{D − 1,K}. Also, there exists an equivalent herding

dynamics with D states and K∗ dimensional feature vectors, which generates

the same sequence of samples.

Proof. Let {φ(xd)}D−1
d=0 be the set of D state feature vectors. Denote by

Φ the subspace spanned of the set of D − 1 vectors, {φ(xd) − φ(x0)}D−1
d=1

in RK , and by Φ⊥ its complement. The dimension of Φ is apparently at

most max{D − 1,K}. We want to construct a herding dynamics in Φ that

generates the same sequence of states as the original dynamics.

Decompose the initial weight vector w0 and all the feature vectors into Φ

and Φ⊥, denoting the component in Φ with a superscript ‖ and in Φ⊥ with ⊥.

Then φ⊥(xd) = (φ(xd)−φ(x0)+φ(x0))⊥ = φ⊥(x0),∀d as φ(xd)−φ(x0) ∈ Φ,

and φ‖(xd) = φ(xd)−φ⊥(x0),∀d. Consequently φ̄‖ = φ̄−φ⊥(x0) as φ̄ is a

convex combination of the feature vectors.

Let us consider a new herding dynamics (denoted by a superscript ∗)
with feature vectors {φ‖(xd)}D−1

d=0 and the moment φ̄‖. We initialize with a

weight vector w∗0 = w
‖
0. As Φ is closed with respect to the herding update in

Equation 4.8 w∗t ∈ Φ,∀t ≥ 0. Now we want to show that the set of samples

S∗T
def
= {s∗t }Tt=1 is the same as ST

def
= {st}Tt=1 for any T ≥ 0.

Obviously this holds at T = 0 as w∗0 ∈ Φ and S∗T = ST = ∅. Assume that

S∗T = ST holds for some T ≥ 0. Following the recursive representation of

wT in Equation 4.14, we get

w∗T = w∗0+T φ̄‖−
T∑
t=1

φ‖(st) = w0−w⊥0 +T φ̄−
T∑
t=1

φ(st) = wT−w⊥0 (4.70)

The sample to be generated at iteration T + 1 is computed as

s∗T+1 = arg max
x

(w∗T)Tφ‖(x) = arg max
x

(wT)Tφ(x)−(w⊥0)Tφ⊥(x0) = sT+1

(4.71)

Therefore, S∗T+1 = ST+1, and consequently S∗T = ST , ∀T ∈ [0,∞) by

induction. As a by-product of Equation 4.70, we observe that the trajectory

122 Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.17: Example of the torus projection on herding dynamics with 3 states
and 2-dimensional feature vectors. The red lines show the lattice and the torus
(solid only) formed by φ(x1) − φ(x0) and φ(x2) − φ(x0), and the purple dashed
arrows show that the herding dynamics corresponds to a constant rotation on the
torus T2.

of the original herding dynamics {wt} lies in the K∗ dimensional affine

subspace, w⊥0 + Φ.

The proposition above suggests that the number of effective dimensions of

the feature vector is upper-bounded by the number of states in the herding

system. Also, the orthogonal component in the initial weight vector w⊥0 does

not affect the sequence of generated samples. In our example of sampling

a D-valued discrete distribution with the 1-of-D encoding, the D feature

vectors {φ(xd)}D−1
d=1 are linearly independent with each other and hence we

achieve the maximum number of feature dimensions K∗ = D−1. The affine

subspace can be easily computed as {w :
∑D

d=1wd = 1}. In the rest of this

subsection, we will study the characteristics of a relatively more general type

of herding dynamics with D = K + 1 states, whose feature vectors consist

of a linearly independent set in the K dimensional feature space.

Let L be the lattice formed by the set of vectors {φ(xd) − φ(x0)}Kd=1,

and let TK be the K dimensional torus RK/L. A torus is a circular

space with every pair of opposite edges connected with each other. See

Figure 4.17 for an example of a 2D torus. Denote by G : RK → TK the

canonical projection. For any point u ∈ RK , we have the property that

G(u + (φ(xd) − φ(x0))) = G(u),∀d = 0, . . . ,K. Let T : RK → RK be the

mapping of the herding dynamics in the feature space, which takes the form

of a translation T(w) = w + φ̄− φ(x(w)), where x(w) is the sample to be

generated by Equation 4.7. We can observe that the herding update on w

4.8 References 123

corresponds a rotation on the torus:

G ◦ T(w) = G(w + φ̄− φ(x(w)))

= G(w + (φ̄− φ(x0))− (φ(x(w))− φ(x0)))

= G(w) + (φ̄− φ(x0)), ∀w ∈ RK (4.72)

where the translation operator in TK in the last equation refers to a rotation

in the torus. This is an interesting property of herding with a maximum

number of feature dimensions as it suggests that no matter what sample the

dynamics takes, the trajectory of w under the torus projection is driven by

a constant rotation. Furthermore, if the set of elements in the translation

vector φ̄ − φ(x0) is independent on rational numbers14, the trajectory on

TK fills the entire torus, which leads to a non-fractal attractor set with a

finite volume in the original feature space.

4.8 References

K. Aihara and G. Matsumoto. Temporally coherent organization and instabilities
in squid giant axons. Journal of theoretical biology, 95(4):697–720, 1982.

O. Angel, A. E. Holroyd, J. B. Martin, and J. Propp. Discrete low-discrepancy
sequences. arXiv preprint arXiv:0910.1077, 2009.

F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding
and conditional gradient algorithms. In J. Langford and J. Pineau, editors,
Proceedings of the 29th International Conference on Machine Learning (ICML-
12), ICML ’12, pages 1359–1366, New York, NY, USA, July 2012. Omnipress.
ISBN 978-1-4503-1285-1.

C. M. Bishop et al. Pattern Recognition and Machine Learning, volume 1. springer
New York, 2006.

H. Block and S. Levin. On the boundedness of an iterative procedure for solving a
system of linear inequalities. Proceedings of the American Mathematical Society,
26(2):229–235, 1970.

L. Bornn, Y. Chen, N. de Freitas, M. Eskelin, J. Fang, and M. Welling. Herded
Gibbs sampling. In Proceedings of the International Conference on Learning
Representations, 2013.

M. Boshernitzan and I. Kornfeld. Interval translation mappings. Ergodic Theory
and Dynamical Systems, 15(5):821–832, 1995.

O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples
from an rbm-derived process. Neural Computation, pages 1–16, 2011.

14. Independence of a set of numbers, x1, . . . , xK , on rational numbers means that there
does not exist a set of rational numbers a1, . . . , aK that are not all zeros, such that∑K
d=1 adxd = 0.

124 Herding as a Learning System with Edge-of-Chaos Dynamics

Y. Chen, A. Smola, and M. Welling. Super-samples from kernel herding. In
Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-10), pages 109–116, Corvallis, Oregon, 2010. AUAI
Press.

Y. Chen, A. E. Gelfand, and M. Welling. Advanced Structured Prediction, chapter
Herding for Structured Prediction, page 187. The MIT Press, 2014.

M. Collins. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the ACL-02 con-
ference on Empirical methods in natural language processing-Volume 10, page 8.
Association for Computational Linguistics, 2002.

Y. Freund and R. Schapire. Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277–296, 1999.

A. Gelfand, Y. Chen, L. van der Maaten, and M. Welling. On herding and the
perceptron cycling theorem. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 694–702, 2010.

A. Goetz. Dynamics of piecewise isometries. Illinois Journal of Mathematics, 44
(3):465–478, 2000.

N. Harvey and S. Samadi. Near-optimal herding. In Proceedings of The 27th
Conference on Learning Theory, pages 1165–1182, 2014.

G. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

F. Huszar and D. Duvenaud. Optimally-weighted herding is Bayesian quadrature.
In Proceedings of the Twenty-Eighth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-12), pages 377–386, Corvallis, Oregon, 2012.
AUAI Press.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltz-
mann machines. In Proceedings of the 25th International Conference on Machine
learning, pages 536–543. ACM, 2008.

K. Lu and J. Wang. Construction of Sturmian sequences. J. Phys. A: Math. Gen.,
38:2891–2897, 2005.

G. A. H. Marston Morse. Symbolic dynamics ii. sturmian trajectories. American
Journal of Mathematics, 62(1):1–42, 1940. ISSN 00029327, 10806377. URL
http://www.jstor.org/stable/2371431.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-
etry, volume 1988. MIT press Cambridge, MA, 1969.

R. Neal. Connectionist learning of belief networks. Articial Intelligence, 56:71–113,
1992.

R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-
nical Report CRG-TR-93-1, University of Toronto, Computer Science, 1993.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In Proc. IEEE Int. Conf.
on Computer Vision (ICCV), pages 193–200, Barcelona, Spain, Nov. 2011. doi:
10.1109/ICCV.2011.6126242.

S. Parise and M. Welling. Learning in Markov random fields: An empirical study.
In Joint Statistical Meeting, volume 4, page 7, 2005.

4.8 References 125

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

R. Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. In
J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 943–950, Haifa, Israel, June
2010. Omnipress. URL http://www.icml2010.org/papers/441.pdf.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):80–88, 1987.

T. Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. In Proceedings of the International Conference on Machine
Learning, volume 25, pages 1064–1071, 2008.

T. Tieleman and G. Hinton. Using fast weights to improve persistent contrastive
divergence. In Proceedings of the International Conference on Machine Learning,
volume 26, pages 1064–1071, 2009.

M. Tsodyks, K. Pawelzik, and H. Markram. Neural networks with dynamic
synapses. Neural Computation, 10(4):821–835, 1098.

M. Welling. Herding dynamical weights to learn. In Proceedings of the 21st
International Conference on Machine Learning, Montreal, Quebec, CAN, 2009a.

M. Welling. Herding dynamic weights for partially observed random field models. In
Proceedings of the Twenty-Fifth Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-09), pages 599–606, Corvallis, Oregon, 2009b. AUAI
Press.

M. Welling and Y. Chen. Statistical inference using weak chaos and infinite memory.
In Proceedings of the Int’l Workshop on Statistical-Mechanical Informatics (IW-
SMI 2010), pages 185–199, 2010.

L. Younes. Parametric inference for imperfectly observed Gibbsian fields. Probabil-
ity Theory and Related Fields, 82:625–645, 1989.

D. Young. Iterative methods for solving partial difference equations of elliptic type.
Trans. Amer. Math. Soc, 76(92):111, 1954.

A. Yuille. The convergence of contrastive divergences. In Advances in Neural
Information Processing Systems, volume 17, pages 1593–1600, 2004.

5 Learning Maximum A-Posteriori

Perturbation Models

Andreea Gane agane@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA

Tamir Hazan tamir.hazan@technion.ac.il

Technion

Haifa, Israel

Tommi Jaakkola tommi@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA

Perturbation models are families of distributions induced from perturbations.

They combine randomization of the parameters with maximization to draw

unbiased samples. In this chapter, we describe randomization both as a mod-

eling tool and as a means to enforce diversity and robustness in parameter

learning. A perturbation model defined on the basis of low order statistics typ-

ically introduces high order dependencies in the samples. We analyze these

dependencies and seek to estimate them from data. In doing so, we shift the

modeling focus from the parameters of the potential function (base model)

to the space of perturbations. We show how to estimate dependent pertur-

bations over the parameters using a hard EM approach, cast in the form

of inverse convex programs and illustrate the method on several computer

vision problems.

128 Learning Maximum A-Posteriori Perturbation Models

5.1 Introduction

In applications that involve structured objects, such as object boundaries,

textual descriptions, or speech utterances, the key problem is finding expres-

sive yet tractable models. In these cases, the likely assignments are guided

by potential functions over subsets of variables. The feasibility of inference

is typically linked to the structure of the potential function and the tradeoff

is between rich, faithful models defined on complex potential functions on

one hand, and limited but manageable models on the other.

For instance, in natural language parsing, the goal is to return a depen-

dency tree where arcs encode dependency relations, such as between a predi-

cate and its subject. Whenever the interactions are of high order, computing

the dependency tree corresponds to an NP-hard combinatorial optimization

problem (McDonald and Satta, 2007), but when resorting to tractable for-

mulations by limiting the type of interactions, the expressive power of the

model is limited. In general, most realistic models for natural language pars-

ing (Koo et al., 2010a), speech recognition (Rabiner and Juang, 1993) or

image segmentation/captioning (Nowozin and Lampert, 2011; Fang et al.,

2015) involve interactions between distant words in the sequence or large

pixel neighborhoods.

Typical probabilistic models defined on structured potential functions

make use of the Gibbs’ distribution and its properties. Specifically, the

structure of the potential function can be encoded as a graph that specifies

conditional independencies (Markov properties) among the variables: two

sets of vertices in the graph are conditionally independent when they are

separated by observed vertices (e.g., Wainwright and Jordan (2008); Koller

and Friedman (2009)). These assumptions are central for designing efficient

exact or approximate inference techniques. Successful methods exploiting

them include belief propagation (Pearl, 1988), Gibbs sampling (Geman and

Geman, 1984), Metropolis-Hastings (Hastings, 1970) or Swendsen-Wang

(Wang and Swendsen, 1987). In specific cases one can sample efficiently

from a Markov random field model by constructing a rapidly mixing Markov

chain (cf. (Jerrum and Sinclair, 1993; Jerrum et al., 2004a; Huber, 2003)).

Such approaches do not extend to many practical cases where the values

of the variables are strongly guided by both data (high signal) and prior

knowledge (high coupling). Indeed, sampling in high-signal high-coupling

regime is known to be provably hard (Jerrum and Sinclair, 1993; Goldberg

and Jerrum, 2007).

Finding a single most likely assignment (MAP) structure is considerably

easier than summing over the values of variables or drawing an unbiased

5.1 Introduction 129

sample. Substantial effort has gone into developing algorithms for recovering

MAP assignments, either based on specific structural restrictions such as

super-modularity (Kolmogorov, 2006) or by devising linear programming

relaxations and successively refining them (Sontag et al., 2008; Werner,

2008). Furthermore, even when computing the MAP is provably hard,

approximate techniques, such as loopy belief propagation (Murphy et al.,

1999), tree reweighed message passing (Wainwright et al., 2005), local search

algorithms (Zhang et al., 2014) or convex relaxations (Koo et al., 2010b) are

often successful in recovering the optimal solutions (Koo et al., 2010a).

Recently, MAP inference has been combined with randomization to define

new classes of probability models that are easy to sample from (Papandreou

and Yuille, 2011; Tarlow et al., 2012; Hazan and Jaakkola, 2012; Hazan

et al., 2013; Orabona et al., 2014; Maji et al., 2014). Each sample from

these perturbation models involve randomization of Gibbs’ potentials and

finding the corresponding maximizing assignment. The models are shown to

provide unbiased samples from the Gibbs distribution when perturbations

are independent across assignments (Papandreou and Yuille, 2011; Tarlow

et al., 2012) and have been applied to several applications where the base

model is difficult to sample from: boundary annotation (Maji et al., 2014),

image partitioning (Kappes et al., 2015), and others. Nonetheless, having a

full account of the properties and power of perturbation models remains an

open problem.

In this chapter, we describe and extend our work (Gane et al., 2014) on

understanding and exploiting the expressive power of perturbation models.

Specifically, the properties of the induced distribution are heavily governed

by randomization. In contrast to Gibbs’ distributions, low order potentials,

after undergoing randomization and maximization, lead to high order de-

pendencies in the induced distributions. Furthermore, we discuss condition-

ing, which is straightforward in Gibbs’ distributions, but requires additional

constraints on randomizations in perturbation models.

Finally, we explore the interplay between learning algorithms and

tractability of inference procedures on complex potential functions by us-

ing dependent perturbations as a modeling tool. Perturbation models are

latent variable models and we learn distributions over perturbations using

a hard-EM approach. In the E-step, we use an inverse convex program to

confine the randomization to the parameter polytope responsible for gener-

ating the observed answer. We illustrate the approach on several computer

vision problems.

130 Learning Maximum A-Posteriori Perturbation Models

5.2 Background and Notation

In this chapter we are concerned with modeling distributions over structured

objects x ∈ X, such as image segmentations and keypoint matchings,

where X = X1 × · · · × Xn is a discrete product space. We are scoring the

possible assignments via a real valued potential function θ(x) = θ(x1, ..., xn),

where excluded configurations are implicitly encoded by setting θ(x) = −∞
whenever x 6∈ dom(θ). For instance, a foreground-background segmentation

over an image of size n × m can be encoded by x = (xij)i∈[n],j∈[m] ∈
{0, 1}n×m, where xij = 1 denotes a foreground pixel at position (i, j). If

we want to explicitly encode that a foreground object is always present,

then θ(x) = −∞ whenever xij = 0,∀i ∈ [n], j ∈ [m].

Since dealing with arbitrary scoring functions is computationally in-

tractable, θ(x) is typically defined as a sum of local potentials θ(x) =∑
α∈A θα(x), where α denotes a small subset of variables (a factor) and

A denotes the set of all such factors. In the image segmentation case, the

set A may include local neighborhoods of the form {(i+ di, j + dj)|di, dj ∈
{+1, 0,−1}}. In the following, we will often skip specifying A and write

θ(x) =
∑

α θα(x) for simplicity.

Traditionally, the potentials are mapped to the probability scale via the

Gibbs’ distribution:

p(x1, ..., xn) =
1

Z(θ)
exp(θ(x1, ..., xn)) (5.1)

Distributions defined in this manner have a number of desirable properties.

For instance, the maximum-a-posteriory (MAP) prediction corresponds to

the highest scoring assignment (x̂ = arg maxx θ(x)), the set of conditional

dependencies can be read from the structure of the potential function,

and the model can be easily extended to handle partially observed data.

Unfortunately, such distributions are challenging to learn and sample from,

depending on how the potential function decomposes.

Our approach is based on randomizing potentials in Gibbs’ distributions.

We add a random function γ : X → R to the potential function and draw

samples by solving the resulting MAP prediction problem:

x∗ = arg max
x∈X
{θ(x) + γ(x)}. (5.2)

The distribution induced by the samples is given by

P(x̂) = Pγ

[
x̂ ∈ arg max

x∈X
{θ(x) + γ(x)}

]
(5.3)

and its properties are heavily dependent on the nature of randomization.

5.3 Expressive Power of Perturbation Models 131

The simplest approach to designing the perturbation function γ is to

associate an i.i.d. random variable γ(x) for each x ∈ X. The following

result characterizes the induced distribution in this case, assuming that

perturbations are Gumbel distributed. Specifically, due to the max-stability

property of the Gumbel distribution, one can preserve the Markov properties

of the Gibbs model. However, each realization x∗ in this setup requires an

independent draw of γ(x), x ∈ X, i.e., a high dimensional randomization.

Theorem 5.1. (Gumbel and Lieblein, 1954) Let X be finite and let

{γ(x), x ∈ X} be a collection of i.i.d. zero mean Gumbel distributed

random variables, whose cumulative distribution functions is F (t) =

exp(− exp(−(t+c))) and c ≈ 0.5772 is the Euler-Mascheroni constant. Then

Pγ

[
x̂ ∈ arg max

x∈X
{θ(x) + γ(x)}

]
=

1

Z(θ)
exp(θ(x̂)) (5.4)

Since perturbation models are useful only if they can be succinctly

parametrized, our focus is on investigating low-dimensional perturbations

which have the same structure as the potential function:

P(x̂) = Pγ

[
x̂ ∈ arg max

x∈X

{∑
α

(θα(xα) + γα(xα))
}]

(5.5)

In this case, each sample requires instantiating γα(xα) for each α and each

assignment xα, which is typically a much smaller set. Finally, since the noise

function shares the structure of the potential function, the optimization

algorithms designed for the original potential function remain applicable.

We will often refer to the new (randomized) potential function as θ̃(x) =∑
α θ̃α(xα), where θ̃α(xα) = θα(xα) + γα(xα).

5.3 Expressive Power of Perturbation Models

Perturbation models were originally introduced as a way to approximate

intractable Gibbs’ distributions. In this chapter, we use perturbation models

as a modeling tool, seeking to understand their properties, and how to

estimate them from data.

The idea of specifying distributions over combinatorial objects by linking

randomization and combinatorial optimization is not inherently limiting.

At one extreme, the randomization may correspond to samples from the

target distribution itself. Of course, the combination is advantageous only

when both the randomization and the associated combinatorial problem are

tractable. To this end, we focus on randomizing potentials in Gibbs’ distri-

butions whose MAP assignment can be obtained in polynomial time. The

132 Learning Maximum A-Posteriori Perturbation Models

randomization we introduce will therefore have to respect how the poten-

tial functions decompose. For example, randomization of θ(x) =
∑

α θα(x)

should only directly affect individual terms θα(x).

One of the key questions we address is how the resulting perturbation

models differ from the associated Gibbs’ models that they are based on.

Gibbs’ distributions are naturally understood in terms of Markov proper-

ties. Will these carry over to perturbation models as well? We will show

that in contrast to Gibbs’ distributions, low order potentials, after under-

going randomization and maximization, lead to high order dependencies in

the induced distributions. Such induced dependences can be viewed as ad-

ditional modeling power and specifically exploited and learned from data.

Markov properties can be enforced in special cases such as with tailored

perturbations in tree structured models, if desired.

Perturbation models yield simple mechanisms for drawing unbiased sam-

ples but they are cumbersome with respect to conditioning. Indeed, “plug-

in” conditioning natural in Gibbs’ distributions does not carry over to per-

turbation models. Conditioning requires care, restricting the randomization

such that the setting of the observed variables are indeed obtained as part of

maximizing assignments. We show how this can be done in simple examples.

5.4 Higher Order Dependencies

In this section, we show that perturbation models defined via low dimen-

sional randomizations do not follow the Markov-type dependencies inherent

in Gibbs distributions. We focus on perturbation models with tree struc-

tured potential functions and edge-based randomization, but the results can

be generalized to more complex graphs.

The following theorem shows that when i.i.d. perturbations follow the

edge structure of the potential function, we are able to capture dependencies

above and beyond the initial structure.

Theorem 5.2. Most perturbation models with tree structured potential

functions and i.i.d. perturbation variables {γij(xi, xj)} indexed by (i, j) ∈
E, (xi, xj) ∈ Xi × Xj result in an induced model (5.5) that includes depen-

dencies above and beyond the original tree structure.

Proof. Consider a simple chain with three variables (x1, x2, x3), potential

function θ(x) = θ12(x1, x2) + θ23(x2, x3) and perturbations given by γ(x) =

γ12(x1, x2) + γ23(x2, x3). Let Γ(x̂α) be defined as

Γ(x̂α) =
{
γ : x̂α ∈ argmax

x∈X
{θ(x) + γ(x)}

}
(5.6)

5.4 Higher Order Dependencies 133

and, similarly, for all subsets α, β ⊆ {1, . . . , n}, let

Γ(x̂α|x̂β) =
{
γ : x̂α ∈ argmax

x∈X,xβ=x̂β

{θ(x) + γ(x)}
}

(5.7)

be the set of perturbation assignments for which x̂α is optimal if we plug-in

values x̂β.

We illustrate that x1 ⊥⊥ x3|x2 need not hold. To this end, consider

probabilities:

P(x̂i|x̂2) = Pγ (Γ(x̂i|x̂2)|Γ(x̂2)) , for i ∈ {1, 3}
Note that the set Γ(x̂1|x̂2) is governed by the constraint θ12(x̂1, x̂2) +

γ12(x̂1, x̂2) ≥ maxx1
{θ12(x1, x̂2)+γ12(x1, x̂2)} and similarly, Γ(x̂3|x̂2) is gov-

erned by an analogous constraint on γ23. Γ(x̂2), in contrast, involves inequal-

ities that couple all the perturbation variables together: maxx1
{θ12(x1, x̂2)+

γ12(x1, x̂2)}+ maxx3
{θ23(x̂2, x3) + γ23(x̂2, x3)} ≥ maxx{θ(x) + γ12(x1, x2) +

γ23(x2, x3)}. Since in general these constraints cannot be decomposed as

(γ12, γ23), the set is not a product space.

Consider the following example, where xi ∈ {0, 1} and θ12(1, 1) =

1.9, θ12(0, 0) = 1.2, θ12(0, 1) = 1.1, θ12(1, 0) = 0 and θ23(a, b) =

θ12(b, a),∀a, b ∈ {0, 1} . For x̂2 = 1, Γ(x̂2) includes the constraint max{1.9+

γ12(1, 1), 1.1 + γ12(0, 1)}+ max{1.9 + γ23(1, 1), 1.1 + γ23(1, 0)} ≥ max{1.2 +

γ12(0, 0), γ12(1, 0)}+max{1.2+γ23(0, 0), γ23(0, 1)}. We argue that there exist

i.i.d. perturbation distributions over (γ12, γ23) for which the constraint cou-

ples the two variables. In particular, if γ12(x1, x2) ∼ U{−1, 1} ∀(x1, x2) ∈
{0, 1}2, γ23(x2, x3) ∼ U{−1, 1} ∀(x2, x3) ∈ {0, 1}2 and U is the uniform

distribution, then for γij = (γij(1, 1), γij(0, 1), γij(0, 0), γij(1, 0)), the config-

urations (γ12, γ23) ∈ {((1, 1,−1, 1), (−1, 1, 1, 1)), ((1, 1,−1, 1), (1, 1,−1, 1)),

((−1, 1, 1, 1), (1, 1,−1, 1))}, are in Γ(x̂2), but ((−1, 1, 1, 1), (−1, 1, 1, 1)) is

not, thus it cannot be a product space in this case.

As a result, γ12 and γ23 become dependent if we condition on x̂2 as the

maximizing value. In other words, the indicator functions corresponding

to Γ(x̂1|x̂2) and Γ(x̂3|x̂2) are also dependent if γ ∈ Γ(x̂2). Whenever x1

and x3 depend non-trivially on the corresponding perturbation variables,

we conclude that x1 6⊥⊥ x3|x2. This is typically the case.

The key role of this theorem is to highlight how perturbation models might

posses higher modeling power than their Gibbs counterparts. The choice of

tree structured potential functions is often guided by computational reasons,

rather than the need for conditional independence. Specifically, in a pose

estimation application the goal is to relate a set of keypoints x = (xi)i∈[n],

where dimensions xi are (pixel) locations arms, legs, body trunk or head

134 Learning Maximum A-Posteriori Perturbation Models

and n is the total number of keypoints. A typical scoring function is

θ(x) =
∑

(i,j)∈E θij(xi, xj), where the set of edges E includes pairs such as

pair-trunk, arm-trunk, leg-trunk and the local scores θij(xi, xj) depend on

the distance between the keypoints. From the structure of θ(x), the Gibbs’

distribution implies that the limbs locations are independent given the trunk.

Perturbation models have the potential to capture additional long range

dependencies between the parts without increasing the complexity of the

scoring function.

5.5 Markov Properties and Perturbation Models

Given that typically low order perturbations lead to high order dependencies,

we ask whether enforcing the Markov properties is possible in this case.

In the simplest case, whenever the Gibbs distribution is independent, it

can indeed be represented using low order potentials. Specifically, recall

that a probability distribution is independent whenever p(x) =
∏n
i=1 p(xi),

where p(xi) =
∑

x\xi p(x) are its marginal probabilities. To show that the

perturbation model matches the Gibbs distribution in this case we apply

Theorem 6.1 for each dimension i = 1, ..., n while setting θi(xi) = log p(xi)

and using i.i.d. perturbations γi(xi) that follow the Gumbel distribution.

In the following, we show that the tree structured potentials can also be

randomized such that the induced distribution corresponds to the Gibbs’

distribution.

5.5.1 Tree-Structured Perturbation Models

Distributions can be described by their conditional probabilities

p(x1, ..., xn) =
∏n
j=1 p(xj |x1, ..., xj−1), and in Markov random fields these

conditional probabilities are simplified by their dependency graphs. Specifi-

cally, assume a tree structured MRF and let ~E be any directed version of the

tree. For notational convenience, assume that the vertices {1, ..., n} are topo-

logically sorted and that there is an arc (i → j). Then p(xj |x1, ..., xj−1) =

p(xj |xi). Furthermore, for a tree, specifying θ(x) is equivalent to specifying

marginals probabilities p(xi), i = 1, . . . , n, and p(xi, xj), (i, j) ∈ E, which

can be related as follows:

θi(xi) = log p(xi), θij(xi, xj) = log
p(xi, xj)

p(xi)p(xj)
(5.8)

The following theorem shows that in this case, for any potential function

there are low dimensional perturbation models that preserve these the

independencies:

5.5 Markov Properties and Perturbation Models 135

Theorem 5.3. Consider the Gibbs distribution with a tree structured

Markov random field. Then for any potential function

θ(x) =

n∑
i=1

θi(xi) +
∑

(i,j)∈E
θij(xi, xj) (5.9)

there are random variables {γij(xi, xj)} indexed by (i, j) ∈ E, (xi, xj) ∈
Xi × Xj such that

p(x̂) = Pγ

[
x̂ ∈ argmax

x∈X
{θ(x) +

∑
(i,j)∈E

γij(xi, xj)}
]

(5.10)

Proof. Let γ̂ij(xi, xj) be i.i.d. random variables that follow the Gumbel

distributions. Let ~E be a directed version of the tree and assume that

the vertices {1, ..., n} are topologically sorted and that there is an arc

(1→ 2). Let γ12(x1, x2) = γ̂12(x1, x2) and for any other edge (i→ j) define

γij(xi, xj) =

γ̂ij(xi, xj)−max
x′j

{
θij(xi, x

′
j) + θj(x

′
j) + γ̂ij(xi, x

′
j)
}

(5.11)

Let p(x1, x2) =
∑

x\{x1,x2} p(x) be the marginal probabilities of Gibbs

distribution. We begin by showing that

p(x̂1, x̂2) = Pγ
[
x̂1, x̂2 ∈ argmax

x∈X
{θ(x) +

∑
(i,j)∈ ~E

γij(xi, xj)}
]

(5.12)

To this end, any sample (x̂1, x̂2) from the induced marginal distribution is

obtained by

x̂1, x̂2 = argmax
x1,x2

max
x\{x1,x2}

{
θ(x) +

∑
(i,j)∈ ~E

γij(xi, xj)
}

= argmax
x1,x2

{
log p(x1, x2) + γ12(x1, x2)

}
where the equality follows from the definition of γij(xi, xj) that enforces

maxxj{θij(xi, xj) + θj(xj) + γij(xi, xj)} = 0, applied recursively to each

leaf in the tree. Theorem 6.1 implies that marginal probabilities of the

Gibbs distribution and the MAP perturbation distribution are the same

since γ12(x1, x2) are independent Gumbel random variables.

To complete the proof we show that for every (i → j) the conditional

probability of MAP perturbations is the same as the Gibbs. For that end,

define for every α ⊂ {1, .., n} the subset of indexes xα = (x)i∈α, and Γ(x̂α)

the set of perturbation assignments for which x̂α is optimal, as in (5.7).

Recall the vertices are topologically ordered, thus we aim at showing that

p(xj |xi) = Pγ

(
Γ(x1, ..., xj)|Γ(x1, ..., xj−1)

)
(5.13)

136 Learning Maximum A-Posteriori Perturbation Models

By our construction, for any values of x1, ..., xj−1 the argument xj is chosen

to maximize θj(xj) + θij(xi, xj) + γ̂ij(xi, xj). Since θj(xj) + θij(xi, xj) =

log p(xj |xi) and γ̂ij(xi, xj) are i.i.d. with zero mean Gumbel distribution,

the result follows by applying Theorem 6.1.

The perturbation models may describe tree structured Gibbs distribu-

tions. Perhaps surprisingly, the random variables that enforce the Markov

properties in this case are not independent nor identically distributed. This

demonstrates the potential power of induced models when allowing depen-

dent perturbation variables.

5.6 Conditional Distributions

Modeling and efficiently using conditional distributions are key issues in

applications involving partially observed data. These include finding dense

correspondences across images when only partial human annotations are

provided, combining information from multiple predictors (semi-supervised

learning) and so on. In Gibbs’ models, regardless of the difficulty of inference

calculations, conditioning is typically a straightforward operation, performed

by plugging in the observed data. On the other hand, conditioning in

perturbation models is a challenging open problem. In this case we cannot

merely set the observed variables to their values. Instead, we must ensure

that the observed values are selected via global maximization.

Specifically, for any subset of variables xα, xβ, α ∩ β = ∅, α, β ∈ V , the

conditional P(x̂α|x̂β) is obtained by first sampling noise realizations that

are consistent with observed data and maximizing the perturbed potential

over the remaining variables:

γ ∼ p(γ|γ ∈ Γ(x̂β)) (5.14)

x̂α ← argmax
xα

max
xV \α

θ̃(x) (5.15)

Recall that Γ(x̂β) is the set of perturbations for which the maximizing

argument agrees with x̂β. The resulting distribution of x̂α is typically

different from the one obtained by fixing the observed values x̂β while

maximizing over the remaining ones:

q(x̂α|x̂β) = Pr(x̂α ∈ argmax
xα

max
xV \{α,β}

θ̃(xV \β, x̂β)) (5.16)

To show how these two approaches may lead to different induced distribu-

tions, consider the example provided in the proof of Theorem 5.2. When

conditioning on x̂2 in the three-variable chain x1−x2−x3, the perturbation

5.6 Conditional Distributions 137

variables γ12 and γ23 become coupled and this is shown to imply conditional

dependency between x1 and x3. However, in the distribution obtained by fix-

ing the value of x̂2 and sampling γ12, γ23 from their original (independent)

distributions, x1 and x3 become independent. Therefore, the two distribu-

tions are in general not the same and in particular, the ability to perform

conditioning by “plugging in” the observed variables is related to the higher

order dependencies that arise with perturbation models.

In practice, the key difficulty for conditioning in perturbation models

stems from dealing with the set Γ(x̂β), which is often a union of (disparate)

cones. This makes the posterior distribution p(γ|γ ∈ Γ(x̂β)) difficult to

describe and sample from.

In the rest of this section, our aim is to characterize models for which we

can perform conditioning with respect to a restricted subset of variables. We

start by describing model constraints which ensure conditional independence

(with respect to a single variable) in a three-variable chain. Furthermore, the

conditions can be extended to enforce conditional independence in models

whose potential functions decompose along the edges of the tree. We then

show that when such conditions are met, we can perform conditioning on

a single variable by fixing the observed variable to its value. While the

conditions are restrictive, we show that there exist tree structured models

which satisfy this set of conditions.

5.6.1 Max-marginals

We start by defining max-marginals since they arise when dealing with

marginalization in perturbation models. For two adjacent nodes k and j,

we define the max-sum message from j to k,

mj→k(xk; γ) = max
xj

{
θ̃jk(xj , xk; γ) +

∑
i∈N(j)\k

mi→j(xj ; γ)
}

(5.17)

the corresponding maximizing assignment,

x̂j→k(xk; γ) = arg max
xj

{
θ̃jk(xj , xk; γ) +

∑
i∈N(j)\k

mi→j(xj ; γ)
}

(5.18)

and the resulting max-marginal for node k, mk(xk; γ), which sums over all

the neighbors,

mk(xk; γ) =
∑

j∈N(k)

mj→k(xk; γ). (5.19)

Furthermore, we use mj→k(γ) to refer to the vector of messages from j to

k, whose coordinates are the individual messages mj→k(xk; γ), and similarly

we use x̂j→k(γ) for the vector of maximizing assignments.

138 Learning Maximum A-Posteriori Perturbation Models

Conditioning typically implies comparing differences of messages. To this

end, we define for simplicity normalized messages and max-marginals by

subtracting from each dimension the maximum over the vector of messages:

m̄j→k(xk, γ) = mj→k(xk, γ)−max
x′k

mj→k(x
′
k; γ) (5.20)

m̄k(xk, γ) = mk(xk, γ)−max
x′k

mk(x
′
k; γ) (5.21)

After normalization, the difference of max-marginals is preserved m̄k(xk; γ)−
m̄k(x

′
k; γ) = mk(xk; γ) − mk(x

′
k; γ),∀xk, x′k ∈ X, and the same is true for

individual messages.

Note that the various quantities defined here are random variables induced

by the perturbations γ and it makes sense to talk about their pairwise statis-

tical dependency. One possible question is whether the messagesmj→k(xk; γ)

or m̄j→k(xk; γ) are independent of the corresponding maximizing assign-

ments x̂j→k(xk; γ). Clearly this is true whenever the noise magnitudes are

limited such that the maximizing assignments do not depend on the particu-

lar noise realizations. Similarly, the independence statement is trivially true

whenever the individual messages or the normalized messages are constant

with respect to perturbations (i.e. when randomizations “cancel out” re-

gardless of the maximizing assignments). For instance, this is possible when

perturbation variables are dependent, like in the proof of Theorem 5.3. One

remaining open question is whether there are distributions of perturbations

γ for which the statement is more generally true.

In the following we will show how the statistical dependency of max-

marginals and maximizing assignments relate to conditional independency

in perturbation models.

5.6.2 Conditional Independence

Since low-order perturbations typically give rise to dependencies that go

beyond the structure of the potential function, one key question is whether

any conditional independencies are maintained.

The first lemma claims that in a three-variable chain x1 − x2 − x3, the

conditional independence statement x1 ⊥⊥ x3|x2 holds if for at least one of

the two neighbors, the normalized max-marginals are independent of the

corresponding maximizing assignments.

Lemma 5.4. Assume a chain structured model with 3 variables x1, x2, x3,

a randomized potential function of the form θ̃(x) = θ̃12(x1, x2) + θ̃23(x2, x3)

such that θ̃12 ⊥⊥ θ̃23, and the induced perturbation model p(x).

5.6 Conditional Distributions 139

Then the independence statement x1 ⊥⊥ x3|x2 holds if one of the following

statements holds:

x̂1→2(x2, γ) ⊥⊥ m̄1→2(x′2, γ) ∀x2, x
′
2 (5.22)

x̂3→2(x2, γ) ⊥⊥ m̄3→2(x′2, γ) ∀x2, x
′
2 (5.23)

Proof. When conditioning on x2 = x̂2 we restrict the perturbations γ to the

set Γ(x̂2), defined via: 1[γ ∈ Γ(x̂2)] =∏
x2∈X 1[m1→2(x̂2; γ) +m3→2(x̂2; γ) ≥ m1→2(x2; γ) +m3→2(x2; γ)]. This

can be more compactly written via max-marginals: 1[γ ∈ Γ(x̂2)]=∏
x2∈X 1[m2(x̂2; γ)−m2(x2; γ) ≥ 0]=

∏
x2∈X 1[m̄2(x̂2; γ)− m̄2(x2; γ) ≥ 0].

If condition (5.22) holds, then x̂1→2(x̂2; γ) ⊥⊥ m̄2(x′2, γ),∀x′2, which im-

plies x̂1→2(x̂2; γ) ⊥⊥ m̄2(x̂2; γ) − m̄2(x′2; γ),∀x′2 and finally x̂1→2(x̂2; γ) ⊥⊥
1[γ ∈ Γ(x̂2)]. Furthermore x̂1→2(x̂2; γ) ⊥⊥ x̂3→2(x̂2; γ) from the independence

of perturbations across edges and assignments. We can then show that

p(x̂1, x̂3|x̂2) (5.24)

= Pr(x̂1, x̂3 ∈ argmax
x1,x3

max
x2

θ̃(x)|γ ∈ Γ(x̂2)) (5.25)

= Pr(x1 ∈ x̂1→2(x̂2; γ) ∧ x3 ∈ x̂3→2(x̂2; γ)|γ ∈ Γ(x̂2)) (5.26)

= Pr(x3 ∈ x̂3→2(x̂2; γ)|γ ∈ Γ(x̂2)) Pr(x1 ∈ x̂1→2(x̂2; γ)) (5.27)

= p(x̂1|x̂2)p(x̂3|x̂2) (5.28)

Intuitively, the independency between messages and the maximizing as-

signments is used to enforce that at least one of x̂1 or x̂3 is not affected by

the joint constraints imposed to ensure that x̂2 is selected through global

maximization.

In the following lemma, we show that under the same restrictions, we can

condition on a single node by setting the observed variables to their values.

Lemma 5.5. Assume a chain structured model with 3 variables x1, x2, x3,

a randomized potential function θ̃(x) = θ̃12(x1, x2) + θ̃23(x2, x3) such that

θ̃12 ⊥⊥ θ̃23, and the induced perturbation model p(x).

If x̂1→2(x2, γ) ⊥⊥ m̄1→2(x′2, γ),∀x2, x
′
2 and Γ(x̂2) 6= ∅, then Pr(x1 =

x̂1→2(x̂2; γ)) = p(x1|x̂2). In other words, by fixing x2 and perturbing the edge

corresponding to x1 only, we obtain the conditional distribution p(x1|x̂2).

140 Learning Maximum A-Posteriori Perturbation Models

Furthermore, if for all x1, x2, x3, x
′
1, x
′
2, x
′
3 we have:

x̂1→2(x2, γ) ⊥⊥ m̄1→2(x′2, γ) and Γ(x2) 6= ∅, (5.29)

x̂2→1(x1, γ) ⊥⊥ m̄2→1(x′1, γ) and Γ(x1) 6= ∅, (5.30)

x̂3→2(x2, γ) ⊥⊥ m̄3→2(x′2, γ) and Γ(x2) 6= ∅, (5.31)

x̂2→3(x3, γ) ⊥⊥ m̄2→3(x′3, γ) and Γ(x3) 6= ∅, (5.32)

x̂2→{1,3}(x1, x3, γ) ⊥⊥ m̄2→{1,3}(x
′
1, x
′
3, γ) and Γ(x1, x3) 6= ∅ (5.33)

then we can condition by plugging in values for any p(xα|xβ), α ∩ β = ∅.
Proof. Using the same argument as above, we have that x̂1→2(x̂2; γ) ⊥⊥
1[γ ∈ Γ(x̂2)], therefore p(x1|x̂2) = Pr(x1 = x̂1→2(x̂2; γ)|1[γ ∈ Γ(x̂2)]) =

Pr(x1 = x̂1→2(x̂2; γ)).

Furthermore, by applying this for possible subsets of variables in the

chain p(x1|x2), p(x2|x1), p(x3|x2), p(x2|x3), p(x2|x1, x3) we obtain the set

of conditions (5.29)-(5.33).

We can easily extend these results to tree structured models and show

that the restrictions on max-product messages provide a feasible method

of conditioning on a single variable. One can ask whether there are any

trees that satisfy the conditions above at every node and at every subset of

nodes. The next lemma provides an example where the conditions hold at

every node, but not at pairs of nodes.

Lemma 5.6. There is a tree structured model for which the conditions of

Lemma 5.5 hold for every node symmetrically. In this case, we can condition

on every node by plugging in the fixed values.

Proof. Consider a tree structured graphical model, with binary random

variables in {−1, 1} and with randomized potential function θ̃(x) =∑
(i,j)∈E θ̃ijxixj . If node l is a leaf, then ml→k(xk; γ) = max

xl∈{−1,1}
{θ̃lkxlxk} =

|θ̃lk|. In general, for any node k and any l ∈ N(k), we have

ml→k(xk; γ) =
∑

e∈T (l;k)

|θ̃e| (5.34)

where T (l; k) denotes the subtree rooted at node l and which does not

contain k, e ∈ T (l; k) is an edge in the subtree. Furthermore, the normalized

messages and maximizing assignments are given by

m̄l→k(xk; γ) = 0 (5.35)

x̂l→k(xk; γ) = sgn(θ̃lkxk) (5.36)

5.7 Learning Perturbation Models 141

Since the normalized message is always equal to 0, we have x̂l→k ⊥⊥
m̄l→k,∀k, ∀l ∈ N(k) and therefore this model satisfies the conditions and

we can do plug-in conditioning for any node k.

However, the two-variable conditions do not hold. Assume n = 3 and

consider conditioning on x1, x3:

m2→1,3(x1, x3; γ) = |θ̃12x1 + θ̃23x3| (5.37)

m̄2→1,3(x1, x3; γ) = |θ̃12x1 + θ̃23x3| −max
x1,x3

|θ̃12x1 + θ̃23x3| (5.38)

x̂2→1,3(x1, x3; γ) = sgn(θ̃12x1 + θ̃23x3) (5.39)

In this case, m̄2→1,3(γ) and x̂2→1,3(γ) will not be independent in general.

In this section we provided a preliminary analysis of conditioning in per-

turbation models. In particular, we showed how max-marginals can provide

sufficient conditions for conditional independencies with respect to single

variables. Unfortunately the methods do not easily extend to condition-

ing on sets of variables, which remains an open question. Furthermore, we

showed examples of perturbations which satisfy the restrictions in Lemma

5.4, which typically involve either the maximizing assignments or the mes-

sages to be constant with respect to perturbations. A further question to

explore is whether there is a more general characterization of the type of

perturbations that satisfy these restrictions.

5.7 Learning Perturbation Models

One of the most distinctive characteristics of perturbation models is that

they give rise to dependencies that are not expressed in the base potential

function. In the previous chapters we showed that such dependencies arise

even when perturbations are independent across the different potential

function terms, and across the local assignments within a term. Going a

step further, if the perturbations are allowed to be coupled, then we can

learn to create and enforce dependencies. This suggests that perturbation

models have modeling capacity beyond their base Gibbs’ distributions. For

example, a tree-structured base model is itself rather restrictive but can be

used to induce interactions of all orders in a perturbation setting.

In this section, our goal is to take advantage of this modeling power and

learn perturbation models from data. Unlike Gibbs’ models, the connection

between the structure of the potential function and the properties of the

induced distribution is less understood. To this end, we consider complex

potential functions equipped with efficient algorithms for computing the

142 Learning Maximum A-Posteriori Perturbation Models

maximizing assignment and with expressive dependent perturbations and

rely on the learning algorithm to infer the optimal dependency structure.

For the rest of the chapter, we define perturbation models with respect

to linear potential functions of the form θ(x,w) = wTφ(x), where w is a

vector of parameters and φ(x) is a vector of features. For instance, for im-

age segmentation, where the prediction is determined by binary variables

per pixel location x = (xij)i∈[n],j∈[m] ∈ {0, 1}n×m, a possible feature may

check whether neighboring pixels (i, j) and (k, l) are assigned the same class

φij,kl(xij , xkl) = 1[xij = xkl]. In contrast to additive perturbations consid-

ered earlier, we define w directly as a random variable. The distribution

p(w; η) governs the randomization and η are the (hyper-)parameters we aim

to learn. This includes the additive case as a special case by simply using

w = w0 + γ where w0 are fixed parameters and γ is a vector of random

perturbations.

The induced distribution over the product space X is now given by:

P(x̂; η) =

∫
p(w; η)[[x̂ = argmax

x
θ(x;w)]]dw (5.40)

The goal is to learn the hyper-parameters η that maximize the induced log-

likelihood of the data
∑

x̂∈S logP(x̂; η). This is a latent variable model with

continuous hidden variables w. In principle, we could use the EM algorithm

resulting in the following iterative updates

η(t+1) = argmax
η

∑
x̂∈S

Ew∼p(w|x̂;η(t))

[
log p(w; η)

]
(5.41)

Evaluating the expectation requires sampling from the inverse set Γ(x̂).

One way of approaching this issue is to use specialized MCMC algorithms.

For instance, (Tarlow et al., 2012) uses a Slice Sampling algorithm which

takes advantage of the structure of the problem to avoid fully recomputing

the maximizing assignment at every step.

The second approach, which we pursue in this chapter, is to replace the

expectation in the E-step with a maximization over w, obtaining a single

point in the inverse set Γ(x̂). This hard-EM algorithm is given by

η(t+1) = argmax
η

∑
x̂∈S

max
w∈Γ(x̂)

log p(w; η) (5.42)

While this approach requires a single inner maximization, the problem

remains challenging since the number of constraints specifying the inverse

set can be exponential in the number of variables. For example, we might

need to enforce w>φ(x̂) ≥ w>φ(x) for every x ∈ dom(φ). However, we will

show below that there are many problems of interest for which the inverse

set can be described compactly.

5.7 Learning Perturbation Models 143

5.7.1 Inverse Optimization

Optimization problems over discrete sets such as maximization of w>φ(x)

over x ∈ dom(φ), can be cast as continuous optimization problems over the

corresponding convex hull conv({φ(x) : x ∈ dom(φ)}). The convex hull is a

polytope defined by linear constraints {z : Az ≤ b, z ≥ 0}, and the vertexes

of this polytope are exactly the statistics φ(x). Thus w ∈ Γ(ẑ) if and only if

ẑ is the maximizer of the linear objective f(z) = w>z over the polytope. In

many cases, the constraint matrix A is totally unimodular.

Naively one may verify that ẑ is the maximizer by trying all the extreme

points. More efficiently, we appeal to convex duality in order to maintain a

certificate of optimality for ẑ. A dual certificate is a dual feasible solution

that satisfies the complementary slackness constraints: if ẑi > 0 then the

corresponding constraint on the dual variable yi is satisfied with equality

[AT y]i = wi, and if [Aẑ]i < bi then yi = 0. Using the dual certificate, we

can maintain the optimality of ẑ while changing w. Specifically, we write the

inner maximization problem in (5.42) as a convex program:

max
w,y

log p(w; η) (5.43)

s.t. AT y ≥ w, y ≥ 0 (5.44)

yi = 0, for i ∈ {i|[Aẑ]i < b} (5.45)

[AT y]j = wj , for j ∈ {j|ẑj > 0} (5.46)

Such inverse linear programs have been used before in operations research.

The goal is typically to find the parameter setting closest to a given w0 while

ensuring that ẑ remains optimal. The distance is a weighted Lp norm, mostly

L1 and L∞ norms (Ahuja and Orlin, 2001). Also see (Chatalbashev) for a

related usage. In our case, p(w; η) is a multivariate Gaussian and thus the

resulting convex program is quadratic, solved using standard QP solvers.

When the linear program (LP) admits a compact representation, we can

represent the inverse set compactly as well since there is a dual variable for

every primal constraint. Cases of interest to us include bipartite matching,

maximum spanning tree, and so on. When the LP formulation is a relaxation,

the constraints (5.45-5.46) are tighter than necessary. The inverse program

will return a point within a smaller set contained in the inverse set Γ(x̂) (or

the empty set).

We describe below a few examples that are relevant for our models.

144 Learning Maximum A-Posteriori Perturbation Models

Example 1: Image Matching

We start with an assignment problem. For a graph G = (I ∪ J,E,w), E ⊆
I × J with edges weighted by wij and |I| = |J | = n, the goal is to find the

maximum weight matching that assigns each element in I to exactly one

element in J . Document ranking and key-point matching in images can be

modeled as assignment problems.

By reweighing the edges, the optimal assignment can be formulated as

a minimum cost matching problem, which can be computed in polynomial

time using the Hungarian algorithm (Schrijver, 2003). Note that sampling

and computing the partition function remain #P-complete (Valiant, 1979)

though MCMC-based fully-polynomial approximation schemes exist (Jer-

rum et al., 2004b). In comparison, perturbation models rely only on the

efficient polynomial time maximization.

The minimum cost matching can be obtained by minimizing a linear

objective f(z) = wT z subject to constraints. The constraints ensure that

each vertex is incident to exactly one edge in the matching
∑

k∈I zkj =

1,
∑

k∈J zik = 1 (Schrijver, 2003). Using dual certificates, we can formulate

the inverse problem, i.e., maxw∈Γ(ẑ) log p(w; η) as a convex program:

max
w,u,v

log p(w; η)

s.t. ui + vj = wij , (i, j) ∈ {(i, j)|ẑij 6= 0}
ui + vj ≤ wij , (i, j) ∈ {(i, j)|ẑij = 0}

where ẑ is the observed assignment and u and v are dual variables. The com-

pact description involves 2n2 constraints and 2n additional (dual) variables.

Example 2: Pose Estimation

In pose estimation, the human body is modeled as a tree-structured graph-

ical model, where nodes correspond to body parts. The highest scoring la-

beling specifies the estimated locations for the parts (Yang and Ramanan,

2011). The tree structure is computationally appealing, but it assumes that

limbs are independent given the body position. Perturbation models can

capture longer range dependencies even when the potential function corre-

sponds to a tree.

While inference and sampling in tree-structured models is easy, sampling

from the inverse set is difficult. The constraints enforcing the solution x̂

to be optimal extend beyond the tree structure. The MAP solution can

be nevertheless cast as a maximization of a linear objective f(µ) = wTµ

over the local polytope ML(G) = {µ ≥ 0|∑xj
µi,j;xi,xj = µi;xi∀i, j, xi,

5.7 Learning Perturbation Models 145

∑
xi
µi,j;xi,xj = µj;xj ∀i, j, xj ,

∑
xi
µi;xi = 1 ∀i}. For trees, the solution

µ̂ is integral and corresponds to the maximum assignment x̂ (Fromer and

Globerson, 2009b). In other words, µ̂ describes x̂ in terms of local marginals.

Using dual certificates, we can write the inverse problem as:

max
w

log p(w; η)

s.t. yi −
∑
j

y′i,j;xi −
∑
j

y′′j,i;xi ≥ wi;xi , for µ̂i;xi = 0

yi −
∑
j

y′i,j;xi −
∑
j

y′′j,i;xi = wi;xi , for µ̂i;xi > 0

y′i,j;xi + y′′i,j;xj ≥ wi,j;xi,xj , for µ̂i,j;xi,xj = 0

y′i,j;xi + y′′i,j;xj = wi,j;xi,xj , for µ̂i,j;xi,xj > 0

where y, y′, y′′ are dual variables corresponding to the marginal constraints.

The constraints are satisfied with equality when the corresponding marginals

in µ̂ are non-zero.

Example 3: Image Segmentation

Image segmentation and other computer vision tasks can be modeled as

energy minimization problems with sub-modular potentials. Minimum graph

cuts are used as tools for finding the optimal assignments (Szeliski et al.,

2007).

The s-t cut problem can be formulated as the following LP with m + n

variables and m constraints:

min
z

wT z

s.t. zj + zS,j ≥ 1 (s, j) ∈ E
zj − zi + zi,j ≥ 0 (i, j) ∈ E
−zi + zi,T ≥ 1 (i, T) ∈ E

For a graph G = (V,E,w) with |V | = n, |E| = m and edge costs given by

w, the minimum s-t cut problem aims to find a subset of vertices S, with

s ∈ S and t ∈ V \ S, such that the cost of the cut (weight of the edges

crossing S and V \ S) is minimized. The dual problem is maximum-flow,

146 Learning Maximum A-Posteriori Perturbation Models

and we can solve the inverse problem via

max
w,y

log p(w; η)

s.t.
∑
i

yik =
∑
j

ykj , ∀k 6= s, k 6= t

0 ≤ yij ≤ wij ,∀i, j
yij = wij , for (i, j) ∈ {(i, j)|ẑij > 0}

where y are the dual variables and ẑ encodes the observed cut. We obtain

a compact, polynomial size representation of the inverse problem, at the

cost of introducing m additional variables. For image segmentation and for

most examples we provide, the number of additional variables is at most the

number of parameters w.

Example 4: Natural Language Parsing

Dependency parsing can be formulated as a maximum directed spanning

tree problem over the words in the sentence (McDonald et al., 2005).

Different interpretations of the sentence correspond to different parse trees.

As a result, the target parse can be inherently ambiguous. Perturbation

models can be used to efficiently sample high-scoring parse trees to represent

candidate interpretations.

In this case, a polynomial size representation of the inverse problem can

be obtained via LP formulation of the minimum cost directed tree problem.

In a graph G = (V,E,w), the primal LP involves minimizing a linear

objective
∑

(i,j)∈E wijzij subject to constraints ensuring that for every node

u ∈ V \{r} there is an r-u flow f (u) of value 1 with f
(u)
ij ≤ zij (Schrijver,

2003). The feasible set is the projection of a high dimensional polytope in

mn dimensions, governed by at most n(2m+ n) constraints. Here n and m

are the length of the sentence and the number of edges, respectively. As a

result, using the dual certificate approach (omitted), we can formulate the

inverse problem with O(mn) additional variables.

Example 5. Subset Selection

The subset selection problem appears in machine learning in the context

of feature selection, video or text summarization, and others. The preva-

lence of the problem has lead to various modeling approaches, including

budget-based formulations which are typically intractable even for MAP

computations, and sub-modular formulations, which are often difficult to

sample from. The sub-modular approaches are often optimized in this case

5.7 Learning Perturbation Models 147

via provable greedy approximations (Gygli et al., 2015) and the perturbation

models can be defined as distributions of the (approximate) solution under

perturbations of the parameters. In this section we will instead focus on the

budget-based approaches and illustrate the inverse LP approach when the

formulation is a relaxation.

Consider the task of selecting a fixed number of items (given by a budget

B). Specifically, consider the scoring function θ(y) =
∑

α θα(yα) where

yi ∈ {0, 1} denotes the absence or presence of an item. In the context of video

and text summarization, unary potentials may encode local information,

such as the interestingness of the video chunk or sentence, pairwise potentials

may encode the similarity between the two items and how far apart they

are in the sequence, and so on. See (Gygli et al., 2015) for a range of

objectives to consider for video summarization, and (Almeida and Martins,

2013) for text. The goal is to solve maxy θ(y) s.t.
∑

i Liyi ≤ B, where Li is a

weight associated with the selected item, e.g. number of frames in the video

chunk or number of words in the sentence. Furthermore, we are interested

in distributions over subsets, defined as p(y) ∝ exp(θ(y)).

The optimization problem is in general intractable, as it includes the

knapsack problem as a special case, and it can be approached by formulating

an LP relaxation. For instance, (Almeida and Martins, 2013) use dual-

decomposition for optimizing a knapsack objective for text summarization.

Their coverage-based summarization model considers M possible sentence

topics (Tm)Mm=1 with associated relevance scores wm ≥ 0 and the goal is

to select the subset of sentences that maximizes the overall relevance of

the topics covered. Specifically, if y ∈ {0, 1}N and u ∈ {0, 1}M are binary

vectors denoting the selected sentences and topics respectively, the integer

optimization problem to be solved is given by:

max
u∈{0,1},y∈{0,1}

M∑
m=1

wmum (5.47)

s.t. um ≤
∑
i∈Tm

yi, ∀m ∈ {1 . . .M} (5.48)

N∑
n=1

Lnyn ≤ B (5.49)

After relaxing the integrality constraints and considering the dual, we in-

troduce (N + 2M + 1) new parameters: b and (sm)Nm=1 associated with

the budget constraint and topic selection constraints, and (αm)Mm=1, (βn)Nn=1

associated with the constraint of variables being less than 1. Finally, the

148 Learning Maximum A-Posteriori Perturbation Models

optimality conditions lead to the following inverse problem:

min
w

p(w; η) (5.50)

s.t. sm + αm = wm, ∀m,um > 0 (5.51)

sm + αm ≥ wm, ∀m,um = 0 (5.52)

bLn + βn =
∑

m: n∈Tm
sm, ∀n, yn > 0 (5.53)

bLn + βn ≥
∑

m: n∈Tm
sm, ∀n, yn = 0 (5.54)

b, s, α, β ≥ 0 (5.55)

5.7.2 Penalty-based Inverse Optimization

The inverse optimization framework provides a clean way of solving the inner

maximization in (5.42) for many problems of interest. For completeness, we

also provide examples where the size of the LP formulation is large relative

to the number of parameters in w.

Consider learning a perturbation model over binary images of size k × k,

guided by a potential function θ(x;w) =
∑n

i=1wixi +
∑

(i,j)∈E wijxixj ,
|E| = m. For large k, it may be impractical to learn both unary and pairwise

potentials resulting in n+m parameters. We can instead estimate a subset

of parameters, e.g. fix the higher-order potentials and learn n parameters for

node potentials. Nonetheless, the min-cut inverse LP formulation in Example

3 adds additional variables for each edge and even for estimating a subset

of parameters, the number of variables is given by n+m.

In many cases we must resort to constraints of the form wTφ(x̂) ≥
wTφ(x), ∀x. Assuming that the perturbations follow a multivariate Gaussian

distribution, the inverse optimization problem is quadratic

min
w

(w − µ)TΣ−1(w − µ) + C
[
max
x

wTφ(x)− wTφ(x̂)
]

The objective is similar to structured SVM (Tsochantaridis et al., 2004) and

a similar approach has been explored in (Tarlow et al., 2012). The problem

can be solved using typical methods for structured SVMs, such as cutting-

planes or gradient descent methods. We illustrate this in the experimental

section using a sub-gradient descent with a decreasing step size.

5.8 Empirical Results 149

Figure 5.1: First line: max-margin parameters and resulting segmentation, second
line: the mean of the perturbation parameters, the average segmentation and the
four images with the highest count.

5.8 Empirical Results

We conclude the chapter by presenting experiments demonstrating that per-

turbation models capture dependencies above and beyond the structure of

the potential function. The first experiment explores an image segmentation

task and illustrates the duality approach for learning perturbation models.

While the potential function is formed of local pairwise potentials and im-

plies long range conditional independencies, the experiment suggests that

in the learned perturbation model various long range independencies do not

hold. The second experiment shows an application of learning perturbation

models in the context of image matching.

5.8.1 Image Segmentation

We selected four images from the Large Binary Image Database1 represent-

ing basketball player silhouettes, with the goal of learning a model over the

basketball player poses and showing that perturbation models are able to

store multiple modes and sample from them.

We used an Ising model over labels yi ∈ {+1,−1} with potentials θ(yi) en-

coding whether pixel i is foreground or background and θ(yi, yj) encouraging

adjacent pixels to have the same labels. We assumed θ(yi, yj) = yiyj , θi(yi) =

γiyi and learned a distribution over the node parameters γi. Since the model

contained node potentials only (resulting in 2500 parameters), we solved the

inverse problem using the sub-gradient approach explained in the previous

section. For each iteration of the hard-EM algorithm, we performed 3 iter-

ations of the sub-gradient algorithm for each example, initialized with the

point estimate from the previous hard-EM iteration. Since the setting is

1. http://www.lems.brown.edu/~dmc/

150 Learning Maximum A-Posteriori Perturbation Models

Figure 5.2: Correlations between a reference pixel (white) and the rest, as captured
by the covariance matrix of the perturbation distribution. We show a pixel that is
always off (so no correlations) and two pixels that are activated on different poses.

Figure 5.3: The average segmentation and samples from four models, one per
line: perturbation model where the perturbations have unrestricted vs. diagonal
covariance matrix and multivariate gaussian model with unrestricted vs. diagonal
covariance matrix.

so simple, the hard-EM algorithm converged in less than 20 iterations. For

computing the maximum likelihood estimates of η in the M-step we per-

formed regularization by adding a constant c to the diagonal elements of

the estimated covariance matrix (we set c to 0.1). We also implemented a

structural SVM approach, using a similar stochastic sub-gradient algorithm.

In Figure 5.1, second line, we show in this order the mean of the pertur-

bation parameters γ, the average segmentation from 104 samples and the

four images with the highest count. In this case, the four images correspond

to the four human poses we considered and images visually similar to them

obtain a similar score. The first line shows the learned node parameters and

the max-margin maximum weight configuration.

The potential function encodes only local interactions through the lattice

structure, but the induced distribution shows longer range dependencies.

5.8 Empirical Results 151

This is due to the correlations in the latent space as illustrated in Figure

5.2. For pixels that are always foreground or background the covariance

matrix reveals no correlations. The others have strong positive correlations

with pixels that are only activated on the same pose, and negative correla-

tions with other poses. To further understand the perturbation models we

look at independent samples, Figure 5.3, where the perturbation distribu-

tion is a multivariate gaussian with unrestricted, resp. diagonal, covariance

matrix (first two lines). The second model captures few or no long-range

dependencies in this case.

Instead of perturbation models, one may learn a multivariate gaussian

model over the binary images and compute a sample image by thresholding

each pixel independently. We also show samples from these models in Figure

5.3, last two line, where the covariance matrix is unrestricted, resp. diagonal.

The latent space is capturing the long-range correlations, but the lack of

structure in the MAP solver results in visual artifacts.

5.8.2 Image Matching

We illustrate the LP duality approach for a matching task on images from the

Buffy Stickmen dataset2. Each frame is annotated with segment locations

for six body parts and we use the framework of (Yang and Ramanan, 2011)

to enlarge this set of locations such that we obtain 18 keypoints per image.

We select frames of the same person throughout an episode and from the

resulting set of all image pairs we randomly select two disjoint sets for

training and testing (15 train pairs and 23 test pairs). The set of keypoints

for an image pair serves as the ground truth for our matching experiments.

We represent the matching as a permutation of keypoints denoted by π,

and assume the following potential function, following (Volkovs and Zemel,

2012), θ(I, I ′, π;w) =
∑

i,j w
T (ψ(I, i) − ψ(I ′, j))2. The features ψ(I, k) are

the SIFT descriptors evaluated keypoint k.

The inference problem can be formulated as an assignment problem, so

we learn the perturbation distribution using the hard-EM algorithm, and

computing the point estimate using the inverse optimization formulation.

In this case, the inverse problem becomes a quadratic program with 26

additional variables and 324 constraints corresponding to edges.

Figure 5.4 shows an example pair from the test set. We extract SIFT

features at scale 5 and we return the matching with the highest count after

1000 samples. In this case the perturbation model shows similar performance

2. http://www.robots.ox.ac.uk/~vgg/data/stickmen/

152 Learning Maximum A-Posteriori Perturbation Models

Figure 5.4: Example matching returned by the randomized MAP model. This is
the matching with the highest count from 100 samples and has error equal to 4.

with SVM: the average error of the perturbation model after 1000 samples

was equal to 8.47 while the average error of max margin was 8.69.

5.9 Perturbation Models and Stability

In the previous sections we showed how to estimate perturbation models

from data and demonstrated their extended modeling power. To this end,

we focused on base models where the MAP assignment can be evaluated

efficiently even if the marginals (or the partition function) of the base Gibbs

model is not feasible. Such models remain learnable within the perturbation

framework, enriched by induced longer range dependencies.

The situation changes when the family of base potential functions no

longer permits efficient MAP assignments. For instance, in section 5.7.1 we

indicate how approximations can be used with inverse optimization. More

generally, tractability may arise as a by-product of learning perturbation

models. Indeed, while randomization is needed to introduce diversity in

samples, maximizing the likelihood of the correct assignment also serves

to carve out stable assignments. Stability, on the other hand, can be related

to tractability. We start by describing various notions of stability and their

relationship to the hardness of inference calculations.

The complex models we consider here are common in applications in

natural language processing, computer vision and bioinformatics that involve

clusters, parse trees, or arrangements. As a result, much of the work in

structured prediction has focused on designing heuristics for inference, such

as loopy belief propagation (Murphy et al., 1999), tree reweighed message

passing (Wainwright et al., 2005), local search algorithms (Zhang et al.,

2014) or convex relaxations (Koo et al., 2010b), and empirical results show

that these methods are often successful in recovering the correct (target)

solution (Koo et al., 2010b; Rush et al., 2010; Zhang et al., 2014). This

5.9 Perturbation Models and Stability 153

suggests that the instances encountered during inference are much easier

than indicated by their complexity class.

The success of the heuristics can be attributed to the additional structural

properties that are present in the typical instances. For instance, if the target

solution stands out amongst all other solutions in some manner, than we

expect heuristic approaches to discover it in polynomial time.

In theoretical computer science, the relevant work has focused on identi-

fying the interesting structural properties which can be exploited to design

specialized new algorithms or to prove the correctness of current heuristics.

Such properties include Bilu-Linial stability (Bilu et al., 2012; Awasthi et al.,

2012; Bilu and Linial, 2012; Makarychev et al., 2014), approximation stabil-

ity (Balcan and Liang, 2012), weak-deletion stability (Awasthi et al., 2012,

2010), and so on. For instance, the notion of Bilu-Linial γ-stability specifies

that the optimal solution does not change upon multiplicative perturbations

of the parameters of magnitude at most γ and in this case (Makarychev et al.,

2014) showed that Max-Cut is tractable whenever γ ≥ √n log log n for some

constant c.

In structured prediction, the additional properties that trigger the suc-

cess of approximate inference procedures can be attributed to the learn-

ing algorithms used to estimate the parameters. For example, one of the

common learning strategies is to maximize the margin between the target

solution and potential candidates: θ(x̂) − θ(x) ≥ γ∆(x̂, x),∀x, where ∆ is

a distance measure between assignments, allowing a closer margin between

similar assignments. This notion of stability (margin stability) has been em-

pirically proven to produce tractable instances under various approximate

inference algorithms (Finley and Joachims, 2008). Also, from the theoretical

perspective, one can relate the notion of margin (additive) stability to the

multiplicative stability mentioned above to provide weak guarantees, which

suggests that explicitly enforcing the saliency of target solutions brings com-

putational benefits for inference.

Even more concretely, the additive margins can be related to the empiri-

cal success of various linear programming relaxations approaches in machine

learning. For instance, considering scoring functions of the form
∑

α θα(xα)

on binary assignments x ∈ {0, 1}n, the dual decomposition algorithm (Koo

et al., 2010b; Sontag et al., 2011) has been successfully used for parsing with

high order interactions, despite the theoretical intractability of the problem.

To illustrate this, consider the optimality conditions for the resulting lin-

ear program. When most of the local potentials agree on the maximizing

assignment, the relaxation is tight:

154 Learning Maximum A-Posteriori Perturbation Models

Lemma 5.7. Assuming that a (1 − δ) fraction of the components support

the correct solution with a margin γ (i.e. for most α, θα(x∗α) > θα(xα) + γ),

and the remaining δ fraction do not object by more than M (i.e. θα(x∗α) >

θα(xα) −M) and δ ≤ γ
γ+M , then the dual-decomposition algorithm returns

the correct solution.

Proof. Consider the binary structured prediction problem where the max-

imizing assignment is given by x̂ = arg max
x

θ(x). We start by rewriting it

as x̂ = arg max
x=x′

∑n
i=1 θi(xi) +

∑
α θα(x′α), where we added constant unary

potentials θi(xi) for i ∈ {1 . . . n}. Solving the optimization problem via dual

decomposition involves computing

δ̂ = arg min
δ

{
max
x

(
∑
i

(θi(xi)−
∑
α

δi,α(xi))) +
∑
α

max
x′α

(θα(x′α) +
∑
i

δi,α(x′i))
}

x̂ = arg max
x

{∑
i

(θi(xi)−
∑
α

δ̂i,α(xi))
}

x̂′α = arg max
x′α

{
θα(x′α) +

∑
i

δ̂i,α(x′i)
}

To show that a target assignment x∗ is optimal, we find a dual witness δ∗

such that: max
x

(
∑

i(θi(xi)−
∑

α δ
∗
i,α(xi)))+

∑
α max

x′α
(θα(x′α)+

∑
i δ
∗
i,α(x′i)) ≤∑

i θi(x
∗
i) +

∑
α θα(x∗α).

Define δ∗i,α(x∗i) = 0 and δ∗i,α(1 − x∗i) = min
x′′α,∆(x∗α,x

′′
α)>0

θα(x∗α)−θα(x′′α)
∆(x∗α,x

′′
α) , where

∆(·, ·) counts the number of dimension where the assignments disagree.

Specifically, we design the dual witness δ∗ such that it enforces local op-

timality of the target solution by increasing/decreasing the weight of the

alternative local solutions.

With this choice of dual variables and an arbitrary assignment x′α, we

have: θα(x′α) +
∑

i δ
∗
i,α(x′i) = θα(x′α) +

∑
i,x′i 6=x∗i min

x′′α,∆(x∗α,x
′′
α)>0

θα(x∗α)−θα(x′′α)
∆(x∗α,x

′′
α)

≤ θα(x′α)+∆(x∗α, x
′
α) θα(x∗α)−θα(x′α)

∆(x∗α,x
′
α) = θα(x∗α). Therefore, all the modified local

potentials select the target assignment via maximization and max
x′α
{θα(x′α) +∑

i δ
∗
i,α(x′i)} = θα(x∗α).

To conclude the proof we need to show that max
x
{∑i(θi(xi) −∑

α δ
∗
i,α(xi))} ≤

∑
i θi(x

∗). We have:∑
i

(θi(xi)−
∑
α

δ∗i,α(xi)) =
∑
i

θi(xi)−
∑

i,xi 6=x∗i

∑
α

min
x′′α,∆(x∗α,x

′′
α)>0

θα(x∗α)− θα(x′′α)

∆(x∗α, x′′α)

≤
∑
i

θi(xi)− ((1− δ)γ − δM)

5.10 Related Work 155

where we used that θα(x∗α) − θα(x′′α) ≥ γ for a (1 − δ) fraction of the local

potentials and θα(x∗α)− θα(x′′α) ≥ −M for the rest.

If ((1 − δ)γ − δM ≥ max
x

∑
i(θi(xi) − θi(x∗)), then the target solution is

optimal for the dual decomposition algorithm. Since θi were introduced as

constant local potentials, we have that δ ≤ γ
γ+M is sufficient to imply the

optimality of the target solution.

The observations in this section argue for enforcing stability with respect

to perturbations of the parameters. In fact, dual-decomposition-based infer-

ence has been successfully applied in conjunction with simple learning algo-

rithms which encourage local assignments to be consistent with the overall

solution (Koo et al., 2010b).

Learning perturbation models is inherently tied to stability. Maximizing

the probability that a perturbation model realizes a given answer also

encourages the answer to be stable, carrying tractability benefits. Indeed,

perturbation models can be tailored to achieve various notions of stability

by designing appropriate (e.g. multiplicative) perturbations. Such variations

can remain tractable even if the base model (as a class) is not.

5.10 Related Work

The Gibbs distribution plays a key role in many areas of computer science,

statistics and physics. To learn more about its roles in machine learning we

refer the interested reader to (Koller and Friedman, 2009; Wainwright and

Jordan, 2008). The Gibbs distribution as well as its Markov properties can be

realized from the statistics of high dimensional random MAP perturbations

with the Gumbel distribution (see Theorem 6.1), (Papandreou and Yuille,

2011; Tarlow et al., 2012; Hazan and Jaakkola, 2012; Hazan et al., 2013). For

comprehensive introduction to extreme value statistics we refer the reader

to Kotz and Nadarajah (2000).

Recent work explores the different aspects of low dimensional MAP per-

turbation models (Papandreou and Yuille, 2010, 2011; Tarlow et al., 2012).

Papandreou and Yuille (2010) describe sampling from the Gaussian distri-

bution with random Gaussian perturbations. Papandreou and Yuille (2011)

show empirically that MAP predictors with low dimensional perturbations

share similar statistics as the Gibbs distribution. In our work we investi-

gate the dependencies of such probability models. Specifically, we present

non-i.i.d. low dimensional random perturbations that recover the Markov

properties of tree structured Markov random fields. We also show that inde-

156 Learning Maximum A-Posteriori Perturbation Models

pendent low dimensional perturbations may model long-range interactions.

Tarlow et al. (2012) describe the Bayesian perspectives of these models and

their efficient sampling procedures, as well as several learning techniques

including hard-EM. In contrast, we focus on understanding the structure of

the induced distribution and our learning approach is different. We use dual

LPs in our hard-EM approach so as to obtain compact representations of the

inverse polytope when possible, while Tarlow et al. (2012) focus on cutting

plane approaches. When using cutting plane approaches for only a couple

of iterations, the hard-EM estimates often fall outside the inverse polytope.

Our dual LP approach alleviates this problem and in our experiments almost

all estimates fall within the inverse polytope.

Our experiments show that we are able to sample from the modes of

the distribution. Alternatively, one may use the M-best approach and its

diverse-versions to recover such modes (Yanover and Weiss, 2004; Fromer

and Globerson, 2009a; Batra, 2012; Mezuman et al., 2013; Batra et al., 2012;

Guzman-Rivera et al., 2012). Finding the M-best carries a computational

effort which extends beyond our learning approach whose complexity is as

a 1-best solver. Alternatively, one may sample from determinantal point

processes to retrieve the modes of the distributions (Kulesza and Taskar,

2012). This learning approach concerns problems that can be described by

determinants while our approach is based on MRF potentials.

Acknowledgements

AG and TJ were partially supported by NSF grant #1524427

5.11 References

R. K. Ahuja and J. B. Orlin. Inverse optimization. In Operations Research, 2001.

M. B. Almeida and A. F. Martins. Fast and robust compressive summarization
with dual decomposition and multi-task learning. In ACL (1), pages 196–206,
2013.

P. Awasthi, A. Blum, and O. Sheffet. Clustering under natural stability assump-
tions. 2010.

P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49–54, 2012.

M. F. Balcan and Y. Liang. Clustering under perturbation resilience. In Automata,
Languages, and Programming, pages 63–74. Springer, 2012.

D. Batra. An efficient message-passing algorithm for the m-best map problem. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2012.

5.11 References 157

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse
m-best solutions in markov random fields. In ECCV, 2012.

Y. Bilu and N. Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(05):643–660, 2012.

Y. Bilu, A. Daniely, N. Linial, and M. Saks. On the practically interesting instances
of maxcut. arXiv preprint arXiv:1205.4893, 2012.

V. Chatalbashev. Inverse convex optimization.

H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao,
X. He, M. Mitchell, J. C. Platt, et al. From captions to visual concepts and
back. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1473–1482, 2015.

T. Finley and T. Joachims. Training structural svms when exact inference is
intractable. In Proceedings of the 25th international conference on Machine
learning, pages 304–311. ACM, 2008.

M. Fromer and A. Globerson. An lp view of the m-best map problem. Advances in
Neural Information Processing Systems (NIPS), 22:567–575, 2009a.

M. Fromer and A. Globerson. An lp view of the m-best map problem. Advances in
Neural Information Processing Systems (NIPS), 2009b.

A. Gane, T. Hazan, and T. Jaakkola. Learning with maximum a-posteriori pertur-
bation models. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, 2014.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 1984.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

E. Gumbel and J. Lieblein. Statistical theory of extreme values and some practical
applications: a series of lectures, volume 33. US Govt. Print. Office, 1954.

A. Guzman-Rivera, P. Kohli, and D. Batra. Faster training of structural svms with
diverse m-best cutting-planes. In Discrete Optimization in Machine Learning
Workshop (DISCML-NIPS), 2012.

M. Gygli, H. Grabner, and L. Van Gool. Video summarization by learning submod-
ular mixtures of objectives. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3090–3098, 2015.

W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. ICML, 2012.

T. Hazan, S. Maji, and T. Jaakkola. On sampling from the gibbs distribution with
random maximum a-posteriori perturbations. Advances in Neural Information
Processing Systems, 2013.

M. Huber. A bounding chain for swendsen-wang. Random Structures and Algo-
rithms, 2003.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993.

158 Learning Maximum A-Posteriori Perturbation Models

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM
(JACM), 51(4):671–697, 2004a.

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM
(JACM), 51(4):671–697, 2004b.

J. H. Kappes, P. Swoboda, B. Savchynskyy, T. Hazan, and C. Schnörr. Probabilistic
correlation clustering and image partitioning using perturbed multicuts. In Scale
Space and Variational Methods in Computer Vision, pages 231–242. Springer,
2015.

D. Koller and N. Friedman. Probabilistic graphical models. MIT press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. PAMI, 2006.

T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition for
parsing with non-projective head automata. In EMNLP, 2010a.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288–
1298. Association for Computational Linguistics, 2010b.

S. Kotz and S. Nadarajah. Extreme value distributions: theory and applications.
World Scientific Publishing Company, 2000.

A. Kulesza and B. Taskar. Determinantal point processes for machine learning.
Foundations and Trends in Machine Learning, 2012.

S. Maji, T. Hazan, and T. Jaakkola. Efficient boundary annotation using random
map perturbations. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, 2014.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu-linial stable instances
of max cut and minimum multiway cut. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 890–906. SIAM,
2014.

R. McDonald and G. Satta. On the complexity of non-projective data-driven
dependency parsing. In Proceedings of the 10th International Conference on
Parsing Technologies, pages 121–132. Association for Computational Linguistics,
2007.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. Non-projective dependency
parsing using spanning tree algorithms. In EMNLP, 2005.

E. Mezuman, D. Tarlow, A. Globerson, and Y. Weiss. Tighter linear program
relaxations for high order graphical models. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2013.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approx-
imate inference: An empirical study. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann Pub-
lishers Inc., 1999.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer
vision. Foundations and Trends® in Computer Graphics and Vision, 6(3–4):
185–365, 2011.

F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration of
random maximum a-posteriori perturbations. In ICML, 2014.

5.11 References 159

G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In
Advances in Neural Information Processing Systems (NIPS), 2010.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCV, 2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San
Mateo, 1988.

L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. 1993.

A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
pages 1–11. Association for Computational Linguistics, 2010.

A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2008.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for
inference. Optimization for Machine Learning, 1:219–254, 2011.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,
M. Tappen, and C. Rother. A comparative study of energy minimization methods
for markov random fields with smoothness-based priors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1068–1080, 2007.

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In AISTATS, 2012.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In ICML, page 104.
ACM, 2004.

L. Valiant. The complexity of computing the permanent. Theoretical computer
science, 1979.

M. Volkovs and R. S. Zemel. Efficient sampling for bipartite matching problems.
In Advances in Neural Information Processing Systems (NIPS), 2012.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation via agreement
on trees: message-passing and linear programming. Information Theory, IEEE
Transactions on, 51(11):3697–3717, 2005.

J. Wang and R. Swendsen. Nonuniversal critical dynamics in monte carlo simula-
tions. Physical review letters, 1987.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimization (map-mrf). In Computer Vision and
Pattern Recognition (CVPR), 2008.

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-
parts. In Computer Vision and Pattern Recognition (CVPR), 2011.

C. Yanover and Y. Weiss. Finding the m most probable configurations using loopy
belief propagation. Advances in Neural Information Processing Systems (NIPS),
2004.

Y. Zhang, T. Lei, R. Barzilay, and T. Jaakkola. Greed is good if randomized: New
inference for dependency parsing. EMNLP, 2014.

6 On the Expected Value of Random

Maximum A-Posteriori Perturbations

Tamir Hazan tamir.hazan@technion.ac.il

Technion

Haifa, Israel

Tommi Jaakkola tommi@csail.mit.com

Massachusetts Institute of Technology

Cambridge, MA

In this chapter we present how to perform high-dimensional structured in-

ference that is based on optimization and random perturbations. This frame-

work injects randomness to maximum a-posteriori (MAP) predictors by ran-

domly perturbing its potential function. When the perturbations are of low

dimension, sampling the perturb-max prediction is as efficient as MAP opti-

mization. A classic result from extreme value statistics asserts that perturb-

max operations generate unbiased samples from the Gibbs distribution us-

ing high-dimensional perturbations. Unfortunately, the computational cost of

generating so many high-dimensional random variables can be prohibitive.

In this work we show that the expected value of perturb-max inference with

low dimensional perturbations can be used sequentially to generate unbiased

samples from the Gibbs distribution. We also show that the expected value of

the maximal perturbations is a natural bound on the entropy of such perturb-

max models.

6.1 Introduction

Modern machine learning tasks in computer vision, natural language pro-

cessing, and computational biology involve inference of high-dimensional

162 On the Expected Value of Random Maximum A-Posteriori Perturbations

models. Examples include scene understanding (Felzenszwalb and Zabih,

2011), parsing (Koo et al., 2010), and protein design (Sontag et al., 2008).

In these settings inference involves finding likely structures that fit the data:

objects in images, parsers in sentences, or molecular configurations in pro-

teins. Each structure corresponds to an assignment of values to random

variables and the preference of a structure is based on defining potential

functions that account for interactions over these variables. Given the ob-

served data, these preferences yield a posterior probability distribution on

assignments known as the Gibbs distribution by exponentiating the poten-

tial functions. Contemporary high dimensional models that are used in ma-

chine learning incorporate local potential functions on the variables of the

model that are derived from the data (signal) as well as higher order poten-

tial functions that account for interactions between the model variables and

derived from domain-specific knowledge (coupling). The resulting posterior

probability landscape is often “ragged” and in such landscapes Markov chain

Monte Carlo (MCMC) approaches to sampling from the Gibbs distribution

may become prohibitively expensive (Jerrum and Sinclair, 1993; Goldberg

and Jerrum, 2007, 2012). By contrast, when no data terms (local potential

functions) exist, MCMC approaches can be quite successful. These methods

include Gibbs sampling (Geman and Geman, 1984), Metropolis-Hastings

(Hastings, 1970) or Swendsen-Wang (Swendsen and Wang, 1987).

An alternative to sampling from the Gibbs distribution is to look for the

maximum a posteriori probability (MAP) structure. Substantial effort has

gone into developing optimization algorithms for recovering MAP assign-

ments by exploiting domain-specific structural restrictions (Eisner, 1996;

Boykov et al., 2001; Kolmogorov, 2006; Gurobi Optimization, 2015; Felzen-

szwalb and Zabih, 2011; Swoboda et al., 2013) or by linear programming

relaxations (Wainwright et al., 2005b; Weiss et al., 2007; Sontag et al., 2008;

Werner, 2008). MAP inference is nevertheless limiting when there are a

number of alternative likely assignments. Such alternatives arise either from

inherent ambiguities (e.g., in image segmentation or text analysis) or due

to the use of computationally/representationally limited potential functions

(e.g., super-modularity) aliasing alternative structures to have similar scores.

For an illustration, see Figure 6.1.

Recently, several works have leveraged the current efficiency of MAP

solvers to build (approximate) samplers for the Gibbs distribution, thereby

avoiding the computational burden of MCMC methods (Papandreou and

Yuille, 2011; Tarlow et al., 2012; Hazan et al., 2013; Ermon et al., 2013a,b,c,

2014; Maddison et al., 2014; Papandreou and Yuille, 2014; Gane and

Tamir Hazan, 2014; Keshet et al., 2011; Kalai and Vempala, 2005). The

relevant works have shown that one can represent the Gibbs distribution by

6.1 Introduction 163

Figure 6.1: Comparing MAP inference and perturbation models. A segmentation
is modeled by x = (x1, ..., xn) where n is the number of pixels and xi ∈ {0, 1} is a
discrete label relating a pixel to foreground (xi = 1) or background (xi = 0). θ(x)
is the (super-modular) score of each segmentation. Left: original image. Middle: the
MAP segmentation argmaxx θ(x) recovered by the graph-cuts optimization algo-
rithm (Boykov et al., 2001). Note that the “optimal” solution is inaccurate because
thin and long objects (wings) are labeled incorrectly. Right: The marginal probabili-
ties of the perturb-max model estimated using 20 samples (random perturbations of
θ(x) followed by executing graph-cuts). The information about the wings is recov-
ered by these samples. Estimating the marginal probabilities of the corresponding
Gibbs distribution by MCMC sampling is slow in practice and provably hard in
theory (Hazan et al., 2013; Goldberg and Jerrum, 2007).

calculating the MAP structure of a randomly perturbed potential function,

whenever the perturbations follow the Gumbel distribution (Papandreou

and Yuille, 2011; Tarlow et al., 2012). Unfortunately the total number of

structures, and consequently the total number of random perturbations, is

exponential in the structure’s dimension. We call this a perturb-max ap-

proach.

In this work we perform high dimensional inference tasks using the ex-

pected value of perturb-max programs that are restricted to low dimen-

sional perturbations. In this setting the number of random perturbations is

linear is the structure’s dimension and as a result statistical inference is as

fast as computing the MAP structure, as illustrated in Figure 6.1. We also

provide measure concentration inequalities that show the expected perturb-

max value can be estimated with high probability using only a few random

samples. This work simplifies and extends our previous works (Hazan and

Jaakkola, 2012; Hazan et al., 2013; Maji et al., 2014; Orabona et al., 2014).

We begin by introducing the setting of high dimensional inference as

well as the necessary background in extreme value statistics in Section 6.2.

Subsequently, we develop high dimensional inference algorithms that rely on

the expected MAP value of randomly perturbed potential function, while

using only low dimensional perturbations. In Section 6.3.1 we propose a novel

sampling algorithm and in Section 6.3.2 we derive bounds on the entropy

that may be of independent interest.

164 On the Expected Value of Random Maximum A-Posteriori Perturbations

6.2 Inference and Random Perturbations

We first describe the high dimensional statistical inference problems that

motivate this work. These involve defining the potential function, the Gibbs

distribution, and its entropy. Further background can be found in standard

texts on graphical models (Wainwright and Jordan, 2008). We will then

describe the MAP inference problem and describe how to use extreme

value statistics to perform statistical inference while recovering the maximal

structure of randomly perturbed potential functions (Kotz and Nadarajah,

2000) and (David and Nagaraja, 2003, pp.159–61). To do this we apply

random perturbations to the potential function and use MAP solvers to

produce a solution to the perturbed problem.

6.2.1 High Dimensional Models and Extreme Value Statistics

Statistical inference for high dimensional problems involve reasoning about

the states of discrete variables whose configurations (assignments of values)

describe discrete structures. Suppose that our model has n variables x =

(x1, x2, . . . , xn) where each xi takes values in a discrete set Xi. Let X =

X1 × X2 × · · · × Xn so that x ∈ X. Let Dom(θ) ⊆ X be a subset of possible

configurations and θ : X → R be a potential function that gives a score to

an assignment or structure x. For convenience we define θ(x) = −∞ for

x /∈ Dom(θ). The potential function induces a probability distribution on

configurations x = (x1, ..., xn) via the Gibbs distribution:

p(x)
∆
=

1

Z(θ)
exp(θ(x)) where Z(θ)

∆
=
∑
x∈X

exp(θ(x)). (6.1)

The normalization constant Z(θ) is called the partition function. Sampling

from the Gibbs distribution is often difficult because the partition func-

tion involves exponentially many terms (equal to the number of discrete

structures in X). In many cases, computing the partition function is in the

complexity class #P (e.g., (Valiant, 1979)).

6.2.2 MAP Inference

In practical inference tasks, the Gibbs distribution is constructed given

observed data. Thus we call its maximizing structure the maximum a-

posteriori (MAP) prediction. We can express MAP inference problem in

6.2 Inference and Random Perturbations 165

the same notation as Maximizing (6.1):

x∗ = argmax
x∈X

θ(x). (6.2)

Maximizing θ(x) is equivalent to maximizing p(x). Methods for performing

the optimization in (6.2) for high dimensional potential functions have been

extensively researched in the last decade (Boykov et al., 2001; Sontag et al.,

2008; Gurobi Optimization, 2015; Felzenszwalb and Zabih, 2011; Swoboda

et al., 2013). These have been useful in many cases of practical interest in

computer vision, such as foreground-background image segmentation with

supermodular potential functions (e.g., (Kolmogorov and Zabih, 2004)),

parsing and tagging (e.g., (Koo et al., 2010; Rush et al., 2010)), branch and

bound for scene understanding and pose estimation (Schwing and Urtasun,

2012; Sun et al., 2012) and dynamic programming predictions for outdoor

scene understanding (Felzenszwalb et al., 2010). Although the run-time of

these solvers can be exponential in the number of variables, they are often

surprisingly effective in practice, (Wainwright et al., 2005b; Globerson and

Jaakkola, 2007; Sontag et al., 2008; Sontag and Jaakkola, 2008).

6.2.3 Inference and Extreme Value Statistics

Although MAP prediction is NP-hard in general, it is often simpler than

sampling from the Gibbs distribution. Nevertheless, usually there are several

values of x whose scores θ(x) are close to θ(x∗) and we would like to sample

these structures (see Figure 6.1). From such samples it is possible to estimate

the amount of uncertainty in these models. A standard uncertainty measure

is the entropy function:

H(p) = −
∑
x∈X

p(x) log p(x) (6.3)

Such statistical inference tasks usually resort to MCMC methods that tend

to be slow to converge in many practical settings (Jerrum and Sinclair, 1993;

Goldberg and Jerrum, 2007, 2012). Alternatively one can draw unbiased

samples from the Gibbs distribution by perturbing the potential function

and solving the perturbed MAP problem. The perturb-max approach adds

a random function γ : X → R to the potential function in (6.1) and solves

the resulting MAP problem:

xγ = argmax
x∈X

{θ(x) + γ(x)} . (6.4)

The random function γ(·) associates a random variable to each x ∈ X. The

simplest approach to designing a perturbation function is to associate an

166 On the Expected Value of Random Maximum A-Posteriori Perturbations

independent and identically distributed (i.i.d.) random variable γ(x) for each

x ∈ X. In this case, the distribution of the perturb-max value θ(x) + γ(x)

has an analytic form. To verify this observation we denote by F (t) the

cumulative distribution function of γ(x), namely, F (t) = P [γ(x) ≤ t]. The

independence of γ(x) across x ∈ X implies that Pγ(maxx∈X {θ(x) + γ(x)} ≤
t) = Pγ(∀x ∈ X {θ(x) + γ(x)} ≤ t) = Pγ(∀x ∈ X {θ(x) + γ(x)} ≤ t) =∏
x∈X F (t − θ(x)). Unfortunately, the product of cumulative distribution

functions usually is not a simple distribution.

The Gumbel distribution, the Fréchet distribution and the Weibull distri-

bution, used in extremal statistics, are max-stable distributions. That is, the

product
∏
x∈X F (t− θ(x)) can be described by their own cumulative distri-

bution function F (·) (Fisher and Tippett, 1928; Gnedenko, 1943; Gumbel,

1954). In this work we focus on the Gumbel distribution with zero mean,

which is described by its a double exponential cumulative distribution func-

tion

G(t) = exp(− exp(−(t+ c))), (6.5)

where c ≈ 0.5772 is the Euler-Mascheroni constant. Throughout our work

we use the max-stability of the Gumbel distribution as described in the

following Theorem.

Theorem 6.1 (Max-stability of Gumbel perturbations (Fisher and Tippett,

1928; Gnedenko, 1943; Gumbel, 1954)). Let γ = {γ(x) : x ∈ X} be a

collection of i.i.d. Gumbel random variables whose commutative distribution

function is given by G(t) = P [γ(x) ≤ t] = exp(− exp(−(t + c))). Then

the random variable maxx∈X {θ(x) + γ(x)} also has the Gumbel distribution

whose mean is the log-partition function Z(θ).

Proof. The proof is straightforward and we add it for completeness. By the

independence assumption,

Pγ
(

max
x∈X
{θ(x) + γ(x)} ≤ t

)
=
∏
x∈X

Pγ(x) (θ(x) + γ(x) ≤ t) .

The random variable θ(x)+γ(x) follows the Gumbel distribution with mean

θ(x). Therefore

Pγ(x) (θ(x) + γ(x) ≤ t) = G(t− θ(x)).

6.2 Inference and Random Perturbations 167

Lastly, the double exponential form of the Gumbel distribution yields the

result:∏
x∈X

G(t− θ(x)) = exp

(
−
∑
x∈X

exp (−(t− θ(x) + c))

)
= exp (− exp(−(t+ c− logZ(θ)))

= G(t− logZ(θ)).

We can use the log-partition function to recover the moments of the Gibbs

distribution. Thus the log-partition function characterizes the stability of the

randomized MAP predictor xγ in (6.4).

Corollary 6.2 (Sampling from perturb-max models (Luce, 1959; Ben-Akiva

and Lerman, 1985; McFadden, 1974)). Under the conditions of Theorem 6.1

the Gibbs distribution measures the stability of the perturb-max argument,

namely

exp(θ(x̂))

Z(θ)
= Pγ

(
x̂ = argmax

x∈X
{θ(x) + γ(x)}

)
, (6.6)

Proof. From Theorem 6.1, we have logZ(θ) = Eγ [maxx∈X {θ(x) + γ(x)}],
so we can take the derivative with respect to some θ(x̂). We note that by

differentiating the left hand side we get the Gibbs distribution:

∂ logZ(θ)

∂θ(x̂)
=

exp(θ(x̂))

Z(θ)
.

Differentiating the right hand side is slightly more involved: First, we can

differentiate under the integral operator (cf. (Folland, 2013)) so

∂

∂θ(x̂)

∫
R|X|

max
x∈X
{θ(x) + γ(x)} dγ =

∫
R|X|

∂

∂θ(x̂)
max
x∈X
{θ(x) + γ(x)} dγ.

The (sub)gradient of the max-function is the indicator function (an appli-

cation of Danskin’s theorem (Bertsekas et al., 2003)):

∂

∂θ(x̂)
max
x∈X
{θ(x) + γ(x)} = 1

(
x̂ = argmax

x∈X
{θ(x) + γ(x)}

)
.

The corollary then follows by applying the expectation to both sides of the

last equation.

An alternative proof of the preceding corollary can be given by consid-

ering the probability density function g(t) = G′(t) of the Gumbel dis-

tribution. This proof consists of two steps. First, the probability that

168 On the Expected Value of Random Maximum A-Posteriori Perturbations

x̂ maximizes θ(x) + γ(x) is
∫
g(t − θ(x̂))

∏
x6=x̂G(t − θ(x))dt. Second,

g(t − θ(x̂)) = exp(θ(x̂)) · exp(−(t + c))G(t − θ(x̂)) therefore the proba-

bility that x̂ maximizes θ(x) + γ(x) is proportional to exp(θ(x̂)), i.e., it is

the Gibbs distribution.

We can also use the random MAP perturbation to estimate the entropy

of the Gibbs distribution.

Corollary 6.3. Let p(x) be the Gibbs distribution, defined in Equation (6.3).

Under the conditions of Theorem 6.1,

H(p) = Eγ [γ(xγ)] .

Proof. The proof consists of evaluating the entropy in Equation (6.3) and

using Theorem 6.1 to replace logZ(θ) with Eγ [θ(xγ) + γ(xγ)]. Formally,

H(p) = −
∑
x∈X

p(x)θ(x) + Eγ [θ(xγ) + γ(xγ)]

= −
∑
x∈X

p(x)θ(x) +
∑
x∈X

θ(x)Pγ(xγ = x) + Eγ [γ(xγ)]

= Eγ [γ(xγ)],

where in the last line we used Corollary 6.2, which says Pγ(xγ = x) =

p(x).

A direct proof of the preceding corollary can be given by showing that

Eγ [γ(xγ) · 1[x̂ = xγ]] = −p(x̂) log p(x̂) while the entropy is then attained

by summing over all x̂, since
∑
x̂∈X 1[x̂ = xγ] = 1. To establish this equality

we note that

Eγ [γ(xγ) · 1[x̂ = xγ]] =

∫
(t− θ(x̂))g(t− θ(x̂))

∏
x6=x̂

G(t− θ(x))dt.

Using the relation between g(t) and G(t) and the fact that
∏
x∈X G(t −

θ(x)) = G(t−logZ(θ)) while changing the integration variable to t̂ = t−θ(x̂)

we can rephrase this quantity as
∫
t exp(−(c+ t))G(t+log p(x̂))dt. Again by

using the relation between g(t+ log p(x̂)) and G(t+ log p(x̂)) we derive that

Eγ [γ(xγ) · 1[x̂ = xγ]] = p(x̂)
∫
tg(t + log p(x̂))dt while the integral is now

the mean of a Gumbel random variable with expected value of − log p(x̂).

The preceding derivations show that perturbing the potential function

θ(x) and then finding the MAP estimate xγ of the perturbed Gibbs distri-

bution allows us to perform many core tasks for high-dimensional statistical

inference by using i.i.d. Gumbel perturbations. The distribution of xγ is

p(x), its expected maximum value is the log-partition function, and the ex-

pected maximizing perturbation is the entropy of p(x). While theoretically

6.3 Low-Dimensional Perturbations 169

appealing, these derivations are computationally intractable when dealing

with high-dimensional structures. These derivations involve generating high-

dimensional perturbations, namely |X| random variables in the image of γ(·),
one for each structure in X = X1 × · · ·Xn, which grows exponentially with

n. The goal of this paper is to apply high-dimensional inference using max-

solvers that involve a low-dimensional perturbation term. More specifically,

we wish to involve only a linear (in n) number of random variables.

6.3 Low-Dimensional Perturbations

In this work we establish our high dimensional inference approaches by ex-

ploiting the structure of the partition function Z(θ). The partition function

is a key quantity in these models – its gradient is the Gibbs distribution and

the entropy is its Fenchel dual. It is well-known that computing Z(θ) for

high-dimensional models is challenging because of the exponential size of X.

This complexity carries over to the perturb-max approach to estimating the

log-partition function, which also involves generating an exponential number

of Gumbel random variables. In this section we show that the log-partition

function can be computed using low-dimensional perturbations in a sequence

of expected max-value computations. This will give us some insight on per-

forming high dimensional inference using low dimensional perturbations. In

what follows we will use the notation xji to refer to the tuple (xi, xi+1, . . . , xj)

for i < j, with x = xn1 .

The partition function has a self-reducible form. That is, we can compute

it iteratively while computing partial partition functions of lower dimensions:

Z(θ) =
∑
x1

∑
x2

· · ·
∑
xn

exp(θ(x1, ..., xn)). (6.7)

For example, the partition function is the sum, over x1, of partial partition

functions
∑

x2,...,xn
exp(θ(x)). Fixing x1, ..., xi, the remaining summations

are partial partition functions
∑

xi+1,...,xn
exp(θ(x)). With this in mind, we

can compute each partial partition function using Theorem 6.1 but with

low-dimensional perturbations for each partial partition.

Theorem 6.4. Let {γi(xi)}xi∈Xi,i=1,...,n, be a collection of independent

and identically distributed (i.i.d.) random variables following the Gumbel

distribution, defined in Theorem 6.1. Define γi = {γi(xi)}xi∈Xi. Then

logZ = Eγ1
max
x1

· · ·Eγn max
xn

{
θ(x) +

n∑
i=1

γi(xi)

}
. (6.8)

170 On the Expected Value of Random Maximum A-Posteriori Perturbations

Proof. The result follows from applying Theorem 6.1 iteratively. Let

θn(xn1) = θ(xn1) and define

θi−1(xi−1
1) = Eγi max

xi
{θi(xi1) + γi(xi)} i = 2, 3, . . . , n

If we think of xi−1
1 as fixed and apply Theorem 6.1 to θi(x

i−1
1 , xi), we see

that from (6.7),

θi−1(xi−1
1) = log

∑
xi

exp(θi(x
i
1)).

Applying this for i = n to i = 2, we obtain (6.8).

The computational complexity of the alternating procedure in (6.8) is

still exponential in n. For example, the inner iteration θn−1(xn−1
1) =

Eγn maxxn{θn(xn1) + γn(xn)} needs to be estimated exponentially many

times, i.e., for every xn−1
1 = (x1, ..., xn−1). Thus from computational per-

spective the alternating formulation in Theorem 6.4 is just as inefficient as

the formulation in Theorem 6.1. Nevertheless, this is the building block that

enables inference in high-dimensional problems using low dimensional per-

turbations and max-solvers. Specifically, it provides the means for a new

sampling algorithm from the Gibbs distribution and bounds on the log-

partition and entropy functions.

6.3.1 Sampling

In the following we use low dimensional perturbations to generate unbiased

samples from the Gibbs distribution. Although Corollary 6.2 presents a

method for sampling from the full Gibbs distribution using perturb-max

operations, it requires exponentially many independent perturbations γ(x),

for each x ∈ X. Here we rely on low-dimensional perturbations to draw

samples from the Gibbs distribution.

Sampling from the Gibbs distribution is inherently tied to estimating the

partition function. Assume we could have compute the partition function

exactly, then we could have sample from the Gibbs distribution sequentially:

for dimension i = 1, ..., n sample xi with probability which is proportional

to
∑

xni+1
exp(θ(x)). Unfortunately, direct computations of the partition

function is #P-hard. Instead, we construct a family of self-reducible upper

bounds which imitate the partition function behavior, namely by bounding

the summation over its exponentiations.

Corollary 6.5. Let {γi(xi)} be a collection of i.i.d. random variables,

each following the Gumbel distribution with zero mean. Set θj(x
j
1) =

6.3 Low-Dimensional Perturbations 171

Eγ
[
maxxnj+1

{θ(x) +
∑n

i=j+1 γi(xi)}
]
. Then for every j = 1, . . . , n − 1 and

every x = xn1 the following inequality holds:∑
xj

exp
(
θj(x

j
1)
)
≤ exp

(
θj−1(xj−1

1)
)
. (6.9)

In particular, for j = n we have
∑

xn
exp(θ(xn1)) = exp

(
θn−1(xn−1

1)
)
.

Proof. The result is an application of the perturb-max interpretation of the

partition function in Theorem 6.1. Intuitively, these bounds correspond to

moving expectations outside the maximization operations in Theorem 6.4,

each move resulting in a different bound. Formally, the left hand side can

be expanded as

Eγj

max
xj

Eγj+1,...,γn

max
xnj+1

θ(xn1) +

n∑
i=j

γi(xi)

 , (6.10)

while the right hand side is attained by alternating the maximization with

respect to xj with the expectation of γj+1, . . . , γn. The proof then follows

by exponentiating both sides.

We use these upper bounds for every dimension i = 1, . . . , n to sample

from a probability distribution that follows a summation over exponential

functions, with a discrepancy that is described by the upper bound. This is

formalized below in Algorithm 6.1.

Algorithm 6.1 Unbiased sampling from Gibbs distribution using randomized

prediction

Iterate over j = 1, . . . , n, while keeping fixed x1, . . . , xj−1. Set θj(x
j
1) as in Corollary 6.5.

1. pj(xj) = exp
(
θj(x

j
1)
) /

exp
(
θj−1(xj−1

1)
)

2. pj(r) = 1−∑xj
p(xj)

3. Sample an element according to pj(·). If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element xj and continue the iterations.

Output: x1, . . . , xn

When the potential function is decomposable, namely θ(x) =
∑

i θi(xi),

the upper bounds in Equation (6.9) are tight and the sampling algorithm

never rejects and terminates after exactly n iterations.

We say the algorithm accepts if it terminates with an output x. When

we reject the discrepancy, the probability we accept a configuration x is

the product of probabilities in all rounds. Since these upper bounds are

172 On the Expected Value of Random Maximum A-Posteriori Perturbations

self-reducible, i.e., for every dimension i we are using the same quantities

that were computed in the previous dimensions 1, 2, . . . , i − 1, we are sam-

pling an accepted configuration proportionally to exp(θ(x)), the full Gibbs

distribution. This is summarized in the following theorem.

Theorem 6.6. Let p(x) be the Gibbs distribution defined in (6.1) and

let {γi(xi)} be a collection of i.i.d. random variables following the Gumbel

distribution with zero mean given in (6.5). Then

P (Algorithm 6.1 accepts) = Z(θ)
/

exp

(
Eγ

[
max
x
{θ(x) +

n∑
i=1

γi(xi)}
])

.

Moreover, if Algorithm 6.1 accepts then it produces a configuration x =

(x1, . . . , xn) according to the Gibbs distribution:

P
(
Algorithm 6.1 outputs x

∣∣ Algorithm 6.1 accepts
)

=
exp(θ(x))

Z(θ)
.

Proof. Set θj(x
j
1) as in Corollary 6.5. The probability of sampling a config-

uration x = (x1, . . . , xn) without rejecting is

n∏
j=1

exp
(
θj(x

j
1)
)

exp
(
θj−1(xj−1

1)
) =

exp(θ(x))

exp (Eγ [maxx {θ(x) +
∑n

i=1 γi(xi)}])
.

The probability of sampling without rejecting is thus the sum of this

probability over all configurations, i.e.,

P (Alg. 6.1 accepts) = Z(θ)
/

exp

(
Eγ

[
max
x

{
θ(x) +

n∑
i=1

γi(xi)

}])
.

Therefore conditioned on accepting a configuration, it is produced according

to the Gibbs distribution.

Since acceptance/rejection follows the geometric distribu-

tion, the sampling procedure rejects k times with probability

(1− P (Algorithm 6.1 accepts))k. The running time of our Gibbs sampler is

determined by the average number of rejections 1/P(Algorithm 6.1 accepts)

and by taking the log-scale it is

log (1/P (Alg. 6.1 accepts)) = Eγ

[
max
x

{
θ(x) +

n∑
i=1

γi(xi)

}]
− logZ(θ).

6.3 Low-Dimensional Perturbations 173

To be able to estimate the number of steps the sampling algorithm requires,

we construct an efficiently computable lower bound to the log-partition

function, that is based on perturb-max values.

Our suggested lower bound originates from the representation of the parti-

tion function by low-dimensional perturbations. It estimates each expected-

max computation by its empirical average and then follows a model expan-

sion to be able to compute this quantity with a single max-operation. Al-

though the theory below requires exponentially many perturbations to have

a tight bound, our experimental validation shows that our lower bounds is

surprisingly tight using only a few random perturbations.

Corollary 6.7. Let θ(x) be a potential function over x = (x1, . . . , xn).

We create multiple copies of xi, namely x̃i = {xi,ki : ki = 1, 2, . . . ,Mi}
for i = 1, . . . , n, and define the extended potential function over x̃ =

(x̃1, x̃2, . . . , x̃n):

θ̂(x̃) =
1∏n

i=1Mi

{Mi}∑
{ki}=1

θ(x1,k1
, . . . , xn,kn). (6.11)

For i.i.d. perturbations γi,ki(xi,ki) that distributed according to the Gumbel

distribution with zero mean we define the extended perturbation model

γ̂i(x̃i) =
1

Mi

Mi∑
ki=1

γi,ki(xi,ki). (6.12)

Also, whenever θ is clear from the context we use the shorthand Z for Z(θ).

Then

P

(
logZ ≥ max

x̃

{
θ̂(x̃) +

n∑
i=1

γ̂i(x̃i)

}
− εn

)
≥ 1−

n∑
i=1

∏i
j=2 |Xj−1|π2

6Miε2
.

(6.13)

Proof. The proof consists of three steps:

developing a measure concentration analysis for Theorem 6.1, which states

that a single max-evaluation is enough to lower bound the expected max-

value with high probability;

using the self-reducibility of the partition function in Theorem 6.4 to

show the partition function can be computed by iteratively applying low-

dimensional perturbations;

proving that these lower dimensional partition functions can be lower

bounded uniformly (i.e., all at once) with a single measure concentration

statement.

174 On the Expected Value of Random Maximum A-Posteriori Perturbations

We first provide a measure concentration analysis of Theorem 6.1. Specifi-

cally, we estimate the deviation of the random variable F = maxx∈X{θ(x)+

γ(x)} from its expected value using Chebyshev’s inequality. For this pur-

pose we recall Thoerem 6.1 which states that F is Gumbel-distributed and

therefore its variance is π2/6. Chebyshev’s inequality then asserts that

Pγ (|F − Eγ [F]| ≥ ε) ≤ π2/6ε2. (6.14)

Since we want this statement to hold with high probability for small ep-

silon we reduce the variance of the random variable while not changing

its expectation by taking a sampled average of i.i.d. perturb-max val-

ues: Let V̂ (γ) = maxx{θ(x) + γ(x)}. Suppose we sample M i.i.d. copies

γ1, γ2, . . . , γM of γ with and generate the i.i.d. Gumbel-distributed values

Fj
def
= F (γj). Since Eγ [F (γ)] = logZ, we can apply Chebyshev’s inequality

to the 1
M

∑M
i=1 V̂j − logZ to get

P

(∣∣∣∣∣ 1

M

M∑
i=1

V̂j − logZ

∣∣∣∣∣ ≥ ε
)
≤ π2

6Mε2
. (6.15)

Using the explicit perturb-max notation and considering only the lower-side

of the measure concentration bound: with probability at least 1− π2

6Mε2 there

holds:

logZ ≥ 1

M

M∑
j=1

max
x∈X
{θ(x) + γj(x)} − ε (6.16)

To complete the first step, we wish to compute the summation over

M−maximum values using a single maximization. For this we duplicate

M copies of the variable x to the variables x1,x2, . . . ,xM ∈ X:

M∑
j=1

max
x∈X
{θ(x) + γj(x)} = max

x1,x2,...,xM∈X

M∑
j=1

{θ(xj) + γj(xj)} (6.17)

For the remainder we use an argument by induction on n, the number

of variables. Consider first the case n = 2 so that θ(x) = θ1,2(x1, x2). The

self-reducibility as described in Theorem 6.1 states that

logZ = log

(∑
x1

exp

[
log

(∑
x2

exp(θ1,2(x1, x2))

)])
(6.18)

As in the proof of Theorem 6.1, define θ1(x1) = log(
∑

x2
exp(θ1,2(x1, x2)).

Thus we have logZ = log
(∑

x1
exp(θ1(x1))

)
, which is a partition function

for a single-variable model.

6.3 Low-Dimensional Perturbations 175

We wish to uniformly approximate θ1(x1) over all x1 ∈ X1. Fix x1 = a for

some a ∈ X1 and consider the single-variable model θ1,2(a, x2) over x2 which

has θ1(a) as its log partition function. Then from Theorem 6.1, we have

θ1(a) = Eγ2
[maxx2

{θ(a, x2) + γ2(x2)}]. Applying Chebyshev’s inequality in

(6.15) to M2 replicates of γ2, we get

P

∣∣∣∣∣∣ 1

M2

M2∑
j=1

max
x2

{θ(a, x2) + γ2,j(x2)]} − θ1(a)

∣∣∣∣∣∣ ≥ ε
 ≤ π2

6M2ε2
.

Taking a union bound over a ∈ X1 we have that with probability at least

1− |X1| π2

6M2ε2∣∣∣∣∣∣ 1

M2

M2∑
j=1

max
x2

{θ(x1, x2) + γ2,j(x2)]} − θ1(x1)

∣∣∣∣∣∣ ≤ ε ∀x1 ∈ X1

This implies the following one-sided inequality with probability at least

1− |X1| π2

6M2ε2
uniformly over x1 ∈ X1:

θ1(x1) ≥ 1

M2

M2∑
j=1

max
x2

{θ(x1, x2) + γ2,j(x2)]} − ε. (6.19)

Now note that the overall log partition function for the model θ(x) =

θ1,2(x1, x2) is a log partition function for a single variable model with

potential θ1(x1), so logZ = log(
∑

x1
exp(θ1(x1))). Again using Theorem 6.1,

we have logZ = Eγ1
[maxx1

{θ1(x1) + γ1(x1)}], so we can apply Chebyshev’s

inequality to M1 copies of γ1 to get that with probability at least 1− π2

6M1ε2
:

logZ ≥ 1

M1

M1∑
k=1

max
x1

{θ1(x1) + γ1,k(x1)} − ε. (6.20)

Plugging in (6.19) into (6.20), we get that with probability at least 1 −
π2

6M1ε2
− |X1| π2

6M2ε2
that logZ is lower bounded by

1

M1

M1∑
k=1

max
x1

 1

M2

M2∑
j=1

max
x2

{θ(x1, x2) + γ2,j(x2)}

+ γ1,k(x1)

− 2ε.

(6.21)

176 On the Expected Value of Random Maximum A-Posteriori Perturbations

Now we pull the maximization outside the sum by introducing separate

variables for each of the M1 and M2 summands, as in (6.17):

1

M1

M1∑
k=1

max
x1

 1

M2

M2∑
j=1

max
x2

{θ(x1, x2) + γ2,j(x2)}

+ γ1,k(x1)

=

1

M1

M1∑
k=1

max
x1

max

x̃2

1

M2

M2∑
j=1

θ(x1, x2,j) + γ2,j(x2,j)

+ γ1,k(x1)

= max

x̃1

max
x̃2

1

M1M2

M1∑
k=1

M2∑
j=1

θ(x1,k, x2,j) + γ2,j(x1,k, x2,j) + γ1,k(x1,k)

Note that in this bound we have to generate |X1||X2| variables

γ2,j(x1,k, x2,j), which will become inefficient as we add more variables. We

can get an efficiently computable lower bound on this quantity by maximiz-

ing over a smaller set of variables: we use the same perturbation realization

γ2,j(x2,j) for every value of x1,k. Thus we have the lower bound

logZ ≥ max
x̃1,x̃2

1

M1M2

M1∑
k=1

M2∑
j=1

(θ(x1,k, x2,j) + γ2,j(x2,j) + γ1,k(x1,k))− 2ε

with probability at least 1− π2

6M1ε2
− |X1| π2

6M2ε2
.

Now suppose the result holds for models on n− 1 variables and consider

the model θ(x1, x2, . . . , xn) on n variables. Consider the 2-variable model

θ(x1, x
n
2) and define

θ1(x1) = log

∑
xn2

exp(θ(x1, x
n
2))

 . (6.22)

From the analysis of the 2-variable case, as in (6.20), we have that with

probability at least 1− π2

6M1ε2
:

logZ ≥ 1

M1

M1∑
k1=1

max
x1

{θ1(x1) + γ1,k1
(x1)} − ε. (6.23)

but now for each value of x1, the function θ1(x1) is a log partition function

on the n− 1 variables xn2 so applying the induction hypothesis to θ1(x1), we

have with probability at least

1− π2

6M2ε2
− |X2|

π2

6M3ε2
− |X2||X3|

π2

6M4ε2
− · · · −

n−1∏
j=2

|Xj |
π2

6Mnε2
,(6.24)

6.3 Low-Dimensional Perturbations 177

we have

θ1(x1) ≥ max
x̃n2

{
θ̂(x1, x̃

n
2) +

n∑
i=2

γ̂i(x̃i)

}
− ε(n− 1) (6.25)

Taking a union bound over all x1, with probability at least

1−
n∑
i=1

 i∏
j=2

|Xj−1|

 π2

6Mnε2
(6.26)

we have

logZ ≥ 1

M1

M1∑
k1=1

max
x1

{
max
x̃n2

{
θ̂(x1, x̃

n
2) +

n∑
i=2

γ̂i(x̃i)

}
+ γ1,k1

(x1)

}
− εn

≥ max
x̃

θ̂(x̃) +

n∑
i=1

γ̂i(x̃i)− εn

as desired.

Despite the theory requires Mi is to exponentially large, it turns out that

Mi may be very small to generate tight bounds (see Section 6.4).

6.3.2 Entropy Bounds

In the following we describe how to bound the entropy of high-dimensional

models using perturb-max values. Estimating the entropy is an important

building block in many machine learning applications. Corollary 6.3 ap-

plies the interpretation of Gibbs distribution as a perturb-max model (see

Corollary 6.2) in order to define the entropy of Gibbs distributions using

the expected value of the maximal perturbation. Unfortunately, this proce-

dure requires exponentially many independent perturbations γ(x), for every

x ∈ X.

We again use low-dimensional perturbations to upper bound the entropy

of perturb-max models. Accordingly, we extend our definition of perturb-

max models as follows. Let A be a collection of subsets of {1, 2, . . . , n} such

that
⋃
α∈A = {1, 2, . . . , n}. For each α ∈ A generate a Gumbel perturbation

γα(xα) where xα = (xi)i∈α. We define the perturb-max models as

p(x̂; θ) = Pγ

(
x̂ = argmax

x

{
θ(x) +

∑
α∈A

γα(xα)

})
. (6.27)

178 On the Expected Value of Random Maximum A-Posteriori Perturbations

Our upper bound uses the duality between entropy and the log-partition

function (Wainwright and Jordan, 2008) and then upper bounds the log-

partition function with perturb-max operations.

Upper bounds for the log-partition function using random perturbations

can be derived from the refined upper bounds in Corollary 6.5. However, it is

simpler to provide an upper bounds that rely on Theorem 6.4. These bounds

correspond to moving expectations outside the maximization operations. For

example,

logZ(θ) ≤ Eγ

[
max
x

{
θ(x) +

n∑
i=1

γi(xi)

}]
(6.28)

follows immediately from moving all the expectations in front (or equiva-

lently, by Jensen’s inequality). In this case the bound is a simple average of

MAP values corresponding to models with only single node perturbations

γi(xi), for every i = 1, . . . , n and xi ∈ Xi. If the maximization over θ(x)

is feasible (e.g., due to super-modularity), it will typically be feasible after

such perturbations as well. We generalize this basic result further below.

Corollary 6.8. Consider a family of subsets α ∈ A such that
⋃
α∈A α =

{1, . . . , n}, and let xα = {xi : i ∈ α}. Assume that the random variables

γα(xα) are i.i.d. according to the Gumbel distribution, for every α,xα. Then

logZ(θ) ≤ Eγ

[
max
x

{
θ(x) +

∑
α∈A

γα(xα)

}]
.

Proof. If the subsets α are disjoint, then {xα : α ∈ A} simply defines a

partition of the variables in the model. We can therefore use (6.28) over

these grouped variables. In the general case, α, α′ ∈ A may overlap. For

each α ∈ A generate an independent set of variables x′α. We define a lifted

configuration x′ = {x′α : α ∈ A} by lifting the potentials to θ′(x′) and

including consistency constraints:

θ′(x′) =

{
θ(x) if ∀α, i ∈ α : x′α,i = xi

−∞ otherwise
(6.29)

Thus, logZ(θ) = logZ(θ′) =
∑
x′ exp(θ′(x′)) since inconsistent settings

receive zero weight. Moreover,

max
x′

{
θ′(x′) +

∑
α∈A

γα(x′α)

}
= max

x

{
θ(x) +

∑
α∈A

γα(xα)

}

6.3 Low-Dimensional Perturbations 179

for each realization of the perturbation. This equality holds after expectation

over γ as well. Now, given that the perturbations are independent for each

lifted coordinate, the basic result in equation (6.28), guarantees that

logZ(θ) ≤ Eγ

[
max
x′

{
θ′(x′) +

∑
α∈A

γα(x′α)

}]
,

from which the result follows.

Establishing bounds on the log-partition function allows us to derive

bounds on the entropy. For this we use the conjugate duality between the

(negative) entropy and the log-partition function (Wainwright and Jordan,

2008). The entropy bound then follows from the log-partition bound.

Theorem 6.9. Let p(x; θ) be a perturb-max probability distribution in

(10.19) and A be a collection of subsets of {1, 2, . . . , n}. Let xγ be the optimal

perturb-max assignment using low dimensional perturbations:

xγ = argmax
x

{
θ(x) +

∑
α∈A

γα(xα)

}
.

Then under the conditions of Corollary 6.8, we have the following upper

bound:

H(p) ≤ Eγ

[∑
α∈A

γα(xγα)

]
.

Proof. We use the characterization of the log-partition function as the

conjugate dual of the (negative) entropy function (Wainwright and Jordan,

2008):

H(p) = min
θ̂

{
logZ(θ̂)−

∑
x

p(x; θ)θ̂(x)

}
.

For a fixed score function θ̂(x), let W (θ̂) be the expected value of the low-

dimensional perturbation:

W (θ̂) = Eγ

[
max
x

{
θ̂(x) +

∑
α∈A

γα(xα)

}]
.

180 On the Expected Value of Random Maximum A-Posteriori Perturbations

Corollary 6.8 asserts that logZ(θ̂) ≤W (θ̂). Thus we can upper bound H(p)

by replacing logZ(θ̂) with W (θ̂) in the duality relation:

H(p) ≤ min
θ̂

{
W (θ̂)−

∑
x

p(x; θ)θ̂(x)

}
The minimum of the right hand side is attained whenever the gradient

vanishes, i.e., whenever ∇W (θ̂) = p(x; θ). Since the derivatives of W (θ̂) are

perturb-max models, and so is p(x; θ), then the the minimum is attained for

θ̂ = θ. Therefore, recalling that xγ has distribution p(x; θ) in (10.19):

min
θ̂

{
W (θ̂)−

∑
x

p(x; θ)θ(x)

}
= W (θ)−

∑
x

p(x; θ)θ(x).

= Eγ

[
max
x

{
θ(x) +

∑
α∈A

γα(xα)

}]
− Eγ [θ(xγ)]

= Eγ

[
θ(xγ) +

∑
α∈A

γα(xγα)

]
− Eγ [θ(xγ)]

= Eγ

[∑
α∈A

γα(xγα)

]
,

from which the result follows.

This entropy bound motivates the use of perturb-max posterior models.

These models are appealing as they are uniquely built around prediction and

as such they inherently have an efficient unbiased sampler. The computation

of this entropy bound relies on MAP solvers. Thus computing these bounds is

significantly faster than computing the entropy itself, whose computational

complexity is generally exponential in n.

Using the linearity of expectation we may alternate summation and expec-

tation. For simplicity, assume only local perturbations, i.e., γi(xi) for every

dimension i = 1, . . . , n. Then the preceding theorem bounds the entropy by

summing the expected change of MAP perturbations H(p) ≤∑i Eγ [γi(x
γ
i)].

This bound resembles to the independence bound for the entropy H(p) ≤∑
iH(pi), where pi(xi) =

∑
x\xi p(x) are the marginal probabilities (Cover

and Thomas, 2012). The independence bound is tight whenever the joint

probability p(x) is composed of independent systems, i.e., p(x) =
∏
i pi(xi).

In the following we show that the same holds for perturbation bounds.

6.3 Low-Dimensional Perturbations 181

Corollary 6.10. Consider the setting in Theorem 6.9 and the independent

probability distribution p(x) =
∏
i pi(xi). Then there is θ(x) for which

H(p) = Eγ

[∑
i

γi(x
γ
i)

]
while

xγ = argmax
x

{
θ(x) +

n∑
i=1

γi(xi)

}
Proof. Set θi(xi) = log pi(xi) and θ(x) = log p(x) =

∑
i θi(xi). Consider the

perturb-max model in (10.19) with A = {{i} : i = 1, 2, . . . , n}. Corollary

6.2 shows p(x) = p(x; θ). Broadly speaking, the statement then holds

since xγi = argmaxxi{θi(xi) + γi(xi)}. Formally, H(p) =
∑

iH(pi) while

H(pi) = Eγi [γi(x
γ
i)] by Corollary 6.3.

There are two special cases for independent systems. First, the zero-one

probability model, for which p(x) = 0 except for a single configuration

p(x̂) = 1. The entropy of such a probability distribution is 0 since the

distribution if deterministic. In this case, the perturb-max entropy bound

assigns xγ = x̂ for all random functions γ = (γi(xi))i,xi . Since these

random variables have zero mean, it follows that Eγ [
∑

i γi(x̂i)] = 0. Another

important case is for the uniform distribution, p(x) = 1/|X| for every

x ∈ X. The entropy of such a probability distribution is log |X|, as it

has maximal uncertainty. Since our entropy bounds equals the entropy for

minimal uncertainty and maximal uncertainty cases, this suggests that the

perturb-max bound can be used as an alternative uncertainty measure.

Corollary 6.11. Consider the setting of Theorem 6.9. Set

U(p) = Eγ

[∑
α∈A

γα(xγα)

]
. (6.30)

Then U(p) is an uncertainty measure, i.e., it is non-negative, it attains its

minimal value for the deterministic distributions and its maximal value for

the uniform distribution.

Proof. Non-negativity follows from the non-negativity of entropy: 0 ≤
H(p) ≤ U(p). As argued above, U(p) is 0 for deterministic p. To show

that the uniform distribution maximizes U(p) note that for the uniform

distribution there exists a constant c such that θ(x) = c for all x ∈ X.

Suppose this distribution does not maximize U(p). Then for two configura-

182 On the Expected Value of Random Maximum A-Posteriori Perturbations

tions x,x′ ∈ X the corresponding θ(·) satisfies θ(x) < θ(x′). Thus there are∑
α γα(x) >

∑
α γα(x̂α) although xγ = x̂, a contradiction.

Using efficiently computable uncertainty measure allows us to extend the

applications of perturb-max models to Bayesian active learning (Maji et al.,

2014). The advantage of using the perturb-max uncertainty measure over the

entropy function is that it does not require MCMC sampling procedures.

Therefore, our approach well fits high dimensional models that currently

dominate machine learning applications such as computer vision. Moreover,

perturb-max uncertainty measure upper bounds the entropy thus reducing

perturb-max uncertainty effectively reduces the entropy.

6.4 Empirical Evaluation

Statistical inference of high dimensional structures is closely related to es-

timating the partition function. Our proposed inference algorithms, both

for sampling and inferring the entropy of high-dimensional structures, are

derived from an alternative interpretation of the partition function as the

expected value of the perturb-max value. We begin our empirical validation

by computing the upper and lower bounds for the partition function com-

puted as the expected value of a max-function and their measure concentra-

tion qualities. We then show that the perturb-max algorithm for sampling

from the Gibbs distribution has a sub-exponential computational complex-

ity. Subsequently, we evaluate the properties of the perturb-max entropy

bounds. Lastly, we explore the deviation of the sample mean of the perturb-

max value from its expectation.

We evaluate our approach on spin glass models, where each variable

xi represents a spin, namely xi ∈ {−1, 1}. Each spin has a local field

parameter θi which correspond to the local potential function θi(xi) = θixi.

The parameter θi represents data signal, which in the spin model is the

preference of a spin to be positive or negative. Adjacent spins interact

with couplings θi,j(xixj) = θi,jxixj . Whenever the coupling parameters are

positive the model is called attractive as adjacent variables give higher values

to positively correlated configurations. The potential function of a spin glass

model is then

θ(x1, ..., xn) =
∑
i∈V

θixi +
∑

(i,j)∈E
θi,jxixj . (6.31)

6.4 Empirical Evaluation 183

independent strong

Figure 6.2: The probability (top row) and energy (bottom row) landscapes for
all 512 configurations in a 3 × 3 spin glass system with strong local field, θi ∈
[−1, 1]. When θi,j = 0 the system is independent and one can observe the block
pattern. As the coupling potentials get stronger the landscape get more ragged. By
zooming one can see the ragged landscapes throughout the space, even for negligible
configurations, which affect many local approaches. The random MAP perturbation
directly targets the maximal configurations, thus performs well in these settings.

In our experiments we consider adjacencies of a grid-shaped model. We

used low dimensional random perturbations γi(xi) since such perturbations

do not affect the complexity of the MAP solver.

Evaluating the partition function is challenging when considering strong

local field potentials and coupling strengths. The corresponding energy

landscape is ragged, and characterized by a relatively small set of dominating

configurations. An example of these energy and probability landscapes are

presented in Figure 6.2.

First, we compared our bounds to the partition function on 10 × 10

spin glass models. For such comparison we computed the partition function

exactly using dynamic programming (the junction tree algorithm). The local

field parameters θi were drawn uniformly at random from [−f, f], where

f ∈ {0.1, 1} reflects weak and strong data signal. The parameters θi,j

184 On the Expected Value of Random Maximum A-Posteriori Perturbations

Figure 6.3: The attractive case. The (signed) difference of the different bounds
and the log-partition function. These experiments illustrate our bounds on 10× 10
spin glass model with weak and strong local field potentials and attractive coupling
potentials. The plots below zero are lower bounds and plots above zero are upper
bounds. We compare our upper bound (6.28) with the tree re-weighted upper bound.
We compare our lower bound (Corollary 6.7) with the belief propagation result,
whose stationary points are known to be lower bounds to the log-partition function
for attractive spin-glass models.

were drawn uniformly from [0, c] to obtain attractive coupling potentials.

Attractive potentials are computationally favorable as their MAP value

can be computed efficiently by the graph-cut algorithm (Boykov et al.,

2001). First, we evaluate our upper bound in Equation (6.28) that holds

in expectation with perturbations γi(xi). The expectation was computed

using 100 random MAP perturbations, although very similar results were

attained after only 10 perturbations. We compared this upper bound with

the sum-product form of tree re-weighted belief propagation with uniform

distribution over the spanning trees (Wainwright et al., 2005a). We also

evaluate our lower bound that holds in probability and requires only a single

MAP prediction on an expanded model, as described in Corollary 6.7. We

estimate our probable bound by expanding the model to 1000× 1000 grids,

ignoring the discrepancy ε. We compared this lower bound to the belief

propagation algorithm, whose stationary points are currently considered to

be the tightest lower bounds for attractive spin glass models (Willsky et al.,

2007; Ruozzi, 2012; Weller and Jebara, 2014). We computed the signed error

(the difference between the bound and logZ), averaged over 100 spin glass

models, see Figure 6.3. One can see that the probabilistic lower bound is the

tightest when considering the medium and high coupling domain, which is

traditionally hard for all methods. Because the bound holds only with high

probability probability it might generate a (random) estimate which is not

6.4 Empirical Evaluation 185

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

coupling strengths

E
st

im
at

io
n

er
ro

r

Mixed. Field 0.1

 upper
 TRW

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

coupling strengths

E
st

im
at

io
n

er
ro

r

Mixed. Field 1

 upper
 TRW

Figure 6.4: The (signed) difference of the different bounds and the log-partition
function. These experiments illustrate our bounds on 10×10 spin glass model with
weak and strong local field potentials and mixed coupling potentials. We compare
our upper bound (6.28) with the tree re-weighted upper bound.

a proper lower bound. We can see that on average this does not happen.

Similarly, our perturb-max upper bound is better than the tree re-weighted

upper bound in the medium and high coupling domain. In the attractive

setting, both our bounds use the graph-cuts algorithm and were therefore

considerably faster than the belief propagation variants. Finally, the sum-

product belief propagation lower bound performs well on average, but from

the plots one can observe that its variance is high. This demonstrates the

typical behavior of belief propagation, as it finds stationary points of the

non-convex Bethe free energy, thus works well on some instances and does

not converge or attains bad local minima on others.

We also compared our bound in the mixed case, where the coupling poten-

tials may either be attractive or repulsive, namely θij ∈ [−c, c]. Recovering

the MAP solution in mixed coupling domain is harder than the attractive

domain. Therefore we could not test our lower bound in the mixed set-

ting as it relies on expanding the model. We also omit the comparison to

the sum-product belief propagation since it is no longer a lower bound in

this setting. We evaluate the MAP perturbation value using MPLP (Sontag

et al., 2008). One can verify that qualitatively the perturb-max upper bound

is significantly better than the tree re-weighted upper bound. Nevertheless

186 On the Expected Value of Random Maximum A-Posteriori Perturbations

Figure 6.5: Estimating our unbiased sampling procedure complexity on spin glass
models of varying sizes, ranging from 10×10 spin glass models to 100×100 spin glass
models. The running time is the difference between our upper bound in Equation
(6.28) and the log-partition function. Since the log-partition function cannot be
computed for such a large scale model, we replaced it with its lower bound in
Corollary 6.7.

it is significantly slower as it relies on finding the MAP solution, a harder

task in the presence of mixed coupling strengths.

Next, we evaluate the computational complexity of our sampling proce-

dure. Section 6.3.1 describes an algorithm that generates unbiased samples

from the full Gibbs distribution. Focusing on spin glass models with strong

local field potentials, it is well-known that one cannot produce unbiased

samples from the Gibbs distributions in polynomial time (Jerrum and Sin-

clair, 1993; Goldberg and Jerrum, 2007, 2012). Theorem 6.6 connects the

computational complexity of our unbiased sampling procedure to the gap

between the log-partition function and its upper bound in (6.28). We use

our probable lower bound to estimate this gap on large grids, for which we

cannot compute the partition function exactly. Figure 6.5 suggests that in

practice, the running time for this sampling procedure is sub-exponential.

Next we estimate our upper bounds for the entropy of perturb-max

probability models that are described in Section 6.3.2. We compare them

to marginal entropy bounds H(p) ≤ ∑iH(pi), where pi(xi) =
∑

x\xi p(x)

are the marginal probabilities (Cover and Thomas, 2012). Unlike the log-

partition case which relates to the entropy of Gibbs distributions, it is

impossible to use dynamic programming to compute the entropy of perturb-

max models. Therefore we restrict ourselves to a 4 × 4 spin glass model to

compare these upper bounds as shown in Figure 6.6. One can see that the

MAP perturbation upper bound is tighter than the marginalization upper

bound in the medium and high coupling strengths. We can also compare the

marginal entropy bounds and the perturb-max entropy bounds to arbitrary

grid sizes without computing the true entropy. Figure 6.6 shows that the

larger the model the better the perturb-max bound.

6.4 Empirical Evaluation 187

Coupling strength (c)
10-1 100 101

Es
tim

at
ed

 e
nt

ro
py

1

2

3

4

5

6

7

8

9
4 x 4 spin glass model

exact entropy
marginal entropy
upper

n (n x n spin glass model)
20 40 60 80 100

Es
tim

at
ed

 e
nt

ro
py

1000

2000

3000

4000

5000

6000
Entropy vs. model size (c = 5)

marginal entropy
upper

Figure 6.6: Estimating our entropy bounds (in Section 6.3.2) while comparing
them to the true entropy and the marginal entropy bound. Left: comparison on
small-scale spin models. Right: comparison on large-scale spin glass models.

Both our log-partition bounds as well as our entropy bounds hold in

expectation. Thus we evaluate their measure concentration properties, i.e.,

how many samples are required to converge to their expected value. We

evaluate our approach on a 100 × 100 spin glass model with n = 104

variables. The local field parameters θi were drawn uniformly at random

from [−1, 1] to reflect high signal. To find the perturb-max assignment

for such a large model we restrict ourselves to attractive coupling setting,

thus the parameters θi,j were drawn uniformly from [0, c], where c ∈ [0, 4]

to reflect weak, medium and strong coupling potentials. Throughout our

experiments we evaluate the expected value of our bounds with 100 different

samples. We note that both our log-partition and the entropy upper bounds

have the same gradient with respect to their random perturbations, thus

their measure concentration properties are the same. In the following we

only report the concentration of our entropy bounds; the same concentration

occurs for our log-partition bounds.

Acknowledgements

TJ was partially supported by NSF grant #1524427

188 On the Expected Value of Random Maximum A-Posteriori Perturbations

6.5 References

M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis: Theory and Application
to Travel Demand, volume 9. MIT press, Cambridge, MA, USA, 1985.

D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, Nashua, NH, USA, 2003.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, November 2001. doi: 10.1109/34.969114.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, Hoboken, NJ, USA, 2012.

H. A. David and H. N. Nagaraja. Order Statistics. John Wiley & Sons, Hoboken,
NJ, USA, 3rd edition, 2003.

J. M. Eisner. Three new probabilistic models for dependency parsing: an explo-
ration. In Proceedings of the 16th Conference on Computational Linguistics
(COLING ’96), volume 1, pages 340–345. Association for Computational Lin-
guistics, 1996. doi: 10.3115/992628.992688.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of di-
mensionality: Discrete integration by hashing and optimization. In S. Dasgupta
and D. McAllester, editors, Proceedings of The 30th International Conference on
Machine Learning, volume 28 of JMLR: Workshop and Conference Proceedings,
pages 334–342, 2013a.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Optimization with parity
constraints: From binary codes to discrete integration. In Proceedings of the
Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-13), pages 202–211, Corvallis, Oregon, 2013b. AUAI Press.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Embed and project:
Discrete sampling with universal hashing. In C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information
Processing Systems 26 (NIPS 2013), pages 2085–2093. Curran Associates, Inc.,
2013c.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Low-density parity
constraints for hashing-based discrete integration. In E. P. Xing and T. Jebara,
editors, Proceedings of The 31st International Conference on Machine Learning,
volume 32 of JMLR: Workshop and Conference Proceedings, pages 271–279, 2014.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1627–1645, September 2010. doi: 10.
1109/TPAMI.2009.167.

P. F. Felzenszwalb and R. Zabih. Dynamic programming and graph algorithms in
computer vision. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(4):721–740, April 2011. doi: 10.1109/TPAMI.2010.135.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Mathematical Proceedings of
the Cambridge Philosophical Society, 24(02):180–190, April 1928. doi: 10.1017/
S0305004100015681.

G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John
Wiley & Sons, New York, NY, USA, 2nd edition, 2013.

6.5 References 189

A. Gane and T. S. J. Tamir Hazan. Learning with maximum a-posteriori perturba-
tion models. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics (AISTATS), vol-
ume 33 of JMLR: Workshop and Conference Proceedings, pages 247—256, 2014.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, November 1984. doi: 10.1109/TPAMI.
1984.4767596.

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
volume 21, pages 553–560. Curran Associates, Inc., 2007.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics, 44(3):423–453, July 1943. doi: 10.2307/1968974.

L. A. Goldberg and M. Jerrum. The complexity of ferromagnetic Ising with local
fields. Combinatorics Probability and Computing, 16(1):43, January 2007. doi:
10.1017/S096354830600767X.

L. A. Goldberg and M. Jerrum. Approximating the partition function of the
ferromagnetic potts model. Journal of the ACM (JACM), 59(5):25, 2012.

E. J. Gumbel. Statistical theory of extreme values and some practical applications:
a series of lectures. Number 33 in National Bureau of Standards Applied
Mathematics Series. US Govt. Print. Office, Washington, DC, USA, 1954.

Gurobi Optimization. Gurobi optimizer documentation, 2015.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, April 1970. doi: 10.1093/biomet/57.1.97.

T. Hazan and T. Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In The 29th International Conference on Machine
Learning (ICML 2012), 2012.

T. Hazan, S. Maji, and T. Jaakkola. On sampling from the Gibbs distribution
with random maximum a-posteriori perturbations. In C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 1268–1276. Curran Associates, Inc.,
2013.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the
Ising model. SIAM Journal on computing, 22(5):1087–1116, October 1993. doi:
10.1137/0222066.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, October 2005. doi:
10.1016/j.jcss.2004.10.016.

J. Keshet, D. McAllester, and T. Hazan. PAC-Bayesian approach for minimization
of phoneme error rate. In Proceedings of the 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2224–2227, 2011.
doi: 10.1109/ICASSP.2011.5946923.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):
1568–1583, October 2006. doi: 10.1109/TPAMI.2006.200.

190 On the Expected Value of Random Maximum A-Posteriori Perturbations

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):
147–159, February 2004. doi: 10.1109/TPAMI.2004.1262177.

T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (EMNLP ’10),
pages 1288–1298, 2010.

S. Kotz and S. Nadarajah. Extreme value distributions: theory and applications.
Imperial College Press, London, UK, 2000.

R. D. Luce. Individual Choice Behavior: A Theoretical Analysis. John Wiley and
Sons, New York, NY, USA, 1959.

C. Maddison, D. Tarlow, and T. Minka. A∗ sampling. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2085–2093. Curran Associates,
Inc., 2014.

S. Maji, T. Hazan, and T. Jaakkola. Active boundary annotation using random
MAP perturbations. In S. Kaski and J. Corander, editors, Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 33 of JMLR: Workshop and Conference Proceedings, pages
604–613, 2014.

D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarem-
bka, editor, Frontiers in Econometrics, chapter 4, pages 105–142. Academic Press,
New York, NY, USA, 1974.

F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration
of random maximum a-posteriori perturbations. In E. P. Xing and T. Jebara,
editors, Proceedings of The 31st International Conference on Machine Learning,
volume 32 of JMLR: Workshop and Conference Proceedings, page 1, 2014.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proceedings of the 2011
IEEE International Conference on Computer Vision (ICCV), pages 193–200,
Barcelona, Spain, November 2011. doi: 10.1109/ICCV.2011.6126242.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Reducing random
sampling to optimization, with applications in computer vision. In S. Nowozin,
P. V. Gehler, J. Jancsary, and C. H. Lampert, editors, Advanced Structured
Prediction, chapter 7, pages 159–186. MIT Press, Cambridge, MA, USA, 2014.

N. Ruozzi. The Bethe partition function of log-supermodular graphical models.
In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 117–125. Curran Associates,
Inc., 2012.

A. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’10), pages 1–11, 2010.

A. G. Schwing and R. Urtasun. Efficient exact inference for 3D indoor scene
understanding. In Computer Vision – ECCV 2012 : 12th European Conference on
Computer Vision, volume 7577 of Lecture Notes in Computer Science, chapter 22,
pages 299–313. Springer, Berlin, Germany, 2012. doi: 10.1007/978-3-642-33783-3.

6.5 References 191

D. Sontag and T. S. Jaakkola. New outer bounds on the marginal polytope.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1393–1400. Curran Associates, Inc.,
2008.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proceedings of the Twenty-Fourth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-
08), pages 503–510, Corvallis, Oregon, USA, 2008. AUAI Press.

M. Sun, M. Telaprolu, H. Lee, and S. Savarese. An efficient branch-and-bound
algorithm for optimal human pose estimation. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1616–
1623, Providence, RI, 2012. doi: 10.1109/CVPR.2012.6247854.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):86–88, January 1987. doi: 10.1103/
PhysRevLett.58.86.

P. Swoboda, B. Savchynskyy, J. Kappes, and C. Schnörr. Partial optimality via
iterative pruning for the Potts model. In Scale Space and Variational Methods in
Computer Vision: 4th International Conference, volume 7893 of Lecture Notes in
Computer Science, chapter 40, pages 477–488. Springer, Berlin, Germany, 2013.
doi: 10.1007/978-3-642-38267-3.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized optimum models for
structured prediction. In N. Lawrence and M. Girolami, editors, Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics,
volume 22 of JMLR: Workshop and Conference Proceedings, pages 1221–1229,
2012.

L. G. Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189–201, 1979. doi: 10.1016/0304-3975(79)90044-6.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008. doi: 10.1561/2200000001.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds
on the log partition function. IEEE Transactions on Information Theory, 51(7):
2313–2335, July 2005a. doi: 10.1109/TIT.2005.850091.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement
on trees: Message-passing and linear programming. IEEE Transactions on
Information Theory, 51(11):3697–3717, November 2005b. doi: 10.1109/TIT.2005.
856938.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and
belief propagation with convex free energies. In Proceedings of the Twenty-Third
Conference Conference on Uncertainty in Artificial Intelligence (2007), pages
416–425, Corvallis, Oregon, USA, 2007. AUAI Press.

A. Weller and T. Jebara. Clamping variables and approximate inference. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 909–917. Cur,
2014.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF). In Proceedings of the
2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8, 2008. doi: 10.1109/CVPR.2008.4587355.

192 On the Expected Value of Random Maximum A-Posteriori Perturbations

A. S. Willsky, E. B. Sudderth, and M. J. Wainwright. Loop series and Bethe vari-
ational bounds in attractive graphical models. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 1425–1432. Curran Associates, Inc., 2007.

7 A Poisson Process Model for Monte Carlo

Chris J. Maddison cmaddis@cs.toronto.edu

University of Toronto

Toronto, Canada

Simulating samples from arbitrary probability distributions is a major re-

search program of statistical computing. Recent work has shown promise in

an old idea, that sampling from a discrete distribution can be accomplished

by perturbing and maximizing its mass function. Yet, it has not been clearly

explained how this research project relates to more traditional ideas in the

Monte Carlo literature. This chapter addresses that need by identifying a

Poisson process model that unifies the perturbation and accept-reject views

of Monte Carlo simulation. Many existing methods can be analyzed in this

framework. The chapter reviews Poisson processes and defines a Poisson

process model for Monte Carlo methods. This model is used to generalize

the perturbation trick to infinite spaces by constructing Gumbel processes,

random functions whose maxima are located at samples over infinite spaces.

The model is also used to analyze A* sampling and OS*, two methods from

distinct Monte Carlo families.

7.1 Introduction

The simulation of random processes on computers is an important tool in sci-

entific research and a subroutine of many statistical algorithms. One way to

formalize this task is to return samples from some distribution given access

to a density or mass function and to a pseudorandom number generator that

returns independent uniform random numbers. “Monte Carlo methods”, a

phrase originally referring to the casinos of Monte Carlo, is a catchall for

algorithms that solve this problem. Many Monte Carlo methods exist for spe-

194 A Poisson Process Model for Monte Carlo

cific distributions or classes of distributions (Walker, 1977; Devroye, 1986),

but there are a few generic principles. One principle is to simulate a Markov

chain whose stationary distribution is the distribution of interest. Work on

these Markov chain Monte Carlo methods has exploded over the past few

decades, because of their efficiency at sampling from complex distributions

in high dimensions. Their downside is that convergence can be slow and

detecting convergence is hard. A second principle is propose samples from

a tractable distribution and accept them according to a correction factor.

These accept-reject Monte Carlo methods are the workhorses of modern sta-

tistical packages, but their use is restricted to simple distributions on low

dimensional spaces.

Recently, a research program has developed around another principle for

sampling from discrete distributions, the so called “Gumbel-Max trick”. The

trick proceeds by simulating a random function G : {1, . . . ,m} → R whose

maximum is located at a sample. Sampling therefore reduces to finding the

state that maximizes G. This trick has the same complexity as better known

methods, but it has inspired research into approximate methods and exten-

sions. Methods that abandon exactness for efficiency have considered intro-

ducing correlated G with a variety of applications (Papandreou and Yuille,

2011; Tarlow et al., 2012; Hazan et al., 2013). Chen and Ghahramani (2015)

consider bandit algorithms for optimizing G over low dimensional spaces

when function evaluation is expensive. Maddison et al. (2014) generalized G

with Gumbel processes, random functions over infinite spaces whose maxima

occur at samples of arbitrary distributions, and introduced A* sampling,

a branch and bound algorithm that executes a generalized Gumbel-Max

trick. Kim et al. (2016) introduced a related branch and bound algorithm

tailored to discrete distributions and successfully sampled from a large fully

connected attractive Ising model. Taken together, this view of simulation

as a maximization problem is a promising direction, because it connects

Monte Carlo research with the literature on optimization. Yet, its relation-

ship to more established methods has not been clearly expressed. This chap-

ter addresses that need by identifying a model that jointly explains both the

accept-reject principle and the Gumbel-Max trick.

As a brief introduction, we cover a simple example of an accept-reject

algorithm and the Gumbel-Max trick shown in Figure 7.1. Suppose we

are given a positive function f : {1, . . . ,m} → R+, which describes the

unnormalized mass of a discrete random variable I,

P(I ∈ B) =
∑
i∈B

f(i)∑m
j=1 f(j)

, B ⊆ {1, . . . ,m}. (7.1)

7.1 Introduction 195

Accept-reject

maxi f(i)

f(i)

i J

U ·

Gumbel-Max trick

· ·
·

·
i I⇤

log f(i)

log f(i) + G(i)

G⇤

4

Figure 7.1: Two simple Monte Carlo methods for a discrete distribution described
by positive function f via (7.1). The left hand plot shows the first accepted sample
J in an accept-reject scheme; note that U < f(J). The right hand plot shows a
sample I∗ in the Gumbel-Max trick; I∗ is the state that achieves the maximum
G∗ = maxi log f(i) +G(i).

The following algorithms return an integer with the same distribution as I.

The accept-reject algorithm is,

1. Sample J uniformly from {1, . . . ,m}, U uniformly from [0,maxmi=1 f(i)],

2. If U < f(J), return J , else go to 1.

We can intuitively justify it by noticing that accepted pair (J, U) falls

uniformly under the graph of f(i), Figure 7.1. The sample J , which is

accepted or rejected, is often called a proposal. The Gumbel-Max trick

proceeds by optimizing a random function,

1. For i ∈ {1, . . .m} sample an independent Gumbel random variable G(i).

2. Find and return I∗ = argmaxmi=1 log f(i) +G(i).

Because the random values log f(i) + G(i) can be seen as a perturbed

negative energy function, the function G is often called a perturbation.

Uniform and Gumbel random variables are included among the standard

distributions of statistical computing packages. So these algorithms, while

inefficient, are simple to program.

Considering their apparent differences and the fact that they have been

studied in distinct literatures, it is surprising that both algorithms can be

unified under the same theoretical framework. The framework rests on the

study of Poisson processes, a random object whose value is a countable set

of points in space (Kingman, 1992; Daley and Vere-Jones, 2007). The central

idea is to define a specific Poisson process, called an exponential race, which

models a sequence of independent samples arriving from some distribution.

Then we identify two operations, corresponding to accept-reject and the

196 A Poisson Process Model for Monte Carlo

Gumbel-Max trick, which modify the arrival distribution of exponential

races. In this view a Monte Carlo method is an algorithm that simulates

the first arrival of an exponential race, and many existing algorithms fall

into this framework.

Section 7.2 reviews Poisson processes and studies the effect of operations

on their points. Section 7.3 introduces exponential races and studies the

accept-reject and perturb operations. In Section 7.4 we construct Gumbel

processes from exponential races and study the generalized Gumbel-Max

trick. In Section 7.5 we analyze A* sampling and OS* (Dymetman et al.,

2012) and show how they use perturb and accept-reject operations, respec-

tively, to simulate the first arrival of an exponential race. All of our Poisson

process results are either known or elementary extensions; the correctness

and behaviour of the Monte Carlo methods that we study have all been es-

tablished elsewhere. Our contribution is in identifying a theory that unifies

two distinct literatures and in providing a toolset for analyzing and devel-

oping Monte Carlo methods.

7.2 Poisson Processes

7.2.1 Definition and Properties

A Poisson process is a random countable subset Π ⊆ Rn. Many natural

processes result in a random placement of points: the stars in the night

sky, cities on a map, or raisins in oatmeal cookies. A good generic mental

model to have is the plane R2 and pinpricks of light for all points in

Π. Unlike most natural processes, a Poisson process is distinguished by

Figures for POS Chapter

Chris J. Maddison
http://www.cs.toronto.edu/~cmaddis/

⇤

⇤
⇤

⇤

⇤⇤
⇤

⇤

⇤

⇤

A

C

B

N(A) = 3
N(B) = 1
N(C) = 2

f
(x

)
g
(x

)M

REJ PER

R+ R+

��

�

� �

⇤

�
� ⇤

�⇤

T4/M T4

� ⇤

1

Figure 7.2: The set of ∗ is a realization of a Poisson process in the plane. Counts
in sets A,B,C are marginally Poisson and are independent for disjoint sets.

7.2 Poisson Processes 197

its complete randomness; the number of points in disjoint subsets are

independent random variables, see Figure 7.2. In this section we review a

general Poisson process theory culminating in two theorems, which describe

how they behave under the generic operations of removing or relocating

their points. In the next section we restrict our view to a specific Poisson

process and two specific operations, which correspond to accept-reject and

Gumbel-Max. Our study is situated in Rn for intuition, but these results

generalize naturally; for more information, the ideas of this section are

adapted from the general treatment in Kingman (1992). Readers familiar

with that treatment can safely skip this section

To identify a realization of a random countable set Π ⊆ Rn, we use counts

of points in subsets B ⊂ Rn,

N(B) = #(Π ∩B).

where N(B) = ∞ if B is infinite, see Figure 7.2 again. Counts are nonneg-

ative and additive, so for any realization of Π N(B) satisfies

1. (Nonnegative) N(B) ≥ 0,

2. (Countably additive) For disjoint Bi ⊆ Rn, N(∪∞i=1Bi) =
∑∞

i=1N(Bi).

Set functions from subsets of Rn to the extended reals R∪{∞,−∞} that are

nonnegative and countably additive are called measures. Measure theory is

a natural backdrop for the study of Poisson processes, so we briefly mention

some basic concepts. In general measures µ assign real numbers to subsets

with the same consistency that we intuitively expect from measuring lengths

or volumes in space. If µ(Rn) = 1, then µ is a probability distribution.

Because it is not possible to define a measure consistently for all possible

subsets, the subsets B ⊆ Rn are restricted here and throughout the chapter

to be from the Borel sets, a nice measurable family of subsets. The Borel

sets contain almost any set of interest, so for our purposes it is practically

unrestricted. Integration of some function f : Rn → R with respect to some

measure µ naturally extends Riemann integration, which we can think about

intuitively as the area under the graph of f(x) weighted by the instantaneous

measure µ(dx). When a measure is equal to the integral of a nonnegative

function f : Rn → R≥0 with respect to µ, we say f is the density with

respect to µ.

The Poisson process receives its name from the marginal distribution

of counts N(B). N(B) is Poisson distributed on the nonnegative integers

parameterized by a rate, which is also its expected value.

198 A Poisson Process Model for Monte Carlo

Definition 7.1 (Poisson random variable). N is a Poisson distributed

random variable on k ∈ {0, 1, . . .} with nonnegative rate λ ∈ R≥0 if

P(N = k) = exp(−λ)
λk

k!
.

This is denoted N ∼ Poisson(λ). N ∼ Poisson(0) and N ∼ Poisson(∞)

are the random variables whose values are 0 and ∞ with probability one. If

N ∼ Poisson(λ), then E(N) = λ.

The Poisson distribution is particularly suited to modelling random counts,

because it is countably additive in the rate.

Lemma 7.1. If Ni ∼ Poisson(λi) independent with λi ∈ R≥0, then∑∞
i=1

Ni ∼ Poisson
(∑∞

i=1
λi

)
.

Proof. (Kingman, 1992). Let Sm =
∑m

i=1Ni and assume λi > 0 without loss

of generality. Then for S2,

P(S2 = k) =

k∑
r=0

P(N1 = r,N2 = k − r)

=

k∑
r=0

exp(−λ1)
λr1
r!

exp(−λ2)
λk−r2

(k − r)!

=
exp(−λ1 − λ2)

k!

k∑
r=0

(
k

r

)
λr1λ

k−r
2

=
exp(−λ1 − λ2)

k!
(λ1 + λ2)k.

By induction Lemma 7.1 also holds for Sm. For infinite sums the events

{Sm ≤ k} are nonincreasing. Thus,

P(S∞ ≤ k) = lim
m→∞

P(Sm ≤ k) =

k∑
j=1

lim
m→∞

exp
(
−
∑m

i=1
λi

) (
∑m

i=1 λi)
j

j!
.

Because expectations distribute over infinite sums of positive random vari-

ables, the Poisson rate µ(B) = E(N(B)) must also be a measure.

Instead of starting with a definition of Poisson processes, we work back-

wards from an algorithmic construction. Algorithm 7.1 is a procedure that

realizes a Poisson process Π for a specified mean measure µ. Algorithm 7.1

iterates through a partition {Bi}∞i=1 of Rn. For each Bi it first decides the

number of points to place in Π by sampling a Poisson with rate given by

7.2 Poisson Processes 199

Algorithm 7.1 A Poisson process Π with σ-finite nonatomic mean measure µ

Let {Bi}∞i=1 be a partition of Rn with µ(Bi) <∞
Π = ∅
for i = 1 to ∞ do

Ni ∼ Poisson(µ(Bi))
for j = 1 to Ni do

Xij ∼ µ(· ∩Bi)/µ(Bi)
Π = Π ∪ {Xij}

end for
end for

the measure, Ni ∼ Poisson(µ(Bi)). Then, it places Ni points by sampling

independently from the probability distribution proportional to µ restricted

to Bi. Normally, X ∼ D is just a statement about the marginal distribution

of X. In the context of an Algorithm box we also implicitly assume that it

implies independence from all other random variables. We should note that

Algorithm 7.1 operates on volumes and samples from µ. This is not an issue,

if we think of it as a mathematical construction. It would be an issue, if we

set out to simulate Π on a computer.

Algorithm 7.1 will occasionally have pathological behaviour, unless we

restrict µ further. First, we require that each subset Bi of the partition has

finite measure; if µ(Bi) = ∞, then Algorithm 7.1 will stall when it reaches

Bi and fail to visit all of Rn. If a partition {Bi}∞i=1 with µ(Bi) < ∞ exists

for measure µ, then µ is called σ-finite. Second, we want the resulting counts

N(Bi) to match the number of points placed Ni. This can be ensured if all

of the points Xij are distinct with probability one. It is enough to require

that µ({x}) = 0 for all singleton sets x ∈ Rn. This kind of measure is known

as nonatomic.

The crucial property of the sets Π produced by Algorithm 7.1 is that the

number of points N(Aj) that fall in any finite collection {Aj}mj=1 of disjoint

sets are independent Poisson random variables. Clearly, the counts N(Bi)

for the partitioning sets of Algorithm 7.1 are independent Poissons; it is not

obvious that this is also true for other collections of disjoint sets. To show

this we study the limiting behaviour of N(B) by counting the points placed

in Bi ∩B and summing as Algorithm 7.1 iterates over Rn.

Theorem 7.2. Let Π ⊆ Rn be the subset realized by Algorithm 7.1 with

σ-finite nonatomic mean measure µ and A1, . . . Am ⊆ Rn disjoint. N(B) =

#(Π ∩B) for B ⊆ Rn satisfies

1. N(Aj) ∼ Poisson(µ(Aj)),

2. N(Aj) are independent.

200 A Poisson Process Model for Monte Carlo

Proof. Adapted from Kingman (1992). Let Bi be the partition of Algo-

rithm 7.1 with µ(Bi) > 0 without loss of generality. With probability one,

N(Aj) = N(∪∞i=1Bi ∩Aj) =

∞∑
i=1

N(Bi ∩Aj).

Consider the array of N(Bi ∩Aj) for i ∈ {1, 2, . . .} and j ∈ {1, . . . ,m}. The

rows are clearly independent. Thus, by Lemma 7.1 it is enough to show

1. N(Bi ∩Aj) ∼ Poisson(µ(Bi ∩Aj)),
2. N(Bi ∩Aj) for j ∈ {1, . . . ,m} are independent,

Let A0 be the complement of ∪mi=1Ai. Because µ is nonatomic, each point is

distinct with probability one. Thus,

P(N(Bi ∩A0) = k0, . . . , N(Bi ∩Am) = km|Ni = k) =

k!

k0! . . . km!

m∏
j=0

µ(Bi ∩Aj)kj
µ(Bi)kj

with k0 = k −∑m
j=1 kj . Now,

P(N(Bi ∩A1) = k1, . . . , N(Bi ∩Am) = km) =
∞∑

k=
∑
j kj

exp(−µ(Bi))
µ(Bi)

k

k!

k!

k0! . . . km!

m∏
j=0

µ(Bi ∩Aj)kj
µ(Bi)kj

∞∑
k0=0

m∏
j=0

exp(−µ(Bi ∩Aj))
µ(Bi ∩Aj)kj

kj !

=

m∏
j=1

exp(−µ(Bi ∩Aj))
µ(Bi ∩Aj)kj

kj !
.

finishes the proof.

Notice that the partition in Algorithm 7.1 has an indistinguishable effect

on the eventual counts N(B). In fact there may be entirely different algo-

rithms that realize random subsets indistinguishable from Π. This motivates

the standard definition for deciding whether a random process is Poisson.

Definition 7.2 (Poisson process). Let µ be a σ-finite nonatomic measure

on Rn. A random countable subset Π ⊆ Rn is a Poisson process with mean

measure µ if

1. For B ⊆ Rn, N(B) ∼ Poisson(µ(B)).

2. For A1, . . . Am ⊆ Rn disjoint, N(Aj) are independent.

7.2 Poisson Processes 201

Algorithm 7.1 together with Theorem 7.2 is an existence proof for Poisson

processes. Poisson processes are generic models for procedures that place

points completely randomly in space. In later sections we specialize them to

model the sequence of points considered by Monte Carlo methods.

7.2.2 Mapping and Thinning a Poisson Process

We are ultimately interested in understanding how the operations of accept-

reject and the Gumbel-Max trick modify distributions. They are special

cases of more generic operations on the points X ∈ Π of a Poisson process,

which modify its measure. Accept-reject corresponds to the stochastic re-

moval of points based on their location. The Gumbel-Max trick corresponds

to the deterministic relocation of points. Here we study those operations in

some generality.

The stochastic removal of points X ∈ Π is called thinning. To count the

number of points that remain after thinning, we need their joint distribution

before thinning. If we restrict our attention to one of the subsets Bi of the

partition in Algorithm 7.1, then the distribution is clear: conditioned on

N(Bi) = k, each point is distributed identically and independently (i.i.d.)

as µ restricted to Bi. This property turns out to be true for any subset

B ⊆ Rn of finite measure.

Lemma 7.3. Let Π ⊆ Rn be a Poisson Process with σ-finite nonatomic

mean measure µ and B ⊆ Rn with 0 < µ(B) < ∞. Given N(B) = k, each

Xi ∈ Π ∩B for i ∈ {1, . . . k} is i.i.d. as,

Xi | {N(B) = k} ∼ µ(· ∩B)/µ(B). (7.2)

Proof. The proof is uninformative, so we leave it to the Appendix.

Intuitively, this result ought to be true, because we could have realized Π

via Algorithm 7.1 with B as one of the partitioning sets.

Now suppose we remove points X ∈ Π independently with probability

1 − ρ(X), where ρ : Rn → [0, 1] is some integrable function. For B with

finite measure, given N(B) the probability of keeping X ∈ Π ∩B is

P(keep X |N(B) = k) = E(ρ(X) |N(B) = k) =

∫
B

ρ(x)

µ(B)
µ(dx). (7.3)

By summing over the value of N(B), we can derive the marginal distribution

over the number of remaining points. This is the basic strategy of the

Thinning Theorem.

Theorem 7.4 (Thinning). Let Π ⊆ Rn be a Poisson Process with σ-finite

nonatomic mean measure µ and S(x) ∼ Bernoulli(ρ(x)) an independent

202 A Poisson Process Model for Monte Carlo

Bernoulli random variable for x ∈ Rn with integrable ρ : Rn → [0, 1], then

thin(Π, S) = {X : X ∈ Π and S(X) = 1} (7.4)

is a Poisson process with mean measure

µ∗(B) =

∫
B
ρ(x)µ(dx). (7.5)

Proof. Originally from Lewis and Shedler (1979). Let B ⊆ Rn. Define,

N∗(B) = #(thin(Π, S) ∩B)

N∗(B) clearly satisfies the independence property and the result is trivial

for µ(B) = 0. For 0 < µ(B) <∞,

P(N∗(B) = k) =

∞∑
j=k

P(N(B) = j)P(k of S(Xi) = 1|N(B) = j).

Let µ̄∗(B) = µ(B)− µ∗(B). By (7.3),

=

∞∑
j=k

exp(−µ(B))
µ(B)j

j!

(
j

k

)
µ∗(B)k

µ(B)k
µ̄∗(B)j−k

µ(B)j−k

= exp(−µ∗(B))
µ∗(B)k

k!

∞∑
j=k

exp(−µ̄∗(B))
µ̄∗(B)j−k

(j − k)!

= exp(−µ∗(B))
µ∗(B)k

k!
.

For µ(B) =∞, partition B into subsets with finite measure. The countable

additivity of integrals of nonnegative functions and of Poisson random

variables (Lemma 7.1) finishes the proof.

A measurable function h : Rn → Rn that relocates points X ∈ Π is easy to

analyze if it is 1-1, because it will not relocate two distinct points to the same

place. The key insight is that we can count the points relocated to B ⊆ Rn
by counting in the preimage h−1(B); the so-called Mapping Theorem.

Theorem 7.5 (Mapping). Let Π ⊆ Rn be a Poisson process with σ-finite

nonatomic mean measure µ and h : Rn → Rn a measurable 1-1 function,

then

h(Π) = {h(X) : X ∈ Π}

is a Poisson process with mean measure

µ∗(B) = µ(h−1(B)) (7.6)

7.3 Exponential Races 203

Proof. Adapted from Kingman (1992). h is 1-1, therefore

#({h(X) : X ∈ Π} ∩B) = #{X ∈ Π : X ∈ h−1(B)} ∼ Poisson(µ(h−1(B))).(7.7)

Pre-images preserve disjointness, so the independence property is guaran-

teed. 1-1 functions map partitions of the domain to partitions of the range,

so µ∗ is still σ-finite.

7.3 Exponential Races

7.3.1 Definition and First Arrivals Distribution

In this section we specialize the Poisson process to model the sequence

of points considered by accept-reject and the Gumbel-Max trick. We call

the model an exponential race as a reference to a classical example. An

exponential race (occasionally race for short) is a Poisson process in R+×Rn,

which we interpret as points in Rn ordered by an arrival time in the positive

reals R+. The ordered points of an exponential race have a particularly

simple distribution; the location in Rn of each point is i.i.d. according to

some arrival distribution and the rate at which points arrive in time depends

stochastically on the normalization constant of that arrival distribution. The

Thinning and Mapping Theorems of Poisson processes have corresponding

lemmas for exponential races, which describe operations that modify the

arrival distribution of an exponential race. The ultimate value of this model

is that a variety of apparently disparate Monte Carlo methods can be

interpreted as procedures that simulate an exponential race. In Section 7.5

we present Monte Carlo methods which produce samples from intractable

distributions by operating on the simulation of an exponential race with

a tractable distribution. In this section we define an exponential race for

an arbitrary finite nonzero measure P , discuss strategies for simulating

exponential races when P is tractable, and derive two operations that modify

the arrival distribution of exponential races.

For motivation we review the traditional exponential race example (see

Durrett, 2012). Imagine instantaneous flashes of light arriving in time at m

distinct points pj scattered in R2. Suppose the arrival times of the flashes

at each pj are determined by independent Poisson processes Πj ⊆ R+ with

mean measure λj((0, t]) = λjt and λj > 0, see Figure 7.3. The question is

which point will get the first flash of light and how long do we need to wait?

The first arrival at pj is after time t iff Πj ∩ (0, t] is empty,

P(Tj > t) = P(#(Πj ∩ (0, t]) = 0) = exp(−λjt). (7.8)

204 A Poisson Process Model for Monte Carlo

{t}⇥ R2 R+ ⇥ {p1, p2, p3, p4}

· ·
⇤

·

p1
p2

p3

p4

t
p4

p3

p2

p1 ⇤⇤⇤

⇤⇤⇤ ⇤

⇤⇤ ⇤⇤

⇤⇤

0

1

0

1

R+ R+

⇤

⇤
⇤

⇤

⇤ ⇤ ⇤

⇤

⇤

⇤

⇤⇤

2

Figure 7.3: The realization of an exponential race with points arriving at pj ∈ R2.
The left hand plot shows the location of arrivals in the plane R2 and the first arrival
at time t at p3. The right hand plot shows future arrival times at the four points.

(7.8) is the complementary cumulative distribution function of an exponen-

tial random variable, which we briefly review.

Definition 7.3 (Exponential random variable). E is an exponential random

variable distributed on positive t ∈ R+ with nonnegative rate λ ∈ R≥0 if

P(E > t) = exp(−λt). (7.9)

This is denoted E ∼ Exp(λ) and E ∼ Exp(0) is the random variable whose

value is ∞ with probability one. If E ∼ Exp(1), then E/λ ∼ Exp(λ).

Thus, the location and time of the first arrival is determined by the minimum

of m exponential random variables. For exponential random variables this is

particularly easy to analyze; the minimum is an exponential random variable

with rate
∑m

j=1 λj and it is achieved at the jth variable with probability

proportional to the rate λj . Surprisingly, these values are independent.

Lemma 7.6. Let Ej ∼ Exp(λj) independent with nonegative λj ∈ R≥0. If

E∗ = min
1≤j≤m

Ej and J∗ = argmin
1≤j≤m

Ej , (7.10)

and at least one λj > 0 then

1. The density of Ej with λj > 0 is λj exp(−λjt) for t ∈ R+,

2. E∗ ∼ Exp(
∑m

j=1 λj),

3. P(J∗ = k) ∝ λk,

4. E∗ is independent of J∗.

Proof. 1. The derivative of 1− exp(−λjt) is λj exp(−λjt).

7.3 Exponential Races 205

2., 3., 4. Note that with probability 1 the Ej will be distinct, so

P(J∗ = k,E∗ > t) = P(∩j 6=k{Ej > Ek > t})

=

∫ ∞
t

λk exp(−λkx)
∏

j 6=k
exp(−λjx) dx

=
λk∑m
j=1 λj

∫ ∞
t

(
∑m

j=1
λj) exp(−

∑m

j=1
λjx) dx

=
λk∑m
j=1 λj

exp(−
∑m

j=1
λjt).

This finishes the lemma.

The extension of exponential races to arbitrary distributions on Rn is

straightforward. The m Poisson processes of the example are together a

single Poisson process on R+×Rn with mean measure (λ×P)((0, t]×B) =∑m
j=1 tλj1B(pj). λ × P is the product measure on R+ × Rn, where each

is respectively equipped with λ((0, t]) = t and P (B) =
∑

j λj1B(pj).

Extending this idea to an arbitrary finite measure P (not just the discrete

measures) is the key idea behind exponential races. Notice that P in our

example is atomic, which is fine, because the product measure λ× P is not

atomic. On the other hand, we want the points arriving in Rn to correspond

to the probability distribution P (·)/P (Rn), so we will require that P is finite,

P (Rn) <∞, and nonzero, 0 < P (Rn). Also, in contrast to Poisson processes,

exponential races have a natural ordering in time.

Definition 7.4 (Exponential race). Let P be a finite nonzero measure on

Rn. A random countable subset R ⊆ R+ × Rn is an exponential race with

measure P if the following hold

1. R is a Poisson process with mean measure λ× P .

2. R is totally ordered by time, the first coordinate.

If R = {(Ti, Xi)}∞i=1, then we assume the enumeration corresponds to the

ordering so that i < j implies Ti < Tj.

We can realize an exponential race with a slight modification of Algo-

rithm 7.1; use the partition of rectangles Bi = (i−1, i]×Rn, and sort points

by their time variable. This is not the most direct characterization, so instead

we derive the joint distribution of the first m ordered points in Theorem 7.7.

The distribution of the countably infinite set R is completely described by

the joint distribution of the first m points for all finite m. The proof of

Theorem 7.7 shows that the locations Xi are independently distributed as

P (·)/P (Rn) and the interarrival times Ti − Ti−1 are independent and ex-

ponentially distributed with rate P (Rn). This theorem is the cornerstone

206 A Poisson Process Model for Monte Carlo

of this chapter, because it suggest a strategy for proving the correctness of

Monte Carlo methods; if we can prove that the output of an algorithm (T,X)

is the first arrival of an exponential race with measure P , then Theorem 7.7

guarantees that the location X is a sample from P (·)/P (Rn).

Theorem 7.7. Let P be a finite nonzero measure on Rn, Xi ∼ P (·)/P (Rn)

independent, and Ei ∼ Exp(P (Rn)) independent, then first m points

{(Ti, Xi)}mi=1 of any exponential race R ⊆ R+ × Rn with measure P have

the same joint distribution as

{(
∑i

j=1
Ej , Xi)}mi=1.

Proof. Let T (t, B) be the time of the first arrival in B after time t ≥ 0,

T (t, B) = min{Ti : (Ti, Xi) ∈ R ∩ (t,∞)×B}. (7.11)

R ∩ ((t, s + t] × B) is finite with probability one for all s > 0, so (7.11) is

well defined. T (t, B)− t is an exponential random variable, because

P(T (t, B)− t > s) = P(N((t, s+ t]×B) = 0) = exp(−P (B)s).

T (t, B) and T (t, Bc) are independent, by Poisson process independence.

We proceed by induction. The event {T1 > s,X1 ∈ B} is equivalent to

{T (0, Bc) > T (0, B) > s}. P (B) > 0 or P (Bc) > 0, so by Lemma 7.6,

P(T1 > s,X1∈B) = P(T (0, Bc) > T (0, B) > s) = exp(−sP (Rn))
P (B)

P (Rn)
.

Now, assume Theorem 7.7 holds for k. The event

{Ti = ti, Xi = xi}ki=1

is completely described by counts in (0, tk]× Rn and thus independent of

{T (tk, B
c) > T (tk, B) > s+ tk}

Thus

P(Tk+1−Tk > s,Xk+1∈B|{Ti = ti, Xi = xi}ki=1)

= P(T (tk, B
c) > T (tk, B) > s+ tk|{Ti = ti, Xi = xi}ki=1)

= P(T (tk, B
c) > T (tk, B) > s+ tk)

= exp(−sP (Rn))
P (B)

P (Rn)

concludes the proof.

7.3 Exponential Races 207

7.3.2 Simulating an Exponential Race with a Tractable Measure

If Q is a tractable finite nonzero measure on Rn, that is we have a procedure

for computing Q(Rn) and sampling from Q(·)/Q(Rn), then Theorem 7.7

suggests Algorithm 7.2 for simulating an exponential race R with measure

Q. Algorithm 7.2 simulates the points of an exponential race in order of

arrival time. It does not terminate, but we can think of it as a coroutine or

generator, which maintains state and returns the next arrival in R each time

it is invoked. As a simple example consider the uniform measure Q((a, b]) =

b − a on [0, 1]. Algorithm 7.2 for this Q simulates a sequence of arrivals

{(Ti, Xi)}∞i=1 with arrival location Xi ∼ Uniform[0, 1] and interarrival time

Ti+1 − Ti ∼ Exp(1), see the left hand plot of Figure 7.4.

As with the initial discrete example, in which we constructed an expo-

nential race from m independent Poisson processes, this is not the only

approach. More generally, if {Bi}mi=1 is any finite partition of Rn such that

Q(· ∩Bi) is tractable, then we can simulate R by simulating m independent

exponential races Ri with measure Q(· ∩ Bi)/Q(Bi) via Algorithm 7.2 and

sorting the result ∪mi=1Ri. This can be accomplished lazily and efficiently

with a priority queue data type, which prioritizes the races Ri according

to which arrives next in time. It also possible to split the races Ri online

by partitioning Bi and respecting the constraint imposed by the arrivals al-

ready generated in Bi. We highlight a particularly important variant, which

features in A* sampling in Section 7.5. Consider an infinitely deep tree in

which each node is associated with a subset B ⊆ Rn. If the root is Rn and

the children of each node form a partition of the parent, then we call this

a space partitioning tree. We can realize an exponential race over a space

partitioning tree by recursively generating arrivals (T,X) at each node B.

Each location X is sampled independently from Q(· ∩ B)/Q(B), and each

time T is sampled by adding an independent Exp(Q(B)) to the parent’s ar-

rival time. The arrivals sorted by time over the realization of the tree form

a exponential race. See Figure 7.4.

Algorithm 7.2 An exponential race R with finite nonzero measure Q

R = ∅
T0 = 0
for i = 1 to ∞ do

Ei ∼ Exp(Q(Rn))
Xi ∼ Q(·)/Q(Rn)
Ti = Ti−1 + Ei
R = R ∪ {(Ti, Xi)}

end for

208 A Poisson Process Model for Monte Carlo

{t}⇥ R2 R+ ⇥ {p1, p2, p3, p4}

· ·
⇤

·

p1
p2

p3

p4

t
p4

p3

p2

p1 ⇤⇤⇤

⇤⇤⇤ ⇤

⇤⇤ ⇤⇤

⇤⇤

0

1

0

1

R+ R+

Exp(1)
⇤
⇤

⇤

⇤
⇤ Exp(1)

⇤ ⇤

Exp(1
2)
⇤

⇤

⇤
⇤

Exp(1
4)
⇤

2

Figure 7.4: Two methods for simulating an exponential race. The left hand
plot shows the first arrivals of a uniform exponential race on [0, 1] simulated by
Algorithm 7.2. The right hand plot shows the first arrivals of an exponential race
simulated over a space partitioning tree. Dashed lines dominate the set in which an
arrival is first.

7.3.3 Transforming an Exponential Race with Accept-Reject and

Perturb

Most finite nonzero measures P on Rn are not tractable. Monte Carlo

methods accomplish their goal of sampling from intractable distributions

by transforming samples of tractable distributions. In this subsection we

present accept-reject and perturb operations, which transform a realization

of an exponential race with measure Q into a realization of an exponential

race with a distinct measure P . In practice Q will be tractable and P in-

tractable, so that simulating an exponential race with an intractable measure

can be accomplished by simulating the points of an exponential race with a

tractable measure, for example via Algorithm 7.2, and transforming it with

accept-reject or perturb operations. The accept-reject and perturb opera-

tions are named after their respective literatures, accept-reject corresponds

to rejection sampling and perturb corresponds to the Gumbel-Max trick.

The correspondence between the perturb operation and the Gumbel-Max

trick may not be obvious, so we discuss this in Section 7.4.

Let Q and P be finite nonzero measures in Rn. We assume that they have

densities g and f with respect to some base measure µ,

Q(B) =

∫
B
g(x)µ(dx) P (B) =

∫
B
f(x)µ(dx). (7.12)

We assume that g and f have the same support and their ratio is bounded,

supp(f) = supp(g)
f(x)

g(x)
≤M for all x ∈ supp(g) (7.13)

7.3 Exponential Races 209

where supp(g) = {x ∈ Rn : g(x) 6= 0}. The assumption supp(f) =

supp(g) can be softened here and throughout the chapter to supp(f) ⊆
supp(g), but it complicates the analysis. The accept-reject strategy is to

realize more points than needed from an exponential race with measure

MQ(·) and stochastically reject points with probability equal to the ratio of

instantaneous rates of arrival, f(x)/(g(x)M). The perturbation strategy is to

realize just the points needed from an exponential race with measure Q, but

to perturb the arrival times according to the transformation t→ tg(x)/f(x)

for all points arriving at x.

Before we present the proofs, consider the following intuition. Imagine

taking a long exposure photograph of the plane as instantaneous flashes

arrive according to an exponential race with measure Q. The rate at which

points arrive will determine the intensity of a heat map with regions receiving

more points brighter than those receiving fewer. Over time the relative

intensities will correspond to the probability distribution proportional to

Q. If someone were just ahead of us in time and stochastically discarded

points that arrived in B or delayed points in B relative to points in Bc, then

our perception of the likelihood of B would change. Mired in time, we would

not be able to distinguish whether points were discarded, reordered, or the

true measure Q was in fact different.

The correctness of these operations on an exponential race can be justified

as special cases of the Thinning and Mapping Theorems.

Lemma 7.8 (Accept-Reject). Let Q and P be finite nonzero measures on

Rn under assumptions (7.12) and (7.13). If R ⊆ R+×Rn is an exponential

race with measure MQ(·) and accept(t, x) ∼ Bernoulli(ρ(t, x)) is i.i.d. for

all (t, x) with probability

ρ(t, x) =
f(x)

g(x)M
,

then thin(R, accept), from (7.4), is an exponential race with measure P .

Proof. By the Thinning Theorem, the mean measure of thin(R, accept) is∫∫
B

f(x)

g(x)M
g(x)Mµ(dx)λ(dt) =

∫∫
B

f(x)µ(dx)λ(dt) = (λ× P)(B).

for B ⊆ R+ × supp(g). The subsampled (Ti, Xi) are in order and thus an

exponential race with measure P .

Lemma 7.9 (Perturbation). Let Q and P be finite nonzero measures on

Rn under assumptions (7.12) and (7.13). If R ⊆ R+×Rn is an exponential

210 A Poisson Process Model for Monte Carlo

race with measure Q and

perturb(t, x) =

(
t
g(x)

f(x)
, x

)
,

then sort(perturb(R)) is an exponential race with measure P where sort

totally orders points by the first coordinate, time.

Proof. perturb is 1-1 on supp(f), so the Mapping Theorem applies. It is

enough to check the mean measure of perturb(R) on subsets of the form

B = (0, s]×A for s ∈ R+ and A ⊆ supp(g),∫∫
h−1(B)

g(x)λ(dt)µ(dx) =

∫
A

g(x)s
f(x)

g(x)
µ(dx) = (λ× P)(B).

Thus, sorting perturb(Ti, Xi) forms an exponential race with measure P .

7.4 Gumbel Processes

7.4.1 Definition and Construction

The central object of the Gumbel-Max trick is a random function over a

finite set whose values are Gumbel distributed. Gumbel valued functions

over a finite choice set are extensively studied in random choice theory, where

there is a need for a statistical model of utility (Yellott, 1977 for example).

The extension to Gumbel valued functions over continuous spaces has been

explored in random choice theory (Malmberg, 2013) and in the context of

Monte Carlo simulation (Maddison et al., 2014). Following Maddison et al.

(2014) we will refer to this class of Gumbel valued functions on Rn as Gumbel

processes. Gumbel processes underpin the recent interest in perturbation

based Monte Carlo methods, because their maxima are located at samples

from probability distributions, see also (Papandreou and Yuille, 2011; Tarlow

et al., 2012; Hazan et al., 2013; Chen and Ghahramani, 2015; Kim et al.,

2016). In this section we clarify the connection between Gumbel processes

and our development of exponential races. We will show that the value of a

Gumbel process at x ∈ Rn can be seen as the log transformed time of the first

arrival at x of some exponential race. This has the advantage of simplifying

their construction and connecting the literature on the Gumbel-Max trick

to our discussion. Related constructions have also been considered in the

study of extremal processes (Resnick, 2007). In this subsection we define

and construct Gumbel processes. In the next subsection we discuss their

7.4 Gumbel Processes 211

simulation and present a generalized Gumbel-Max trick derived from the

Perturbation Lemma.

The Gumbel distribution dates back to the statistical study of extrema

and rare events (Gumbel and Lieblein, 1954). The Gumbel is a member of

a more general class of extreme value distributions. A central limit theorem

exists for these distributions — after proper renormalization the maximum

of an i.i.d. sample of random variables converges to one of three possible

extreme value distributions (Gedenko, 1948). The Gumbel is parameterized

by a location µ ∈ R.

Definition 7.5 (Gumbel random variable). G is a Gumbel distributed

random variable on R with location µ ∈ R if

P(G ≤ g) = exp(− exp(−g + µ))

This is denoted G ∼ Gumbel(µ) and G ∼ Gumbel(−∞) is the random

variable whose value is −∞ with probability one. If G ∼ Gumbel(0), then

G+ µ ∼ Gumbel(µ).

The Gumbel distribution has two important properties for our purposes. The

distribution of the maximum of independent Gumbels is itself a Gumbel —

a property known as max-stability — and the index of the maximum follows

the Gibbs distribution: if G(i) ∼ Gumbel(µi), then

max
1≤i≤m

G(i) ∼ Gumbel(log

m∑
i=1

exp(µi)) argmax
1≤i≤m

G(i) ∼ exp(µi)∑m
i=1 exp(µi)

.

The Gumbel-Max trick of the introduction for sampling from a discrete

distribution with mass function f : {1, . . . ,m} → R+ is explained by taking

µi = log f(i). It is informative to understand these properties through the

Gumbel’s connection to the exponential distribution.

Lemma 7.10. If E ∼ Exp(λ) with nonnegative rate λ ∈ R≥0, then

− logE ∼ Gumbel(log λ).

Proof. P(− logE ≤ g) = P(E ≥ exp(−g)) = exp(− exp(−g + log λ))

Therefore the distribution of the maximum and argmaximum of Gumbels

is explained by Lemma 7.6, because passing a maximization through − log

becomes a minimization.

A Gumbel process G : Rn → R ∪ {−∞} is a Gumbel valued random

function. Their characterizing property is that the maximal values of a

Gumbel process over the subsets B ⊆ Rn are marginally Gumbel distributed

with a location that scales logarithmically with the volume of B according

212 A Poisson Process Model for Monte Carlo

to some finite nonzero measure P ,

max
x∈B

G(x) ∼ Gumbel(logP (B))

Implicit in this claim is the assertion that the maximizations maxx∈B G(x)

are well-defined — the maximum exists — for all B ⊆ Rn.

Definition 7.6 (Gumbel process). Let P be a finite nonzero measure on

Rn, G : Rn → R ∪ {−∞} a random function, and

G∗(B) = max
x∈B

G(x). (7.14)

G is a Gumbel process with measure P if

1. For B ⊆ Rn, G∗(B) ∼ Gumbel(logP (B)).

2. For A1, . . . , Am are disjoint, G∗(Ai) are independent.

Note, the event that argmaxx∈Rn G(x) lands in B ⊆ Rn depends on which

of G∗(B) or G∗(Bc) is larger. Following this reasoning one can show that

the argmax over Rn is distributed as P (·)/P (Rn).

The study of Gumbel processes can proceed without reference to expo-

nential races, as in Maddison et al. (2014), but our construction from expo-

nential races is a convenient shortcut that allows us to import results from

Section 7.3. Consider the function that reports the arrival time of the first

arrival at x ∈ Rn for an exponential race R with measure P ,

T (x) = min{Ti : (Ti, x) ∈ R}

This function is almost surely infinite at all x, but for any realization of R

it will take on finite value at countably many points in Rn. Moreover, the

minimum of T (x) over subsets B ⊆ Rn is well-defined and finite for sets

with positive measure P (B) > 0; it is exponentially distributed with rate

P (B). In this way we can see that − log T (x) is Gumbel process, Figure 7.5.

Theorem 7.11. Let R ⊆ R+ × Rn be an exponential race with measure P .

G(x) = − log min{Ti : (Ti, x) ∈ R} (7.15)

is a Gumbel process with measure P .

Proof. First, for x ∈ Rn

min{Ti : (Ti, x) ∈ R} = T (0, {x}),

7.4 Gumbel Processes 213

0

1

1

x

T (x) R+

G(x)

x

G(x) = � log T (x)T (x) = min{Ti : (Ti, x) 2 R}

⇤ ·
⇤
⇤

⇤

⇤

⇤⇤

⇤

⇤

⇤

⇤

⇤
⇤

⇤

··
· ··· ·· ·· · ··

log f(x) + G(x)

1 1

·G(x)

x ·
· ·

·· ·
·· ·

·

log f(x)

x

G⇤

X⇤

·

·· ··

·
·

·
·

3

Figure 7.5: Constructing a uniform Gumbel process G : Rn → R∪{−∞} on [0, 1]
with an exponential race. The left hand plot shows the first arrivals ∗ of a uniform
exponential race R. The right hand plot shows G(x) set to − log the time T (x) of
the first arrival at x. The graph of G(x) extends downwards to −∞ taking on finite
value at all points in [0, 1] that have arrivals and −∞ for all points with no arrivals.

where T (0, B) is the first arrival time in subset B ⊆ Rn defined in (7.11)

from Theorem 7.7. Thus G∗(B) of (7.14) is well defined, because

G∗(B) = max
x∈B
− log min{Ti : (Ti, x) ∈ R} = − log T (0, B).

G∗(B) inherits the independence properties from Poisson process indepen-

dence. Finally, Lemma 7.10 gives us the marginal distribution of G∗(B).

7.4.2 Simulating a Gumbel Process and the Gumbel-Max Trick

Gumbel processes are relevant to Monte Carlo simulation in the same sense

that we motivated exponential races — if we can simulate the maximum

value of a Gumbel process with measure P , then its location is a sample

from the distribution P (·)/P (Rn). Maddison et al. (2014) gave an algorithm

for simulating Gumbel processes with tractable measures and a generalized

Gumbel-Max trick for transforming their measure. We present those results

derived from our results for exponential races.

The Gumbel process G from construction (7.15) has value −∞ everywhere

except at the countably many arrival locations of an exponential race.

Therefore, for tractable measures Q we could adapt Algorithm 7.2 for

exponential races to simulate G(x). The idea is to initialize G(x) = −∞
everywhere and iterate through the points (Ti, Xi) of an exponential race R

setting G(Xi) = − log Ti. To avoid reassigning values of G(x) we refine space

as in Section 7.3.2 by removing the locations generated so far. Algorithm 7.3

implements this procedure, although it is superficially different from our

214 A Poisson Process Model for Monte Carlo

Algorithm 7.3 A Gumbel process with finite measure Q

Initialize G(x) = −∞ for all x ∈ Rn.
(Ω1, G0, i) = (Rn,∞, 1)
while Q(Ωi) > 0 do

Gi ∼ TruncGumbel(logQ(Ωi), Gi−1)
Xi ∼ Q(· ∩ Ωi)/Q(Ωi)
G(Xi) = Gi % assign G(x) at Xi to Gi
Ωi+1 = Ωi − {Xi}
i = i+ 1

end while

description. In particular the value G(Xi) is instead set to a truncated

Gumbel Gi ∼ TruncGumbel(logQ(Ωi), Gi−1), a Gumbel random variable

with location logQ(Ωi) whose domain is truncated to (−∞, Gi−1]. The

connection to Algorithm 7.2 can be derived by decomposing the arrival

times Ti =
∑i

j=1Ej for Ej ∼ Exp(Q(Ωj)) and then considering the joint

distribution of Gi = − log(
∑i

j=1Ej). A bit of algebraic manipulation will

reveal that

Gi |Gi−1 ∼ TruncGumbel(logQ(Ωi), Gi−1)

Thus, translating between procedures for simulating Gumbel processes and

procedures for simulating exponential races is as simple as replacing chains

of truncated Gumbels with partial sums of exponentials.

For continuous measures removing countably many points from the sample

space has no effect, and in practice the removal line of Algorithm 7.3

can be omitted. For those and many other measures Algorithm 7.3 will

not terminate; instead it iterates through the infinitely many finite values

of G(x) in order of their rank. For discrete measures with finite support

Algorithm 7.3 will terminate once every atom has been assigned a value.

Finally, for simulating Gumbel processes with intractable measures P the

Perturbation Lemma of exponential races justifies a generalized Gumbel-

Max trick. The basic insight is that multiplication by the ratio of densities

g(x)/f(x) becomes addition in log space.

Lemma 7.12 (Gumbel-Max trick). Let Q and P be finite nonzero measures

on Rn with densities g and f under assumptions (7.12) and (7.13). If

G : Rn → R ∩ {−∞} is a Gumbel process with measure Q, then

G′(x) =

{
log f(x)− log g(x) +G(x) x ∈ supp(g)

−∞ otherwise

7.4 Gumbel Processes 215

0

1

1

x

T (0, {x}) R+

G(x)

x

G(x) = � log T (0, {x})

⇤ ·
⇤
⇤

⇤

⇤

⇤⇤

⇤

⇤

⇤

⇤

⇤
⇤

⇤

··
· ··· ·· ·· · ··

log f(x) + G(x)

1 1

·G(x)

x ·
· ·

·· ·
·· ·

·

log f(x)

x

G⇤

X⇤

·

·· ··

·
·

·
·

3

Figure 7.6: A continuous Gumbel-Max trick. The left hand plot shows the maximal
values of a uniform Gumbel process G(x) on [0, 1]. The right hand plot shows the
result of perturbing log f(x) with G(x). Notice that the ordering of values changes,
and X∗ is now the location of the maximum G∗ = maxx log f(x)+G(x). Therefore,
X∗ is a sample from the distribution with density proportional to f(x).

is a Gumbel process with measure P . In particular for G∗ = maxx∈Rn G′(x)

and X∗ = argmaxx∈Rn G
′(x),

G∗ ∼ Gumbel(logP (Rn)) X∗ ∼ P (·)/P (Rn)

Proof. Arguing informally, this follows from the Perturbation Lemma ap-

plied to our construction (7.15) of Gumbel processes. For x ∈ supp(g)

log f(x)− log g(x) +G(x) = − log min{Tig(x)/f(x) : (Ti, x) ∈ R}.

See Maddison et al. (2014) for a formal proof.

When Q is the counting measure on {1, . . . ,m}, Lemma 7.12 exactly de-

scribes the Gumbel-Max trick of the introduction. This brings full circle the

connection between accept-reject and the Gumbel-Max trick.

A Gumbel process is not profoundly different from an exponential race,

but the difference of perspective — a function as opposed to a random set

— can be valuable. In particular consider the following generalization of a

result from Hazan and Jaakkola of this book. Let G : Rn → R ∪ {−∞} be

a Gumbel process with measure P whose density with respect to µ is f . If

G∗ = maxx∈Rn G(x) and X∗ = argmaxx∈Rn G(x), then

E(G∗) = logP (Rn) + γ E(− log f(X∗) +G∗) = H(f) + γ,

where H(f) is the entropy of a probability distribution with probability

density function proportional to f and γ is the Euler-Mascheroni constant.

Therefore the representation of probability distributions through Gumbel

processes gives rise to a satisfying and compact representation of some of

their important constants.

216 A Poisson Process Model for Monte Carlo

7.5 Monte Carlo Methods That Use Bounds

7.5.1 Rejection Sampling

In this section we present practical Monte Carlo methods that use bounds on

the ratio of densities to produce samples from intractable distributions. We

show how these methods can be interpreted as algorithms that simulate

the first arrival of an exponential race. The basic strategy for proving

their correctness is to argue that they perform accept-reject or perturb

operations on the realization of an exponential race until they have provably

produced the first arrival of the transformed race. We start by discussing

the traditional rejection sampling and a related perturbation based method.

Then we study OS* (Dymetman et al., 2012), an accept-reject method,

and A* sampling (Maddison et al., 2014), a perturbation method. These

algorithms have all been introduced elsewhere in the literature, so for more

information we refer readers to the original papers.

Throughout this section our goal is to draw a sample from the probability

distribution proportional to some measure P with density f with respect to

some base measure µ. We assume, as in the Accept-Reject and Perturbation

Lemmas, access to a tractable proposal distribution proportional to a mea-

sure Q with density g with respect to µ such that f and g have the same

support and the ratio f(x)/g(x) is bounded by some constant M . For exam-

ple consider the sample space {0, 1}n whose elements are bit vectors of length

n. A proposal distribution might be proportional to the counting measure Q,

which counts the number of configurations in a subset B ⊆ {0, 1}n. Sampling

from Q(·)/Q({0, 1}n) is as simple as sampling n independent Bernoulli(1/2).

Rejection sampling is the classic Monte Carlo method that uses bound

information. It proposes (X,U) from Q and Uniform[0, 1], respectively, and

accepts X if U ≤ f(X)/(g(X)M). The algorithm terminates at the first

acceptance and is normally justified by noticing that it samples uniformly

from the region under the graph of f(x) by rejecting points that fall between

g(x)M and f(x), see the left hand graph on Figure 7.7 for an intuition. The

acceptance decision also corresponds exactly to the accept-reject operation

on exponential races, so we can interpret it as an procedure on the points

of an exponential race. We call this procedure REJ for short,

for (Ti, Xi) ∈ R simulated by Algorithm 7.2 with measure MQ(·) do

Ui ∼ Uniform[0, 1].

if Ui < f(Xi)/(g(Xi)M) then return (Ti, Xi)

end if

end for

7.5 Monte Carlo Methods That Use Bounds 217

Figures for POS Chapter

Chris J. Maddison
http://www.cs.toronto.edu/~cmaddis/

⇤

⇤
⇤

⇤

⇤⇤
⇤

⇤

⇤

⇤

A

C

B

N(A) = 3
N(B) = 1
N(C) = 2

f
(x

)
g
(x

)M

REJ PER

R+ R+

��

�

� �

⇤

�
� ⇤

�⇤

T4/M T4

� ⇤

1

Figure 7.7: Algorithms REJ and PER for measure P on [0, 1] with proposal
measure Q. The densities of Q and P are shown on the left hand side as densities
over x ∈ [0, 1]. ◦ are arrivals of the race with measure Q, ∗ of the race with measure
P . Both plots show the proposals considered until the first acceptance. For PER
opaque solid lines represent the perturb operation. T4 is the fourth arrival from the
race with measure Q. T4/M is the lower bound on all future arrivals, and thus all
∗ points to the left of T4/M are in order.

The Accept-Reject Lemma guarantees that the returned values (T,X) will

be the first arrival of an exponential race with measure P , and Theorem 7.7

guarantees that X is a sample from P (·)/P (Rn). This is the basic flavour of

the arguments of this section.

The Perturbation Lemma has a corresponding procedure, which uses the

bound M to provably return the first arrival of a perturbed exponential race.

It is shown on the right hand side of Figure 7.7, and we call it PER.

(T ∗, X∗) = (∞, null)

for (Ti, Xi) ∈ R simulated by Algorithm 7.2 with measure Q do

if T ∗ > Tig(Xi)/f(Xi) then

T ∗ = Tig(Xi)/f(Xi)

X∗ = Xi

end if

if Ti+1/M ≥ T ∗ then return (T ∗, X∗)
end if

end for

In this procedure (Ti, Xi) iterates in order through the arrivals of an expo-

nential race with measure Q. The perturbed times Tig(Xi)/f(Xi) will form

a race with measure P , but not necessarily in order. (T ∗, X∗) are variables

that track the earliest perturbed arrival so far, so T ∗ is an upper bound on

the eventual first arrival time for the race with measure P . Ti+1 is the arrival

time of the next point in the race with measure Q and M bounds the con-

tribution of the perturbation, so Ti+1/M is a lower bound on the remaining

218 A Poisson Process Model for Monte Carlo

perturbed arrivals. When T ∗ and Ti+1/M cross, (T ∗, X∗) is guaranteed to

be the first arrival of the perturbed race.

REJ and PER can turned into generators for iterating through all of the

arrivals of an exponential race with measure P as opposed to just returning

the first. For REJ it is as simple as replacing return with yield, so that

each time the generator is invoked it searches until the next acceptance and

returns. For PER we must store every perturbed arrival until its eventual

order in the race with measure P is determined. This can be accomplished

with a priority queue U, which prioritizes by earliest arrival time,

U = minPriorityQueue()

for (Ti, Xi) ∈ R simulated by Algorithm 7.2 with measure Q do

U.pushWithPriortiy(Tig(Xi)/f(Xi), Xi)

if Ti+1/M ≥ minU then yield U.pop()

end if

end for

U takes the place of T ∗ and X∗ in PER. The highest priority arrival on U

will be the earliest of the unordered perturbed arrivals and Ti+1/M is a lower

bound on all future perturbed arrivals. When Ti+1/M ≥ minU, the earliest

arrival on U is guaranteed to be the next arrival. It is informative to think

of the generator version of PER via Figure 7.7. The lower bound Ti+1/M is

a bound across space that advances rightward in time, every arrival to the

left of Ti+1/M is in order and every arrival to the right is unordered.

Consider the number of iterations until the first acceptance in REJ and

PER. At first it seems that both algorithms should have different runtimes.

REJ is obviously memoryless, and it seems wasteful — no information

accumulates. On the other hand PER accumulates the earliest arrival and

its termination condition depends on a history of arrivals. Unfortunately,

both algorithms have the same geometric distribution over the number of

arrivals considered. Arguing informally, the lower bound Ti+1/M of PER

plotted over the iterations will form a line with slope (MQ(Rn))−1. PER

terminates when this line crosses the first arrival time of the perturbed race.

The first arrival of a race with measure P occurs at P (Rn)−1 in expectation,

so we expect the crossing point to occur on average at MQ(Rn)/P (Rn)

iterations. This is the same as the expected runtime of REJ.

Lemma 7.13. Let K(REJ) and K(PER) be the number of proposals

considered by the rejection and perturbation sampling algorithms. Then

P(K(REJ) > k) = P(K(PER) > k) = (1− ρ)k with ρ =
P (Rn)

Q(Rn)M
.

7.5 Monte Carlo Methods That Use Bounds 219

Thus K(REJ) and K(PER) are geometric random variable with

E(K(REJ)) = E(K(PER)) =
1

ρ

Proof. The probability of accepting a proposal at any iteration of REJ is

E(f(Xi)/(g(Xi)M)) =

∫
f(x)

g(x)M

g(x)

Q(Rn)
µ(dx) = ρ.

Each decision is independent, so the probability of k rejections is (1− ρ)k.

PER exceeds k iterations if Tig(Xi)/f(Xi) > Tk+1/M for all i ≤ k.

Because the Xi are i.i.d.,

P(K(PER) > k | {Ti = ti}k+1
i=1) =

k∏
i=1

P(ti/tk+1 > f(X)/(g(X)M)),

where X ∼ Q(·)/Q(Rn). Given Tk+1 = tk+1 the Ti for i ≤ k are i.i.d.

Ti ∼ Uniform(0, tk+1) by Lemma 7.3. Thus Ti/Tk+1 ∼ Uniform(0, 1) i.i.d.

P(K(PER) > k) =

k∏
i=1

P(U > f(X)/(g(X)M)) = (1− ρ)k

finishes the proof.

7.5.2 Adaptive Bounds

Lemma 7.13 is disappointing, because it suggests that reasoning about per-

turbations is as inefficient as discarding proposals. The problem is funda-

mentally that information carried in the bound M about the discrepancy

between g(x) and f(x) is static throughout the execution of both algorithms.

Considering a contrived scenario will illustrate this point. Suppose that for

every failed proposal we are given a tighter bound Mi+1 < Mi from some

oracle. Both REJ and PER can be adapted to take advantage of these

adaptive bounds simply by dropping in Mi wherever M appears.

In this case PER is distinguished from REJ. REJ makes an irrevocable

decision at each iteration. In contrast PER simply pushes up the lower

bound Ti+1/Mi without erasing its memory, bringing it closer to accepting

the earliest arrival so far. Indeed, the probability of this oracle rejection

sampling exceeding k proposals is

P(K(OREJ) > k) =

k∏
i

(1− ρi) where ρi = P (Rn)/(Q(Rn)Mi).

220 A Poisson Process Model for Monte Carlo

On the other hand, the probability of this oracle perturbation sampling

exceeding k proposals is

P(K(OPER) > k) =

k∏
i=1

P(U > f(X)/(g(X)Mk)) = (1− ρk)k,

or the probability of rejecting k proposals as if the Mkth bound was known

all along. By tracking the earliest arrival so far OPER makes efficient use

of adaptive bound information, reevaluating all points in constant time.

7.5.3 OS* Adaptive Rejection Sampling and A* Sampling

The difference between REJ and PER exposed by considering adaptive

bounds motivates studying OS* and A* sampling, Monte Carlo methods

that use realistic adaptive bounds. Both methods iteratively refine a parti-

tion {Bi}mi=1 of Rn, which allows them to use regional bounds M(Bi), where

f(x)/g(x) ≤M(Bi) for x ∈ Bi. As with REJ and PER, OS* and A* sam-

pling are only distinguished by how they use this information. OS* reasons

about accept-reject operations, A* sampling about perturb operations. In

contrast to the relationship between REJ and PER, A* sampling makes

more efficient use of proposal samples than OS*.

OS* and A* sampling must compute volumes and samples of subsets

under the proposal measure Q. It will be possibly intractable to consider

any possible Bi ⊆ Rn, so a user must implicitly specify a nice family F of

subsets that is closed under a user-specified refinement function split(B, x).

Hyperrectangles are a simple example. All together, the user must provide,

1. finite nonzero measure P with a method for computing the density f(x).

2. finite nonzero proposal measure Q with methods for sampling restricted

to B ∈ F, computing measures of B ∈ F, and computing the density g(x).

3. partitioning set function split(B, x) ⊆ F for B ∈ F that partitions B.

4. bounding set function M(B) for B ∈ F, f(x)/g(x) ≤M(B) for x ∈ B.

Specific examples, which correspond to experimental examples, are given in

the Appendix.

OS* (OS∗ for short) is in a family of adaptive rejection sampling algo-

rithms, which use the history of rejected proposals to tighten the gap be-

tween the proposal density and the density of interest. The name adaptive

rejection sampling (ARS) is normally reserved for a variant that assumes

log f(x) is concave (Gilks and Wild, 1992). Accept-reject decisions are in-

dependent, so any adaptive scheme is valid as long as the rejection rate is

not growing too quickly (Casella et al., 2004). Our proof of the correctness

7.5 Monte Carlo Methods That Use Bounds 221

Algorithm 7.4 OS∗ adaptive rejection sampling for P with proposal Q

P0 = {Rn}
T0 = 0
for i = 1 to ∞ do

Bi ∼ P(B) ∝ Q(B)M(B) for B ∈ Pi−1

Xi ∼ Q(· ∩Bi)/Q(Bi)
E ∼ Exp(

∑
B∈Pi−1

M(B)Q(B))
Ti = Ti−1 + E
Ui ∼ Uniform[0, 1]
if Ui < f(Xi)/(g(Xi)M(Bi)) then

return (Ti, Xi)
else

C = split(Bi, Xi)
Pi = Pi−1 − {Bi}+ C

end if
end for

appeals to exponential races, and it works for a wider range of adaptive

schemes than just OS∗.
In more detail, OS∗ begins with the proposal density g(x) and a parti-

tion P0 = {Rn}. At every iteration it samples from the distribution with

density proportional to
∑

B∈Pi−1
g(x)M(B)1B(x) in a two step procedure,

sampling a subset B ∈ Pi−1 with probability proportional to Q(B)M(B),

and then sampling a proposal point X from the distribution with density

g(x) restricted to B. If X is rejected under the current proposal, then Pi−1

is refined by splitting B with the user specified split(B,X). There is a choice

of when to refine and which subset B ∈ Pi−1 to refine, but for simplicity

we consider just the form the splits the subset of the current proposal. OS∗

continues until the first acceptance, see Algorithm 7.4.

Theorem 7.14 (Correctness of OS*). Let K(OS∗) be the number of pro-

posal samples considered before termination. Then

P(K(OS∗) > k) ≤ (1− ρ)k where ρ =
P (Rn)

Q(Rn)M(Rn)

and upon termination the return values (T,X) of OS* are independent and

T ∼ Exp(P (Rn)) X ∼ P (·)
P (Rn)

.

Proof. The situation is complicated, because the proposals {(Ti, Xi)}∞i=1 of

OS∗ are not an exponential race. Instead, we present an informal argument

derived from a more general thinning theorem, Proposition 14.7.I. in Daley

222 A Poisson Process Model for Monte Carlo

and Vere-Jones (2007). Let gi(x) be the proposal density at iteration i,

gi(x) =
∑

B∈Pi−1

g(x)M(B)1B(x).

Clearly, gi(x) depends on the history of proposals so far and f(x) ≤ gi(x) ≤
g(x)M(Rn) for all i. Let R be an exponential race with measure M(Rn)Q(·)
and UjUniform[0, 1] i.i.d. for each (Tj , Xj) ∈ R. Consider the following

adaptive thinning procedure, subsample all points of R that satisfy Uj ≤
gi(Xj)/(g(Xj)M(Rn)) where gi(Xj) is defined according to the refinement

scheme in OS∗, but relative to the history of points subsampled from R in

the order of their acceptance. It is possible to show that the sequence of

accepted points {(Ti, Xi, Ui)}∞i=1 have the same marginal distribution as the

sequence of proposals in OS∗.
Thus, we can see OS∗ and REJ as two separate procedures on the same

realization of R. For the termination result, notice that REJ considers at

least as many points as OS∗. For partial correctness, the points (Ti, Xi, Ui)

such that Ui < f(Xi)/gi(Xi) are exactly the subsampled points that would

have resulted from thinning R directly with probability f(x)/(g(x)M(Rn)).

Thus, by the Accept-Reject Lemma, the returned values (T,X) will be the

first arrival of an exponential race with measure P .

A* sampling (A∗ for short) is a branch and bound routine that finds the

first arrival of a perturbed exponential race. It follows PER in principle by

maintaining a lower bound on all future perturbed arrivals. The difference is

that A∗ maintains a piecewise constant lower bound over a partition of space

that it progressively refines. On every iteration it selects the subset with

smallest lower bound, samples the next arrival in that subset, and refines

the subset unless it can terminate. It continues refining until the earliest

perturbed arrival is less than the minimum of the piecewise constant lower

bound. The name A* sampling is a reference to A* search (Hart et al., 1968),

which is a path finding algorithm on graphs that uses a best-first criteria

for selecting from heuristically valued nodes on the fringe of a set of visited

nodes. A* sampling was originally introduced by Maddison et al. (2014) as

an algorithm that maximizes a perturbed Gumbel process. We define it over

an exponential race for the sake of consistency. Usually, it is better to work

with a Gumbel process to avoid numerical issues.

In more detail, A∗ searches over a simulation of an exponential race

organized into a space partitioning tree, as in the right hand plot of Figure

7.4, for the first arrival of the perturbed race. The tree is determined by

the splitting function split(B, x). Each node v of the tree is associated with

a subset Bv ⊆ Rn and an arrival (Tv, Xv) from an exponential race with

measure Q. A∗ iteratively expands a subtree of internal visited nodes, taking

7.5 Monte Carlo Methods That Use Bounds 223

Algorithm 7.5 A* sampling for P with proposal Q

L,U = minPriorityQueue(),minPriorityQueue()
T1 ∼ Exp(Q(Rn))
L.pushWithPriority(T1/M(Rn),Rn)
for i = 1 to ∞ do

(Ti/M(Bi), Bi) = L.pop()
Xi ∼ Q(· ∩B)/Q(Bi)
U.pushWithPriority(Tig(Xi)/f(Xi), Xi)
E ∼ Exp(Q(Bi))
T = Ti + E
if min(minL, T/M(Bi)) < minU then

C = split(Bi, Xi)
while C 6= ∅ do

C ∼ P(C) ∝ Q(C) for C ∈ C

L.pushWithPriority(T/M(C), C)
C = C− {C}
E ∼ Exp(

∑
C∈CQ(C))

T = T + E
end while

else
L.pushWithPriority(T/M(Bi), Bi)

end if
if minL ≥ minU then

return U.pop()
end if

end for

and visiting one node from the current fringe at each iteration. The fringe

L of the visited subtree is always a partition of Rn. Each subset B ∈ L is

associated with the arrival time T of the next arrival of the race with measure

Q in B. Therefore T/M(B) is a lower bound on all future perturbed arrivals

in B. L is implemented with a priority queue that prioritizes the subset B

with the lowest regional bound T/M(B). As A∗ expands the set of visited

nodes the lower bound minL increases.

L is initialized with the root of the tree {(T1/M(Rn),Rn)}. At the start

of an iteration A∗ removes and visits the subset (Ti/M(Bi), Bi) with lowest

lower bound on L. Visiting a subset begins by realizing a location Xi from

Q(·∩Bi)/Q(Bi) and pushing the perturbed arrival (Tig(Xi)/f(Xi), Xi) onto

another priority queue U. U prioritizes earlier arrivals by the perturbed

arrival times Tig(Xi)/f(Xi). In this way A∗ decreases the upper bound

minU at each iteration.

A∗ attempts to terminate by simulating the next arrival time T > Ti in

Bi of the race with measure Q. If minU ≤ min(minL, T/M(Bi)), then the

top of U will not be superseded by future perturbed arrivals and it will be

the first arrival of the perturbed race. If termination fails, A∗ refines the the

224 A Poisson Process Model for Monte Carlo

partition by splitting Bi into a partition split(Bi, Xi) of children. Arrival

times for each of the children are assigned respecting the constraints of the

exponential race in Bi. Each child C is pushed onto L prioritized by its lower

bound T/M(C). Because the lower bounds have increased there is a second

opportunity to terminate before continuing. A∗ checks if minU ≤ minL, and

otherwise continues, see Algorithm 7.5. As with PER, A∗ can be turned into

a generator for iterating in order through the points of the perturbed race

by replacing the return statement with a yield statement in Algorithm 7.5.

Theorem 7.15 (Correctness of A* sampling). Let K(A∗) be the number of

proposal samples considered before termination. Then

P(K(A∗) > k) ≤ (1− ρ)k where ρ =
P (Rn)

Q(Rn)M(Rn)

and upon termination the return values (T,X) of A* sampling are indepen-

dent and

T ∼ Exp(P (Rn)) X ∼ P (·)
P (Rn)

.

Proof. Adapted from Maddison et al. (2014). The proposals are generated

lazily in a space partitioning tree. If {(Ti, Xi)}∞i=1 are the arrivals at every

node of the infinite tree sorted by increasing Ti, then (Ti, Xi) forms an

exponential race with measure Q.

For the termination result, each node v of the tree can be associated with

a subset Bv and a lower bound Tv/M(Bv). One of the nodes will contain the

first arrival of the perturbed process with arrival time T ∗. A∗ visits at least

every node v with Tv/M(Bv) > T ∗. If M(B) is replaced with a constant

M(Rn), then this can only increase the number of visited nodes. The last

step is to realize that A∗ searching over a tree with constant bounds M(Rn)

searches in order of increasing Tv, and so corresponds to a realization of

PER. The distribution of runtimes of PER is given in Lemma 7.13.

For partial correctness, let (T,X) be the return values with highest

priority on the upper bound priority queue U. The arrival time of unrealized

perturbed arrivals is bounded by the lower bound priority queue L. At

termination T is less than the top of the lower bound priority queue. So

no unrealized points will arrive before (T,X). By Lemma 7.9 (T,X) is the

first arrival of an exponential race with measure P .

7.5 Monte Carlo Methods That Use Bounds 225

P Q Ω N K̄(OS∗) K̄(A∗)

clutter posterior prior R 6 9.34 7.56

clutter posterior prior R2 6 38.3 33.0

clutter posterior prior R3 6 130 115

robust Bayesian regression prior R 10 9.36 6.77

robust Bayesian regression prior R 100 40.6 32.2

robust Bayesian regression prior R 1000 180 152

fully connected Ising model uniform {−1, 1}5 - 4.37 3.50

fully connected Ising model uniform {−1, 1}10 - 19.8 15.8

Table 7.1: Comparing A∗ and OS∗. Clutter and robust Bayesian regression are
adapted from Maddison et al. (2014) and the Ising model from Kim et al. (2016).
Ω is the support of the distribution; N is the number of data points; and K̄(OS∗)
and K̄(A∗) are averaged over 1000 runs. More information in the Appendix.
.

7.5.4 Runtime of A* Sampling and OS*

A∗ and OS∗ are structurally similar; both search over a partition of space

and refine it to increase the probability of terminating. They will give

practical benefits over rejection sampling if the bounds M(B) shrink as the

volume of B shrinks. In this case the bound on the probability of rejecting k

proposals given in Theorems 7.14 and 7.15 can be very loose, and OS∗ and

A∗ can be orders of magnitude more efficient than rejection sampling. Still,

these methods scale poorly with dimension.

The cost of running A∗ and OS∗ will be dominated by computing the

ratio of densities f(x)/g(x) and computing bounds M(B). Because the

number of bound computations is within a factor of 2 of the number of

density computations, the number of evaluations of f(x)/g(x) (equivalently

number of proposals) is a good estimate of complexity. Table 7.1 presents

a summary of experimental evidence that A∗ makes more efficient use of

density computations across three different problems. For each problem the

full descriptions of P , Q, M(B), and split(B, x) are found in the Appendix.

The dominance of A∗ in experiments is significant, because it has access

to the same information as OS∗. There are at least two factors that may

give A∗ this advantage. First, if all lower bounds increase sharply after some

exploration A∗ can retroactively take advantage of that information, as in

Section 7.5.2. Second, A∗ can take advantage of refined bound information

on the priority queue L before proposing the next sample. Still, the dif-

ference in search strategy and termination condition may counteract these

advantages, so a rigorous theory is needed to confirm exactly the sense in

226 A Poisson Process Model for Monte Carlo

which A∗ and OS∗ differ. We refer readers to Maddison et al. (2014) for

more detailed experiments.

7.6 Conclusion

The study of Poisson processes is traditionally motivated by their application

to natural phenomenon, and Monte Carlo methods are developed specifically

for them (Ripley, 1977; Geyer and Møller, 1994). We considered the inverse

relationship, using Poisson processes to better understand Monte Carlo

methods. We suspect that this general perspective holds value for future

directions in research.

Monte Carlo methods that rely on bounds are not suitable for most high

dimensional distributions. Rejection sampling scales poorly with dimension-

ality. Even for A* sampling there are simple examples where adaptive bounds

become uninformative in high dimensions, such as sampling from the uni-

form hypersphere when using hyperrectangular search subsets. Still, spe-

cialized algorithms for limited classes of distributions may be able to take

advantage of conditional independence structure to improve their scalability.

Another direction is to abandon the idea of representing arbitrary distri-

butions, and study the class of distributions represented by the maxima of

combinations of lower order Gumbel processes. This is the approach of the

perturbation models studied in Papandreou and Yuille; Gane et al.; Hazan

and Jaakkola; Tarlow et al.; and Keshet at al. of this book. In these models

a Gumbel process over a discrete space is replaced by sums of independent

Gumbel processes over discrete subspaces. The maxima of these models form

a natural class of distributions complete with their own measures of uncer-

tainty. An open direction of inquiry is developing efficient algorithms for

optimizing their continuous counterparts.

Our study of Poisson processes and Monte Carlo methods was dominated

by the theme of independence; the points of an exponential race arrive as

independent random variables and accept-reject or perturb do not introduce

correlations between the points of the transformed race. Continuing in this

direction it is natural to investigate whether other Poisson process models

or other operations on an exponential race could be used to define a new

class of Monte Carlo methods. In a separate direction the Markov Chain

Monte Carlo (MCMC) methods produce a sequence of correlated samples

whose limiting distribution is the distribution of interest. The theory of point

processes includes a variety of limit theorems, which describe the limiting

distribution of random countable sets (Daley and Vere-Jones, 2007). It would

7.6 Conclusion 227

be interesting to see whether a point process treatment of MCMC bears fruit,

either in unifying our proof techniques or inspiring new algorithms.

Acknowledgements

We would like to thank Daniel Tarlow and Tom Minka for the ideas,

discussions, and support throughout this project. Thanks to the other editors

Tamir Hazan and George Papandreou. Thanks to Jacob Steinhardt, Yee

Whye Teh, Arnaud Doucet, Christian Robert for comments on the draft.

Thanks to Sir J.F.C. Kingman for encouragement. This work was supported

by the Natural Sciences and Engineering Research Council of Canada.

Appendix: Proof of Lemma 7.3

Proof. The lemma is trivial satisfied for k = 0. For k > 0 and Bi ⊆ B we

will express

P({Xi ∈ Bi}ki=1|N(B) = k) (7.16)

in terms of counts. The difficulty lies in the possible overlap of Bis, so we

consider 2k sets of the form

Aj = B∗1 ∩B∗2 ∩ . . . ∩B∗k
where ∗ is blank or a complement, and A1 is interpreted as B∩Bc

1∩ . . .∩Bc
k.

The Aj are a disjoint partition of B,

Bi = ∪j∈I(i)Aj , B = ∪2k

j=1Aj ,

where I(i) ⊆ {1, . . . , 2k} is some subset of indices. Let I = I(1) × I(2) ×
. . . × I(k), so that each s ∈ I is a vector indices (s1, s2, . . . , sk) associated

with the disjoint events {Xi ∈ Asi}ki=1. Thus,

P({Xi ∈ Bi}ki=1|N(B) = k) =
∑
s∈I

P({Xi ∈ Asi}ki=1|N(B) = k).

For s ∈ I, let nj(s) = #{i : si = j} be the number of indices in s equal

to j and notice that
∑2k

j=1 nj(s) = k. To relate the probability if specific

numbering {Xi ∈ Asi}ki=1 with counts {N(Aj) = nj(s)}2kj=1, we discount by

228 A Poisson Process Model for Monte Carlo

all ways of the arranging k points that result in the same counts.

P({Xi ∈ Asi}ki=1|N(B) = k) =

∏2k

j=1 nj(s)!

k!

P({N(Aj) = nj(s)}2kj=1)

P(N(B) = k)

=

∏2k

j=1 µ(Aj)
nj(s)

µ(B)k
.

Thus (7.16) is equal to

∑
s∈I

∏2k

j=1 µ(Aj)
nj(s)

µ(B)k
=

k∏
i=1

∑
j∈I(i) µ(Aj)

µ(B)
=

k∏
i=1

µ(Bi)

µ(B)

Appendix: Experimental Details

Clutter Posterior

This example is taken exactly from Maddison et al. (2014). The clutter

problem (Minka, 2001) is to estimate the mean θ ∈ Rn of a Normal

distribution under the assumption that some points are outliers. The task is

to sample from the posterior P over w of some empirical sample {(xi)}Ni=1.

fi(θ) =
0.5 exp(−0.5‖θ − xi‖2)

(2π)n/2
+

0.5 exp(−0.5‖xi‖2/1002)

100n(2π)n/2

log g(θ) = −‖θ‖
2

8
log f(θ) = log g(θ) +

N∑
i=1

log fi(θ)

(a, b] = {y : ad < yd ≤ bd} for a, b ∈ Rn

M((a, b]) =

N∏
i=1

fi(x
∗(a, b, xi)) x∗(a, b, x)d =

ad if xd < ad

bd if xd > bd

xd o.w.

split((a, b], x) = {(a, b] ∩ {y : ys ≤ xs}, (a, b] ∩ {y : ys > xs}}
where s = argmax

d
bd − ad

Our dataset was 6 points xi ∈ Rn of the form xi = (ai, ai, . . . , ai) for

ai ∈ {−5,−4,−3, 3, 4, 5}.

7.6 Conclusion 229

Robust Bayesian Regression

This example is an adaption from Maddison et al. (2014) with looser bounds.

The model is a robust linear regression yi = wxi + εi where the noise εi is

distributed as a standard Cauchy and w is a standard Normal. The task is to

sample from the posterior P over w of some empirical sample {(xi, yi)}Ni=1.

log g(w) = −w
2

8

log f(w) = log g(w)−
N∑
i=1

log(1 + (wxi − yi)2)

M((a, b]) =

N∏
i=1

Mi((a, b]) Mi((a, b]) =

exp(a) if yi/xi < a

exp(b) if yi/xi > b

exp(yi/xi) o.w.

split((a, b], x) = {(a, x], (x, b]}

The dataset was generated by setting w∗ = 2; xi ∼ Normal(0, 1) and

yi = wxi + ε with ε ∼ Normal(0, 0.12) for i ≤ N/2; and xi = xi−N/2 and

yi = −yi−N/2 for i > N/2.

Attractive Fully Connected Ising Model

This is an adaptation of Kim et al. (2016). The attractive fully connected

Ising model is a distribution over x ∈ {−1, 1}n described by parameters

wij ∼ Uniform[0, 0.2] and fi ∼ Uniform[−1, 1].

log g(x) = 0

log f(x) =
∑
i

fixi +
∑
i<j≤n

wijxixj

We considered subsets of the form B = {x : xi = bi, i ∈ I} where

I ⊆ {1, . . . , n} and bi ∈ {0, 1}. We split on one of the unspecified variables

xi by taking variable whose linear program relaxation was closest to 0.5.

split(B, x) = {B ∩ {x : xi = 0}, B ∩ {x : xi = 1}}

logM(B) is computed by solving a linear program relaxation for the follow-

ing type of integer program. Let bi ∈ {0, 1} for 1 ≤ i ≤ n and bijkl ∈ {0, 1}
for 1 ≤ i < j ≤ n and k, l ∈ {0, 1}.

min
x

∑
i

−fibi + fi(1− bi) +
∑

1≤i<j≤n

∑
k,l∈{0,1}

(−1)kl+(1−l)(1−k)wijbijkl

230 A Poisson Process Model for Monte Carlo

subject to the constraints for 1 ≤ i < j ≤ n,∑
l∈{0,1}

bij0l = 1− bi
∑

k∈{0,1}
bijk0 = 1− bj∑

l∈{0,1}
bij1l = bi

∑
k∈{0,1}

bijk1 = bj

as the subsets B narrowed we just solved new linear programs with constants
for the fixed variables.

7.9 References

G. Casella, C. P. Robert, and M. T. Wells. Generalized Accept-Reject sampling
schemes, volume 45 of Lecture Notes–Monograph Series. Institute of Mathemat-
ical Statistics, 2004.

Y. Chen and Z. Ghahramani. Scalable Discrete Sampling as a Multi-Armed Bandit
Problem. ArXiv e-prints, June 2015.

D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes,
Volume II: General Theory and Structure. Springer, 2007.

L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

R. Durrett. Essentials of Stochastic Processes. Springer, 2012.

M. Dymetman, G. Bouchard, and S. Carter. The OS* Algorithm: a Joint Approach
to Exact Optimization and Sampling. arXiv preprint arXiv:1207.0742, 2012.

B. Gedenko. On a local limit theorem of the theory of probability. Uspekhi Mat.
Nauk, 3, 1948.

C. J. Geyer and J. Møller. Simulation procedures and likelihood inference for spatial
point processes. Scandinavian Journal of Statistics, 1994.

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied
Statistics, 1992.

E. J. Gumbel and J. Lieblein. Statistical Theory of Extreme Values and Some
Practical Applications: a Series of Lectures. US Govt. Print. Office, 1954.

P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2), 1968.

T. Hazan, S. Maji, and T. Jaakkola. On Sampling from the Gibbs Distribution
with Random Maximum A-Posteriori Perturbations. In NIPS. 2013.

C. Kim, A. Sabharwal, and S. Ermon. Exact Sampling with Integer Linear Programs
and Random Perturbations. In AAAI, 2016.

J. Kingman. Poisson Processes. Oxford University Press, 1992.

P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous poisson processes
by thinning. Naval Research Logistics Quarterly, 26(3), 1979.

C. J. Maddison, D. Tarlow, and T. Minka. A∗ Sampling. In NIPS. 2014.

H. Malmberg. Random Choice over a Continuous Set of Options. 2013.

7.9 References 231

T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI,
2001.

G. Papandreou and A. Yuille. Perturb-and-MAP Random Fields: Using Discrete
Optimization to Learn and Sample from Energy Models. In ICCV, 2011.

S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer,
2007.

B. D. Ripley. Modelling Spatial Patterns. Journal of the Royal Statistical Society.
Series B (Methodological), 1977.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized Optimum Models for
Structured Prediction. In AISTATS, 2012.

A. J. Walker. An efficient method for generating discrete random variables with
general distributions. ACM Transactions on Mathematical Software, 3(3), 1977.

J. I. Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory
of comparative judgment, and the double exponential distribution. Journal of
Mathematical Psychology, 15(2), 1977.

8 Perturbation Techniques in Online

Learning and Optimization

Jacob Abernethy jabernet@umich.edu

University of Michigan

Ann Arbor, MI

Chansoo Lee chansool@umich.edu

University of Michigan

Ann Arbor, MI

Ambuj Tewari tewaria@umich.edu

University of Michigan

Ann Arbor, MI

In this chapter we give a new perspective on so-called perturbation methods

that have been applied in a number of different fields, but in particular for

adversarial online learning problems. We show that the classical algorithm

known as Follow The Perturbed Leader (FTPL) can be viewed through the

lens of stochastic smoothing, a tool that has proven popular within convex

optimization. We prove bounds on regret for several online learning settings,

and provide generic tools for analyzing perturbation algorithms. We also

consider the so-called bandit setting, where the feedback to the learner

is significantly constrained, and we show that near-optimal bounds can be

achieved as long as a simple condition on the perturbation distribution is

met.

8.1 Introduction

In this chapter we will study the problem of online learning with the goal

of minimizing regret. A learner must iteratively play a sequence of actions,

234 Perturbation Techniques in Online Learning and Optimization

where each action is based on the data received up to the previous iteration.

We consider learning in a potentially adversarial environment, where we

avoid making any stochastic assumptions about the sequence of data. The

goal of the learner is to suffer as little regret as possible, where regret

is defined as the difference between the learner’s loss and the loss of the

best fixed action in hindsight. The key to developing optimal algorithms

is regularization, which may be interpreted either as hedging against bad

future events, or similarly can be seen as avoiding overfitting to the observed

data. In this paper, we focus on regularization techniques for online linear

optimization problems where the learner’s action is evaluated on a linear

reward function.

In the present chapter, we will mostly focus on learning settings where our

learner’s decisions are chosen from a convex subset of RN , and where the

“data” we observe arrives in the form of a (bounded) vector g ∈ RN , and

the costs/gains will be linear in each. Specifically, the gain (equiv., reward)

received on a given round, when the learner plays action w and Nature

chooses vector g, is the inner product 〈w, g〉. Generally we will use the the

symbol G to refer to the cumulative gain vector up to a particular time

period.

The algorithm commonly known as Follow the Regularized Leader (FTRL)

selects an action w on a given round by solving an explicit optimization

problem, where the objective combines a “data fitness” term along with a

regularization via penalty function. More precisely, FTRL selects an action

by optimizing argmaxw〈w,G〉 −R(w) where R is a strongly convex penalty

function; a well-studied choice for R is the well-known `2-regularizer ‖ · ‖22.

The regret analysis of FTRL reduces to the analysis of the second-order

behavior of the penalty function (Shalev-Shwartz, 2012), which is well-

studied due to the powerful convex analysis tools. In fact, regularization

via penalty methods for online learning in general are very well understood.

Srebro et al. (2011) proved that Mirror Descent, a regularization via penalty

method, achieves a nearly optimal regret guarantee for a general class

of online learning problems, and McMahan (2011) showed that FTRL is

equivalent to Mirror Descent under some assumptions.

Follow the Perturbed Leader (FTPL), on the other hand, uses implicit

regularization via perturbations. At every iteration, FTPL selects an action

by optimizing argmaxw〈w,G + z〉 where G is the observed data and z is

some random noise vector, often referred to as a “perturbation” of the

input. The early FTPL analysis tools lacked a generic framework and relied

substantially on clever algebra tricks and heavy probabilistic analysis (Kalai

and Vempala, 2005; Devroye et al., 2013; van Erven et al., 2014). This was in

8.2 Preliminaries 235

contrast to the elegant and simple convex analysis techniques that provided

the basis for studying FTRL and proving tight bounds.

This book chapter focuses on giving a new perspective on perturbation

methods and on providing a new set of analysis tools for controlling the

regret of FTPL. In particular, we show that the results hinge on certain

second-order properties of stochastically-smoothed convex functions. Indeed,

we show that both FTPL and FTRL naturally arise as smoothing opera-

tions of a non-smooth potential function and the regret analysis boils down

to understanding the smoothness as defined in Section 8.3. This new uni-

fied analysis framework recovers known (near-)optimal regret bounds and

provides tools for controlling regret.

An interesting feature of our analysis framework is that we can directly

apply existing techniques from the optimization literature, and conversely,

our new findings in online linear optimization may apply to optimization

theory. In Section 8.4, a straightforward application of the results on Gaus-

sian smoothing by Nesterov (2011) and Duchi et al. (2012) gives a generic

regret bound for an arbitrary online linear optimization problem. In Section

8.5 and 8.6, we improve this bound for the special cases that correspond to

canonical online linear optimization problems; we analyze the so-called “ex-

perts setting” (Section 8.5) and we also look at the case where the decision

set is the Euclidean ball (Section 8.6). Finally, in Section 8.7, we turn our

attention to the bandit setting where the learner has limited feedback. For

this case, we show that the perturbation distribution has to be chosen quite

carefully, and indeed we show that near-optimal regret can be obtained as

long as the perturbation distribution has a bounded hazard rate function.

8.2 Preliminaries

8.2.1 Convex Analysis

For this preliminary discussion, assume we are given an arbitrary norm ‖ ·‖.
Throughout the chapter we will utilize various norms, such as the `1, `2, `∞,

and the spectral norm of a matrix. In addition, we will often use ‖ · ‖∗ to

refer to the dual norm of ‖ · ‖, defined as ‖z‖∗ = maxy:‖y‖≤1〈y, z〉.
Assume we are given f a differentiable, closed, and proper convex function

whose domain is dom f ⊆ RN . We say that f is L-Lipschitz with respect to

a norm ‖ · ‖ when f satisfies |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ dom(f).

The Bregman divergence Df (y, x) is the gap between f(y) and the linear

approximation of f(y) around x. Formally, Df (y, x) = f(y) − f(x) −
〈∇f(x), y − x〉. We say that f is β-strongly convex with respect to a norm

236 Perturbation Techniques in Online Learning and Optimization

‖ · ‖ if we have Df (y, x) ≥ β
2 ‖y − x‖2 for all x, y ∈ dom f . Similarly, f

is said to be β-strongly smooth with respect to a norm ‖ · ‖ if we have

Df (y, x) ≤ β
2 ‖y − x‖2 for all x, y ∈ dom f .

The Bregman divergence measures how fast the gradient changes, or

equivalently, how large the second derivative is. In fact, we can bound

the Bregman divergence by analyzing the local behavior of Hessian, as the

following adaptation of Abernethy et al. (2013, Lemma 4.6) shows.

Lemma 8.1. Let f be a twice-differentiable convex function with dom f ⊆
RN . Assume that the eigenvalues of ∇2f(x) all lie in the range [a, b] for

every x ∈ dom f . Then, a‖v‖2/2 ≤ Df (x + v, x) ≤ b‖v‖2/2 for any

x, x+ v ∈ dom f .

The Fenchel conjugate of f is defined as f?(G) = supw∈dom(f){〈w,G〉 −
f(w)}, and it is a dual mapping that satisfies f = (f?)?. If f is differentiable

and strictly convex we also have ∇f? ∈ dom(f). One can also show that the

notions of strong convexity and strong smoothness are dual to each other.

That is, f is β-strongly convex with respect to a norm ‖ · ‖ if and only if f?

is 1
β -strongly smooth with respect to the dual norm ‖ · ‖?. For more details

and proofs, readers are referred to an excellent survey by Shalev-Shwartz

(2012).

8.2.2 Online Linear Optimization

Let X and Y be convex and closed subsets of RN . The online linear opti-

mization (OLO) is defined to be the following repeated game between two

entities that we call the learner and the adversary :

On round t = 1, . . . , T ,

the learner plays wt ∈ X;

the adversary reveals gt ∈ Y;

the learner receives a reward1 〈wt, gt〉.
We say X is the decision set and Y is the reward set. Let Gt =

∑t
s=1 gs

be the cumulative reward. The learner’s goal is to minimize the (external)

1. Our somewhat less conventional choice of maximizing the reward instead of minimizing
the loss was made so that we directly analyze the convex function max(·) without
cumbersome sign changes.

8.3 Gradient-Based Prediction Algorithm 237

regret, defined as:

Regret = max
w∈X
〈w,GT 〉︸ ︷︷ ︸

baseline potential

−
T∑
t=1

〈wt, gt〉. (8.1)

The baseline potential function Φ(G) := maxw∈X〈w,G〉 is the comparator

term against which we define the regret, and it coincides with the support

function of X. For a bounded compact set X, the support function of X is

positively homogeneous, subadditive, and Lipschitz continuous with respect

to any norm ‖ · ‖, where the Lipschitz constant is equal to supx∈X ‖x‖∗. For

more details and proofs, readers are referred to Rockafellar (1997, Section 13)

or Molchanov (2005, Appendix F).

8.3 Gradient-Based Prediction Algorithm

Follow the Leader (FTL) style algorithms select the next action wt ∈ X

via an optimization problem: given the cumulative reward vector Gt−1, an

FTL style algorithm selects wt = argmaxw∈X f(w,Gt−1). The most simple

algorithm, FTL, does not incorporate any perturbation or regularization into

the optimization, and uses the objective f(w,G) = 〈w,G〉. Unfortunately

FTL does not enjoy non-trivial regret guarantees in many scenarios, due

to the inherent instability of vanilla linear optimization—that is, since the

the optimal solution can fluctuate with small changes in the input. There

are a couple of ways to induce stability in FTL. Follow the Regularized

Leader (FTRL) sets f(w,G) = 〈w,G〉 −R(w) where R is a strongly convex

regularizer providing stability to the solution. Follow the Perturbed Leader

(FTPL) sets f(w,G) = 〈w,G + z〉 where z is a random vector. The

randomness in z imparts stability to the (expected) move of the FTPL

algorithm.

We now proceed to show that a common property shared by all such

algorithms is that the action wt is exactly the gradient of some scalar-

valued potential function Φ̃t evaluated at Gt−1. (For the remainder of the

paper we will use the notation Φ̃ to refer to a modification of the baseline

potential Φ). This perspective gives rise to what we call the Gradient-based

Prediction Algorithm (GBPA), presented in Algorithm 1. In the following

Section we give a full regret analysis of this algorithm. We note that Cesa-

Bianchi and Lugosi (2006, Theorem 11.6) presented a similar algorithm, but

our formulation eliminates all dual mappings.

238 Perturbation Techniques in Online Learning and Optimization

Algorithm 1: Gradient-Based Prediction Algorithm (GBPA)

Input: X,Y ⊆ RN
Require: convex potentials Φ̃1, . . . , Φ̃T : RN → R, with ∇Φ̃t(G) ∈ X, ∀G
Initialize: G0 = 0
for t = 1 to T do

The learner plays wt = ∇Φ̃t(Gt−1)
The adversary reveals gt ∈ Y

The learner receives a reward of 〈wt, gt〉
Update the cumulative gain vector: Gt = Gt−1 + gt

8.3.1 GBPA Analysis

We begin with a generic result on the regret of GBPA in the full-information

setting.

Lemma 8.2 (GBPA Regret). Let Φ be the baseline potential function for

an online linear optimization problem. The regret of the GBPA can be

decomposed as follows:

Regret =

T∑
t=1

((
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

)︸ ︷︷ ︸
overestimation penalty

+DΦ̃t
(Gt, Gt−1)︸ ︷︷ ︸

divergence penalty

)

+ Φ(GT)− Φ̃T (GT)︸ ︷︷ ︸
underestimation penalty

, (8.2)

where Φ̃0 ≡ Φ.

Proof. We note that since Φ̃0(0) = 0,

Φ̃T (GT) =
∑T

t=1 Φ̃t(Gt)− Φ̃t−1(Gt−1)

=
∑T

t=1

((
Φ̃t(Gt)− Φ̃t(Gt−1)

)
+
(
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

))
=
∑T

t=1

((
〈∇Φ̃t(Gt−1), gt〉+DΦ̃t

(Gt, Gt−1))
)

+
(
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

))
,

where the last equality holds because:

Φ̃t(Gt)− Φ̃t(Gt−1) = 〈∇Φ̃t(Gt−1), gt〉+DΦ̃t
(Gt, Gt−1). (8.3)

8.3 Gradient-Based Prediction Algorithm 239

We now have

Regret := Φ(GT)−
T∑
t=1

〈wt, gt〉

= Φ(GT)−∑T
t=1〈∇Φ̃t(Gt−1), gt〉

= Φ(GT)− Φ̃T (GT) +
∑T

t=1DΦ̃t
(Gt, Gt−1) + Φ̃t(Gt−1)− Φ̃t−1(Gt−1),

which completes the proof.

We point out a couple of important facts about Lemma 8.2:

1. If Φ̃1 ≡ · · · ≡ Φ̃T , then the overestimation penalty sums up to Φ̃1(0) −
Φ̃(0) = Φ̃T (0)− Φ̃(0).

2. If Φ̃t is β-strongly smooth with respect to ‖ · ‖, the divergence penalty at

t is at most β
2 ‖gt‖2.

One source of regret is the Bregman divergence of Φ̃t; since gt is not known

until playing wt, the GBPA always ascends along the gradient that is one

step behind. The adversary can exploit this and play gt to induce a large

gap between Φ̃t(Gt) and the linear approximation of Φ̃t(Gt) around Gt−1.

The learner can reduce this gap by choosing a smooth Φ̃t whose gradient

changes slowly.

The learner, however, cannot achieve low regret by choosing an arbitrarily

smooth Φ̃t, because the other source of regret is the difference between Φ̃t

and Φ. In short, the GBPA achieves low regret if the potential function Φ̃t

gives a favorable tradeoff between the two sources of regret. This tradeoff is

captured by the following definition of smoothing parameters, adapted from

Beck and Teboulle (2012, Definition 2.1).

Definition 8.1. Let f be a closed proper convex function. A collection of

functions {f̃η : η ∈ R+} is said to be an η-smoothing of f with smoothing

parameters (α, β, ‖ · ‖), if for every η > 0:

1. There exists α1 (underestimation bound) and α2 (overestimation bound)

such that

sup
G∈dom(f)

f(G)− f̃η(G) ≤ α1η and sup
G∈dom(f)

f̃η(G)− f(G) ≤ α2η (8.4)

with α1 + α2 = α.

2. f̃η is β
η -strongly smooth with respect to ‖ · ‖.

We say α is the deviation parameter, and β is the smoothness parameter.

A straightforward application of Lemma 8.2 gives the following statement:

240 Perturbation Techniques in Online Learning and Optimization

Corollary 8.3. Let Φ be the baseline potential for an online linear opti-

mization problem. Suppose {Φ̃η} is an η-smoothing of Φ with parameters

(α, β, ‖ · ‖). Then, the GBPA run with Φ̃1 ≡ · · · ≡ Φ̃T ≡ Φ̃η enjoys the

following regret bound,

Regret ≤ αη +
β

2η

T∑
t=1

‖gt‖2. (8.5)

Choosing η to optimize the bound gives Regret ≤
√

2αβ
∑T

t=1 ‖gt‖2.

In OLO, we often consider the settings where the reward vectors g1, . . . , gt
are constrained in norm, i.e., ‖gt‖ ≤ r for all t. In such settings, the regret

grows in O(r
√
αβT) for the optimal choice of η. The product αβ of the

devation and smoothness parameters is, therefore, at the core of the GBPA

regret analysis.

An important smoothing technique for this chapter is stochasting smooth-

ing, which is the convolution of a function with a probability density func-

tion.

Definition 8.2 (Stochastic Smoothing). Let f : RN → R be a function. We

define f̃(·;Dη) to be the stochastic smoothing of f with distribution D and

scaling parameter η > 0. The function value at G is obtained as:

f̃(G;Dη) := Ez′∼Dη
[f(G+ z′)] = Ez∼D[f(G+ ηz)], (8.6)

where we adopt the convention that if z has distribution D then the distri-

bution of ηz is denoted by Dη.

Notes on estimation penalty If the perturbation used has mean zero, it

follows from Jensen’s inequality that the stochastic smoothing will over-

estimate the convex function Φ. Hence, for mean zero perturbations, the

underestimation penalty is always non-positive. When the scaling parame-

ter ηt changes every iteration, the overestimation penalty becomes a sum

of T terms. The following lemma shows that we can collapse them into one

since the baseline potential Φ in OLO problems is sub-additive: Φ(G+H) ≤
Φ(G) + Φ(H).

Lemma 8.4. Let Φ : RN → R be a baseline potential function of an OLO

problem. Let D be a continuous distribution with zero mean and support

RN . Consider the GBPA with Φ̃t(G) = Φ̃(G;Dηt) for t = 0, . . . , T where

(η1, . . . , ηT) is a non-decreasing sequence of non-negative numbers. Then

8.3 Gradient-Based Prediction Algorithm 241

the overestimation penalty has the following upper bound,

T∑
t=1

Φ̃t(Gt−1)− Φ̃t−1(Gt−1) ≤ ηTEu∼D[Φ(u)], (8.7)

and the underestimation penalty is non-positive which gives gives a regret

bound of

Regret ≤ ηTEu∼D[Φ(u)] +

T∑
t=1

DΦ̃t
(Gt, Gt−1). (8.8)

Proof. By virtue of the fact that Φ is a support function, it is also subadditive

and satisfies the triangle inequality. Hence we can see that, for any 0 < η′ ≤
η,

Φ̃(G;Dη)− Φ̃(G;Dη′) = Eu∼D[Φ(G+ ηu)− Φ(G+ η′u)]

≤ Eu∼D[Φ((η − η′)u)] = (η − η′)Eu∼D[Φ(u)],

where the final line follows from the positive homogeneity of Φ. Since we

implicitly assume that Φ̃0 ≡ Φ we can set η0 = 0. We can then conclude

that
T∑
t=1

Φ̃t(Gt−1)− Φ̃t−1(Gt−1) ≤
(

T∑
t=1

ηt − ηt−1

)
Eu∼D[Φ(u)] = ηTEu∼D[Φ(u)],(8.9)

which completes the proof.

8.3.2 Understanding Follow the Perturbed Leader via Stochastic

Smoothing

The technique of stochastic smoothing has been well-studied in the optimiza-

tion literature for gradient-free optimization algorithms (Glasserman, 1991;

Yousefian et al., 2010) and accelerated gradient methods for non-smooth

optimizations (Duchi et al., 2012).

One very useful property of stochastic smoothing is that as long as D has

a support over RN and has a differentiable probability density function µ, f̃

is always differentiable. To see this, we use the change of variable technique:

f̃(G;D) =

∫
f(G+ z)µ(z) dz =

∫
f(G̃)µ(G̃−G) dG̃, (8.10)

242 Perturbation Techniques in Online Learning and Optimization

and it follows that

∇Gf̃(G;D) = −
∫
f(G̃)∇Gµ(G̃−G) dG̃,

∇2
Gf̃(G;D) =

∫
f(G̃)∇2

Gµ(G̃−G) dG̃. (8.11)

This change of variable trick leads to the following useful expressions for

the first and second derivatives of f̃ in case the density µ(G) is proportional

to exp(−ν(G)) for a sufficiently smooth ν.

Lemma 8.5 (Exponential Family Smoothing). Suppose D is a distribu-

tion over RN with a probability density function µ of the form µ(G) =

exp(−ν(G))/Z for some normalization constant Z. Then, for any twice-

differentiable ν, we have

∇f̃(G) = E[f(G+ z)∇zν(z)], (8.12)

∇2f̃(G) = E[f(G+ z)
(
∇zν(z)∇zν(z)T −∇2

zν(z)
)
].

Furthermore, if f is convex, we have

∇2f̃(G) = E[∇f(G+ z)∇zν(z)T].

Proof. If ν is twice-differentiable, ∇µ = −µ · ∇ν and ∇2µ =(
∇ν∇νT −∇2ν

)
µ. Plugging these in (8.11) and using the substitution

z = G̃−G immediately gives the first two claims of the lemma. For the last

claim, we first directly differentiate the expression for ∇f̃ in (8.12) by swap-

ping the expectation and gradient. This is justified because f is convex (and

is hence differentiable almost everywhere) and µ is absolutely continuous

w.r.t. Lebesgue measure everywhere (Bertsekas, 1973, Proposition 2.3).

Let D be a probability distribution over RN with a well-defined density

everywhere. Consider the GBPA run with a stochastic smoothing of the

baseline potential:

∀t, Φ̃t(G) = Φ̃(G;Dηt) = Ez∼D
[

max
w∈X
〈w,G+ ηtz〉

]
. (8.13)

Then, from the convexity of G 7→ maxw∈X〈w,G+ ηtz〉 (for any fixed z), we

can swap the expectation and gradient (Bertsekas, 1973, Proposition 2.2)

and evaluate the gradient at G = Gt−1 to obtain

∇Φ̃t(Gt−1) = Ez∼D
[

argmax
w∈X

〈w,Gt−1 + ηtz〉
]
. (8.14)

Taking a single random sample of argmax inside expectation is equivalent

to the decision rule of FTPL (Hannan, 1957; Kalai and Vempala, 2005); the

8.3 Gradient-Based Prediction Algorithm 243

GBPA on a stochastically smoothed potential can thus be seen as playing

the expected action of FTPL. Since the learner gets a linear reward in online

linear optimization, the regret of the GBPA on a stochastically smoothed

potential is equal to the expected regret of FTPL. For this reason, we will

use the terms FTPL and GBPA with stochastic smoothing interchangably.

8.3.3 Connection between FTPL and FTRL via Duality

We have been discussing a method of smoothing out an objective (potential)

function by taking the average value of the objective over a set of nearby

“perturbed” points. Another more direct method of smoothing the objec-

tive function is via a regularization penalty. We can define the regularized

potential as follows:

Φ̃(G) = R?(G) = max
w∈X
{〈w,G〉 − R(w)} (8.15)

where R : X → R is some strictly convex function. This technique has

been referred to as “inf-conv” smoothing of Φ with R∗. The connection be-

tween regularization and smoothing is further developed by Abernethy et al.

(2014), and the terminology draws from the work of Beck and Teboulle

(2012) among others. The class of FTRL algorithms can be viewed pre-

cisely as an instance of GBPA where the potential is chosen according to

Eqn. (8.15). This follows because of the following fact, which is a standard

result of Fenchel duality:

∇f?(θ) = arg max
x
〈x, θ〉 − f(x), (8.16)

under the condition that f is differentiable and strictly convex (Rockafellar,

1997). In other words, if we consider f(·) to be the regularizer for an FTRL

function, then solution to the FTRL objective corresponds directly with the

gradient of the potential function f?(·).
Now that we have see that FTRL and FTPL can be viewed as a certain

type of smoothing operation, a natural question one might ask is: to what

extent are stochastic smoothing and inf-conv smoothing related? That is,

can we view FTRL and FTPL as really two sides of the same coin? The

answer here is “partially yes” and “partially no”:

1. When X is 1-dimensional then (nearly) every instance of FTRL can be

seen as a special case of FTPL, and vice versa. In other words, stochastic

smoothing and inf-conv smoothing are effectively one and the same, and we

describe this equivalence in detail below.

244 Perturbation Techniques in Online Learning and Optimization

2. For problems of dimension larger than 1, every instance of FTPL can be

described as an instance of FTRL. More precisely, if we have a distribution

Dη which leads to a stochastically smoothed potential Φ̃(·) = Φ̃(·;Dη),

then we can always write the gradient of Φ̃(·) as the solution of an FTRL

optimization. That is,

∇Φ̃(G,Dη) = arg max
x∈X

〈x, θ〉 − R(x) where R(x) := Φ̃?(x), (8.17)

and we recall that Φ̃? denotes the Fenchel Conjugate. In other words, the

perturbation D induces an implicit regularizer defined as the cojugate of

Ez∼D[maxg∈X〈g,G〉]
3. In general, however, stochastic smoothing is not as general as inf-conv

smoothing. FTPL is in some sense less general than FTRL, as there are ex-

amples of regularizers that can not be “induced” via a specific perturbation.

One particular case is given by Hofbauer and Sandholm (2002).

We now given a brief description of the equivalence between stochastic

smoothing and inf-conv smoothing for the 1-dimensional case.

On the near-equivalence between FTRL and FTPL in one dimension.

Consider a one-dimensional online linear optimization prediction problem

where the player chooses an action wt from X = [0, 1] and the adversary

chooses a reward gt from Y = [0, 1]. This can be interpreted as a two-expert

setting; the player’s action wt ∈ X is the probability of following the first

expert and gt is the net excess reward of the first expert over the second.

The baseline potential for this setting is Φ̃(G) = maxw∈[0,1]wG.

Let us consider an instance of FTPL with a continuous distribution D

whose cumulative density function (cdf) is FD. Let Φ̃ be the smoothed

potential function (Equation 8.13) with distribution D. Its derivative is

Φ̃′(G) = E[argmax
w∈Y

w(G+ u)] = P[u > −G] (8.18)

because the maximizer is unique with probability 1. Notice, crucially, that

the derivative Φ̃′(G) is exactly the expected solution of our FTPL instance.

Moreover, by differentiating it again, we see that the second derivative of Φ̃

at G is exactly the pdf of D evaluated at (−G).

We can now precisely define the mapping from FTPL to FTRL. Our

goal is to find a convex regularization function R such that P(u > −G) =

arg maxw∈X (wG−R(w)). Since this is a one-dimensional convex optimiza-

tion problem, we can differentiate for the solution. The characterization of

8.4 Generic Bounds 245

R is:

R(w)− R(0) = −
∫ w

0
F−1
D (1− z)dz. (8.19)

Note that the cdf FD(·) is indeed invertible since it is a strictly increasing

function.

The inverse mapping is just as straightforward. Given a regularization

function R well-defined over [0, 1], we can always construct its Fenchel

conjugate R?(G) = supw∈X〈w,G〉 − R(w). The derivative of R? is an

increasing convex function, whose infimum is 0 at G = −∞ and supremum

is 1 at G = +∞. Hence, R? defines a cdf, and an easy calculation shows

that this perturbation distribution exactly reproduces FTRL corresponding

to R.

8.4 Generic Bounds

In this section, we show how the general result in Corollary 8.3, com-

bined with stochastic smoothing results from the existing literature,

painlessly yield regret bounds for two generic settings: one in which the

learner/adversary sets are bounded in `1/`∞ norms and another in which

they are bounded in the standard Euclidean (i.e., `2) norm.

8.4.1 `1/`∞ Geometry

With slight abuse of notation, we will use ‖X‖ to denote supx∈X ‖x‖ where

‖ · ‖ is a norm and X is a set of vectors.

Theorem 8.6. Consider GBPA run with a potential Φ̃t(G) = Φ̃(G;Dη)

where D is the uniform distribution on the unit `∞ ball. Then we have,

Regret ≤ 1

2η
T‖X‖∞‖Y‖21 + η

‖X‖∞N
2

. (8.20)

Choosing η to optimize the bound gives Regret ≤ ‖X‖∞‖Y‖1
√
NT .

Proof. The baseline potential function Φ is ‖X‖∞-Lipschitz with respect to

‖ · ‖1. Also note that ‖gt‖1 ≤ ‖Y‖1. Now, by Corollary 8.3, it suffices to

prove that the stochastic smoothing of Φ with the uniform distribution on

the unit `∞ ball is an η-smoothing with parameters(‖X‖∞N
2

, ‖X‖∞, ‖ · ‖1
)
. (8.21)

246 Perturbation Techniques in Online Learning and Optimization

These smoothing parameters have been shown to hold by Duchi et al. (2012,

Lemma E.1).

FTPL with perturbations drawn from the uniform distribution over the

hypercube was considered by Kalai and Vempala (2005). The above theorem

gives essentially the same result as their Theorem 1.1(a). The proof above

not only uses our general smoothing based analysis but also yields better

constants.

8.4.2 Euclidean Geometry

In this section, we will use a generic property of Gaussian smoothing to

derive a regret bound that holds for any arbitrary online linear optimization

problem.

Theorem 8.7. Consider GBPA run with a potential Φ̃t(G) = Φ̃(G;Dη)

where D is the uniform distribution on the unit `2 ball. Then we have,

Regret ≤ 1

2η
T
√
N‖X‖2‖Y‖22 + η‖X‖2. (8.22)

If we choose D to be the standard multivariate Gaussian distribution, then

we have,

Regret ≤ 1

2η
T‖X‖2‖Y‖22 + η

√
N‖X‖2. (8.23)

In either case, optimizing over η we get Regret ≤ ‖X‖2‖Y‖2N1/4
√

2T .

Proof. The baseline potential function Φ is ‖X‖2-Lipschitz with respect to

‖ · ‖2. Also note that ‖gt‖2 ≤ ‖Y‖2. Duchi et al. (2012, Lemma E.2) show

that the stochastic smoothing of Φ with the uniform distribution on the

Euclidean unit ball is an η-smoothing with parameters(
‖X‖2, ‖X‖2

√
N, ‖ · ‖1

)
. (8.24)

Further, Duchi et al. (2012, Lemma E.3) shows that the stochastic smooth-

ing of Φ with the standard Gaussian distribution is an η-smoothing with

parameters(
‖X‖2

√
N, ‖X‖2, ‖ · ‖1

)
. (8.25)

The result now follows from Corollary 8.3.

We are not aware of a previous result for FTPL of generality comparable

to Theorem 8.7 above. However, Rakhlin et al. (2012) prove a regret bound

for 4
√

2
√
T when X,Y are unit balls of the `2 norm. Their FTPL algorithm,

however, draws T − t samples from the uniform distribution over the unit

8.5 Experts Setting 247

sphere. In contrast, we will show that, for this special case, a dimension

independent O(
√
T) bound can be obtained via an FTPL algorithm using a

single Gaussian perturbation per time step (see Theorem 8.10 below).

8.5 Experts Setting

Now we apply the GBPA analysis framework to the classical online learning

problem of the hedge setting, or often referred to as prediction with expert

advice2. Here we assume a learner is presented with a set of fixed actions, and

on each round must (randomly) select one such action. Upon commiting to

her choice, the learner then receives a vector of gains (or losses), one for each

action, where the ith gain (loss) value is the reward (cost) for selecting action

i. The learner’s objective is to continually update the sampling distribution

over actions in order to accumulate an expected gain (loss) that is not much

worse than the gain (loss) of the optimal fixed action.

The important piece to note about this setting is that it may be cast as

an instance of an OLO problem. To see this, we set X = ∆N def
= {w ∈ RN :∑

iwi = 1, wi ≥ 0 ∀i}, the N -dimensional probability simplex, and we set

Y = {g ∈ RN : ‖g‖∞ ≤ 1}, a set of bounded gain vectors. We may define

the baseline potential function therefore as

Φ(G) = max
w∈X
〈w,G〉 = max

i=1,...,N
Gi = Gi∗(G) (8.26)

where i∗(G) := min{i : Gi = maxj Gj} (We need the outer min{·} to define

i∗ in order to handle possible ties; in such cases we select the lowest index).

In our framework we have used language of maximizing gain, in contrast to

the more common theme of minimizing loss. However, the loss-only setting

can be easily obtained by simply changing the domain Y to contain only

vectors with negative-valued coordinates.

2. The use of the term “expert” is historical and derives from an early version of the
problem where one was given advice (a prediction) from a set of experts (Littlestone and
Warmuth, 1994), and the learner’s goal is to aggregate this advice. In the version we
discuss here, proposed by Freund (1997), a more appropriate intuition is to imagine the
task of choosing among a set of “actions” that each receive a “gain” or “loss” on every
round.

248 Perturbation Techniques in Online Learning and Optimization

8.5.1 The Exponential Weights Algorithm, and the Equivalence of

Entropy Regularization and Gumbel Perturbation

The most well-known and widely used algorithm in the experts setting is

the Exponential Weights Algorithm (EWA), often referred to as the Multi-

plicative Weights Algorithm and strongly related to the classical Weighted

Majority Algorithm (Littlestone and Warmuth, 1994). On round t, EWA

specifies a set of unnormalized weights based on the cumulative gains thus

far,

w̃t,i := exp(ηGt−1,i) i = 1, . . . , N, (8.27)

where η > 0 is a parameter. The learner’s distribution on this round is then

obtained by normalizing w̃t

wt,i :=
w̃t,i∑N
j=1 w̃t,j

i = 1, . . . , N. (8.28)

More recent perspectives of EWA have relied on an alternative interpreta-

tion via an optimization problem. Indeed the weights obtained in Eqn. 8.28

can be equivalently obtained as follows,

wt = argmax
w∈∆N

{
〈ηGt−1, w〉 −

N∑
i=1

wi logwi

}
. (8.29)

We have cast the exponential weights algorithm as an instance of FTRL

where the regularization function R corresponds to the negative entropy

function, R(w) :=
∑

iwi logwi. Applying Lemma 8.2 one can show that

EWA obtains a regret of order
√
T logN .

A third interpretation of EWA is obtained via the notion of stochastic

smoothing (perturbations) using the Gumbel distribution:

µ(z) := e−(z+e−z) is the PDF of the standard Gumbel; and

Pr(Z ≤ z) = e−e
−z

is the CDF of the standard Gumbel.

The Gumbel distribution has several natural properties, including for exam-

ple that it is max-stable: the maximum value of several Gumbel-distributed

random variables is itself distributed according to a Gumbel distribution3.

But another nice fact is that the distribution of the maximizer of N fixed

values perturbed with Gumbel noise leads to an exponentially-weighted dis-

tribution. Precisely, if we have a values v1, . . . , vN , and we draw n IID sam-

3. Above we only defined the standard Gumbel, but in general the Gumbel has both a
scaling and shift parameter.

8.5 Experts Setting 249

ples Z1, . . . , ZN from the standard Gumbel, then a straightforward calculus

exercise gives that

Pr

[
vi + Zi = max

j=1,...,N
{vj + Zj}

]
=

exp(vi)∑
j=1,...,N exp(vj)

i = 1, . . . , N.(8.30)

What we have just arrived at is that EWA is indeed an instance of FTPL

with Gumbel-distributed noise. This was described by Adam Kalai in per-

sonal communication, and later Warmuth (2009) expanded it into a short

note available online. However, the result appears to be folklore in the area

of probabilistic choice models, and it is mentioned briefly by Hofbauer and

Sandholm (2002).

8.5.2 Experts Bounds via Laplacian, Gaussian, and Gumbel Smoothing

We will now apply our stochastic smoothing analysis to derive bounds on

a class of algorithms for the Experts Setting using three different perturba-

tions: the Exponential, Gaussian, and Gumbel. The latter noise distribution

generates an algorithm which is equivalent to EWA, as discussed above, but

we prove the same bound using new tools. Note, however that we use a

mean-zero Gumbel whereas the standard Gumbel has mean 1.

The key lemma for the GBPA analysis is Lemma 8.2, which decomposes

the regret into overestimation, underestimation, and divergence penalty. By

Lemma 8.4, the underestimation is less than or equal to 0 and the overesti-

mation penalty is upper-bounded by Ez∼D [maxi=1,...,N zi]. This expectation

for commonly used distributions D is well-studied in extreme value theory.

In order to upper bound the divergence penalty, it is convenient to analyze

the Hessian matrix, which has a nice structure in the experts setting. We

will be especially interested in bounding the trace of this Hessian.

Lemma 8.8. Let Φ be the baseline potential for the N -experts setting, and D

be a continuous distribution with a differentiable probability density function.

We will consider the potential Φ̃(G) = Φ̃(G;Dη). If for some constant β we

have a bound Tr(∇2Φ̃(G)) ≤ β/η for every G, then it follows that

DΦ̃(G+ g,G) ≤ β‖g‖2∞/η. (8.31)

Proof. The Hessian exists because µ is differentiable (Equation 8.11). Let

H denote the Hessian matrix of the stochastic smoothing of Φ, i.e., H(·) =

∇2Φ̃(·;Dη). First we claim two properties on H:

1. Diagonal entries are non-negative and off diagonal entries are non-

positive.

2. Each row or column sums up to 0.

250 Perturbation Techniques in Online Learning and Optimization

All diagonal entries of H are non-negative because Φ̃ is convex. Note that

∇iΦ̃ is the probability that the i-th coordinate of G + z is the maximum

coordinate, and an increase in the j-th of G where j 6= i cannot increase

that probability; hence, the off-diagonal entries of H are non-positive. To

prove the second claim, note that the gradient ∇Φ̃ is a probability vector,

whose coordinates always sum up to 1. Thus, each row (or each column)

must sum up to 0.

By Taylor’s theorem in the mean-value form, we have DΦ̃(G + g,G) =
1
2g
T∇2Φ̃(G̃)g where G̃ is some convex combination on G and G + g. Now

we have

DΦ̃(G+ g,G) ≤ 1
2‖∇2Φ̃(G̃)‖∞→1‖g‖2∞, (8.32)

where ‖M‖∞→1 := supu6=0 ‖Mv‖1/‖v‖∞. Finally note that, for any M ,

‖M‖∞→1 ≤
∑

i,j |Mi,j |. We can now conclude the proof by noting that

the sum of absolute values of the entries of ∇2Φ̃(G̃) is upper bounded by

twice its trace given the two properties of the Hessian above.

The above result will be very convenient in proving bounds on the di-

vergence penalty associated with different noise distributions. In particu-

lar, assume we have a noise distribution with exponential form, then IID

sample z = (z1, . . . , zn) has density µ(z) ∝ ∏i exp(−ν(zi)). Now applying

Lemma 8.5 we have a nice expression for the diagonal Hessian values:

∇2
iiΦ̃(G;Dη) =

1

η
E

(z1,...,zn)∼µ

[
∇iΦ(G+ ηz)

d

dzi
ν(zi)

]
=

1

η
E

(z1,...,zn)∼µ

[
1{i = i∗(G+ ηz)}dν(zi)

dzi

]
. (8.33)

The above formula now gives us a natural bound on the trace of the Hessian

for the three distributions of interest.

Laplace: For this distribution we have ν(z) = |z| =⇒ dν(z)
dz = sign(z),

where the sign function returns +1 if the argument is positive, −1 if the

argument is negative, and 0 otherwise. Then we have

Tr(∇2Φ̃(G)) =
1

η
E

(z1,...,zn)∼µ

[∑N
i=1 1{i = i∗(G+ ηz)}dν(zi)

dzi

]
=

1

η
E
z

[∑N
i=1 1{i = i∗(G+ ηz)}sign(zi)

]
≤ 1

η
E
z

[∑N
i=1 1{i = i∗(G+ ηz)}

]
=

1

η
.

8.5 Experts Setting 251

Gumbel: Here, using zero-mean Gumbel, we have ν(z) = z + 1 +

e−z−1 =⇒ dν(z)
dz = 1− e−z−1. Applying the same arguments we obtain

Tr(∇2Φ̃(G)) =
1

η
E
z

[∑N
i=1 1{i = i∗(G+ ηz)}(1− e−zi−1)

]
≤ 1

η
E
z

[∑N
i=1 1{i = i∗(G+ ηz)}

]
=

1

η
.

Gaussian: Here we have ν(z) = z2

2 =⇒ dν(z)
dz = z. Bounding the sum of

diagonal Hessian terms requires a slightly different trick:

Tr(∇2Φ̃(G)) =
1

η
E
z

[∑N
i=1 1{i = i∗(G+ ηz)}zi

]
=

1

η
E
z

[
zi∗(G+ηz)

]
≤ 1

η
E
z
[max

i
zi] ≤

√
2 logN

η
.

where the last inequality follows according to moment generating function

arguments given below.

To obtain regret bounds, all that remains is a bound on the overestimation

penalty. As we showed in Lemma 8.4, the overestimation penalty is upper

bounded as ηEz∼D[Φ(z)] = ηE[maxi zi]. We can bound this quantity using

moment generating functions. Let s > 0 be some parameter and notice

sE[max
i
zi] ≤ logE[exp(smax

i
zi)] ≤ log

∑
i

E[exp(szi)] ≤ logN + logm(s)(8.34)

where m(s) is the moment generating function4 (mgf) of the distribution D

(or an upper bound thereof). The statement holds for any positive choice of

s in the domain of m(·), hence we have

Ez∼D[Φ(z)] ≤ inf
s>0

logN + logm(s)

s
. (8.35)

Laplace: The mgf of the standard Laplace is m(s) = 1
1−s . Choosing s = 1

2

gives us that E[maxi zi] ≤ 2 log 2N .

Gumbel: The mgf of the mean-zero Gumbel is m(s) = Γ(1 − s)e−s.
Choosing s = 1/2 gives that E[maxi zi] ≤ 2 log 2N since m(0.5) < 2.

Gaussian: The mgf of the standard Gaussian is m(s) = exp(s2/2).

Choosing s =
√

2 logN gives E[maxi zi] ≤
√

2 logN .

Theorem 8.9. Let Φ be the baseline potential for the experts setting.

Suppose we GBPA run with Φ̃t(·) = Φ̃(·;Dη) for all t where the mean-zero

4. The mgf of a distribution D is the function m(s) := EX∼D[exp(sX)].

252 Perturbation Techniques in Online Learning and Optimization

distribution D is such that Ez∼D[Φ(z)] ≤ α and ∀G,Tr(∇2Φ̃(G)) ≤ β/η.

Then we have

Regret ≤ ηα+
βT

η
. (8.36)

Choosing η to optimize the bound gives Regret ≤ 2
√
αβT . In particular, for

Laplace, (mean-zero) Gumbel and Gaussian perturbations, the regret bound

becomes 2
√

2T log 2N , 2
√

2T log 2N and 2
√

2T logN respectively.

Proof. Result follows by plugging in bounds into Lemma 8.2. Mean-zero

perturbations imply that the underestimation penalty is zero. The overes-

timation penalty is bounded by ηα and the divergence penalty is bounded

by βT/η because of Lemma 8.8 and the assumption that ‖gt‖∞ ≤ 1. Our

calculations above showed that for the Laplace, (mean-zero) Gumbel and

Gaussian perturbations, we have α = 2 log 2N , 2 log 2N and
√

2 logN re-

spectively. Furthermore, we have β = 1, 1 and
√

2 logN respectively.

8.6 Euclidean Balls Setting

The Euclidean balls setting is where X = Y = {x ∈ RN : ‖x‖2 ≤ 1}.
The baseline potential function is Φ(G) = maxw∈X〈w,G〉 = ‖G‖2. We show

that the GBPA with Gaussian smoothing achieves a minimax optimal regret

(Abernethy et al., 2008) up to a constant factor.

Theorem 8.10. Let Φ be the baseline potential for the Euclidean balls

setting. The GBPA run with Φ̃t(·) = Φ̃(·;N(0, I)ηt) for all t has regret at

most

Regret ≤ ηT
√
N + 1

2
√
N

∑T
t=1

1
ηt
‖gt‖22. (8.37)

If the algorithm selects ηt =
√∑T

s=1 ‖gs‖22/(2N) for all t, we have

Regret ≤
√

2
∑T

t=1 ‖gt‖22. (8.38)

If the algorithm selects ηt adaptively according to ηt =√
(1 +

∑t−1
s=1 ‖gs‖22))/N , we have

Regret ≤ 2

√
1 +

∑T
t=1 ‖gt‖22 (8.39)

Proof. The proof is mostly similar to that of Theorem 8.9. In order to

apply Lemma 8.2, we need to upper bound (i) the overestimation and

underestimation penalty, and (ii) the Bregman divergence.

8.6 Euclidean Balls Setting 253

The Gaussian smoothing always overestimates a convex function, so it

suffices to bound the overestimation penalty. Furthermore, it suffices to

consider the fixed ηt case due to Lemma 8.1. The overestimation penalty

can be upper-bounded as follows:

Φ̃T (0)− Φ̃(0) = Eu∼N(0,I)‖G+ ηTu‖2 − ‖G‖2
≤ ηTEu∼N(0,I)‖u‖2 ≤ ηT

√
Eu∼N(0,I)‖u‖22 = ηT

√
N.

The first inequality is from the triangle inequality, and the second inequality

is from the concavity of the square root.

For the divergence penalty, note that the upper bound on

maxv:‖g‖2=1 g
T (∇2Φ̃)g is exactly the maximum eigenvalue of the Hes-

sian, which we bound in Lemma 8.11. The final step is to apply Lemma

8.1.

Lemma 8.11. Let Φ be the baseline potential for the Euclidean balls setting.

Then, for all G ∈ RN and η > 0, the Hessian matrix of the Gaussian

smoothed potential satisfies

∇2Φ̃(G;N(0, I)η) � 1
η
√
N
I. (8.40)

Proof. The Hessian of the Euclidean norm ∇2Φ(G) = ‖G‖−1
2 I−‖G‖−3

2 GGT

diverges near G = 0. Expectedly, the maximum curvature is at origin even

after Gaussian smoothing (See Appendix 8.8.1). So, it suffices to prove

∇2Φ̃(0) = Eu∼N(0,I)[‖u‖2(uuT − I)] �
√

1
N I, (8.41)

where the Hessian expression is from Lemma 8.5.

By symmetry, all off-diagonal elements of the Hessian are 0. Let Y = ‖u‖2,

which is Chi-squared with N degrees of freedom. So,

Tr(E[‖u‖2(uuT − I)]) = E[Tr(‖u‖2(uuT − I))] = E[‖u‖32 −N‖u‖2]

= E[Y
3

2]−NE[Y
1

2]

Using the Chi-squared moment formula (Simon, 2002, p. 13):

E[Y k] =
2kΓ(N2 + k)

Γ(N2)
, (8.42)

the above becomes:

2
3

2 Γ(3
2 + N

2)

Γ(N2)
− N2

1

2 Γ(1
2 + N

2)

Γ(N2)
=

√
2Γ(1

2 + N
2)

Γ(N2)
. (8.43)

254 Perturbation Techniques in Online Learning and Optimization

From the log-convexity of the Gamma function,

log Γ
(

1
2 + N

2

)
≤ 1

2

(
log Γ

(
N
2

)
+ log Γ

(
N
2 + 1

))
= log Γ

(
N
2

)√
N
2 . (8.44)

Exponentiating both sides, we obtain

Γ
(

1
2 + N

2

)
≤ Γ

(
N
2

)√
N
2 , (8.45)

which we apply to Equation 8.43 and get Tr(∇2Φ̃(0)) ≤
√
N . To complete

the proof, note that by symmetry, each entry must have the same expected

value, and hence it is bounded by
√

1/N .

8.7 The Multi-Armed Bandit Setting

Let us introduce the adversarial multi-armed bandit (MAB) setting. The

MAB problem is a variation of the loss-only experts setting (Section 8.5)

with X = ∆N and Y = [−1, 0]N . The two main differences are that (a) that

learner is required to playing randomly, sampling an action it ∈ {1, . . . , N}
according to wt and then suffering loss/gain gt,it , and (b) the learner then

observes only the scalar value gt,it , she receives no information regarding the

losses/gains for the unplayed actions, i.e. the values gt,j for j 6= it remain

unobserved. Note that, while gt is assumed to take only negative values, we

will continue to refer to these quantities as gains.

This limited-information feedback makes the bandit problem much more

challenging than the full-information setting we studied in Section 8.5, where

the learner was given the entire gt on each round. In the adversarial MAB

problem the learner is indeed required to play randomly; it can be shown that

a deterministic strategy will lead to linear regret in the worst case. Hence

our focus will be on the expected regret over the learner’s randomization,

and we will assume that the sequence of gains are fixed in advance and

thus non-random. While the present book chapter will explore this area,

other work has considered the problem of obtaining high-probability bounds

(Auer et al., 2003), as well as bounds that are robust to adaptive adversaries

(Abernethy and Rakhlin, 2009).

The MAB framework is not only mathematically elegant, but useful for

a wide range of applications including medical experiment design (Gittins,

1996), automated poker playing strategies (Van den Broeck et al., 2009),

and hyperparameter tuning (Pacula et al., 2012). For the survey of work on

MAB, see Bubeck and Cesa-Bianchi (2012).

8.7 The Multi-Armed Bandit Setting 255

8.7.1 Gradient-Based Prediction Algorithms for the Multi-Armed

Bandit

We give a generic template for constructing MAB strategies in Algorithm 2,

and we emphasize that this template can be viewed as a bandit reduction to

the (full information) GBPA framework. Randomization is used for making

decisions and for estimating the losses via importance sampling.

Algorithm 2: GBPA Template for Multi-Armed Bandits.

Require: fixed convex potential Φ̃ : RN → R, with ∇Φ̃ ⊂ interior(∆N).
Require: Adversary selects (hidden) seq. of loss vectors g1, . . . , gT ∈ [−1, 0]N

Initialize: Ĝ0 = 0
for t = 1 to T do

Sampling: Learner chooses it according to dist. p(Ĝt−1) = ∇Φ̃(Ĝt−1)
Cost: Learner “gains” gt,it , and observes this value
Estimation: Learner produces estimate of gain vector, ĝt :=

gt,it
pit (Ĝt−1)

eit

Update: Ĝt = Ĝt−1 + ĝt

Nearly all proposed methods have relied on this particular algorithmic

blueprint. For example, the EXP3 algorithm of Auer et al. (2003) proposed

a more advanced version of the Exponential Weights Algorithm (discussed

in Section 8.5) to set the sampling distribution p(Ĝt−1), where the only

real modification is to include a small probability of uniformly sampling the

arms.5 But EXP3 more or less fits the template we propose in Algorithm 2

when we select Φ̃(·) = Ez∼GumbelΦ(G+ηz). We elaborated on the connection

between EWA and Gumbel perturbations in Section 8.5.

Lemma 8.12. The baseline potential for this setting is Φ(G) ≡ maxiGi so

that we can write the expected regret of GBPA(Φ̃) as

ERegretT = Φ(GT)− E[
∑T

t=1〈∇Φ̃(Ĝt−1), gt〉]. (8.46)

5. One of the conclusions we may draw from this section is that the uniform sampling
of EXP3 is not necessary when we are only interested in expected-regret bounds and we
focus on negative gains (that is, where ĝt ∈ [−1, 0]N). It has been suggested that the
uniform sampling may be necessary in the case of positive gains, although this point has
not been resolved to the authors’ knowledge.

256 Perturbation Techniques in Online Learning and Optimization

Then, the expected regret of GBPA(Φ̃) can be written as:

ERegretT ≤Ei1,...,iT
[

Φ(ĜT)− Φ̃(ĜT)︸ ︷︷ ︸
underestimation penalty

+

T∑
t=1

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1]︸ ︷︷ ︸
divergence penalty

]
+ Φ̃(0)− Φ(0)︸ ︷︷ ︸

overestimation penalty

(8.47)

where the expectations are over the sampling of it, t = 1, . . . , T .

Proof. Let Φ̃ be a valid convex function for GBPA. Consider GBPA(Φ̃)

run on the loss sequence g1, . . . , gT . The algorithm produces a sequence of

estimated losses ĝ1, . . . , ĝT . Now consider GBPA-FI(Φ̃), which is GBPA(Φ̃)

run with the full information on the deterministic loss sequence ĝ1, . . . , ĝT
(there is no estimation step, and the learner updates Ĝt directly). The regret

of this run can be written as

Φ(ĜT)−∑T
t=1〈∇Φ̃(Ĝt−1), ĝt〉 (8.48)

and Φ(GT) ≤ E[Φ(ĜT)] by the convexity of Φ.

8.7.2 Implementation of Perturbation Methods

It is clear that ∇Φ̃ is in the probability simplex, and note that

∂Φ̃

∂Gi
= EZ1,...,ZN1{Gi + Zi > Gj + Zj , ∀j 6= i}

= EG̃j∗ [PZi [Zi > G̃j∗ −Gi]] = EG̃j∗ [1− F (G̃j∗ −Gi)] (8.49)

where G̃j∗ = maxj 6=iGj +Zj and F is the cdf of Zi. The unbounded support

condition guarantees that this partial derivative is non-zero for all i given

any G. So, Φ̃(G;D) satisfies the requirements of Algorithm 2.

The sampling step of the bandit GBPA (Framework 2) with a stochas-

tically smoothed function (Equation 8.13) can be implemented efficiently:

we need not evaluate the full expectation (Equation 8.14) and instead rely

on but a single random sample. On the other hand, the estimation step is

challenging since generally there is no closed-form expression6 for ∇Φ̃.

To address this issue, Neu and Bartók (2013) proposed Geometric Re-

sampling (GR). GR uses an iterative resampling process to estimate ∇Φ̃.

6. A case where we find a natural closed form solution occurs when the perturbation is
chosen to be Gumbel, as we know this corresponds to the EXP3 algorithm which relies
on exponential weighting of G̃.

8.7 The Multi-Armed Bandit Setting 257

They showed that if we stop after M iterations, the extra regret due to the

estimation bias is at most NT
eM (additive term). That is, all our GBPA regret

bounds in this section hold for the corresponding FTPL algorithm with an

extra additive NT
eM term.. This term, however, does not affect the asymptotic

regret rate as long as M =
√
NT , because the lower bound for any algorithm

is of the order
√
NT .

8.7.3 Differential Consistency

Recall that for the full information experts setting, if we have a uniform

bound on the trace of ∇2 ˜̃
Φ, then we immediately have a finite regret bound.

In the bandit setting, however, the regret (Lemma 8.12) involves terms of

the form DΦ̃(Ĝt−1 + ĝt, Ĝt−1), where the incremental quantity ĝt can scale

as large as the inverse of the smallest probability of p(Ĝt−1). These inverse

probabilities are essentially unavoidable, because unbiased estimates of a

quantity that is observed with only probability p must necessarily involve

fluctuations that scale as O(1/p).

Therefore, we need a stronger notion of smoothness that counters the 1/p

factor in ‖ĝt‖. We propose the following definition which bounds ∇2 ˜̃
Φ in

correspondence with ∇Φ̃.

Definition 8.3 (Differential Consistency). For constant C > 0, we say that

a convex function f(·) is C-differentially-consistent if for all G ∈ (−∞, 0]N ,

∇2
iif(G) ≤ C∇if(G). (8.50)

In other words, the rate in which we decrease pi should approach 0 as

pi approaches 0. This guarantees that the algorithm reduces the rate of

exploration slowly enough. We later show that smoothings obtaining using

perturbations with bounded hazard rate satisfy the differential consistency

property introduced above (see Lemma 8.15).

We now prove a generic bound that we will use in the following two

sections, in order to derive regret guarantees.

Theorem 8.13. Suppose Φ̃ is C-differentially-consistent for constant C >

0. Then divergence penalty at time t in Lemma 8.12 can be upper bounded

as:

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1] ≤ NC

2
. (8.51)

Proof. For the sake of clarity, we drop the t subscripts on Ĝ and ĝ; we use Ĝ

to denote the cumulative estimate Ĝt−1, ĝ to denote the marginal estimate

ĝt = Ĝt − Ĝt−1, and g to denote the true loss gt.

258 Perturbation Techniques in Online Learning and Optimization

Note that by definition of Algorithm 2, ĝ is a sparse vector with one non-

zero (and negative) coordinate with value ĝit = gt,it/∇itΦ̃(Ĝ). Plus, it is

conditionally independent given Ĝ. Now we can expand the expectation as

Eit [DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ] =
∑
i

P[it = i]E[DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ, it = i]

=
∑
i

∇iΦ̃(Ĝ)E[DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ, it = i]. (8.52)

For each term in the sum on the right hand side, the conditional expectation

given Ĝ is now,

E[DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ, it = i] = DΦ̃

(
Ĝ+

gi

∇iΦ̃(Ĝ)
ei, Ĝ

)
=

g2
i

2(∇iΦ̃(Ĝ))2
∇2
iiΦ̃(Ji)(8.53)

where Ji is some vector on the line segment joining Ĝ and Ĝ + gi
∇iΦ̃(Ĝ)

ei.

Using differential consistency, we have ∇2
iiΦ̃(Ji) ≤ C∇iΦ̃(Ji). Note that Ji

agrees with Ĝ in all coordinates except coordinate i where it is at most Ĝi.

Note that this conclusion depends crucially on the loss-only assumption that

gi ≤ 0. Convexity of Φ̃ guarantees that ∇i is a non-decreasing function of

coordinate i. Therefore, ∇iΦ̃(Ji) ≤ ∇iΦ̃(Ĝ). This means that

E[DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ, it = i] ≤ C g2
i

2(∇iΦ̃(Ĝ))2
∇iΦ̃(Ĝ) ≤ C

2∇iΦ̃(Ĝ)
, (8.54)

since g2
i ≤ 1. Plugging this into (8.52), we get

Eit [DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ] ≤
∑
i

∇iΦ̃(Ĝ)
C

2∇iΦ̃(Ĝ)
=
NC

2
. (8.55)

8.7.4 Hazard Rate Analysis

Despite the fact that perturbation-based multi-armed bandit algorithms

provide a natural randomized decision strategy, they have seen little ap-

plications mostly because they are hard to analyze. But one should expect

general results to be within reach: as we mentioned above, the EXP3 al-

gorithm can be viewed through the lens of perturbations, where the noise

is distributed according to the Gumbel distribution. Indeed, an early result

of Kujala and Elomaa (2005) showed that a near-optimal MAB strategy

comes about through the use of exponentially-distributed noise, and the

same perturbation strategy has more recently been utilized in the work of

Neu and Bartók (2013) and Kocák et al. (2014). However, a more general

understanding of perturbation methods has remained elusive. For example,

would Gaussian noise be sufficient for a guarantee? What about, say, the

Weibull distribution?

8.7 The Multi-Armed Bandit Setting 259

In this section, we show that the performance of the GBPA(Φ̃(G;D)) can

be characterized by the hazard function of the smoothing distribution D. The

hazard rate is a standard tool in survival analysis to describe failures due to

aging; for example, an increasing hazard rate models units that deteriorate

with age while a decreasing hazard rate models units that improve with

age (a counter intuitive but not illogical possibility). To the best of our

knowledge, the connection between hazard rates and design of adversarial

bandit algorithms has not been made before.

Definition 8.4 (Hazard rate function). Assume we are given a distribution

D whose PDF is given by f and whose CDF is given by F . The hazard rate

function of D is

hD(x) :=
f(x)

1− F (x)
. (8.56)

We will write suphD to mean the supremal value obtained by hD on its

domain; we drop the subscript D when it is clear.

For the rest of the section, we assume that F (x) < 1 for all finite x, so

that hD is well-defined everywhere. This assumption is for the clarity of

presentation but is not strictly necessary.

Theorem 8.14. The regret of the GBPA for multi-armed bandits (Algo-

rithm 2) with Φ̃(G) = EZ1,...,Zn∼D maxi{Gi + ηZi} is at most:

ηEZ1,...,Zn∼D
[
max
i
Zi

]
︸ ︷︷ ︸

overestimation penalty

+
N suphD

η
T︸ ︷︷ ︸

divergence penalty

(8.57)

Proof. Due to the convexity of Φ, the underestimation penalty is non-

positive. The overestimation penalty is clearly at most EZ1,...,Zn∼D[maxi Zi],

and Lemma 8.15 proves the N(suphD) upper bound on the divergence

penalty.

It remains to prove the tuning parameter η. Suppose we scale the pertur-

bation Z by η > 0, i.e., we add ηZi to each coordinate. It is easy to see that

E[maxi=1,...,n ηXi] = ηE[maxi=1,...,nXi]. For the divergence penalty, let Fη
be the CDF of the scaled random variable. Observe that Fη(t) = F (t/η) and

thus fη(t) = 1
ηf(t/η). Hence, the hazard rate scales by 1/η, which completes

the proof.

Lemma 8.15. Consider implementing GBPA with potential function

Φ̃(G) = EZ1,...,Zn∼D max
i
{Gi + ηZi}. (8.58)

The divergence penalty on each round is at most N(suphD).

260 Perturbation Techniques in Online Learning and Optimization

Distribution supx hD(x) E[maxNi=1 Zi] Parameters

Gumbel(µ = 1, β = 1) 1 as x→ 0 logN + γ0 N/A

Frechet (α > 1) at most 2α N1/αΓ(1− 1/α) α = logN

Weibull(λ = 1, k ≤ 1) k at x = 0 O(
(

1
k

)
!(logN)

1
k) k = 1

Pareto(xm = 1, α) α at x = 0 αN1/α/(α− 1) α = logN

Gamma(α ≥ 1, β) β as x→∞ logN+(α−1) log logN−
log Γ(α) + β−1γ0

β = α = 1

Table 8.1: Distributions that give O(
√
TN logN) regret FTPL algorithm. The

parameterization follows Wikipedia pages for easy lookup. We denote the Euler
constant (≈ 0.58) by γ0. Please see Abernethy et al. (2015) for a full description.

Proof. Recall the gradient expression in Equation 8.49. We upper bound

the i-th diagonal entry of the Hessian, as follows. First, let where G̃j∗ =

maxj 6=i{Gj + Zj} which is a random variable independent of Zi. Now,

∇2
iiΦ̃(G) =

∂

∂Gi
EG̃j∗ [1− F (G̃j∗ −Gi)] = EG̃j∗

[
∂

∂Gi
(1− F (G̃j∗ −Gi))

]
= EG̃j∗f(G̃j∗ −Gi)
= EG̃j∗ [h(G̃j∗ −Gi)(1− F (G̃j∗ −Gi))] (8.59)

≤ (suph)EG̃j∗ [1− F (G̃j∗ −Gi)]
= (suph)∇iΦ̃(G).

We have just established that Φ̃ is differentially consistent with parameter

C = suph. We apply Theorem 8.13 and the proof is complete.

Corollary 8.16. Algorithm 2 run with Φ̃ that is obtained by smoothing Φ

using any of the distributions in Table 8.1 (restricted to a certain range of

parameters), combined with Geometric Resampling with M =
√
NT , has an

expected regret of order O(
√
TN logN).

Table 8.1 provides the two terms we need to bound. More details on these

distributions and their relation to stochastic smoothing can be found in

Abernethy et al. (2015).

Acknowledgements

We would like to thank Elad Hazan and Gergely Neu for many helpful and

insightful conversations on this work. The research was supported by NSF

CAREER Awards IIS-1453304 and IIS-1452099, as well as NSF grants IIS-

1421391 and IIS-1319810.

8.7 The Multi-Armed Bandit Setting 261

Appendix: Detailed Proofs

8.8.1 Proof That the Origin Is the Worst Case (Lemma 8.11)

Proof. Let Φ(G) = ‖G‖2 and η be a positive number. By continuity of

eigenvectors, it suffices to show that the maximum eigenvalue of the Hessian

matrix of the Gaussian smoothed potential Φ̃(G; η,N(0, I)) is decreasing in

‖G‖ for ‖G‖ > 0.

By Lemma 8.5, the gradient can be written as follows:

∇Φ(G; η,N(0, I)) =
1

η
Eu∼N(0,I)[u‖G+ ηu‖] (8.60)

Let ui be the i-th coordinate of the vector u. Since the standard normal

distribution is spherically symmetric, we can rotate the random variable u

such that its first coordinate u1 is along the direction of G. After rotation,

the gradient can be written as

1

η
Eu∼N(0,I)

u
√√√√(‖G‖+ ηu1)2 +

N∑
k=2

η2u2
k

which is clearly independent of the coordinates of G. The pdf of standard

Gaussian distribution has the same value at (u1, u2, . . . , un) and its sign-

flipped pair (u1,−u2, . . . ,−un). Hence, in expectation, the two vectors cancel

out every coordinate but the first, which is along the direction of G.

Therefore, there exists a function α such that Eu∼N(0,I)[u‖G + ηu‖] =

α(‖G‖)G.
Now, we will show that α is decreasing in ‖G‖. Due to symmetry, it suffices

to consider G = te1 for t ∈ R+, without loss of generality. For any t > 0,

α(t) = E[u1

√
(t+ ηu1)2 + u2

rest)]/t

= Eurest
[Eu1

[u1

√
(t+ ηu1)2 + b2|urest = b]]/t

= Eurest
[Ea=η|u1|[a

(√
(t+ a)2 + b2 −

√
(t− a)2 +B

)
|urest = b]]/t

Let g(t) =
(√

(t+ a)2 +B −
√

(t− a)2 +B
)
/t. Take the first derivative

with respect to t, and we have:

g′(t) =
1

t2

(√
(t− a)2 + b2 − t(t− a)√

(t+ a)2 + b2
−
√

(t+ a)2 + b2 +
t(t− a)√

(t+ a)2 + b2

)

=
1

t2

(
a2 + b2 − at√
(t− a)2 + b2

− a2 + b2 + at√
(t+ a)2 + b2

)

262 Perturbation Techniques in Online Learning and Optimization

(
(a2+b2)−at

)2(
(t+a)2+b2

)
−
(

(a2+b2)+at
)2(

(t−a)2+b2
)

= −4ab2t3 < 0

because t, η, u′, B are all positive. So, g(t) < 0, which proves that α is

decreasing in G.

The final step is to write the gradient as ∇(Φ̃; η,N(0, I))(G) = α(‖G‖)G
and differentiate it:

∇2fη(G) =
α′(‖G‖)
‖G‖ GGT + α(‖G‖)I (8.61)

The Hessian has two distinct eigenvalues α(‖G‖) and α(‖G‖)+α′(‖G‖)‖G‖,
which correspond to the eigenspace orthogonal to G and parallel to G,

respectively. Since α′ is negative, α is always the maximum eigenvalue and

it decreases in ‖G‖.

8.9 References

J. Abernethy and A. Rakhlin. Beating the Adaptive Bandit with High Probability.
In Proceedings of Conference on Learning Theory (COLT), 2009.

J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal Stragies and
Minimax Lower Bounds for Online Convex Games. In Proceedings of Conference
on Learning Theory (COLT), 2008.

J. Abernethy, Y. Chen, and J. W. Vaughan. Efficient Market Making via Convex
Optimization, and a Connection to Online Learning. ACM Transactions on
Economics and Computation, 1(2):12, 2013.

J. Abernethy, C. Lee, A. Sinha, and A. Tewari. Online Linear Optimization via
Smoothing. In Proceedings of Conference on Learning Theory (COLT), 2014.

J. Abernethy, C. Lee, and A. Tewari. Fighting bandits with a new kind of
smoothness. In Advances in Neural Information Processing Systems 28, 2015.
to appear.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The Nonstochastic
Multiarmed Bandit Problem. SIAM Journal of Computuataion, 32(1):48–77,
2003. ISSN 0097-5397.

A. Beck and M. Teboulle. Smoothing and First Order Methods: A Unified Frame-
work. SIAM Journal on Optimization, 22(2):557–580, 2012.

D. P. Bertsekas. Stochastic optimization problems with nondifferentiable cost
functionals. Journal of Optimization Theory and Applications, 12(2):218–231,
1973. ISSN 0022-3239.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006. ISBN 978-0-521-84108-5.

L. Devroye, G. Lugosi, and G. Neu. Prediction by Random-Walk Perturbation. In
Proceedings of Conference on Learning Theory (COLT), 2013.

8.9 References 263

J. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized Smoothing for
Stochastic Optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.
doi: 10.1137/110831659.

Y. Freund. A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting. Journal of Computer and System Sciences, 55(1):119 –
139, 1997. ISSN 0022-0000. doi: http://dx.doi.org/10.1006/jcss.1997.1504.

J. Gittins. Quantitative methods in the planning of pharmaceutical research. Drug
Information Journal, 30(2):479–487, 1996.

P. Glasserman. Gradient Estimation Via Perturbation Analysis. Kluwer interna-
tional series in engineering and computer science: Discrete event dynamic sys-
tems. Springer, 1991. ISBN 9780792390954.

J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the
Theory of Games, 3:97–139, 1957.

J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious
play. Econometrica, 70(6):2265–2294, 2002.

A. T. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005.

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Proceedings of Neural
Information Processing Systems (NIPS), pages 613–621. Curran Associates, Inc.,
2014.

J. Kujala and T. Elomaa. On following the perturbed leader in the bandit setting.
In Algorithmic Learning Theory, pages 371–385. Springer, 2005.

N. Littlestone and M. K. Warmuth. The Weighted Majority Algorithm. Information
and Computation, 108(2):212–261, 1994.

H. B. McMahan. Follow-the-Regularized-Leader and Mirror Descent: Equivalence
Theorems and L1 Regularization. In AISTATS, pages 525–533, 2011.

I. S. Molchanov. Theory of random sets. Probability and its applications. Springer,
New York, 2005. ISBN 1-85233-892-X.

Y. Nesterov. Random Gradient-Free Minimization of Convex Functions. ECORE
Discussion Paper, 2011.

G. Neu and G. Bartók. An efficient algorithm for learning with semi-bandit
feedback. In Algorithmic Learning Theory, pages 234–248. Springer, 2013.

M. Pacula, J. Ansel, S. Amarasinghe, and U.-M. OReilly. Hyperparameter tuning
in bandit-based adaptive operator selection. In Applications of Evolutionary
Computation, pages 73–82. Springer, 2012.

S. Rakhlin, O. Shamir, and K. Sridharan. Relax and randomize: From value to
algorithms. In Advances in Neural Information Processing Systems, pages 2141–
2149, 2012.

R. Rockafellar. Convex Analysis. Convex Analysis. Princeton University Press,
1997. ISBN 9780691015866.

S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations
and Trends in Machine Learning, 4(2):107–194, feb 2012. ISSN 1935-8237.

M. K. Simon. Probability distributions involving Gaussian random variables: A
handbook for engineers and scientists. Springer Science & Business Media, 2002.

264 Perturbation Techniques in Online Learning and Optimization

N. Srebro, K. Sridharan, and A. Tewari. On the Universality of Online Mirror
Descent. In Proceedings of Neural Information Processing Systems (NIPS), pages
2645–2653, 2011.

G. Van den Broeck, K. Driessens, and J. Ramon. Monte-Carlo tree search in poker
using expected reward distributions. In Advances in Machine Learning, pages
367–381. Springer, 2009.

T. van Erven, W. Kotlowski, and M. K. Warmuth. Follow the Leader with Dropout
Perturbations. 2014.

M. Warmuth. A perturbation that makes “Follow the leader” equivalent to
“Randomized Weighted Majority”. http://classes.soe.ucsc.edu/cmps290c/
Spring09/lect/10/wmkalai-rewrite.pdf, 2009. Accessed: March 19, 2016.

F. Yousefian, A. Nedić, and U. V. Shanbhag. Convex nondifferentiable stochas-
tic optimization: A local randomized smoothing technique. In Proceedings of
American Control Conference (ACC), 2010, pages 4875–4880, June 2010.

9 Probabilistic Inference by Hashing and

Optimization

Stefano Ermon ermon@cs.stanford.edu

Stanford University

Stanford, CA, USA

Probabilistic inference is one of the central problems of statistical machine

learning. To date, only a handful of distinct methods have been developed,

most notably Monte Carlo sampling, decomposition, and variational meth-

ods. In this chapter, a different approach based on random projections and

optimization is introduced. This new approach provides provable guarantees

on the accuracy, can leverage modern optimization technology and outper-

forms traditional methods in a range of domains, in particular those involv-

ing combinations of probabilistic and deterministic dependencies among the

variables.

Keywords: probabilistic inference; universal hashing; optimization

9.1 Introduction

Many problems in machine learning and statistics involve the computation

of high-dimensional integrals, where one has to consider a large number

of possible scenarios (or states of the world), and weight them by their

probability. For example, this computation is needed to evaluate (posterior)

probabilities, average over ensembles of models, and more generally to com-

pute expectations. Computing expectations with respect to high dimensional

probability distributions is known to be intractable in the worst-case (Roth,

1996), and is a key computational challenge in computer science (Dyer et al.,

1991; Simonovits, 2003; Cai and Chen, 2010). Intuitively, the difficulty arises

266 Probabilistic Inference by Hashing and Optimization

because the number of possible states scales exponentially with the number

of variables, a phenomenon traditionally known as the curse of dimension-

ality (Bellman, 1961).

In this chapter, we focus on discrete probability distributions and revisit

the problem of approximately computing expectations. This problem en-

compasses several important probabilistic inference tasks, such as comput-

ing marginal probabilities or normalization constants in undirected graph-

ical models, which are in turn cornerstones for parameter and structure

learning (Wainwright and Jordan, 2008; Koller and Friedman, 2009). Stan-

dard approaches in this context are Monte Carlo sampling methods (An-

drieu et al., 2003; Jerrum and Sinclair, 1997; Madras, 2002) and variational

techniques (Wainwright and Jordan, 2008). Sampling techniques approxi-

mate complex distributions using a small number of representative states,

while variational methods approximate complex models using families of

tractable distributions (Jordan et al., 1999; Wainwright and Jordan, 2008).

Monte Carlo techniques, invented many decades ago (1950s), are still the

most widely used, and are the workhorse of statistical inference. While these

techniques have been successfully applied to a wide range of domains, they

typically do not provide tight guarantees on the accuracy of the results.

The key idea behind Markov Chain Monte Carlo (MCMC) is that one can

answer queries about complex statistical models by drawing a relatively

small set of samples (typical scenarios) from the underlying probability

distribution and calculate statistics of interest by averaging over the samples.

The key difficulty is that to draw proper samples, one needs to set up a

Markov Chain over the entire state space which has to reach an equilibrium

distribution. For many statistical models of interest, reaching the equilibrium

distribution will require exponential time Madras (2002). In practice, the

approach will therefore only give approximate answers. Unfortunately, there

is generally little or no information on the quality of the approximation. In

fact, the Markov Chain may completely miss important parts of the state

space because the chain gets trapped in less relevant areas of the state space.

In this chapter, we review a new family of approximate inference al-

gorithms based on randomized hashing and modern optimization tech-

niques (Gomes et al., 2006a; Chakraborty et al., 2013b; Ermon et al., 2013c;

Achlioptas and Jiang, 2015). These algorithms are a promising alternative to

variational and sampling methods and yield with high probability provably

accurate results assuming access to an optimization oracle. Specifically, these

randomized schemes can compute partition functions or marginal probabil-

ities providing an approximately correct answer (within a factor of 1 + ε of

the true value for any desired ε > 0) with high probability (at least 1− δ for

any desired δ > 0).

9.1 Introduction 267

With this new approach, statistics of interest are also computed by con-

sidering only a small set of representative states (samples) from the model.

However, these samples are not drawn at random from the underlying prob-

ability distribution using a Markov Chain, rather they are very particular

states that can be discovered solving a constrained optimization problem.

More specifically, these special states are obtained by randomly project-

ing the original high-dimensional space to a lower-dimensional one (using

universal hash functions) and then using optimization to look for extreme,

high-weight states (configurations or states that are the most likely) in the

projected subspace. Quite surprisingly, it is possible to show that a small

collection of such extreme states is representative of the overall probabil-

ity distribution and can be used to estimate normalization constants and

marginal probabilities for the original statistical model with provable accu-

racy guarantees. Because current optimization tools can handle large prob-

lems, often with a million or more variables, it is possible to quickly “hunt

down” these special states and answer queries much more accurately than

with other methods (Ermon et al., 2013c).

From a computational complexity perspective, the inference problems we

consider are complete for the #P complexity class (Valiant, 1979), a set of

problems encapsulating the entire Polynomial Hierarchy and believed to be

significantly harder than NP. The key idea behind the techniques we will

describe is to reduce a #P inference problem to a small number (quasi-

polynomial in the number of variables) of instances of a NP-equivalent1

combinatorial optimization problem defined on the same space and sub-

ject to randomly generated parity constraints. The rationale behind this

approach is that although combinatorial optimization is intractable in the

worst case, it has witnessed great success in the past 50 years in fields such as

Mixed Integer Programming (MIP) and propositional Satisfiability Testing

(SAT). Problems such as computing a Maximum a Posteriori (MAP) assign-

ment, although NP-hard, can in practice often be approximated or solved

exactly fairly efficiently (Park, 2002; Ravikumar and Lafferty, 2006; Riedel,

2008; Sontag et al., 2008). In fact, modern solvers can exploit structure in

real-world problems and prune large portions of the search space, often dra-

matically reducing the runtime. In contrast, in a #P counting problem such

as computing a marginal probability, one may need to consider contributions

of an exponentially large number of items.

We begin with a general formulation of the inference problems we con-

sider, and discuss two important special cases, namely model counting and

1. As hard as the hardest problem in NP, but not harder.

268 Probabilistic Inference by Hashing and Optimization

the computation of the partition function of undirected graphical models.

We introduce a new class of probabilistic inference methods based on uni-

versal hashing and optimization, and discuss their formal properties. We

then highlight some interesting connections with error correcting codes and

decoding problems from information theory, and finally we conclude with

some open research questions. This chapter is based on and reviews work

that previously appeared in (Ermon et al., 2013c,b, 2014; Zhao et al., 2016).

9.2 Problem Statement and Assumptions

We follow the setup of (Ermon et al., 2013c). Let Σ be a (large) but finite

set, e.g., the set of all possible assignments to the variables in a model.

Let w : Σ → R+ be a non-negative function that assigns a weight to each

element of Σ. We wish to (approximately) compute the total weight of the

set, defined as the following discrete integral or “partition function”

W =
∑
σ∈Σ

w(σ) (9.1)

We assume w is given as input and that it can be compactly represented

and stored, for instance in a factored form as the product of conditional

probabilities tables.

Assumption: We assume that we have access to an optimization oracle

that can solve the following constrained optimization problem

max
σ∈Σ

w(σ)1{C}(σ) (9.2)

where 1{C} : Σ→ {0, 1} is an indicator function for a compactly represented

subset C ⊆ Σ, i.e., 1{C}(σ) = 1 if σ ∈ C and 0 otherwise. C might be com-

pactly specified using a small number of constraints. For concreteness, we

discuss our setup and assumptions in the context of constraint satisfaction

problems and probabilistic graphical models. We shall discuss the applica-

tion of our method in two specific contexts:

9.2.1 Counting Satisfying Assignments

Let V be a set of 0/1 (Boolean) variables, where |V | = n, and let Σ = {0, 1}n
be the set of all possible assignments to these variables. The weight function

w is defined using a logical formula F in clausal normal form. A formula F

is said to be in clausal normal form (CNF) form if it is a logical conjunction

of a set of clauses C1, · · · , Cm. A clause C is a logical disjunction of a set of

(possibly negated) variables, such as for example (x1∨¬x2∨x3). A variable

9.2 Problem Statement and Assumptions 269

assignment σ ∈ Σ can be seen as a mapping that assigns a value in {0, 1}
to each variable in V . We say that σ satises a clause Ci if at least one

literal (a variable, possibly negated) of clause Ci takes value 1. For example,

(x1 = 0, x2 = 0, x3 = 0) satisfies (x1 ∨¬x2 ∨ x3). We define the weight w(σ)

to be 1 if all the clauses C1, · · · , Cm are satisfied by σ, and 0 otherwise.

Satisfiability Testing (SAT) is the problem of deciding if there exists a

variable assignment that satisfies all the clauses C1, · · · , Cm. Equivalently,

it is the problem of deciding if there exists at least one variable assignment

σ with weight 1, i.e., such that F evaluates to TRUE. This is the canonical

NP-complete problem (Garey and Johnson, 2002). While SAT is believed

to be intractable in the worst-case, SAT solvers have shown great success in

the past 20 years, and can routinely handle large problems with hundreds of

thousands of variables arising in a wide range of application domains (Biere

et al., 2009; Vardi, 2014).

Computing the total weight W as in (9.1), which is the total number

of satisfying assignments, is known as #-SAT and is the canonical #-P

complete problem (Valiant, 1979). The problem of counting the number of

solutions of a constraint satisfaction problem is clearly more general and

believed to be harder than the problem of deciding if at least one solution

exists.

In the context of constraint satisfaction problems, our main assumption

is that we can check if there exists a satisfying assignment in a compactly

represented subset C ⊆ Σ. Note that if C can be represented compactly using

a set of constraints (clauses), then queries like (9.2) are in NP and can be

answered by invoking a SAT solver. In particular, it is sufficient to consider

the conjunction of the original formula F and the constraints defining C as

input for the SAT solver.

9.2.2 Inference in Graphical Models

We now consider the strictly more general case of discrete probabilistic

graphical models. Given a graphical model, we let Σ = X be the set of

all possible configurations (variable assignments). Define a weight function

w : X → R+ that assigns to each configuration a score proportional to its

probability: w(x) =
∏
α∈I ψα({x}α). Z may then be rewritten as

Z =
∑
x∈X

w(x) =
∑
x∈X

∏
α∈I

ψα({x}α) (9.3)

Computing Z is typically intractable because it involves a sum over an

exponential number of configurations, and is often the most challenging

inference task for many families of graphical models. Computing Z is needed

270 Probabilistic Inference by Hashing and Optimization

for many inference and learning tasks, such as evaluating the likelihood of

data for a given model, computing marginal probabilities, and parameter

estimation (Wainwright and Jordan, 2008).

In the context of graphical models inference, we assume access to an

optimization oracle that can answer Maximum a Posteriori (MAP) queries,

namely, solve the following constrained optimization problem

arg max
x∈X

p(x | x ∈ C) (9.4)

that is, we can find the most likely state (and its weight) given some evidence

C.

9.3 Approximate Model Counting via Randomized Hashing

The problem of counting the number of solutions of a constraint satisfaction

problem (e.g., #-SAT defined in section 9.2.1) is clearly more general and

believed to be harder than the problem of deciding if at least one solution

exists. What about the problem of approximately counting the number of

solutions? Surprisingly, approximate model counting can be formally reduced

(in a probabilistic sense) to the problem of deciding if a solution exists or

not, i.e., to SAT.

The problem of approximately computing the number of solutions of

a formula, assuming access to an oracle that can answer queries in NP

(such as a SAT solver), was originally considered by Stockmeyer (1985).

This landmark paper introduced a randomized scheme that can estimate

the number of solutions of a formula F within a factor of (1 + ε) of the

true value for any desired ε > 0, and succeeds with probability at least

(1 − δ) for any desired δ > 0. This algorithm runs in polynomial time

and invokes the NP-oracle a number of times that is at most polynomial

in the number of variables of the formula. Stockmeyer’s work therefore

established an important result in computational complexity theory, namely

that #P can be approximated in BPPNP . BPPNP refers to algorithms

that have bounded-error probabilistic polynomial time and access to an NP-

oracle (Sipser, 2006). Informally, this results states that approximate model

counting is not harder than deciding if a solution exists or not.

The intuition behind the algorithm is as follows. Let S ⊆ Σ be the set of

solutions to a Boolean formula F . Stockmeyer (1985) showed that one can

reliably estimate |S| by repeating the following simple process: randomly

partition Σ into 2m cells, select one of these cells, and compute whether S

has at least one element in this cell (this can be accomplished with a query

9.3 Approximate Model Counting via Randomized Hashing 271

Figure 9.1: Pictorial representation, for Σ = {0, 1}4 and variables x1, x2, x3, x4.
Solutions S = {(0, 0, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0)} shown in green. Middle
panel: the space is partitioned into 2 cells, based on the parity of x3 ⊕ x4. Two
solutions are left in the chosen cell, corresponding to the assignments satisfying
x3 ⊕ x4 = 0. Right panel: after partitioning again based on the parity of x2 ⊕ x3,
only solution (0, 0, 0, 0) is left.

to an NP oracle, e.g., invoking a SAT solver). The idea to estimate |S| is

to define progressively smaller cells, until the cells become so small that no

element of S can be found inside a (randomly) chosen cell. The intuition is

that the larger |S| is, the smaller the cells will have to be, and we can use

this information to estimate |S| reliably.

Based on this intuition, we give a hashing-based approximate counting

procedure (Algorithm 9.1, ApproxModelCount), which relies on an NP

oracle OS to check whether S has an element in the cell. It is adapted from

the SPARSE-WISH algorithm of Ermon et al. (2014). The correctness of the

approach relies crucially on how the space is randomly partitioned into cells.

To achieve strong worst-case (probabilistic) guarantees, the algorithm relies

on universal hash functions, a powerful concept from theoretical computer

science (Vadhan, 2011; Goldreich, 2011).

Definition 9.1. A family of functions H = {h : {0, 1}n → {0, 1}m} is

strongly universal (pairwise independent) if the following two conditions hold

when h is chosen uniformly at random from H. 1) ∀x ∈ {0, 1}n, the random

variable H(x) is uniformly distributed in {0, 1}m. 2) ∀x1, x2 ∈ {0, 1}n
x1 6= x2, the random variables H(x1) and H(x2) are independent.

Statistically optimal functions can be constructed by considering the

family Hfull of all possible functions from {0, 1}n to {0, 1}m. It is easy to

verify that this is a family of fully independent functions. However, functions

from this family require m2n bits to be specified, making this construction

not very useful for large n. On the other hand, pairwise independent hash

functions can be specified compactly, using a number of bits linear in n.

They are generally based on modular arithmetic constraints of the form

Ax = b mod 2, referred to as parity or XOR constraints. Note that by the

properties of modular arithmetic, Ax = b mod 2 is equivalent to Ax+b = 0

272 Probabilistic Inference by Hashing and Optimization

Algorithm 9.1 ApproxModelCount (F,OS ,∆)

1: Let S denote the set of solutions to the input formula F

2: T ←
⌈

log(1/∆)
α

logn
⌉

3: i = 0
4: while i ≤ n do
5: for t = 1, · · · , T do
6: Sample hash function hiA,b : Σ→ {0, 1}i, i.e.
7: sample uniformly A ∈ {0, 1}i×n, b ∈ {0, 1}i
8: Let S(hiA,b) = |{x ∈ S | Ax ≡ b (mod 2)}|
9: wti ← I[S(hiA,b) ≥ 1], using OS to check if {x ∈ S | Ax ≡ b (mod 2)} is empty
10: end for
11: if Median(w1

i , · · · , wTi) < 1 then
12: break
13: end if
14: i = i+ 1
15: end while
16: Return b2i−1c

mod 2, and simply means that Ax is congruent to b modulo 2. This is also

written as Ax ≡ b (mod 2).

Proposition 9.1. Let A ∈ {0, 1}m×n, b ∈ {0, 1}m. The family H =

{hA,b(x) : {0, 1}n → {0, 1}m} where hA,b(x) = Ax+ b mod 2 is a family of

pairwise independent hash functions.

Relying on pairwise independence, it is possible to show that Approx-

ModelCount provides with high probability an accurate estimate of the true

model count, as summarized by the following property:

Theorem 9.2. For any ∆ > 0, positive constant α ≤ 0.0042, Approx-

ModelCount makes Θ(n lnn ln 1/δ) queries to the NP oracle OS and, with

probability at least (1 −∆), outputs a 16-approximation of |S|, the number

of solutions of a formula F .

Proof. Sketch: Given any solution x ∈ S, it is easy to see that at iteration i,

P [Ax ≡ b (mod 2)] =
(

1
2

)i
because of the uniformity property of Definition

9.1. By linearity of expectation, E[S(hiA,b)] = |S|
2i . In expectation, the While

loop should therefore break for i ≈ log |S|, i.e., when the corresponding

expected number of “surviving” solutions is less than 1. When this happens,

the algorithm provides an accurate estimate for |S|. The challenge is to show

that the expected behavior is actually the typical behavior. This follows from

pairwise independence. In fact, because the hash function family is pairwise

independent, S(hiA,b) is the sum of pairwise independent random variables

(one for each element of S, corresponding to whether that solution satisfies

the random constraints or not). Therefore, the variance of S(hiA,b) is just the

9.3 Approximate Model Counting via Randomized Hashing 273

sum of the individual variances, and can be shown to be “small” compared

to the mean. By standard concentration inequalities, S(hiA,b) will take a

value close to its mean reasonably often. Taking the median over T runs

guarantees an accurate estimate with high probability.

The proof follows from the analysis in the original paper (Stockmeyer,

1985); similar analysis and derivations can be found in Achlioptas and

Jiang (2015); Ermon et al. (2013c); Chakraborty et al. (2013b); Gomes et al.

(2006a).

9.3.1 Improving the Approximation Factor

Given a κ-approximation algorithm such as Algorithm 9.1 and any ε >

0, it is possible to design a (1 + ε)-approximation algorithm with the

following construction. Let ` = log1+ε κ. Define a new set of configurations

Σ` = Σ × Σ × · · · × Σ, and a new weight function w′ : Σ` → R as

w′(σ1, · · · , σ`) = w(σ1)w(σ2) · · ·w(σ`).

Proposition 9.3. Let Ŵ be a κ-approximation of
∑

σ′∈Σ` w
′(σ′). Then

Ŵ 1/` is a κ1/`-approximation of
∑

σ∈Σw(σ).

To see why this holds, observe that W ′ =
∑

σ′∈Σ` w
′(σ′) =(∑

σ∈Σw(σ)
)`

= W `. Since 1
κW

′ ≤ Ŵ ≤ κW ′, we obtain that Ŵ 1/` must

be a κ1/` = 1 + ε approximation of W .

Note that this construction requires running Algorithm 9.1 on an enlarged

problem with ` times more variables. Although the number of optimization

queries grows polynomially with `, increasing the number of variables might

significantly increase the runtime. Other techniques to improve the approx-

imation factor of the basic algorithm can be found in (Chakraborty et al.,

2013b). The idea is to estimate the size of S(hiA,b) in line 9 of Algorithm 9.1

using multiple calls to the NP-oracle, rather than just checking if the set is

empty or not. For example, one could check if S(hiA,b) contains at least k

elements. The threshold k is referred to as a pivot. This reduces the variance

and can be used to improve the accuracy (but requires more invocations of

the NP-oracle).

9.3.2 Practical Implementations and Extensions

In practice, line 9 in Algorithm 9.1 is implemented using a SAT solver

as an NP-oracle. In a model counting application, this is accomplished

by adding to the original formula i parity constraints, and checking the

satisfiability of the augmented formula. Note that a naive encoding of a

parity constraint over p variables would require 2p−1 clauses of length p,

274 Probabilistic Inference by Hashing and Optimization

ruling out half of the 2p possible assignments (the ones with the wrong

parity). Each constraint can however be represented compactly introducing

O(p) extra variables with a standard Tseitin transformation (Tseitin, 1983).

For example x1⊕x2⊕x3⊕x4 = 0 can be written as {x1⊕x2 = z1, x2⊕x3 =

z2, z1 ⊕ z2 = 0}. See also (Feldman et al., 2005) for compact encodings of

the so-called parity polytope using linear inequalities.

The first practical implementation of these ideas is from Gomes et al.

(2006b,a), who used a SAT solver as an NP-oracle and demonstrated the

practical feasibility of an approach similar to Algorithm 9.1. Their algorithm

was able to leverage decades of research and engineering in SAT solving tech-

nology for approximate model counting, and resulted in huge improvements

over competing techniques (Sang et al., 2004). More recently, Chakraborty

et al. (2013a); Ivrii et al. (2015) also studied the problem and provided sev-

eral practical improvements. Chakraborty et al. (2013a) introduced the use

of pivots, where an NP oracle is used in line 9 of Algorithm 9.1 to check the

existence of at least k > 1 solutions (k = 1 corresponds to Algorithm 9.1),

to improve the accuracy of the estimated model count.

Note that although we only discussed the problem of counting the number

of solutions, similar ideas can also be used to construct approximate solu-

tion sampling schemes, with provable guarantees on the quality of the sam-

ples (Gomes et al., 2006a; Chakraborty et al., 2013a; Ermon et al., 2013a).

This is to be expected, as counting and sampling are known to be self-

reducible (Jerrum and Sinclair, 1997). More surprising is the fact that, given

access to an NP-oracle, it is possible to construct exact sampling schemes;

in contrast, it is believed that exact counting cannot be done in polynomial

time, even with access to an NP-oracle. This is consistent with the fact a

Monte Carlo estimate based on exact samples would only provide an approx-

imation for the corresponding counting problem, not an exact solution. The

first exact sampling scheme based on an NP-oracle was introduced by Bel-

lare et al. (2000). The algorithm uses hash functions to partition the space

into cells, as the algorithms described in this Chapter, in conjunction with

rejection sampling. However, it requires k-wise independent hash functions

for k > 2 (as opposed to pairwise independence, as in Proposition 9.1), and

as far as we know, has never been used in practice.

9.4 Probabilistic Models and Approximate Inference: The WISH Algorithm

The approximate model counter presented in the previous section is not ap-

plicable to counting problems involving general weight functions, such as the

one arising in discrete graphical models for computing the partition function

9.4 Probabilistic Models and Approximate Inference: The WISH Algorithm 275

(cf. section 9.2.2). If the weight function w(σ) is such that maxσ w(σ)
minσ:w(σ)6=0 w(σ) is

small, then the hashing-based algorithm of Chakraborty et al. (2014) can be

applied. Intuitively, these weight functions are “close” to being constant on

a subset of the states, and zero elsewhere. This is close to the unweighted

model counting problem described in Section 9.3, where the weight func-

tion is 1 on a subset of the states (the set of solutions), and zero elsewhere.

Typical models in machine learning, however, are unlikely to satisfy this re-

striction. For example, if the weight function is log-linear the weight function

can have huge variability.

An alternative algorithm, which can handle general weight functions and is

based on universal hashing and combinatorial optimization, was introduced

by Ermon et al. (2013c). We start with the intuition behind the algorithm,

which is called Weighted-Integrals-And-Sums-By-Hashing (WISH).

Computing W as defined in Equation (9.1) is challenging because the

sum has an exponentially large number of terms, i.e., |Σ| = 2n when there

are n binary variables. Let us define the tail distribution of weights as

G(u) , |{σ | w(σ) ≥ u}|. Note that G is a non-increasing step function,

changing values at no more than 2n points. Then W may be rewritten as∫
R+ G(u)du, i.e., the total area A under the G(u) vs. u curve:∫
R+

G(u)du =

∫
R+

∫ ∞
u

g(t)dtdu =

∫
R+

∫ t

0
g(t)dudt =

∫
R+

tg(t)dt = W(9.5)

This is a well known relationship between the mean of a random variable

taking only non-negative values and its cumulative distribution function.

One way to approximate W is to (implicitly) divide this area A into

either horizontal or vertical slices (see Figure 9.2), approximate the area

in each slice, and sum up. Note that a similar approach based on estimating

“quantiles” is also used in nested sampling (Skilling et al., 2006).

Suppose we had an efficient procedure to estimate G(u) given any u.

This could in principle be done using Algorithm 9.1, ApproxModelCount, as

estimating G(u) is an unweighted counting problem.2 Then it is not hard to

see that one could create enough slices by dividing up the x-axis, estimate

G(u) at these points, and estimate the area A using quadrature. However,

the natural way of doing this to any degree of accuracy would require a

number of slices that grows at least logarithmically with the weight range

on the x-axis, which is undesirable, and estimating the weight range itself

would require access to an optimization oracle.

2. Note however that representing {σ | w(σ) ≥ u} in a compact form using a clausal nor-
mal form is non-trivial. A more expressive language such as Integer Linear Programming
would be more practical.

276 Probabilistic Inference by Hashing and Optimization

Figure 9.2: Horizontal vs. vertical slices for integration. Riemann vs. Lebesgue
integrals of a function. The area under the curve between bi+3 and bi+2 is no larger
than the area marked with a diagonal pattern, and at least as large as the area
marked with a grid pattern. The area marked with a diagonal pattern is exactly
twice as large as the area marked with a grid pattern because of the geometric
binning of the y axis.

Alternatively, one could split the y-axis, i.e., the G(u) value range

[0, 2n], at geometrically growing values 1, 2, 4, · · · , 2n, i.e., into bins of sizes

1, 1, 2, 4, · · · , 2n−1. Let b0 ≥ b1 ≥ · · · ≥ bn be the weights of the configu-

rations at the split points. In other words, bi is the 2i-th quantile of the

weight distribution. Unfortunately, despite the monotonicity of G(u), the

area in the horizontal slice defined by each bin is difficult to bound, as bi
and bi+1 could be arbitrarily far from each other. However, the area in the

vertical slice defined by bi and bi+1 must be bounded between 2i(bi − bi+1)

and 2i+1(bi − bi+1), i.e., within a factor of 2. Thus, summing over the lower

bound for all such slices and the left-most slice, the total area A must be

within a factor of 2 of
∑n−1

i=0 2i(bi−bi+1)+2nbn = b0+
∑n

i=1 2i−1bi. Of course,

we don’t know bi. But if we could approximate each bi within a factor of p,

we would get a 2p-approximation to the area A, i.e., to W .

WISH provides an efficient way to realize this strategy, using a combination

of randomized hash functions and an optimization oracle to approximate the

bi values with high probability. Note that this method allows us to compute

the partition function W (or the area A) by estimating weights bi at n+ 1

carefully chosen points, which is “only” an optimization problem.

The key insight to compute the bi values is as follows. Suppose we apply to

configurations in Σ a randomly sampled pairwise independent hash function

with 2m buckets and use an optimization oracle to compute the weight wm
of a heaviest configuration in a fixed (arbitrary) bucket. If we repeat this

process T times and consistently find that wm ≥ w∗, then we can infer by

the properties of hashing that at least 2m configurations (globally) are likely

to have weight at least w∗. By the same token, if there were in fact at least

2m+c configurations of a heavier weight ŵ > w∗ for some c > 0, there is a

9.4 Probabilistic Models and Approximate Inference: The WISH Algorithm 277

0 50 100
0

0.5

1

1.5

2

Items (configurations)
W

ei
gh

t

0 50 100
0

0.5

1

1.5

2

Items (configurations)

W
ei

gh
t

0 50 100
0

0.5

1

1.5

2

Items (configurations)

W
ei

gh
t

0 50 100
0

0.5

1

1.5

2

Items (configurations)

W
ei

gh
t

Figure 9.3: Visualization of the “thinning” effect of random parity constraints,
after adding 0, 1, 2, and 3 parity constraints. Leftmost plot shows the original
function to integrate. The optimal solution (subject to constraints) is shown in red.

good chance that the optimization oracle will find wm ≥ ŵ and we would

not underestimate the weight of the 2m-th heaviest configuration. As we

will see shortly, this process, using pairwise independent hash functions to

keep variance low, allows us to estimate bi accurately with only T = O(lnn)

samples.

Algorithm 9.2 WISH (w : Σ→ R+, n = log2 |Σ|,∆, α)

1: T ←
⌈

ln(n/δ)
α

⌉
2: for i = 0, · · · , n do
3: for t = 1, · · · , T do
4: Sample hash function hiA,b : Σ→ {0, 1}i, i.e.
5: sample uniformly A ∈ {0, 1}i×n, b ∈ {0, 1}i
6: wti ← maxσ w(σ) subject to Aσ ≡ b (mod 2)
7: end for
8: Mi ← Median(w1

i , · · · , wTi)
9: end for
10: Return M0 +

∑n−1
i=0 Mi+12i

The pseudocode of WISH is shown as Algorithm 9.2. It is parameterized

by the weight function w, the dimensionality n, a correctness parameter

∆ > 0, and a constant α > 0. Notice that the algorithm requires solving

only Θ(n lnn/∆) optimization instances (MAP inference) to compute a sum

defined over 2n items. In the following section, we formally prove that the

output is a constant factor approximation of W with probability at least

1 − δ (probability over the choice of hash functions). Figure 9.3 shows the

working of the algorithm. As more and more random parity constraints are

added in the outer loop of the algorithm (“levels” increasing from 1 to n), the

configuration space is (pairwise-uniformly) thinned out and the optimization

oracle selects the heaviest (in red) of the surviving configurations. The final

output is a weighted sum over the median of T such modes obtained at each

level. Note that if the weight function w takes values in {0, 1}, then WISH

essentially becomes ApproxModelCount.

278 Probabilistic Inference by Hashing and Optimization

In analogy with Theorem 9.2, it is possible to show that Algorithm 9.2

provides a constant factor approximation to the partition function. The

complete proof can be found in Ermon et al. (2013c).

Theorem 9.4. For any δ > 0 and positive constant α ≤ 0.0042, Algorithm

9.2 makes Θ(n lnn/δ) MAP queries and, with probability at least (1 − δ),
outputs a 16-approximation of W =

∑
σ∈Σw(σ).

Proof. Sketch: The challenge is to show that wti on Line 6 is “close” to bi,

the 2i-th quantile of the weight distribution. Because of the earlier discussion

and the geometric intuition in Figure 9.2, this implies the estimate of Z is

accurate (within a constant factor). To show that wti on Line 6 is “close” to

bi, we need to show that wti is neither too large (wti ≤ bi−2), nor too small

(wti ≥ bi+2).

Let’s first consider the set S of the 2i−2 assignments with largest weight.

The intuition is the same as in the proof sketch of Theorem 9.2. Given

a configuration x ∈ S, it is easy to see that at iteration i, P [Ax ≡ b

(mod 2)] =
(

1
2

)i
because of the uniformity property from Definition 9.1. By

linearity of expectation, E[S(hiA,b)] = |S|
2i = 1

4 . In expectation, no element

of S “survives” at iteration i. Because of the constraints Aσ ≡ b (mod 2),

it follows that wti ≤ bi−2, that is, the optimal value cannot be too large

because all the “heavy” configurations (i.e., the set S) have been ruled out

by the constraints.

Let’s now consider the set S of the 2i+2 assignments with largest weight.

As before, by linearity of expectation, E[S(hiA,b)] = |S|
2i = 4. In expectation,

a few elements of S “survive” at iteration i. It follows that wti ≥ bi+2, that

is, the optimal value cannot be too small.

Leveraging pairwise independence to control the variance, as in the proof

sketch of Theorem 9.2, it is possible to show that this is the typical behavior,

and taking a Median on Line 8 guarantees that the estimate is accurate with

high probability.

As in the model counting case, Proposition 9.3 can be used to boost the

accuracy to a (1 + ε) approximation.

9.4.1 Further Approximations

While in practical applications MAP inference problems can often be solved

quickly (Weiss et al., 2007), there are cases where solving to optimality is

beyond reach. When the instances defined in the inner loop are not solved to

optimality, Algorithm 9.2 still provides approximate lower bounds onW with

high probability. Similarly, if one has access to upper bounds to the values

9.5 Optimization Subject to Parity Constraints 279

of the optimization instances, e.g., from linear programming relaxations, the

output of the algorithm using these upper bounds is an approximate upper

bound with high probability.

Theorem 9.5. Let w̃ti be suboptimal solutions for the optimization problems

in Algorithm 9.1, i.e., w̃ti ≤ wti. Let W̃ be the output of Algorithm 9.1 with

these suboptimal solutions. Then, for any δ > 0, with probability at least 1−δ,
W̃
16 ≤W . Similarly, let ŵti be upper bounds for the optimization problems in

Algorithm 9.1, i.e., ŵti ≥ wti. Let Ŵ be the output of Algorithm 9.1 using

these upper bounds. Then, for any δ > 0, with probability at least 1 − δ,

Ŵ ≥ W
16 . Further, if w̃ti ≥ 1

Lw
t
i for some L > 0, then with probability at least

1− δ, W̃ is a 16L-approximation to W .

The output is always an approximate lower bound, even if the optimization

is stopped early. The lower bound is monotonically non-decreasing over time,

and is guaranteed to eventually reach within a constant factor of W . We thus

have an anytime algorithm. Furthermore, each of the optimization instances

can be solved independently, allowing natural massive parallelization.

9.5 Optimization Subject to Parity Constraints

The parity constraints used to implement universal hash functions (as in

Proposition 9.1) are simple linear equations over a finite field. The space

C = {x : Ax = b mod 2} = {x : Ax ≡ b (mod 2)} has a nice geometric

interpretation as the translated nullspace of the random matrix A, which

is a finite dimensional vector space, with operations defined on the field

F(2) (arithmetic modulo 2). Despite this apparent simplicity, optimizing (or

searching) over C ⊆ Σ can be harder in practice than optimizing over the

entire domain Σ.

Although from a worst-case perspective checking satisfiability of a formula

augmented with parity constraints remains in NP (i.e., it does not become

harder), a key question is whether the augmented formula is easier or harder

to solve than the original one in practice. Similarly, a key question in the

weighted case if how much harder an optimization problem of the form

maxσ w(σ) becomes after adding parity constraints of the form Ax ≡ b

(mod 2).

Empirically, the number and the length of the parity constraints added

appear to have a significant effect on the runtime of modern combinatorial

search and optimization solvers (Gomes et al., 2007; Ermon et al., 2013b;

Soos et al., 2009). The construction in Proposition 9.1 involves parity con-

straints of average length n/2 where n is the number of variables. This is

280 Probabilistic Inference by Hashing and Optimization

because each row of the matrix A from Proposition 9.1 is generated by sam-

pling i.i.d. n Bernoulli random variables with parameter 1/2. Short parity

constraints, involving a smaller number of variables, appear to be much

easier to handle in practice (Gomes et al., 2007; Ermon et al., 2014; Ivrii

et al., 2015; Achlioptas and Jiang, 2015). For example, a parity constraint

of length one (involving a single variable) simply clamps that variable to a

particular value. In many cases, fixing a variable to a particular value sim-

plifies a (combinatorial) optimization problem. A parity constraint of length

k (involving k variables), on the other hand, is more difficult to deal with.

In particular, we can only propagate such a constraint (inferring something

about the variables involved) after k− 1 variables have been set. For exam-

ple, given a parity constraint x ⊕ y ⊕ z = 0, knowing that x = 0 does not

tell us anything about the possible values y or z can take (both y = 0, z = 0

and y = 1, z = 1 are valid assignments). Only knowing the value of x and

y can we determine z. Furthermore, from a theoretical perspective, parity

constraints are known to be fundamentally difficult for the resolution proof

system underlying SAT solvers (cf. exponential scaling of Tseitin tautolo-

gies (Tseitin, 1968)). A natural question, therefore, is whether short parity

constraints (involving a small number of variables, less than n/2 as the

construction from Proposition 9.1) can be used and still provide rigorous

guarantees on the accuracy.

A natural way to construct hash functions based on short parity con-

straints is similar to the one from Proposition 9.1, except that each variable

is added to each constraint with probability p < 1/2. This results in parity

constraints of average length np. When p � 1/2, the statistical guarantees

of these hash functions are much weaker than those from Proposition 9.1.

For example, they are clearly not pairwise independent. Although they still

divide the space “uniformly” into cells, the resulting variance can be too

high to be useful for counting. To see this, consider partitioning the space

(as in Figure 9.1) using a parity constraint of length 1, i.e., based on the

value of a single variable. Clearly, this divides the space evenly, however, the

two halves might behave very differently. For example, one half might con-

tain a lot of solutions, while the other one very few. These weak statistical

properties can lead to extremely inaccurate counts.

Ermon et al. (2014) proposed a new family of hash functions that are

weaker than pairwise independent, but have good enough statistical prop-

erties to be used for approximate counting (preserving the formal accuracy

guarantees of Algorithms 9.1 and 9.2). Crucially, these hash functions can

be implemented using sparser (and empirically easier to solve) parity con-

straints. Zhao et al. (2016) provide an analysis of the optimal asymptotic

constraint length required for obtaining high-confidence approximations to

9.6 Applications 281

model counts and partition functions. Surprisingly, for formulas with n vari-

ables, when i = Θ(n) parity constraints are added, a constraint length of

Θ(log n) is both necessary and sufficient. This is a significant improvement

over standard long XORs, which have length Θ(n). Constraints of loga-

rithmic length can, for instance, be encoded efficiently with a polynomial

number of clauses. The proofs leverage ideas and results from the theory of

error correcting codes. In fact, there is an intimate connection and a corre-

spondence between universal hash functions and (binary) codes, where one

can construct hash functions from binary codes and vice versa. We refer

the reader to (Stinson, 1996) for an in depth discussion of the relationships

between hash functions, error correcting codes and combinatorial designs.

An alternative approach towards using short parity constraints is taken

in (Ivrii et al., 2015), where it is shown that under certain conditions

we only need to add constraints over a subset of the original variables

(the so called independent set variables). This approach often results in

much shorter XORs, and can potentially be combined with the techniques

proposed in (Ermon et al., 2014). Another very insightful perspective on

the use of short parity constraints for probabilistic inference and discrete

integration can be found in (Achlioptas and Jiang, 2015). In particular,

Achlioptas and Jiang (2015) show how to develop local search techniques

that explore C leveraging its algebraic structure, i.e., the fact that it is a

(translated) linear subspace for which one can easily construct a basis.

9.6 Applications

The approximate inference and counting techniques described in this chapter

are a generic alternative to MCMC and variational techniques, and can be

applied to any discrete probabilistic or constraint-based model. Whenever

the problems are within reach of existing optimization/search techniques,

these approaches provide strong accuracy guarantees and tend to outperform

traditional approximate inference methods (variational and sampling based).

A detailed comparison of the various techniques is beyond the scope of this

Chapter. Experimental results comparing hashing-based techniques to varia-

tional methods such as mean field, belief propagation, tree-reweighted belief

propagation, and sampling techniques such as Gibbs sampling and annealed

importance sampling (Neal, 2001) can be found in (Ermon et al., 2013c,b,a,

2014; Hadjis and Ermon, 2015; Zhao et al., 2016). For example, on clique

structured Ising models the WISH algorithm provides partition function es-

timates that are between 20 and 100 orders of magnitude more accurate than

mean field, belief propagation, and tree-reweighted belief propagation (Er-

282 Probabilistic Inference by Hashing and Optimization

mon et al., 2013c). The benchmarks considered range from Ising models and

restricted Boltzmann machines to constraint satisfaction problems arising in

hardware and software verification. The improvements are particularly evi-

dent on domains with a combination of soft probabilistic dependencies and

hard deterministic constraints, as these tend to be difficult3 for traditional

inference methods (Ermon et al., 2013c). Clearly, however, there is also a

wide range of domains where traditional techniques, even though without

formal worst-case guarantees, do provide accurate answers. Sampling and

variational approximations are often much faster in these cases. Further,

there exist instances that are too difficult for existing optimization tech-

niques (consistently with worst-case hardness results). In these cases, one

can only obtain bounds on the quantities of interest (such as the one from

Proposition 9.5), that can however be very loose.

Random testing is an important tool in simulation-based verification,

where a model of the system is simulated using random test stimuli in

order to uncover bugs or undesired behavior (Naveh et al., 2007). These

stimuli need to be sampled uniformly or near-uniformly from the space of

all valid stimuli, which is often specified using a set of constraints. The

hashing-based techniques described in this chapter have been shown to be

very effective for this problem in (Chakraborty et al., 2013a; Ermon et al.,

2013a). Hashing-based techniques have also been shown to be effective at

analyzing contingency tables in statistics, i.e., tables that capture the (mul-

tivariate) frequency distribution of several random variables. Several statis-

tical tests, such as Fisher’s exact test (Fisher, 1954) which tests contingency

tables for homogeneity of proportion, involve counting problems that can be

solved using the techniques discussed in this chapter (Zhao et al., 2016). Fi-

nally, similar techniques have also been applied to challenging probabilistic

reasoning problems involving routing and planning decisions on road net-

works (Belle et al., 2015). For example, they have been used to estimate the

probability distribution of travel time over all possible routes that satisfy

some given constraints, e.g., of the “traveling salesman” type.

9.7 Open Problems and Research Challenges

The new paradigm for inference and counting presented in this chapter is

a rich research area with a number of exciting directions that remain to

3. For example, deterministic constraints create regions of probability zero that break the
ergodicity assumptions of Markov Chain Monte Carlo methods.

9.7 Open Problems and Research Challenges 283

be explored. This is not unlike traditional MCMC and variational methods,

for which countless extensions and variations tailored to specific applications

have been developed in the past decades. A few examples are provided below.

The main open challenge is how to further improve scalability. On the

optimization side, the techniques described in this chapter will certainly

benefit from future advances in optimization and search technology, a field

that is progressing rapidly (researchers jokingly call this the “Moore’s Law

for SAT” (Vardi, 2014)). On the hashing side, there is great potential for

developing new families of hash functions that are more “friendly” to the

optimizers. While sparse parity constraints and related ensembles show

significant promise, it is likely that there exist other, completely different,

classes of hash functions that might be much more efficient in practice.

Perhaps the most interesting counting problems are those where the corre-

sponding decision problem is in NP, e.g., problems involving the permanent

of a matrix or matchings in graphs. For example, counting the number of

possible perfect matchings in a graph is known to be #-P complete, even

though (maximum) matchings can be found in polynomial time (Jerrum

and Sinclair, 1997). It is an open problem whether there exist interesting

counting problems where the corresponding “projected” optimization prob-

lem (subject to parity constraints) remains in NP. If such problems exist,

then these counting strategies would lead to new, potentially more efficient

classes of FPRAS algorithms.

Traditional approximate inference methods, namely variational and sam-

pling techniques, can be applied both to discrete and continuous models. It

is not clear how hashing-based techniques can be extended to continuous

random variables (without essentially discretizing the space). In particular,

an extension would likely leverage continuous (non-convex) optimization to

solve MAP inferece problems, however, it is not obvious what is the right

notion of a random projection for a continuous space. Some interesting first

steps in this direction are presented in (Belle et al., 2015). Some of the ideas

and methods based on Gumbel perturbations and A* sampling (Hazan and

Jaakkola, 2012; Maddison et al., 2014) might also be useful. The randomized

hash functions used in this Chapter can be seen as a type of discrete random

perturbation that can only take two values (leaving the weight unchanged,

or setting it to zero respectively). It would be interesting to know if other

types of perturbations besides universal hash functions and Gumbels are pos-

sible. Furthermore, approaches based on Gumbel perturbations (Hazan and

Jaakkola, 2012; Maddison et al., 2014) typically require fully i.i.d. pertur-

bations, just like the fully independent hash family Hfull defined in Section

9.3. It would be interesting to know if weaker independence assumptions

(e.g., pairwise independence) can be made on the Gumbel perturbations.

284 Probabilistic Inference by Hashing and Optimization

An interesting question is whether hashing-based techniques can be com-

bined with traditional inference methods to yield stronger accuracy guar-

antees, or can be used to “verify” the results provided by other methods,

providing certificates of accuracy. Some preliminary results in this direction

can be found in (Zhu and Ermon, 2015; Hsu et al., 2016), where it is shown

that mean field methods combined with random projections (implemented

with universal hash functions) provide tight approximations with high prob-

ability. It is likely that similar ideas might be applicable to MCMC methods

as well.

9.8 Conclusion

Making inferences about complex, high-dimensional statistical models is a

fundamental reasoning problem in AI and machine learning. This chapter

discussed a new approach to tackle these problems based on randomized

hashing, which can be though of as a type of random perturbation, and

optimization. These recently developed techniques provide strong accuracy

guarantees on the quality of the results and complement previous approaches

such as MCMC and variational techniques.

We introduced a randomized algorithm that, with high probability, gives

a constant-factor approximation of a general discrete integral defined over

an exponentially large set. The counting or integration problem is reduced

to a small number of instances of a combinatorial optimization problem

subject to parity constraints used to implement a hash function. In the

context of graphical models, we showed how to approximately compute the

normalization constant, or partition function, using a small number of MAP

queries. The algorithm can leverage directly fast, off-the-shelf combinatorial

optimization techniques in a black-box fashion. Further, it is massively

parallelizable, allowing it to directly leverage the increasing availability of

large compute clusters, and can be used in an anytime fashion trading off

runtime for accuracy.

The combinatorial optimization problems that arise in this scheme have

been investigated both from a theoretical and empirical perspective. In par-

ticular, they have deep connections with the max-likelihood decoding prob-

lem in information theory, and some techniques and ideas originally devel-

oped in that context can be used to make the optimization problems more

tractable in practice. The new method works well on a variety of challeng-

ing application domains, and is particularly well suited to deal with models

that incorporate complex, deterministic dependencies or constraints among

the variables. These constraints assign zero probability to assignments that

9.9 References 285

violate them, and can be challenging for traditional sampling schemes, as

they can lead to very inefficient importance sampling schemes and break

the ergodicity of MCMC methods. In the presence of hard deterministic

constraints, even finding a single assignment with non-zero probability can

be difficult. The techniques presented in this chapter, however, can leverage

the reasoning power of state-of-the-art constraint optimization technology

such as SAT solvers and handle a combination of deterministic and proba-

bilistic constraints.

The approaches presented in this chapter are relatively new, and a number

of extensions are possible. These include new methods to quickly approxi-

mate or bound the solution to optimization problems subject to parity con-

straints, the use of different classes of hash functions that are more amenable

to optimization, and extensions to models with continuous random variables.

9.9 References

D. Achlioptas and P. Jiang. Stochastic integration via error-correcting codes. In
Proc. Uncertainty in Artificial Intelligence, 2015.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC
for machine learning. Machine learning, 50(1-2):5–43, 2003.

M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses
using an NP-oracle. Information and Computation, 163(2):510–526, 2000.

V. Belle, G. Van den Broeck, and A. Passerini. Hashing-based approximate
probabilistic inference in hybrid domains. In Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence (UAI), 2015.

R. Bellman. Adaptive control processes: A guided tour. Princeton University Press,
Princeton, NJ, 1961.

A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of satisfiability.
frontiers in artificial intelligence and applications, vol. 185, 2009.

J. Cai and X. Chen. A decidable dichotomy theorem on directed graph homomor-
phisms with non-negative weights. In Proc. of the 51st Symposium on Founda-
tions of Computer Science (FOCS), 2010.

S. Chakraborty, K. Meel, and M. Vardi. A scalable and nearly uniform generator
of SAT witnesses. In Proc. of the 25th International Conference on Computer
Aided Verification (CAV), 2013a.

S. Chakraborty, K. Meel, and M. Vardi. A scalable approximate model counter.
In Proc. of the 19th International Conference on Principles and Practice of
Constraint Programming (CP), pages 200–216, 2013b.

S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi.
Distribution-aware sampling and weighted model counting for sat. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. Journal of the ACM, 38(1):1–17,
1991.

286 Probabilistic Inference by Hashing and Optimization

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Embed and project: Discrete
sampling with universal hashing. In Advances in Neural Information Processing
Systems (NIPS), pages 2085–2093, 2013a.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Optimization with parity
constraints: From binary codes to discrete integration. In Proc. of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI), 2013b.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of
dimensionality: Discrete integration by hashing and optimization. In Proc. of
the 30th International Conference on Machine Learning (ICML), 2013c.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Low-density parity con-
straints for hashing-based discrete integration. In Proc. of the 31st International
Conference on Machine Learning (ICML), pages 271–279, 2014.

J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear programming to
decode binary linear codes. Information Theory, IEEE Transactions on, 51(3):
954–972, 2005.

R. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, 1954.

M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. WH
freeman New York, 2002.

O. Goldreich. Randomized methods in computation. Lecture Notes, 2011.

C. P. Gomes, A. Sabharwal, and B. Selman. Near-uniform sampling of combinatorial
spaces using XOR constraints. In Advances in Neural Information Processing
Systems (NIPS), 2006a.

C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of the 21st National Conference on Artificial
Intelligence (AAAI), pages 54–61, 2006b.

C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. Short XORs for model
counting: From theory to practice. In Theory and Applications of Satisfiability
Testing (SAT), pages 100–106, 2007.

S. Hadjis and S. Ermon. Importance sampling over sets: A new probabilistic
inference scheme. In UAI, 2015.

T. Hazan and T. Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In Proc. of the 29th International Conference on
Machine Learning (ICML), 2012.

L.-K. Hsu, T. Achim, and S. Ermon. Tight variational bounds via random pro-
jections and I-projections. Conference on Artificial Intelligence and Statistics,
2016.

A. Ivrii, S. Malik, K. S. Meel, and M. Y. Vardi. On computing minimal independent
support and its applications to sampling and counting. Constraints, pages 1–18,
2015.

M. Jerrum and A. Sinclair. The Markov chain monte carlo method: An approach to
approximate counting and integration. In Approximation Algorithms for NP-hard
Problems, pages 482–520. PWS Publishing, Boston, MA, 1997.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT Press, 2009.

9.9 References 287

C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In Advances in Neural
Information Processing Systems, pages 3086–3094, 2014.

N. Madras. Lectures on Monte Carlo Methods. American Mathematical Society,
2002.

Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcu, and G. Shurek.
Constraint-based random stimuli generation for hardware verification. AI Mag-
azine, 28(3):13, 2007.

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–
139, 2001.

J. Park. Using weighted MAX-SAT engines to solve MPE. In Proc. of the 18th
National Conference on Artificial Intelligence (AAAI), pages 682–687, 2002.

P. Ravikumar and J. Lafferty. Quadratic programming relaxations for metric label-
ing and Markov random field MAP estimation. In Proc. of the 23rd International
Conference on Machine Learning (ICML), pages 737–744, 2006.

S. Riedel. Improving the accuracy and efficiency of MAP inference for Markov
Logic. In Proc. of the 24th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 468–475, 2008.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):
273–302, 1996.

T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi. Combining component
caching and clause learning for effective model counting. In Theory and Applica-
tions of Satisfiability Testing (SAT), 2004.

M. Simonovits. How to compute the volume in high dimension? Mathematical
programming, 97(1):337–374, 2003.

M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

J. Skilling et al. Nested sampling for general bayesian computation. Bayesian
analysis, 1(4):833–859, 2006.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proc. of the 24th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 503–510, 2008.

M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic
problems. In Theory and Applications of Satisfiability Testing (SAT), 2009.

D. R. Stinson. On the connections between universal hashing, combinatorial designs
and error-correcting codes. In Congressus Numerantium, pages 7–28, 1996.

L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849–861, 1985.

G. S. Tseitin. On the complexity of derivation in the propositional calculus. In
A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logic, Part II. 1968.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

S. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 2011.

L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410–421, 1979.

288 Probabilistic Inference by Hashing and Optimization

M. Y. Vardi. Boolean satisfiability: theory and engineering. Communications of
the ACM, 57(3):5, 2014.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and
belief propagation with convex free energies. In Proc. of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), 2007.

S. Zhao, S. Chaturapruek, A. Sabharwal, and S. Ermon. Closing the gap between
short and long XORs for model counting. In Proc. 30th AAAI Conference on
Artificial Intelligence (AAAI-16), 2016.

M. Zhu and S. Ermon. A hybrid approach for probabilistic inference using random
projections. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pages 2039–2047, 2015.

10 Perturbation Models and PAC-Bayesian

Generalization Bounds

Joseph Keshet joseph.keshet@biu.ac.il

Bar-Ilan University

Ramat-Gan, Israel

Subhransu Maji smaji@cs.umass.edu

University of Massachusetts Amherst

Amherst, MA

Tamir Hazan tamir.hazan@technion.ac.il

Technion

Haifa, Israel

Tommi Jaakkola tommi@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA

In this chapter we explore the generalization power of perturbation models.

Learning parameters that minimize the expected task loss of perturbation

models amounts to minimizing PAC-Bayesian generalization bounds. We

provide an elementary derivation of PAC-Bayesian generalization bounds,

while focusing on their Bayesian components, namely their predictive proba-

bilities and their posterior distributions. We connect their predictive proba-

bilities to perturbation models and their posterior distributions to the smooth-

ness of the PAC-Bayesian bound. Consequently, we derive algorithms that

minimize PAC-Bayesian generalization bounds using stochastic gradient de-

scent and explore their effectiveness on speech and visual recognition tasks.

290 Perturbation Models and PAC-Bayesian Generalization Bounds

10.1 Introduction

Learning and inference in complex models drives much of the research

in machine learning applications ranging from computer vision to natural

language processing to computational biology (Blake et al., 2004; Rush

and Collins; Sontag et al., 2008). Each such task has its own measure

of performance, such as the intersection-over-union score in visual object

segmentation, the BLEU score in machine translation, the word error rate

in speech recognition, the NDCG score in information retrieval, and so on.

The inference problem in such cases involves assessing the likelihood of

possible structured-labels, whether they be objects, parsers, or molecular

structures. Given a training dataset of instances and labels, the learning

problem amounts to estimation of the parameters of the inference engine,

so as to minimize the desired measure of performance, or task loss.

The structures of labels are specified by assignments of random variables,

and the likelihood of the assignments are described by a potential function.

Usually it is only feasible to infer the most likely or maximum a-posteriori

(MAP) assignment, rather than sampling according to their likelihood.

Indeed, substantial effort has gone into developing inference algorithms

for predicting MAP assignments, either based on specific parametrized

restrictions such as super-modularity (e.g., Boykov et al., 2001) or by

devising approximate methods based on linear programming relaxations

(e.g., Sontag et al., 2008).

Learning the parameters of the potential function greatly influences the

prediction accuracy. In supervised settings, the learning algorithm is pro-

vided with training data which is composed of pairs of data instances and

their labels. For example, data instances can be images or sentences and

their labels may be the foreground-background segmentation of these im-

ages or the correct translations of these sentences. The goal of the learning

procedure is to find the potential function for which its MAP prediction

for a training data instance is the same as its paired training label. The

goodness of fit between the MAP predicted label and the training label is

measured by a loss function. Unfortunately, the prediction function is non-

smooth as well as non-convex and direct task loss minimization is hard in

practice (McAllester et al., 2010).

To overcome the shortcomings of direct task loss minimization, the task

loss function is replaced with a surrogate loss function. There are various

surrogate loss functions, some of them are convex (and non-smooth), while

others are smooth (and non-convex). The structured hinge loss, a convex

upper bound to the task loss, is the surrogate loss function used both in

10.1 Introduction 291

max-margin Markov models (Taskar et al., 2004) and in structural SVMs

(Tsochantaridis et al., 2006). Unfortunately, the error rate of the structured

hinge loss minimizer does not converge to the error rate of the Bayesian

optimal linear predictor in the limit of infinite training data, even when the

task loss is the 0-1 loss (McAllester, 2006; Tewari and Bartlett, 2007). The

structured ramp loss (Do et al., 2008) is another surrogate loss function

that proposes a tighter bound to the task loss than the structured hinge

loss. In contrast to the hinge loss, the structured ramp loss was shown to be

strongly consistent (McAllester and Keshet, 2011). In general both the hinge

loss and the structured ramp loss functions require the task loss function

to be decomposable in the size of the output label. Decomposable task

loss functions are required in order to solve the loss-augmented inference

that is used within the training procedure (Ranjbar et al., 2013), and

evaluation metrics like intersection-over-union or word error rate, which are

not decomposable, need to be approximated when utilized in these training

methods.

Conditional random fields (Lafferty et al., 2001) utilize the negative log-

likelihood as a surrogate loss function. Minimizing this loss amounts to maxi-

mizing the log-likelihood of the conditional Gibbs distribution of the training

data. While this is a convex function with a nice probabilistic properties, it

is unrelated to the task loss, and hence not expected to optimize the risk.

Alternatively, one may integrate the task loss function by minimizing the

expected loss, while averaging with respect to the Gibbs distribution (Gim-

pel and Smith, 2010). This approach is computationally appealing since it

effortlessly deals with non-decomposable loss functions, while shifting the

computational burden to sampling from the Gibbs distribution. Unfortu-

nately, sampling from the Gibbs distribution is provably hard (Jerrum and

Sinclair, 1993; Goldberg and Jerrum, 2007)

Recently, several works (Keshet et al., 2011; Papandreou and Yuille, 2011;

Tarlow et al., 2012) have constructed probability models through MAP

predictions. These “perturb-max” models describe the robustness of the

MAP prediction to random changes of its parameters. Therefore, one can

draw unbiased samples from these distributions using MAP predictions.

Interestingly, when using perturbation models to compute the expected loss

minimization one would ultimately minimize PAC-Bayesian generalization

bounds (McAllester, 2003; Langford and Shawe-Taylor, 2002; Seeger, 2003;

Catoni, 2007; Germain et al., 2009; Keshet et al., 2011; Seldin et al., 2012).

This chapter explores the Bayesian aspects that emerge from PAC-

Bayesian generalization bounds. We focus on their predictive probability

models, which turn to be perturbation models as well as on PAC-Bayesian

posterior distributions. We also focus on its algorithmic aspects, both of the

292 Perturbation Models and PAC-Bayesian Generalization Bounds

predictive probability and the posterior distribution, so that they could be

used to minimize the risk bound efficiently. We demonstrate the effectiveness

of minimizing these bounds on visual and speech recognition problems.

10.2 Background

Learning complex models typically involves reasoning about the states of

discrete variables whose labels (assignments of values) specify the discrete

structures of interest. The learning task which we consider in this work is

to fit parameters w that produce the most accurate prediction y ∈ Y for a

given object x. Structures of labels are conveniently described by a discrete

product space Y = Y1×· · ·×Yn. We describe the potential of relating a label

y to an object x with respect to the parameters w by real valued functions

θ(y;x,w). Maximum a-posteriori prediction amounts to compute the best

scoring label:

(MAP predictor) ŷw(x) = arg max
y

θ(y;x,w), (10.1)

where y = (y1, ..., yn).

We measure the goodness of fit by a loss function L : Y× Y→ [0, 1]. The

loss of the MAP predictor for an object-label pair is L(ŷw(x), y). We assume

that the object-label pairs in the world are distributed according to an

unknown distribution D. The risk of the MAP predictor that is parametrized

by w, denoted by R(w) is the expected loss

R(w) = E(x,y)∼D
[
L(ŷw(x), y)

]
(10.2)

Our goal is to learn the parameters w and consequently their predictor ŷw(x)

which minimizes the risk, that is,

w∗ = arg min
w

E(x,y)∼D
[
L(ŷw(x), y)

]
. (10.3)

Since the distribution D is unknown, we use a training dataset S of inde-

pendent and identically distributed (i.i.d.) samples of pairs (x, y) from D.

We then define the empirical risk to be

RS(w) = E(x,y)∼S
[
L(ŷw(x), y)

]
=

1

|S|
∑

(x,y)∈S
L(ŷw(x), y) (10.4)

A direct minimization of the empirical risk is computationally unappealing

as it is a non-smooth and non-convex function of w. Alternatively, the loss

function in the empirical risk is replaced with a surrogate loss, and an

additional regularization term is added to avoid overfitting of the parameters

10.2 Background 293

and add stability. The objective of the learning procedure is therefore

w∗ = arg min
w

E(x,y)∼S
[
L(ŷw(x), y)

]
+ λΩ(w), (10.5)

where Ω(w) is a regularization function and λ is a trade-off parameter.

It is possible to decrease the empirical risk by upper bounding the task

loss function with a convex surrogate, as applied in structured-SVM that is

governed by the hinge-loss:

Lhinge(x, y, w) = max
ŷ∈Y

{L(ŷ, y) + θ(ŷ;x,w)− θ(y;x,w)} (10.6)

It is straightforward to verify that the hinge-loss Lhinge(x, y, w) upper

bounds the task loss L(ŷw(x), y) since

L(ŷw(x), y) ≤ L(ŷw(x), y) + θ(ŷw(x);x,w)− θ(y;x,w) ≤ Lhinge(x, y, w).

Moreover, the hinge-loss is a convex function of w as it is a maximum

of linear functions of w. The hinge-loss leads to “loss adjusted inference”

since computing its value requires more than just MAP inference ŷw(x). In

particular, when the loss function is more involved than the MAP prediction,

as happens in computer vision problems (e.g., PASCAL VOC loss) or

language processing tasks (e.g., BLEU loss), learning with structured-SVMs

is computationally hard.

The prediction ŷw(x) as well as “loss adjusted inference” rely on the

potential structure to compute the MAP assignment. Potential functions are

conveniently described by a family R of subsets of variables r ⊂ {1, ..., n},
called cliques. We denote by yr the set of labels that correspond to the clique

r, namely (yi)i∈r and consider the following potential functions θ(y;x,w) =∑
r∈R θr(yr;x,w). Thus, MAP prediction can be formulated as an integer

linear program:

b∗ ∈ arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) (10.7)

s.t. br(yr) ∈ {0, 1},
∑
yr

br(yr) = 1,
∑
ys\yr

bs(ys) = br(yr) ∀r ⊂ s

The correspondence between MAP prediction and integer linear program

solutions is (ŷw(x))i = arg maxyi b
∗
i (yi). Although integer linear program

solvers provide an alternative to MAP prediction, they may be restricted to

problems of small size. This restriction can be relaxed when one replaces the

integral constraints br(yr) ∈ {0, 1} with nonnegative constraints br(yr) ≥ 0.

These linear program relaxations can be solved efficiently using different

convex max-product solvers, and whenever these solvers produce an integral

solution it is guaranteed to be the MAP prediction (Sontag et al., 2008).

294 Perturbation Models and PAC-Bayesian Generalization Bounds

A substantial effort has been invested to solve this integer linear program

in some special cases, particularly when |r| ≤ 2. In this case, the potential

function corresponds to a standard graph: θ(y;x,w) =
∑

i∈V θi(yi;x,w) +∑
i,j∈E θi,j(yi, yj ;x,w). If the graph has no cycles, MAP prediction can be

computed efficiently using the belief propagation algorithm (Pearl, 1988).

There are cases where MAP prediction can be computed efficiently for graph

with cycles.

10.3 PAC-Bayesian Generalization Bounds

The PAC-Bayesian generalization bound asserts that the overall risk of

predicting w can be estimated by the empirical risk over a finite training

set. This is essentially a measure concentration theorem: the expected value

(risk) can be estimated by its (empirical) sampled mean. Given an object-

label sample (x, y) ∼ D, the loss function L(ŷw(x), y) turns out to be a

bounded random variable in the interval [0, 1]. In the following we assume

that the training data S = {(x1, y1), ..., (xm, ym)} is sampled i.i.d. from the

distribution D, and is denoted by S ∼ Dm. The measure concentration of a

sampled average is then described by the moment generating function, also

known as the Hoeffding lemma:

ES∼Dm

[
exp

(
σ (R(w)−RS(w))

)]
≤ exp(σ2/8m), (10.8)

for all σ ∈ R.

We average over all possible parameters and therefore take into account

all possible predictions ŷw(x):

Lemma 10.1. Let L(ŷ, y) ∈ [0, 1] be a bounded loss function. Let p(w) be

any probability density function over the space of parameters. Then, for any

positive number σ > 0 holds

ES∼DmEw∼p
[

exp
(
σ(R(w)−RS(w))

)]
≤ exp(σ2/8m) (10.9)

The above bound measures the expected (exponentiated) risk of Gibbs

predictors. Gibbs predictors ŷw(x) are randomized predictors, determined

by w ∼ p. The probability distribution p(w) is determined before seeing

the training data and is therefore considered to be a prior distribution over

the parameters. p(w) may be any probability distribution over the space of

parameters and it determines the amount of influence of any parameter w to

the overall expected risk. Therefore when computing the expected risk it also

takes into account the desired parameters w∗, which are intuitively the risk

minimizer. For example, the prior distribution may be the centered normal

10.3 PAC-Bayesian Generalization Bounds 295

distribution p(w) ∝ exp(‖w‖2/2). Since a centered normal distribution is

defined for every w, it also assigns a weight to w∗. However, the centered

normal distribution rapidly decays outside of a small radius around the

center, and if the desired parameters w∗ are far from the center, the above

expected risk bound only consider a negligible part of it.

The core idea of PAC-Bayesian theory is to shift the Gibbs classifier to

be centered around the desired parameters w∗. Since these parameters are

unknown, the PAC-Bayesian theory applies to all possible parameters u.

Such bounds are called uniform.

Lemma 10.2. Consider the setting of Lemma 10.1. Let qu(w) be any

probability density function over the space of parameters with expectation u.

Let DKL(qu||q) =
∫
qu(w) log(qu(w)/p(w))dw be the KL-divergence between

two distributions. Then, for any set S = {(x1, y1), ..., (xm, ym)} the following

holds simultaneously for all u:

Ew∼p
[

exp
(
R(w)−RS(w)

)]
≥ exp

(
Ew∼qu [R(w)−RS(w)]−DKL(qu||p)

)
(10.10)

Proof. The proof includes two steps. The first step transfers the prior p(w)

to the posterior qu(w). To simplify the notation we omit the subscript of the

posterior distribution, writing it as q(w).

Ew∼p
[

exp
(
R(w)−RS(w)

)]
= Ew∼q

[p(w)

q(w)
exp

(
R(w)−RS(w)

)]
(10.11)

We move the ratio p(w)/q(w) to the exponent, thus the right hand-side

equals

Ew∼q
[

exp
(
R(w)−RS(w)− log

q(w)

p(w)

)]
(10.12)

The second step of the proof uses the convexity of the exponent function to

derive a lower bound to this quantity with

exp
(
Ew∼q[R(w)−RS(w)]− Ew∼q[log(q(w)/p(w))]

)
. (10.13)

The proof then follows from the definition of the KL-divergence as the

expectation of log(q(w)/p(w)).

We omit σ from Lemma 10.2 to simplify the notation. The same proof

holds for σ(R(w)−RS(w)), for any positive σ. The lemma holds for any S,

thus also holds in expectation, i.e., when taking expectations on both sides

296 Perturbation Models and PAC-Bayesian Generalization Bounds

of the inequality. Combining both lemmas above we get

ES∼Dm

[
exp

(
Ew∼qu [σ(R(w)−RS(w))]−DKL(qu||p)]

)]
≤ exp(σ2/8m) (10.14)

This bound holds uniformly (simultaneously) for all u and particularly to

the (empirical) risk minimizer w∗. This bound holds in expectation over

the samples of training sets. It implies a similar bound that holds in high

probability via Markov inequality:

Theorem 10.3. Consider the setting of the above Lemmas. Then, for any

δ ∈ (0, 1] and for any real number λ > 0, with a probability of at least 1− δ
over the draw of the training set, the following holds simultaneously for all

u

Ew∼qu
[
R(w)

]
≤ Ew∼qu

[
RS(w)

]
+ λDKL(qu||p)

+
1

λ · 8m + λ log
1

δ
(10.15)

Proof. Markov inequality asserts that Pr[Z ≤ EZ/δ] ≥ 1− δ. The theorem

follows by setting Z = exp
(
Ew∼qu [λ(R(w) − RS(w))] − DKL(qu||p)]

)
and

using Equation (10.14).

The above bound is a standard PAC-Bayesian bound that appears in

various versions in the literature (McAllester, 2003; Langford and Shawe-

Taylor, 2002; Seeger, 2003; Catoni, 2007; Seldin, 2009; Germain et al., 2009;

Keshet et al., 2011; Seldin et al., 2012).

10.4 Algorithms

Recall that our goal is to find the parameters that minimize the risk as in

Equation (10.3). As we stated in (10.5), the empirical risk can be replaced by

a surrogate loss function and a regularization term. In our case, the training

objective is defined as follows

w∗ = arg min
u

Ew∼qu
[
RS(w)

]
+ λDKL(qu||p), (10.16)

where DKL(qu||p) is the regularization term, λ is the regularization param-

eter, and the surrogate loss is the generalized probit loss defined as

Ew∼qu
[
L(ŷw(x), y)

]
, (10.17)

10.4 Algorithms 297

and can be derived from the linearity of the expectation and Equation (10.4).

Note that the minimizer of the objective in Equation (10.16) is also the

minimizer of the right-hand side of the bound in Equation (10.15).

We now turn to show that whenever the posterior distributions have

smooth probability density functions qu(w), the perturbation probability

model is a smooth function of u. Thus the randomized risk bound can be

minimized with gradient methods to approach the desired u.

Theorem 10.4. Assume qu(w) is a smooth function of its parameters, then

the PAC-Bayesian bound is a smooth function of u:

∇uEw∼qu
[
RS(w)

]
=

1

m

∑
(x,y)∈S

Ew∼qu
[
∇u[log qu(w)]L(yw(x), y)

]
Moreover, the KL-divergence is a smooth function of w and its gradient takes

the form:

∇uDKL(qu||p) = Ew∼qu
[
∇u[log qu(w)]

(
log(qu(w)/p(w)) + 1

)]
Proof. Ew∼quRS(w) = 1

m

∑m
i=1

∫
qu(w)L(ŷw(xi), yi)dw. Since qu(w) is a

probability density function and L(ŷ, y) ∈ [0, 1] we can differentiate under

the integral (cf. Folland, 1999, Theorem 2.27). The gradient is

∇uEw∼qu
[
RS(w)

]
=

1

m

m∑
i=1

∫
∇uqu(w)L(ŷw(x), y)dw. (10.18)

Using the identity ∇uqu(w) = qu(w)∇u log(qu(w)) the first part of the

proof follows. The second part of the proof follows in the same manner,

while noting that ∇u(qu(w) log qu(w)) = (∇uqu(w))(log qu(w) + 1).

The gradient of the randomized empirical risk is governed by the gradient

of the log-probability density function of its corresponding posterior model.

For example, Gaussian model with mean w and identity covariance matrix

has the probability density function qu(w) ∝ exp(−‖w − u‖2/2), thus the

gradient of its log-density is the linear moment of w, i.e., ∇u[log qu] = w−u.

Taking any smooth distribution qu(w), we can find the parameters u by

descending along the stochastic gradient of the PAC-Bayesian generaliza-

tion bound. The gradient of the randomized empirical risk is formed by

two expectations, over the sample points and over the posterior distribu-

tion. Computing these expectations is time consuming, thus we use a single

sample ∇u[log qu(w)]L(yw(x), y) as an unbiased estimator for the gradient.

Similarly we estimate the gradient of the KL-divergence with an unbiased es-

timator which requires a single sample of∇u[log qu(w)](log(qu(w)/p(w))+1).

This approach, called stochastic approximation or online gradient descent,

298 Perturbation Models and PAC-Bayesian Generalization Bounds

amounts to use of the stochastic gradient update rule, where η is the learning

rate. Next, we explore different posterior distributions from computational

perspectives. Specifically, we show how to learn the posterior model so as to

ensure the computational efficiency of its MAP predictor.

10.5 The Bayesian Perspective

PAC-Bayesian theory has a strong Bayesian ingredient. It integrates over un-

certainty of its parameters using the posterior distribution. This important

aspect guarantees a uniform generalization bound, over all possible posterior

parameters. As a consequence of this theory, a new predictive distribution

emerges, the perturbation model, that connects the posterior distribution to

the task loss.

10.5.1 Predictive Distribution

The PAC-Bayesian risk give rise to novel distribution models that in-

volve optimization and perturbation. The risk averages over all parameters.

Ew∼qu [R(w)] = Ew∼qu [L(ŷw(x), y)]. To reveal the underlying Bayesian model

we aggregate all parameters w that result in the same prediction

p(y|x;u) = Pw∼qu [y = ŷw(x)] (10.19)

This novel probability distribution measures how much stable a prediction

is under random perturbation of the parameters. The appealing property

of this distribution is that unlike the Gibbs distribution, it is easy to draw

unbiased samples for as long as optimizing is easy. Since this perturbation

model is defined by perturbation and optimization it is also called perturb-

max or perturb-and-map model.

10.5.2 Posterior Distribution

The posterior distribution accounts for the space of parameters that can be

learned. The ability to efficiently apply MAP predictors is key to the success

of the learning process. Although MAP predictions are NP-hard in general,

there are posterior models for which they can be computed efficiently. For

example, whenever the potential function corresponds to a graphical model

with no cycles, MAP prediction can be efficiently computed for any learned

parameters w.

Learning unconstrained parameters with random MAP predictors provides

some freedom in choosing the posterior distribution. In fact, Theorem 10.4

10.5 The Bayesian Perspective 299

suggests that one can learn any posterior distribution by performing gradient

descent on its risk bound, as long as its probability density function is

smooth. We show that for unconstrained parameters, additive posterior

distributions simplify the learning problem, and the complexity of the bound

(i.e., its KL-divergence) mostly depends on its prior distribution.

Corollary 10.5. Let q0(w) be a smooth probability density function with

zero mean and set the posterior distribution using additive shifts qu(w) =

q0(w − u). Let H(q) = −Ew∼q[log q(w)] be the entropy function. Then

DKL(qu||p) = −H(q0)− Ew∼q0 [log p(w + u)]

In particular, if p(w) ∝ exp(−‖w‖2) is Gaussian then ∇uDKL(qu||p) = u

Proof: DKL(qu||p) = −H(qu) − Ew∼qu [log p(w)]. By a linear change of

variable ŵ = w − u it follows that H(qu) = H(q0) thus ∇uH(qu) = 0.

Similarly Ew∼qu [log p(w)] = Ew∼q0 [log p(w+w)]. Finally, if p(w) is Gaussian

then Ew∼q0 [log p(w + u)] = −u2 − Ew∼q0 [w2]. �
This result implies that every additively-shifted smooth posterior distri-

bution may consider the KL-divergence penalty as the square regularization

when using a Gaussian prior p(w) ∝ exp(−‖w‖2). This generalizes the stan-

dard claim on Gaussian posterior distributions (Langford and Shawe-Taylor,

2002), for which q0(w) are Gaussians. Thus one can use different posterior

distributions to better fit the randomized empirical risk without increasing

the computational complexity over Gaussian processes.

Learning unconstrained parameters can be efficiently applied to tree struc-

tured graphical models. This, however, is restrictive. Many practical prob-

lems require more complex models, with many cycles. For some of these

models linear program solvers give efficient, although sometimes approxi-

mate, MAP predictions. For supermodular models there are specific solvers,

such as graph-cuts, that produce fast and accurate MAP predictions. In

the following we show how to define posterior distributions that guarantee

efficient predictions, thus allowing efficient sampling and learning.

MAP predictions can be computed efficiently in important practical

cases, e.g., supermodular potential functions satisfying θi,j(−1,−1;x,w) +

θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w)+θi,j(1,−1;x,w). Whenever we restrict our-

selves to symmetric potential function θi,j(yi, yj ;x,w) = wi,jyiyj , super-

modularity translates to nonnegative constraint on the parameters wi,j ≥ 0.

In order to model posterior distributions that allow efficient sampling we

define models over the constrained parameter space. Unfortunately, the ad-

ditive posterior models qu(w) = q0(w−u) are inappropriate for this purpose,

300 Perturbation Models and PAC-Bayesian Generalization Bounds

as they have a positive probability for negative w values and would generate

non-supermodular models.

To learn constrained parameters one requires posterior distributions that

respect these constraints. For nonnegative parameters we apply posterior

distributions that are defined on the nonnegative real numbers. We suggest

the incorporation of the parameters of the posterior distribution in a multi-

plicative manner into a distribution over the nonnegative real numbers. For

any distribution qα(w) we determine a posterior distribution with parame-

ters u as qu(w) = qα(w/u)/u. We show that multiplicative posterior models

naturally provide log-barrier functions over the constrained set of nonnega-

tive numbers. This property is important to the computational efficiency of

the bound minimization algorithm.

Corollary 10.6. For any probability distribution qα(w), let qα,u(w) =

qα(w/u)/u be the parametrized posterior distribution. Then

DKL(qα,u||p) = −H(qα)− log u− Ew∼qα [log p(uw)]

Define the Gamma function w(α) =
∫∞

0 wα−1 exp(−w). If p(w) = qα(w) =

wα−1 exp(−w)/w(α) have the Gamma distribution with parameter α, then

Ew∼qα [log p(uw)] = (α − 1) log u − αu. Alternatively, if p(w) are truncated

Gaussians then Ew∼qα [log p(uw)] = −α
2u

2 + log
√
π/2.

Proof: The entropy of multiplicative posterior models naturally implies

the log-barrier function:

−H(qα,u)
ŵ=w/u

=

∫
qα(ŵ)

(
log qα(ŵ)− log u

)
dŵ = −H(qα)− log u.

Similarly, Ew∼qα,u [log p(w)] = Ew∼qα [log p(uw)]. The special cases for the

Gamma and the truncated normal distribution follow by a direct computa-

tion. �
The multiplicative posterior distribution would provide the barrier func-

tion − log u as part of its KL-divergence. Thus the multiplicative posterior

effortlessly enforces the constraints of its parameters. This property suggests

that using multiplicative rules is computationally favorable. Interestingly,

using a prior model with Gamma distribution adds to the barrier function a

linear regularization term ‖u‖1 that encourages sparsity. On the other hand,

a prior model with a truncated Gaussian adds a square regularization term

which drifts the nonnegative parameters away from zero. A computational

disadvantage of the Gaussian prior is that its barrier function cannot be

controlled by a parameter α.

10.6 Approximate Inference 301

10.6 Approximate Inference

We may use the flexibility of Bayesian models to extend perturbation models

beyond MAP prediction, as in the case of approximate inference. MAP

prediction can be phrased as an integer linear program, stated in Equation

(10.7). The computational burden of integer linear programs can be relaxed

when one replaces the integral constraints with nonnegative constraints. This

approach produces approximate MAP predictions. An important learning

challenge is to extend the predictive distribution of perturbation models to

incorporate approximate MAP solutions. Approximate MAP predictions are

are described by the feasible set of their linear program relaxations which is

usually called the local polytope:

L(R) =
{
br(yr) : br(yr) ≥ 0,

∑
yr

br(yr) = 1, ∀r ⊂ s
∑
ys\yr

bs(ys) = br(yr)
}

Linear program solutions are usually the extreme points of their feasible

polytope. The local polytope is defined by a finite set of equalities and in-

equalities, thus it has a finite number of extreme points. The predictive

distribution that is defined in Equation (10.19) can be effortlessly extended

to the finite set of the local polytope’s extreme points. This approach has

two flaws. First, linear program solutions might not be extreme points, and

decoding such a point usually requires additional computational effort. Sec-

ond, without describing the linear program solutions one cannot incorporate

loss functions that take the structural properties of approximate MAP pre-

dictions into account when computing the randomized risk.

Theorem 10.7. Consider approximate MAP predictions that arise from

relaxation of the MAP prediction problem in Equation (10.7).

arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) s.t. b ∈ L(R)

Then any optimal solution b∗ is described by a vector ỹw(x) in the finite

power sets over the cliques Ỹ ⊂ ×r2Yr :

ỹw(x) = (ỹw,r(x))r∈R where ỹw,r(x) = {yr : b∗r(yr) > 0}

Moreover, if there is a unique optimal solution b∗ then it corresponds to an

extreme point in the local polytope.

Proof: The program is convex over a compact set, thus strong duality

holds. Fixing the Lagrange multipliers λr→s(yr) that correspond to the

marginal constraints
∑

ys\yr bs(ys) = br(yr), and considering the probability

302 Perturbation Models and PAC-Bayesian Generalization Bounds

constraints as the domain of the primal program, we derive the dual program∑
r

max
yr

{
θr(yr;x,w) +

∑
c:c⊂r

λc→r(yc)−
∑
p:p⊃r

λr→p(yr)
}

Lagrange optimality constraints (or equivalently, Danskin Theorem) deter-

mine the primal optimal solutions b∗r(yr) to be probability distributions over

the set arg maxyr{θr(yr;x,w)+
∑

c:c⊂r λ
∗
c→r(yc)−

∑
p:p⊃r λ

∗
r→p(yr)} that sat-

isfy the marginalization constraints. Thus ỹw,r(x) is the information that

identifies the primal optimal solutions, i.e., any other primal feasible solu-

tion that has the same ỹw,r(x) is also a primal optimal solution. �
This theorem extends Proposition 3 in Globerson and Jaakkola (2007)

to non-binary and non-pairwise graphical models. The theorem describes

the discrete structures of approximate MAP predictions. Thus we are able

to define posterior distributions that use efficient, although approximate,

predictions while taking into account their structures. To integrate these

posterior distributions to randomized risk we extend the loss function to

L(ỹw(x), y). One can verify that the results in Section 10.3 follow through,

e.g., by considering loss functions L : Ỹ × Ỹ → [0, 1] while the training

examples labels belong to the subset Y ⊂ Ỹ.

10.7 Empirical Evaluation

We presents two sets of experiments. The first set is a phoneme recognizer

when the loss is frame error rate (Hamming distance) and phoneme error rate

(normalized edit distance). The second set of experiments is an interactive

image segmentation.

10.7.1 Phonetic Recognition

We evaluated the proposed method on the TIMIT acoustic-phonetic con-

tinuous speech corpus (Lamel et al., 1986). The training set contains 462

speakers and 3696 utterances. We used the core test set of 24 speakers and

192 utterances and a development set of 50 speakers and 400 utterances

as defined in (Sha and Saul, 2007) to tune the parameters. Following the

common practice (Lee and Hon, 1989), we mapped the 61 TIMIT phonemes

into 48 phonemes for training, and further collapsed from 48 phonemes to

39 phonemes for evaluation. We extracted 12 MFCC features and log energy

with their deltas and double deltas to form 39-dimensional acoustic feature

vectors. The window size and the frame size were 25 msec and 10 msec,

respectively.

10.7 Empirical Evaluation 303

Method Frame Phoneme
error rate error rate

HMM (Cheng et al., 2009) 39.3% 42.0%

HMM (Keshet et al., 2006) 35.1% 40.9%

KSBSC (Keshet et al., 2006) - 45.1%

PA (Crammer, 2010) 30.0% 33.4%

DROP (Crammer, 2010) 29.2% 31.1%

PAC-Bayes 1-frame 27.7% 30.2%

Online LM-HMM (Cheng et al., 2009) 25.0% 30.2%

Batch LM-HMM (Sha and Saul, 2007) - 28.2%

CRF, 9-frames, MLP (Morris and Fosler-Lussier, 2008) - 29.3%

PAC-Bayes 9-frames 26.5% 28.6%

Table 10.1: Reported results on TIMIT core test set.

Similar to the output and transition probabilities in HMMs, our imple-

mentation has two sets of potentials. The first set of potential captures the

confidence of a phoneme based on the acoustic. For each phoneme we define

a potential function that is a sum over all acoustic features corresponding

to that phoneme. Rather than sum the acoustic features directly, we sum

them mapped through an RBF kernel. The kernel is approximated using the

Taylor expansion of order 3. Below we report results with a context window

of 1 frame and a context window of 9 frames.

The second set of potentials captures the duration of each phoneme and

the transition between phonemes. For each pair of phonemes p, q ∈ P we

define the potential as a sum over all transitions between phoneme p and q.

We applied the algorithm as discussed in Section 10.4 where we set the

parameters over a development set. The probit expectation was approxi-

mated by a mean over 1000 samples. The initial weight vector was set to

averaged weight vector of the Passive-Aggressive (PA) algorithm Crammer

et al. (2006), which was trained with the same set of parameters and with

100 epochs as described in Crammer (2010).

Table 10.1 summarizes the results and compare the performance of the

proposed algorithm to other algorithms for phoneme recognition. Although

the algorithm aims at minimizing the phoneme error rate, we also report the

frame error rate, which is the fraction of misclassified frames. A common

practice is to split each phoneme segment into three (or more) states. Using

such a technique usually improves performance (see for example Mohamed

and Hinton (2010); Sung and Jurafsky (2010); Schwartz et al. (2006)). Here

we report results on approaches which treat the phoneme as a whole, and

defer the issues of splitting into states in our algorithm for future work. In

304 Perturbation Models and PAC-Bayesian Generalization Bounds

Method Grabcut loss PASCAL loss

Our method 7.77% 5.29%

Structured SVM (Hamming loss) 9.74% 6.66%

Structured SVM (all-zero loss) 7.87% 5.63%

GMMRF (Blake et al., 2004) 7.88% 5.85%

Perturb-and-MAP (Papandreou and Yuille, 2011) 8.19% 5.76%

Table 10.2: Learning the Grabcut segmentations using two different loss functions.
Our learned parameters outperform structured SVM approaches and Perturb-and-
MAP moment matching

the upper part of the table (above the line), we report results on approaches

which make use of context window of 1 frame. The first two rows are two

HMM systems taken from Keshet et al. (2006) and Cheng et al. (2009) with

a single state corresponding to our setting. KSBSC Keshet et al. (2006)

is a kernel-based recognizer trained with the PA algorithm. PA and DROP

Crammer (2010) are online algorithms which use the same setup and feature

functions described here. Online LM-HMM Cheng et al. (2009) and Batch

LM-HMM Sha and Saul (2007) are algorithms for large margin training

of continuous density HMMs. Below the line, at the bottom part of the

table, we report the results with a context of 9 frames. CRF Morris and

Fosler-Lussier (2008) is based on the computation of local posteriors with

MLPs, which was trained on a context of 9 frames. We can see that our

algorithm outperforms all algorithms except for the large margin HMMs.

The difference between our algorithm and the LM-HMM algorithm might

be in the richer expressive power of the latter. Using a context of 9 frames

the results of our algorithm are comparable to LM-HMM.

10.7.2 Image Segmentation

We perform experiments on an interactive image segmentation. We use

the Grabcut dataset proposed by Blake et al. (2004) which consists of 50

images of objects on cluttered backgrounds and the goal is to obtain the

pixel-accurate segmentations of the object given an initial “trimap” (see

Figure 10.1). A trimap is an approximate segmentation of the image into

regions that are well inside, well outside and the boundary of the object,

something a user can easily specify in an interactive application.

A popular approach for segmentation is the GrabCut approach (Boykov

et al., 2001; Blake et al., 2004). We learn parameters for the “Gaussian

Mixture Markov Random Field” (GMMRF) formulation of Blake et al.

(2004) using a potential function over foreground/background segmentations

Y = {−1, 1}n: θ(y;x,w) =
∑

i∈V θi(yi;x,w) +
∑

i,j∈E θi,j(yi, yj ;x,w). The

10.7 Empirical Evaluation 305

Figure 10.1: Two examples of image (left), input “trimap” (middle) and the final
segmentation (right) produced using our learned parameters.

local potentials are θi(yi;x,w) = wyi logP (yi|x), where wyi are parameters

to be learned while P (yi|x) are obtained from a Gaussian mixture model

learned on the background and foreground pixels for an image x in the

initial trimap. The pairwise potentials are θi,j(yi, yj ;x,w) = wa exp(−(xi −
xj)

2)yiyj , where xi denotes the intensity of image x at pixel i, and wa are

the parameters to be learned for the angles a ∈ {0, 90, 45,−45}◦. These

potential functions are supermodular as long as the parameters wa are

nonnegative, thus MAP prediction can be computed efficiently with the

graph-cuts algorithm. For these parameters we use multiplicative posterior

model with the Gamma distribution. The dataset does not come with a

standard training/test split so we use the odd set of images for training and

even set of images for testing. We use stochastic gradient descent with the

step parameter decaying as ηt = η
to+t

for 250 iterations.

We use two different loss functions for training/testing our approach to il-

lustrate the flexibility of our approach for learning using various task specific

loss functions. The “GrabCut loss” measures the fraction of incorrect pixel

labels in the region specified as the boundary in the trimap. The “PASCAL

loss”, which is commonly used in several image segmentation benchmarks,

measures the ratio of the intersection and union of the foregrounds of ground

truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of

MAP perturbations (Papandreou and Yuille, 2011) and structured SVM.

We use a stochastic gradient approach with a decaying step size for

1000 iterations. Using structured SVM, solving loss-augmented inference

maxŷ∈Y {L(y, ŷ) + θ(y;x,w)} with the Hamming loss can be efficiently done

using graph-cuts. We also consider learning parameters with all-zero loss

function, i.e., L(y, ŷ) ≡ 0. To ensure that the weights remain non-negative

we project the weights into the non-negative side after each iteration.

306 Perturbation Models and PAC-Bayesian Generalization Bounds

Table 10.2 shows the results of learning using various methods. For the

GrabCut loss, our method obtains comparable results to the GMMRF

framework of Blake et al. (2004), which used hand-tuned parameters. Our

results are significantly better when PASCAL loss is used. Our method also

outperforms the parameters learned using structured SVM and Perturb-

and-MAP approaches. In our experiments the structured SVM with the

Hamming loss did not perform well – the loss augmented inference tended

to focus on maximum violations instead of good solutions which causes

the parameters to change even though the MAP solution has a low loss

(a similar phenomenon was observed in Szummer et al. (2008). Using

the all-zero loss tends to produce better results in practice as seen in

Table 10.2. Figure 10.1 shows some sample images, the input trimap, and

the segmentations obtained using our approach.

10.8 Discussion

Learning complex models requires one to consider non-decomposable loss

functions that take into account the desirable structures. We suggest the

use of the Bayesian perspectives to efficiently sample and learn such models

using random MAP predictions. We show that any smooth posterior dis-

tribution would suffice to define a smooth PAC-Bayesian risk bound which

can be minimized using gradient decent. In addition, we relate the poste-

rior distributions to the computational properties of the MAP predictors.

We suggest multiplicative posterior models to learn supermodular potential

functions that come with specialized MAP predictors such as the graph-cut

algorithm. We also describe label-augmented posterior models that can use

efficient MAP approximations, such as those arising from linear program

relaxations. We did not evaluate the performance of these posterior models,

and further exploration of such models is required.

The results here focus on posterior models that would allow for efficient

sampling using MAP predictions. There are other cases for which specific

posterior distributions might be handy, e.g., learning posterior distributions

of Gaussian mixture models. In these cases, the parameters include the

covariance matrix, thus would require to sample over the family of positive

definite matrices.

Acknowledgements

TJ was partially supported by NSF grant #1524427

10.9 References 307

10.9 References

A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmen-
tation using an adaptive gmmrf model. In ECCV 2004, pages 428–441. 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. PAMI, 2001.

O. Catoni. PAC-Bayesian supervised classification: the thermodynamics of statis-
tical learning. arXiv preprint arXiv:0712.0248, 2007.

C.-C. Cheng, F. Sha, and L. K. Saul. A fast online algorithm for large margin
training of continuous-density hidden Markov models. In Interspeech, 2009.

K. Crammer. Efficient online learning with individual learning-rates for phoneme
sequence recognition. In Proc. ICASSP, 2010.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Journal of Machine Learning Research, 7, 2006.

C. Do, Q. Le, C.-H. Teo, O. Chapelle, and A. Smola. Tighter bounds for structured
estimation. In Proceedings of NIPS (22), 2008.

G. Folland. Real analysis: Modern techniques and their applications, john wiley &
sons. New York, 1999.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In ICML, pages 353–360. ACM, 2009.

K. Gimpel and N. Smith. Softmax-margin crfs: Training log-linear models with
cost functions. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pages 733–736. Association for Computational Linguistics, 2010.

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. Advances in Neural Information Processing
Systems, 21, 2007.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993.

J. Keshet, S. Shalev-Shwartz, S. Bengio, Y. Singer, and D. Chazan. Discriminative
kernel-based phoneme sequence recognition. In Interspeech, 2006.

J. Keshet, D. McAllester, and T. Hazan. PAC-Bayesian approach for minimization
of phoneme error rate. In ICASSP, 2011.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference
of Machine Learning, pages 282–289, 2001.

L. Lamel, R. Kassel, and S. Seneff. Speech database development: Design an analysis
of the acoustic-phonetic corpus. In DARPA Speech Recognition Workshop, 1986.

J. Langford and J. Shawe-Taylor. PAC-Bayes & margins. Advances in neural
information processing systems, 15:423–430, 2002.

K.-F. Lee and H.-W. Hon. Speaker independent phone recognition using hidden
markov models. IEEE Trans. Acoustic, Speech and Signal Proc., 37(2):1641–1648,
1989.

308 Perturbation Models and PAC-Bayesian Generalization Bounds

D. McAllester. Simplified PAC-Bayesian margin bounds. Learning Theory and
Kernel Machines, pages 203–215, 2003.

D. McAllester. Generalization bounds and consistency for structured labeling. In
B. Schölkopf, A. J. Smola, B. Taskar, and S. Vishwanathan, editors, Predicting
Structured Data, pages 247–262. MIT Press, 2006.

D. McAllester and J. Keshet. Generalization bounds and consistency for latent
structural probit and ramp loss. In Proceeding of NIPS, 2011.

D. McAllester, T. Hazan, and J. Keshet. Direct loss minimization for structured
prediction. Advances in Neural Information Processing Systems, 23:1594–1602,
2010.

A. Mohamed and G. Hinton. Phone recognition using restricted boltzmann ma-
chines. In Proc. ICASSP, 2010.

J. Morris and E. Fosler-Lussier. Conditional random fields for integrating local
discriminative classifiers. IEEE Trans. on Acoustics, Speech, and Language
Processing, 16(3):617–628, 2008.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCV, Barcelona,
Spain, Nov. 2011. doi: 10.1109/ICCV.2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, 1988.

M. Ranjbar, T. Lan, Y. Wang, S. Robinovitch, Z.-N. Li, and G. Mori. Optimizing
nondecomposable loss functions in structured prediction. IEEE Trans. Pattern
Analysis and Machine Intelligence, 35(4):911–924, 2013.

A. Rush and M. Collins. A tutorial on dual decomposition and lagrangian relaxation
for inference in natural language processing.

P. Schwartz, P. Matejka, and J. Cernocky. Hierarchical structures of neural networks
for phoneme recognition. In Proc. ICASSP, 2006.

M. Seeger. Pac-bayesian generalisation error bounds for gaussian process classifi-
cation. The Journal of Machine Learning Research, 3:233–269, 2003.

Y. Seldin. A PAC-Bayesian Approach to Structure Learning. PhD thesis, 2009.

Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer. Pac-
bayesian inequalities for martingales. Information Theory, IEEE Transactions
on, 58(12):7086–7093, 2012.

F. Sha and L. K. Saul. Comparison of large margin training to other discriminative
methods for phonetic recognition by hidden Markov models. In Proc. ICASSP,
2007.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Conf. Uncertainty in Artificial
Intelligence (UAI), 2008.

Y.-H. Sung and D. Jurafsky. Hidden conditional random fields for phone recogni-
tion. In Proc. ASRU, 2010.

M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts. In Computer
Vision–ECCV 2008, pages 582–595. Springer, 2008.

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In AISTATS, pages 21–23, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. Advances in
neural information processing systems, 16:51, 2004.

10.9 References 309

A. Tewari and P. Bartlett. On the consistency of multiclass classification methods.
Journal of Machine Learning Research, 8:1007–1025, 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6(2):1453, 2006.

11 Adversarial Perturbations of Deep Neural

Networks

David Warde-Farley wardefar@iro.umontreal.ca

Montreal Institute for Learning Algorithms, Université de Montréal

Montreal, QC, Canada

Ian Goodfellow goodfellow@google.com

Google, Inc.

Mountain View, CA, USA

This chapter provides a review of a body of recent work on the topic of adver-

sarial examples and generative adversarial networks. Adversarial examples

are examples created via worst-case perturbation of the input to a machine

learning model. Adversarial examples have become a useful tool for the anal-

ysis and regularization of deep neural networks for classification. In the gen-

erative adversarial networks framework, the task of probabilistic modeling is

reduced to the task of predicting worst-case perturbations of the input to a

deep neural network. A discriminator network learns to recognize real data

and reject fake samples, while a generator network learns to emit samples

that deceive the discriminator. The GAN framework provides an alternative

to maximum likelihood. The new framework has many advantageous com-

putational properties, and is better suited than maximum likelihood to the

task of generating realistic samples. More generally, games may be designed

to have equilibria that direct learning algorithms to accomplish other goals,

such as domain adaptation or preservation of privacy.

312 Adversarial Perturbations of Deep Neural Networks

11.1 Introduction

The past several years have given rise to two related lines of inquiry in deep

learning research that view the training of neural networks through the lens

of an adversarial game. The first body of work centers on the surprising

result that discriminative classifiers are often highly sensitive to very small

perturbations in the input space. This finding has led to algorithms designed

to increase classifier robustness, to these perturbations and more generally,

by exploiting these “adversarial examples”. The second body of work frames

generative model training as an adversarial game, pitting a sample genera-

tion process against a classifier trained to discriminate synthesized examples

from training data.

This chapter describes how to construct adversarial perturbations in

Section 11.2, then describes how to use the resulting adversarial examples

to improve the robustness of a classifier in Section 11.3. Finally, Section 11.4

describes more sophisticated games in which one network is trained to

generate inputs that deceive another network. These games between two

machine learning models can be used for generative modeling, privatization

of data, domain adaptation, and other applications.

11.2 Adversarial Examples

Neural networks have enjoyed much recent success in various application do-

mains, owing to their ability to learn rich, non-linear parametric mappings

from large amounts of data. While the general principles of training such

networks via gradient descent are now well understood, a fully principled ac-

count of the internal representations they learn to compute remains elusive.

As the commercial and industrial adoption of neural network technology

hastens, the search for these insights becomes ever more important. Efforts

to better understand how neural networks parameterize the input-output

mappings they learn have yielded surprising results.

Szegedy et al. (2014b) discovered that small changes to the input of a

neural network can have large, surprising effects on its output. For example,

a well-chosen perturbation of pixels in the input to an image classifier can

completely alter the class predicted by the network; in extreme cases, such

as the one illustrated in Figure 11.1, the difference between the original and

perturbed examples is imperceptible to a human observer. This surprising

sensitivity to small perturbations has been found to exist not only in neural

networks but also in more traditional machine learning methods, such as

11.2 Adversarial Examples 313

+ .007 × =

x sign(∇xJ(θ,x, y)) x+ ε · sign(∇xJ(θ,x, y))

y =“panda” “nematode” “gibbon”

w/ 57.7% confidence w/ 8.2% confidence w/ 99.3 % confidence

Figure 11.1: An example of an adversarial perturbation of an ImageNet example,
where the perturbation is so small that it is imperceptible to a human observer
despite changing the model’s classification of the input. The model assigns higher
confidence to the incorrect classification of the adversarial example that it assigned
to the correct classification of the original image. The model in this example
is GoogLeNet (Szegedy et al., 2014a). Figure reproduced with permission from
Goodfellow et al. (2014b).

linear and nearest neighbor classifiers. In-domain examples that have been

altered in this fashion are known as adversarial examples.

Adversarial examples are interesting from many different perspectives.

First, they demonstrate that machine learning methods do not yet truly

understand the tasks they are asked to perform, even though these methods

often achieve human level performance (or better) on a test set consisting

of naturally occurring inputs. Improving performance on adversarial exam-

ples therefore naturally implies achieving a deeper understanding of the

underlying task. To this end, improvements in classification of adversarial

examples can indeed lead to improvements on the original, non-adversarial

classification task, as described in Section 11.3. Second, adversarial examples

also have important implications for computer security, discussed in Sec-

tion 11.2.1. Adversarial examples suggest that contemporary machine learn-

ing algorithms deployed against artificial perception tasks are performing

fundamentally different computations than the human perceptual system,

as discussed in Section 11.2.2. Finally, adversarial examples are interesting

because they present a major difficulty for certain forms of model-based opti-

mization. In scenarios where automated classification is useful but the major

task of interest is a search for examples with desirable properties (e.g. drug

design), one might be tempted to employ a well-performing differentiable

classifier and perform gradient ascent with respect to the input. However,

the existence and relative abundance of adversarial examples suggests this

approach will most often be fruitless.

314 Adversarial Perturbations of Deep Neural Networks

11.2.1 Cross-Model, Cross-Dataset Generalization and Security

A shocking property of adversarial examples, discovered by Szegedy et al.

(2014b), is that a specific input point x̃ that was designed to deceive

one model (model A) will often also deceive another model, model B.

When model B has a different architecture than model A, this is called

cross-model generalization of adversarial examples. When model B was

trained on a different training set than model A, this is called cross-

dataset generalization. It is not fully understood why this happens, but

Section 11.2.3 offers some intuitive justification.

Both Szegedy et al. (2014b) and Goodfellow et al. (2014b) present several

experiments demonstrating the transfer rate between various model families

and subsets of the training set. Additional experimental results unique

to this chapter are presented in Table 11.1, using the same adversarial

example generation procedure as Goodfellow et al. (2014b). The crafting

model for the majority of these experiments was a maxout neural network of

the same architecture employed for the permutation-invariant MNIST task

in Goodfellow et al. (2013a). Additionally, transfer between a smoothed,

differentiable version of nearest neighbor classification and conventional

nearest neighbor is examined, where the prediction of the smoothed nearest

neighbor classifier predicts a probability for class i via the formula

yi(x) =
1

N

N∑
n=1

wny
(n)
i (11.1)

where y
(n)
i is equal to 1 if training example n has class i and 0 otherwise,

and wn is the softmax-normalized squared Euclidean distance from the test

example x to training example x(n),

wn =
exp

(
−‖x− x(n)‖2

)∑
m=1 exp

(
−‖x− x(m)‖2

) (11.2)

These results show that there is a non-trivial error rate even when the ad-

versarial examples are crafted to fool a neural network, then deployed against

an extremely different machine learning model such as nearest neighbor clas-

sification. Because these models are so different from each other, nearest

neighbor has a lower error rate on the transferred adversarial examples than

has usually been reported previously, but the error rate remains significant.

These results also show that models that are not differentiable (such as

nearest neighbor) can easily be attacked using cross model transfer from a

differentiable model (maxout networks or smoothed nearest neighbor).

11.2 Adversarial Examples 315

Crafting model Target model Error rate

Maxout network Nearest neighbor 25.3%

Smoothed nearest neighbor Nearest neighbor 47.2%

Maxout network ReLU network 47.2%

Maxout network Tanh network 99.3%

Maxout network Softmax regression 88.9%

Table 11.1: Results of additional cross-model adversarial transfer experiments.
The maxout crafting model is identical in architecture to that employed for the
permutation-invariant MNIST task by Goodfellow et al. (2013a). The ReLU and
Tanh neural networks each contained two layers of 1,200 hidden units each. All
nerual networks were trained with dropout (Srivastava et al., 2014).

Cross-model, cross-dataset generalization of adversarial examples implies

that adversarial examples pose a security risk even under a threat model

where the attacker does not have access to the target’s model definition,

model parameters, or training set. The attacker can prepare a training set

(for the same task), train a model on their own training set, craft adversarial

examples that deceive their own model, and then deploy these adversarial

examples against the target system.

Attacks that leverage cross-model and cross-dataset generalization of

adversarial examples have been acknowledged as a theoretical possibility

since the work of Szegedy et al. (2014b) introduced these effects. Papernot

et al. (2016a) provided the first practical demonstration of attacks based on

adversarial examples in a realistic scenario: they trained a classifier for the

MNIST dataset using the MetaMind API, wherein the model parameters

reside on MetaMind’s servers and its definition is not disclosed to the user.

By training another model locally and crafting adversarial examples that

fooled it, the authors were able to successfully fool the model they had

trained via the MetaMind API. This suggests that modern machine learning

methods require new defenses before they can be safely used in situations

where they might face an actual adversary.

11.2.2 Adversarial Examples and the Human Brain

It is natural to wonder whether the human brain is vulnerable to adversarial

examples. At first glance, it seems difficult to test, because there is no known

method for obtaining a description of the brain as a differentiable model in

the form used by adversarial example construction algorithms. However, the

cross-model, cross-dataset generalization property of adversarial examples

suggests that if the brain were even remotely similar to modern machine

316 Adversarial Perturbations of Deep Neural Networks

learning algorithms, it should be fooled by the same images that fool machine

learning models. So far this seems not to be the case.

However, the brain can be easily fooled by many illusions; see Robinson

(2013) for a review. For example, optical illusions in which one line appears

to be longer than another despite both lines being the same length can be

interpreted as adversarial examples for the line length regression task.

Audible and visible stimuli can also cause a range of beneficial or detri-

mental involuntary side effects in human observers, ranging from pain relief

to seizures. Many of these effects rely on synchronizing the temporal fre-

quency of a visual stimulus to the temporal frequency of changes in brain

activity measured by EEG. This might be analogous to adversarial example

construction techniques that match a spatial pattern of inputs to the spa-

tial distribution of neural network weights. See Frederick et al. (2005) for a

useful review of the effects of audible and visible stimuli constructed using

information from EEG.

11.2.3 The Linearity Hypothesis

When Szegedy et al. (2014b) discovered the existence of adversarial exam-

ples, their cause was unknown. Initially, they were suspected to be caused

by neural networks being highly complex, non-linear models that can assign

very random classifications to test set inputs.

Goodfellow et al. (2014b) argued that these explanations failed to explain

two important experimental observations. First, adversarial examples affect

some very simple models, such as shallow linear classifiers, just as much as

they affect deep models. Model complexity and overfitting would therefore

not seem to be the primary problem. Second, adversarial examples can

consistently fool models other than the one from which they are initially

derived, as described in Section 11.2.1. If adversarial examples were just a

manifestation of overfitting, then different models should respond to each

adversarial example differently. Goodfellow et al. (2014b) demonstrated, to

the contrary, that distinct models not only mislabel the same adversarial

examples, but also mislabel them with the same class.

Goodfellow et al. (2014b) introduced the linearity hypothesis, which pre-

dicts that most adversarial examples affecting current machine learning

models arise due to the model behaving extremely linearly as a function of its

inputs. To confirm this hypothesis, Goodfellow et al. (2014b) demonstrated

that adversarial attacks against linear approximations of deep models are

highly successful, and introduced visualizations showing that the logits (i.e.

the inputs to a final softmax output layer) of a deep neural network classifier

are piecewise linear with large pieces as a function of the input to the model.

11.2 Adversarial Examples 317

This hypothesis is based on the observation that modern deep networks are

based on components that have been designed to be extremely linear, such

as rectified linear units (Jarrett et al., 2009; Glorot et al., 2011). Though

deep neural networks are very nonlinear as a function of their parameters,

they can nonetheless be very linear as a function of their inputs. Deep rec-

tifier networks divide input space into several regions, with the output of

the rectified linear layers being linear within each region. These regions are

often extremely large, especially compared to the size of perturbations used

to construct adversarial examples.

To understand why linear functions are highly vulnerable to adversarial

examples, consider the output of a regression model f(x) = w>x. If the

input is perturbed by ε ·sign(w), then the output increases by ε||w||1. When

w is high dimensional, the increase in the output can be extremely large. In

other words, linear functions can add up very many tiny pieces of evidence

to reach an extreme conclusion. If x has large feature values that are not

closely aligned with w, it will have less of an effect on the output than a

perturbation consisting of many small values that are all closely aligned to

w.

Even in low dimensional spaces, linear functions behave in ways that seem

disadvantageous for machine learning. A logistic regression model applied to

a one-dimensional input space that classifies an input of x = −1 as belonging

to the negative class and an input of x = 1 as belonging to the positive class

must classify an input of x = 2 as belonging to the positive class with

extremely high confidence, even if no value as large as 2 occurred in the

training set. Larger values of x result in more confidence, even if they are

even farther from examples that were seen at training time.

Because neural networks are parameterized in terms of linear components,

they are biased toward learning functions that make wild predictions when

extrapolating far from previously seen inputs. In high-dimensional spaces,

even small perturbations of each input can take the input vector very far

in Euclidean distance from the starting point. This explains the majority of

adversarial examples affecting modern neural networks.

It is natural to wonder how adversarial examples are distributed through-

out space. For example, one could imagine that they are rare and occur

in small, fine pockets that must be found with careful search procedures.

The linearity hypothesis predicts instead that adversarial examples occupy

large volumes of space. If the cost function J(x, y) increases in a roughly

linear fashion in direction d, then an adversarial example x̃ = x+ η will be

misclassified so long as η>d is large. The linearity hypothesis thus predicts

that a hyperplane where η>d = C for some constant C divides the space Rn
into two half-spaces. The original input x is correctly classified, and a large

318 Adversarial Perturbations of Deep Neural Networks

region of points on the same side of the hyperplane as x are also classified

the same as x. On the opposite side of the hyperplane, nearly all points have

a different classification.

Goodfellow et al. (2014b) provided a variety of sources of indirect evidence

for the linearity hypothesis. This chapter introduces some visualizations that

show the resulting half-spaces of adversarial examples more directly. These

visualizations are called church window plots due to their resemblance to

stained glass windows. These plots show two-dimensional cross sections of

the classification function, exploring input space near test set examples.

Figure 11.2 shows cross sections exploring the adversarial direction defined

by the fast gradient sign method and a random direction. Figure 11.3 shows

cross sections exploring two random orthogonal directions. Figure 11.4 shows

cross sections exploring two adversarial directions, with the first defined by

the fast gradient sign method and the second defined by the component of

the gradient that is orthogonal to the first direction.

11.2.4 Crafting Adversarial Examples

Several different methods of crafting adversarial examples are available.

When adversarial examples were first discovered, they were generated with

general purpose methods that make no assumption about the underlying

cause of adversarial examples, but that are expensive and require multiple

iterations. Later, inexpensive methods based on linearity assumptions were

developed. Most adversarial example crafting techniques require training set

labels, but virtual adversarial examples remove this requirement. Specialized

methods provide fast methods of attacking classifiers specifically or crafting

perturbations that change as few input dimensions as possible.

Let x ∈ Rn be a vector of input features (usually the pixels of an image)

and y be an integer specifying the desired output class of the model. Let

f be the classification function learned by the model, so that f(x) is an

integer giving the model’s prediction. Let J(x, y) be the cost used to train

the model.

The goal of adversarial example crafting is to find an input point x̃ = x+η

that causes the model to perform poorly. Different methods of crafting

adversarial examples use different criteria to determine how poorly the

model behaves, different approaches to limit the size of η, and different

approximations to optimize the chosen criterion. In all cases, the goal

is to find a perturbation η to be small enough that an ideal classifier

(usually approximated by human judgment) would still assign class y to

x̃. Guaranteeing that x̃ truly belongs to the same class as x is a subtle

point, discussed further in Section 11.2.5.

11.2 Adversarial Examples 319

Figure 11.2: Church window plots applied to a convolutional network trained on
CIFAR-10. The convolutional network is that of Goodfellow et al. (2013b). Each cell
in the 10 × 10 grid in the figure is a different church window plot corresponding
to a different CIFAR-10 test example. Here the model is viewed as a function
f : Rn → {1, . . . , 10}. At coordinate (h, v) within the plot, the pixel is drawn with
a unique shade (in the book, the pixel is printed with a unique grayscale shade
indicating the class, while on a computer monitor, each pixel may be displayed
with a unique color indicating the class) for each class, indicating the class output
by f(x + hu(1) + vu(2)), where u(1) and u(2) are orthogonal unit vectors that
span a 2-D subspace of Rn. The correct class for each example, given by the test
set label, is always plotted as white. To aid visibility, a black contour is drawn
around the boundary of each class region. The horizontal coordinate h within the
plot begins at −ε on the left side of the plot and increases to ε on the right side
of the plot. The vertical coordinate v spans the same range, beginning at −ε at
the top of the plot. The center of the plot thus corresponds to the classification
of the unperturbed input x. In all cases these visualizations use .25 for ε, which
corresponds to large perturbations on our preprocessing of CIFAR-10. Such large
perturbations seriously degrade the quality of the image but do not prevent a human
observer from recognizing the class. In this figure, u(1) is the direction defined by a
fast technique for finding adversarial examples discussed later in this section, while
u(2) is a direction chosen uniformly at random among those orthogonal to u(1).
From this figure, one can see that the adversarial direction usually roughly divides
space into a half-space of correct classification and incorrect classification, with
the test example usually lying on the correct side but somewhat near the decision
boundary. One can also see that in these cross-sections, the decision boundaries
have simple, roughly linear, shapes.

320 Adversarial Perturbations of Deep Neural Networks

Figure 11.3: Church window plots with both basis directions chosen randomly. See
Figure 11.2 for a description of church window plots. In this plot, one can see that
random directions rarely cause the class to change. Many authors mistakenly speak
of “adversarial noise.” This figure illustrates that noise actually does not change
the classification very often compared to adversarial directions of perturbation.
The empirical observation that noise is less harmful than adversarial directions
dates back to Szegedy et al. (2014b), but the church window plots make the
mechanism clear. The classification decision is sensitive mostly to a small subspace
of adversarial directions that are unlikely to be chosen randomly.

11.2 Adversarial Examples 321

Figure 11.4: Church window plots with both basis directions chosen adversarially.
See Figure 11.2 for a description of church window plots. In this plot, the first
direction is the one given by the fast gradient sign method (Equation 11.6) and the
second direction is the component of the gradient that is orthogonal to the first
direction. One can still see linear decision boundaries within this subspace. From
this one can see that adversarial examples do not lie in small pockets whose exact
coordinates are difficult to find. Instead, adversarial examples may be found by
moving in any direction that has large dot product with the gradient.

322 Adversarial Perturbations of Deep Neural Networks

Different methods of crafting adversarial examples quantify poor model

performance in different ways. Some methods are explicitly designed to cause

the model to label x̃ as belonging to class ỹ, where ỹ 6= y. Other methods

make use of the cost function J(x, y) used to train the model, and seek a

perturbation that results in a large (ideally, maximal) value of J(x̃, y).

Szegedy et al. (2014b) introduced the first method for crafting adversarial

examples. This method was based on solving the optimization problem

η = argmin
η

λ||η||22 + J(x+ η, ỹ) subject to (x+ η) ∈ [0, 1]n, (11.3)

where ỹ is an incorrect class of the attacker’s choice. The initial experiments

on adversarial examples used box-constrained L-BFGS to accomplish the

minimization, but in principle any gradient-based optimization algorithm

would suffice. The minimization was repeated multiple times with different

values of λ in order to find the smallest η that resulted in successfully

causing f(x + η) = ỹ. This method is extremely effective, finds very

small perturbations, and can cause the model to output specific, desired

classes, and makes no assumptions about the structure of the model, but is

also highly expensive, requiring multiple calls to an iterative optimization

procedure for each example.

Szegedy et al. (2014b) included a constraint that (x + η) ∈ [0, 1]n. This

constraint ensures that the adversarial example has the same range of pixel

values as the original data, and that it lies within the domain of the original

function. Later authors frequently omitted this constraint for simplicity,

because the perturbations η are typically small and thus do not move the

input significantly far outside the original domain.

For the cost functions that are used to train neural network classifiers,

such as J(x, y) = − logP (y | x), a model that is linear over wide regions

of its input domain also yields a cost that is approximately linear over

wide regions of the input domain. This motivated the development of a

fast adversarial example generation scheme based on a linear approximation

of the cost function. The method of Szegedy et al. (2014b) fixes a desired

target class and minimizes the size of η. The method of Goodfellow et al.

(2014b) simplifies the problem by fixing the allowed size of η and maximizing

the cost incurred by the perturbation:

η = argmax
η

J(x+ η, y) subject to ||η||∞ ≤ ε, (11.4)

where ε is a hyperparameter chosen by the attacker, specifying the maximum

desired pertubation size. The use of the max norm ||η||∞ is motivated

in Section 11.2.5, but this method could also work with other norms,

including the L2 norm. Solving Equation 11.4 requires iterative optimization

11.2 Adversarial Examples 323

in general. To obtain a fast, closed-form solution, Goodfellow et al. (2014b)

replaced J with a first-order Taylor series approximation:

η = argmax
η

J(x, y) + η>g subject to ||η||∞ ≤ ε. (11.5)

where g = ∇xJ(x, y). The solution to Equation 11.5 is given by

η = ε · sign(g) (11.6)

This is called the fast gradient sign method of generating adversarial exam-

ples. The method has the advantage of being extremely fast compared to

the L-BFGS method (computing the gradient once instead of hundreds of

times), making adversarial example generation feasible for use within the

inner loop of a learning algorithm, as described in Section 11.3. The method

has some disadvantages, namely that its justification rests on the linearity

hypothesis. In some cases, when the linear approximation poorly represents

the function, this method requires larger perturbations than other methods.

In extreme cases, such as when a model has been explicitly trained to resist

the fast gradient sign method, the fast gradient sign method might cease

to find adversarial examples while the L-BFGS method continues to do so.

The L-BFGS method was also designed to cause the model to predict a spe-

cific class ỹ chosen by the attacker. While the fast gradient sign method as

outlined above does not allow for the specification of a target class, it can

be trivially extended to this setting by following the gradient of logP (ỹ | x)

rather than J(x, y). Finally, the fast gradient sign method is highly general

because it is based on maximizing J . This allows it to be applied to mod-

els other than classifiers. For example, it can be used to find inputs to an

autoencoder that incur high reconstruction error.

Both the L-BFGS method and the fast gradient sign method rely on access

to the true class label y. Miyato et al. (2015) devised a way to remove this

requirement. After a model has been at least partially trained, it is usually

able to provide mostly accurate labels. Therefore, rather than making a

perturbation intended to reduce the probability of the label provided in the

training set, the attacker can make a perturbation intended to make the

model change its prediction. Virtual adversarial examples are thus designed

to approximately maximize

DKL (p(y | x)‖p(y | x+ η)) (11.7)

with respect to η, under appropriate constraints on η. The ability to

construct adversarial examples without access to ground truth labels enables

the use of adversarial examples for semi-supervised learning, described in

Section 11.3.1.

324 Adversarial Perturbations of Deep Neural Networks

Other specialized methods of crafting adversarial examples provide differ-

ent benefits. Huang et al. (2015) introduced an attack specialized for clas-

sifiers. While the fast gradient sign method linearizes the cost function,

the attack of Huang et al. (2015) linearizes the model. Under the linear

approximation of the model, it is possible to solve for the smallest perturba-

tion that yields a change in the output class in closed form. By more tightly

modeling the problem of changing the output class, this method is able to

achieve class changes with smaller perturbation sizes than the fast gradient

sign method.

Most methods of crafting adversarial examples change many input dimen-

sions, each by a small amount. Papernot et al. (2016b) introduced a different

approach, that changes few input dimensions, but may change each one by

a large amount.

Finally, Sabour et al. (2015) showed that it is possible to construct

adversarial examples that cause the model to assign a hidden representation

to x̃ that closely resembles the hidden representation of a different example

x′. For example, an image of farm equipment may be perturbed so that it has

approximately the same hidden representation as an image of a bird. This is

a stronger condition than perturbing the image to take on a specific class. For

example, when the image of farm equipment is perturbed to have the same

hidden representation as the image of a bird, the hidden representation may

be decoded to obtain the same color of bird standing in the same location

with the same pose—it is not just the concept of the output class “bird”

that is imposed on the adversarial example.

11.2.5 Ensuring That Class Changes Are Mistakes

One subtle point when constructing adversarial examples is that the pertur-

bation η must not change the true class of the input – that is, the adversarial

example should be such that for the task at hand, it would still be desir-

able that a classifier assign it the same class as it would the original. If

η is “too large”, an adversarial perturbation could subtract the true iden-

tifying characteristics of the original class identity and replace them with

the true identifying characteristics of another class, yielding an adversarial

example x̃ that truly does belong to a different class ỹ. In other words, it

is sometimes correct for the classifier to change its class output when the

input changes. Adversarial examples must be crafted in such a way that it

remains a mistake for the class output to change.

So far there is no general principle determining how to tell whether the

class should change for an arbitrary new input, and it seems that if such a

principle were known there would no longer be a need for machine learning

11.2 Adversarial Examples 325

classifiers. Instead, Goodfellow et al. (2014b) advocate devising a set of

sufficient conditions that guarantee that a perturbation η will not change the

class for a particular application area. For the specific application of object

recognition in images, Goodfellow et al. (2014b) suggests that a perturbation

η that does not change any specific pixel by more than some amount ε

cannot change the output class. The value of ε should be chosen based

on knowledge of the task. For example, on the MNIST dataset, the input

values are typically normalized to lie in the range [0, 1]. The images are of

written digits, typically displayed as white digits on a black background.

The information content of each pixel is thus roughly binary. Consequently,

ε may be chosen to be quite large for this task. An ε of .25 turns a white pixel

with value 1.0 into a bright gray pixel with value .75, which may still easily

be recognized as carrying the same semantics as a white pixel. Because

some pixels in the original data are gray, perturbations larger than .25

become difficult for human observers to classify. For other object recognition

datasets, one might choose ε to be small enough that the change to a pixel

is imperceptible to a human observer, or to be small enough that a change

to the 32 bit floating point encoding of the input does not change the 8 bit

representation used to store the images on disk. This principle of ensuring

that no pixel changes by more than some negligible amount motivates the

use of the max norm to constrain the size of η in Equation 11.4. Figure 11.5

provides some illustrations showing how the max norm can be superior to

the L2 norm for ensuring that perturbations do not alter the true class.

The use of the max norm to constrain η is of course a sufficient condition

for preventing a class change when the task is object recognition. One could

imagine other tasks where no norm of η provides a useful restriction on the

perturbation. For example, consider a regression task where the true output

should be d>x. Then any perturbation that has non-zero dot product with

d will change the true output that the regression model should return. The

norm of the perturbation is not relevant for this hypothetical task, but rather

the direction.

11.2.6 Rubbish Class Examples

Adversarial examples are closely related to the idea of rubbish class examples

(LeCun et al., 1998). Rubbish class examples are pathological inputs that do

not belong to any class encountered during training. For example, an image

where the pixels are drawn from a uniform distribution usually does not

belong to any class of images of objects. Ideally, one would like a classifier

that assigns normalized probabilities to various output classes to report a

uniform distribution over output classes when presented with such an input.

326 Adversarial Perturbations of Deep Neural Networks

Figure 11.5: Examples of perturbations, illustrating that an L2 perturbation can
behave unpredictable, while a perturbation subject to a max norm constraint can
be guaranteed to preserve the object class. The grid on the left shows the result
of L2-constrained perturbation while the grid on the right shows the result of max
norm-constrained perturbation. Within each grid, each row shows a the results of
a single perturbation. Each row of three images consists of (left to right) an image
of input x, an image of a perturbation η, and an image of a resulting perturbed
input, x̃ = x+ η.

In the grid on the left, three different perturbations are shown. From top
to bottom, the first perturbation causes the true class to change from 3 to 7
(the pertubation is just the difference between an example 7 and an example
3 from the dataset), the second perturbation causes no change, and the final
perturbation causes the class to change from 3 to the rubbish class. All three of
these perturbations have the same L2 norm.

In the grid on the right, see three new perturbations that still have the same L2

norm as the first three, but that have been modified to obey a max norm constraint.
These perturbations were constructed by taking the sign of the corresponding
perturbation on the left, assigning zero entries to be −1 or 1 randomly, and
multiplying by a scaling factor. Randomly replacing zero entries with −1 or 1 is
necessary to increase the perturbation size enough to maintain the same L2 norm
as the perturbation on the left. None of the max norm constrained perturbations
change the class.

All six perturbations shown have the same L2 norm but yield different outcomes.
This suggests that the L2 norm is not a useful way of constraining η while
constructing adversarial examples for object recognition. The max norm provides
a sufficient (but not necessary) condition that guarantees an adversarial example
will not change the true underlying class.

The perturbations used in this visualization are relatively small, with an L2 norm
of roughly 4 for all six perturbations and a max norm of roughly 0.14 for the
perturbations on the right. When using the max norm constraint, it is possible to
construct adversarial examples with max norm .25. Such perturbations have a L2

norm of 7.

11.2 Adversarial Examples 327

Similarly, a model that reports an independent probability estimate for the

detection of each class should preferably indicate that no classes are present.

However, both formulations are easily fooled into reporting that a specific

class is present with high probability simply by using Gaussian noise as input

to the model (Goodfellow et al., 2014b). Nguyen et al. (2014) demonstrated

that large, state of the art convolutional networks can also be fooled using

rich, structured images generated by genetic algorithms. Because rubbish

class examples do not correspond to small perturbations of a realistic input

example, they are beyond the scope of this chapter.

11.2.7 Defenses

To date, the most effective strategy for defending against adversarial exam-

ples is to explicitly train the model on them, as described in Section 11.3.

Many traditional regularization strategies such as weight decay, ensemble

methods, and so on, are not viable defenses. Regularization strategies can

fail in two different ways. Some of them reduce the error rate of the

model on the test set, but do not reduce the error rate of the model

on adversarial examples. Others reduce the sensitivity of the model to

adversarial perturbation, but only have a significant effect if they are applied

so powerfully (e.g., with such a large weight decay coefficient) that they

cause the performance of the model to seriously degrade on the validation

set. The failure of some traditional regularization strategies to provide a

defense against adversarial examples is discussed by Szegedy et al. (2014b)

and the failure of many more traditional regularization strategies is discussed

by Goodfellow et al. (2014b). In summary, most traditional neural network

regularization techniques have been tested and do not provide a viable

defense.

In addition to these traditional methods, some new methods have been

devised to defend against adversarial examples. However, none of these

methods are yet very effective. For even the best methods, the error rate

on adversarial examples remains noticeably higher than on unperturbed

examples.

Gu and Rigazio (2014) trained a denoising autoencoder, where the noise

corruption process was the adversarial example generation process. In other

words, the autoencoder is trained with adversarial example to predict the

corresponding unperturbed example as output. The goal was to use the

autoencoder as a preprocessing step before applying a classifier, in order

to make the classifier resistant to adversarial examples. Unfortunately, the

combination of the autoencoder and the classifier then becomes vulnerable

to a different class of adversarial examples that the autoencoder has not

328 Adversarial Perturbations of Deep Neural Networks

been trained to resist. Gu and Rigazio (2014) reported that the combined

system was vulnerable to adversarial examples with smaller perturbation

size than the original classifier. The authors of this chapter speculate that

this can be explained by the linearity hypothesis; the autoencoder is still

built mostly out of linear components. If one views the classifier as being

roughly a product of matrices, then the autoencoder simply introduces two

more matrix factors into this product. If these matrices have any singular

values that are larger than one, then they amplify adversarial perturbations

in the corresponding directions.

Papernot et al. (2015) introduced an approach called defensive distillation.

First, a teacher model is trained to maximize the likelihood of the training

set labels:

θ(t)∗ = argmax

m∑
i=1

log p(t)
(
y(i) | x(i);θ(t)

)
. (11.8)

The teacher model is then used to provide soft targets for a second network,

called the student network. The student network is trained not just to predict

the same class as the teacher network, but to predict the same probability

distribution over classes:

θ(s)∗ = argmin
θ(s)

m∑
i=1

DKL

(
p(t)

(
y(i) | x(i);θ(t)

)
‖p(s)

(
y(i) | x(i);θ(s)

))
.(11.9)

This technique noticeably reduces the vulnerability of a model to adversarial

examples but does not completely resolve the problem.

As an original contribution of this chapter, an experimental observation

shows that a simpler method than defensive distillation also has a beneficial

effect. Rather than training a teacher network to provide soft targets, it is

possible to simply modify the targets from the training set to be soft, e.g.,

for a k class problem, replace a target value of 1 for the correct class with a

target value of .9, and for the incorrect classes replace the target of 0 with a

target of 1
10k . This technique is called label smoothing and is a component of

some state of the art object recognition systems (Szegedy et al., 2015). The

label smoothing experiment was based on a near-replication of the MNIST

classifier of Goodfellow et al. (2013a). This classifier is a feedforward network

with two hidden layers consisting of maxout units, trained with dropout

(Srivastava et al., 2014). The model was trained on only on the first 50,000

examples and was not re-trained on the validation set, so the test error rate

was higher than in the original investigation of Goodfellow et al. (2013a).

The model obtained an error rate of 1.28% on the MNIST test set. The error

rate of the model on adversarial examples on the MNIST test set using

the fast gradient sign method (Equation 11.6) with ε = .25 was 99.97%.

11.3 Adversarial Training 329

A second instantiation of exactly the same model was trained using label

smoothing. The error on the test set dropped to 1.17%, and the error rate

on the adversarially perturbed test set dropped to 33.0%. This error rate

indicates a significant remaining vulnerability but it is a vast improvement

over the pre-smoothing adversarial example error rate.

The linearity hypothesis can explain the effectiveness of label smoothing.

Without label smoothing, a softmax classifier is trained to make infinitely

confident predictions on the training set. This encourages the model to

learn large weights and strong responses. When values are pushed outside

the areas where training data concentrates, the model makes even more

extreme predictions when extrapolating linearly. Label smoothing penalizes

the model for making overly confident predictions on the training set, forcing

it to learn either a more non-linear function or a linear function with smaller

slope. Extrapolations by the label-smoothed model are consequently less

extreme.

11.3 Adversarial Training

Adversarial training corresponds to the process of explicitly training a model

to correctly label adversarial examples. In other words, given a training ex-

ample x with label y, the training set may be augmented with an adversarial

example x̃ that is still associated with training label y. Szegedy et al. (2014b)

proposed this method, but were unable to generate large amounts of adver-

sarial examples due to reliance on the expensive L-BFGS method of crafting

adversarial examples. Goodfellow et al. (2014b) introduced the fast gradient

sign method and showed that it enabled practical adversarial training. In

their approach, the model is trained on a minibatch consisting of both un-

modified examples from the training set and adversarially perturbed versions

of the same examples. Crucially, the adversarial perturbation is recomputed

using the latest version of the model parameters every time a minibatch is

presented. Adversarial training can be interpreted as a minimax game,

θ∗ = argmin
θ

Ex,y max
η

[J(x, y,θ) + J(x+ η, y)] , (11.10)

with the learning algorithm as the minimizing player and a fixed procedure

(such as L-BFGS or the fast gradient sign method) as the maximizing player.

Goodfellow et al. (2014b) found that adversarial training on MNIST

reduced both the test set error rate and the adversarially perturbed test

set error rate of a maxout network. The reduction in error rate on the

unperturbed test set is presumably due to adversarial training forcing the

330 Adversarial Perturbations of Deep Neural Networks

model to learn a more parsimonious function that can explain a wide variety

of adversarial examples with a small number of parameters.

Training with the fast gradient sign method means that the model is

selectively resistant to adversarial examples that were constructed with this

method. However, some resistance to other forms of adversarial examples

is achieved. Goodfellow et al. (2014b) reported that their maxout network

had an error rate of 18% on the MNIST test set when perturbed by the fast

gradient sign method with ε = .25. This chapter introduces the observation

that using gradient descent on the true model to find the best perturbation

with max norm less than .25 increases the error rate to 97%. However, this

does not mean that adversarial training with the fast gradient sign method

was ineffective. If the max norm constraint is tightened to ε = .1, then

the error rate of the adversarially trained maxout network falls to 22%.

Without adversarial training, the error rate at this perturbation magnitude

is 79%. Adversarial training with the fast gradient sign method thus confers

robustness to other types of perturbation, but with a smaller perturbation

size than was used for training.

11.3.1 Virtual Adversarial Training

Miyato et al. (2015) extended adversarial training to the semi-supervised set-

ting by introducing the virtual adversarial example construction technique,

which allows the construction of adversarial examples when no class label

is available. This approach allows the model to be trained to have a highly

robust classification function in the neighborhood of unlabeled examples.

This technique improved the state of the art on semi-supervised learning on

the MNIST dataset, outperforming much more complicated methods based

on training generative models of unlabeled examples.

11.4 Generative Adversarial Networks

The generative adversarial network (GAN) framework introduced in Good-

fellow et al. (2014a) phrases the problem of estimating a generative model

in terms of a sample generation process G : Rd → Rn, which takes as its

argument a random variate z ∼ p(z); p(z) is often chosen from some simple

family such as an isotropic Gaussian distribution, or a uniform distribution

on [−1, 1]d. G(·) is a machine parameterized by ΘG which learns to map a

sample from the base distribution p(z) to a corresponding sample from an

implicitly defined distribution pg(x). The combined procedure of drawing a

sample z from p(z) and applying G to z is referred to as the generator.

11.4 Generative Adversarial Networks 331

In contrast with many existing generative modeling frameworks, GANs

may be trained without an explicit algebraic representation of pmodel(x),

tractable or otherwise. The GAN framework is compatible with some mod-

els that explicitly define a probability distribution—any directed graph-

ical model whose sampling process is compatible with stochastic back-

propagation (Williams, 1992; Kingma and Welling, 2014; Rezende et al.,

2014) may be used as a GAN generator—but the framework does not re-

quire explicit specification of any conditional or marginal distributions, only

the sample generation process. In frameworks based on explicit specifica-

tion of probabilities it is typical to maximize the empirical expectation of

log pmodel(x), applying Monte Carlo or variational approximations if faced

with intractable terms (often in the form of a normalizing constant). Instead,

GANs are trained to match the data distribution indirectly with the help

of a discriminator, i.e. a binary classifier D : Rn → [0, 1], parameterized

by ΘD, whose output represents a calibrated probability estimate that a

given example was sampled from pdata(x). The conditional log likelihood of

the discriminator, on a balanced dataset of real and synthetic examples, is

(in the usual fashion) maximized with respect to the parameters of D, but

simultaneously minimized with respect to the parameters of G.

11.4.1 Adversarial Networks in Theory and Practice

The joint training procedure for the generator G and the discriminator D

can be viewed as a two-player, continuous minimax game with a certain

value function. In their introduction of the GAN framework, Goodfellow

et al. (2014a) proved that the GAN training criterion has a unique global

optimum in the space of distributions represented by G and D, wherein

the distribution sampled by the generator exactly matches that of the

data generating process, and the discriminator D is completely unable to

distinguish real data from synthetic. It can also be proved, under certain

assumptions, that the game converges to this optimum if G is improved at

every round and D is chosen to be the ideal discriminator between pg(x)

and pdata(x), i.e. D?(x) = pdata(x)/(pdata(x) + pg(x)).

Goodfellow (2014) advanced the theoretical understanding of the GAN

training criterion and its relationship to other distinguishability-based learn-

ing criteria. In particular, noise-contrastive estimation (NCE) (Gutmann

and Hyvarinen, 2010) can be viewed as a variant of the GAN criterion

wherein the generator is fixed, and the discriminator is a generatively pa-

rameterized classifier that learns an explicit model of p(x) as a side effect of

discriminative training, while a variant of noise contrastive estimation em-

ploying (a copy of) the learned generative model is shown to be equivalent,

332 Adversarial Perturbations of Deep Neural Networks

in expectation, to maximum likelihood. Perhaps most importantly, Good-

fellow (2014) noted a subtlety of theoretical results outlined above, pointing

out that they are significantly weakened by the setting in which GANs are

typically optimized in practice.

Optimization of the generator and discriminator necessarily takes place in

the space of parameterized families of functions, and the cost surface in the

space of these parameters may have symmetries and other pathologies that

imply non-uniqueness of the optima as well as practical difficulties locating

them. One does not typically have analytical access to pg(x) and certainly

not to pdata(x), and must attempt to infer the optimal discriminator from

data and samples. It is often prohibitively expensive to fully optimize the

parameters of D after every change in the parameters of G – therefore, in

practice, one settles for a parameter update aimed at improving D, such as

one or more stochastic gradient steps. This means that the generator’s role

in the minimax game of minimizing with respect to pg(x) given a maximum

of the value function with respect to D, is instead minimizing a lower bound

on the correct objective. It is not at all clear whether the minimization of

this lower bound improves the quantity of interest or simply loosens the

bound.

Note that Goodfellow et al. (2014a) optimize a slightly different but

equivalent criterion than described above. Let D(x) = p (x is data | x), the

discriminator’s estimate that a given sample x comes from the data. Rather

than minimize

Ez∼p(z) log (1−D(G(z))) (11.11)

(a term that already appears in the training criterion for the discrimi-

nator) with respect to the parameters of G, one can instead maximize

Ez∼p(z) log (D(G(z))); this criterion was found to work better in practice.

The motivation for this lies in the fact that early in training, when G is pro-

ducing samples that look nothing at all like data, the discriminator D can

quickly learn to distinguish the two, and log (1−D(G(z)) can quickly satu-

rate to zero. The derivative of the per-sample objective contains a factor of

(1−D(G(z)))−1, thus scaling the gradients which G receives via backpropa-

gation to have very small magnitude. Pushing upward on log(D(G(z)) yields

a multiplicative factor of D(G(z))−1 instead, resulting in gradients with a

more favourably scaled magnitude if D(G(z)) is small.

As G and D are both parameterized learners, the balance between the

respective modeling capacities (and effective capacities during learning) can

have a profound effect on the learning dynamics and the success of generative

learning. In particular, the discriminator must be sufficiently flexible to

reliably model the difference between the data distribution and the generated

11.4 Generative Adversarial Networks 333

distribution, as the latter gradually tends towards reproducing the statistical

structure of the former. At the same time, the discriminator must not become

too effective too quickly, or else the gradients it provides the generator will

be uninformative: no small change in the generated sample will move it

significantly closer to the discriminator’s decision boundary.

11.4.2 Generator Collapses

Note that in theory, a perfectly optimal discriminator could exploit any sub-

tle mismatch between pdata(x) and pg(x) to give itself a better-than-chance

ability to correctly distinguish real and synthetic examples; the generator

could then use the gradients obtained from this optimal discriminator to

correct its misallocations of probability mass. In practice, when using richly

parameterized neural networks for generation and discrimination, the ob-

jective functions used to train the generator are non-convex and (due to

the dependence between the learning tasks for the generator and the dis-

criminator) highly nonstationary; it is impractical and even theoretically

intractable to globally optimize the discriminator prior to each change in

the generator. A failure mode for the training criterion therefore manifests

when the generator learns to place too much probability mass on a subre-

gion of the data distribution. In the most extreme cases, a generator could

elect to place all of its mass on a single point, perfectly reproducing a single

training example. A well-trained discriminator can quickly learn to exploit

this and confidently classify every other point in the training set correctly.

This presents a problem for generator learning, in that the gradients the

generator receives are entirely with respect to a single synthetic example,

most local perturbations of which will result in gradients that point back

towards the singularity. To date, strategies to mitigate this type of failure

are an active area of research. Radford et al. (2015) noted that the judicious

use of batch normalization (Ioffe and Szegedy, 2015) appears, empirically,

to prevent these kinds of collapses to a large degree.

11.4.3 Sample Fidelity and Learning the Objective Function

Machine learning problems are classically posed in terms of an objective

function that is a fixed function of the parameters given a training set, often

the log likelihood of training data under some parametric model. Viewed

from the perspective of the generator G, the GAN training procedure does

not involve a single, fixed objective function: G’s objective is defined at

any moment by the discriminator D, the parameters of which are being

continually adapted to both the data and to the current state of G. This can

334 Adversarial Perturbations of Deep Neural Networks

be considered a learned objective function, whereby the objective function

for G is automatically adapted to the data distribution being estimated.

The inductive bias for G is characterized by the family of functions from

which D is chosen: G is optimized so as to elude detection via any statistical

difference between pg and pdata that D can learn to detect.

It is this property that is arguably responsible for the perceived visual

quality of generated samples of GANs trained on natural images. Models

trained via objective functions involving reconstruction terms, such as the

variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014),

implicitly commit to a static definition of sample plausibility. In the case

of conditionally Gaussian likelihood, this takes the form of mean squared

error, which is a particularly poor perceptual metric for natural image pixel

intensities: it considers all perturbations of a given magnitude equivalent,

without regard for the fact that changes in luminance which blur out sharp

edges decrease the plausibility of the sample as a natural image much more

than minor shifts in chroma across the entire image. While one popular

approach in the case of models of natural images, and in many other

domains, is to design the static objective so as to mitigate the mismatch

between training criterion and the statistical properties of the domain, the

solution offered by GANs is in some sense more universal: train D to detect

and exploit any difference it can between the distributions of samples and

real data, train G to outwit this new discriminator, and repeat. This often

results in generated samples that more closely match human conceptions

of saliency, illustrated in Figure 11.6 in an application to parameterized

image generation, where an adversarial loss allows the model to accurately

extrapolate the presence of ears, a visually salient feature which a model

trained with mean squared error sees fit to discard.

11.4.4 Extensions and Refinements

Since the initial introduction of generative adversarial networks, the frame-

work has been extended in several notable directions. Many of these rely

on a straightforward extension to the conditional setting, where the gener-

ator and discriminator receive additional contextual inputs, first explored

by Mirza and Osindero (2014). For example, in the aforementioned work,

the authors train a class-conditional generator on the MNIST handwritten

digits by feeding the network an additional input consisting of a “one-hot”

vector indicating the desired class. The discriminator is fed the generated or

real image as well as the class label (the assigned label if the image is real,

the desired label if the image is generated). Through training, the discrim-

inator learns that in the presence of a given class label, the image should

11.4 Generative Adversarial Networks 335

Ground Truth MSE Adversarial

Figure 11.6: Predictive generative networks provide an example of how a learned
cost function can correspond more closely to human intuition for which aspects
of the data are salient and important to model than a fixed, hand-designed cost
function such as mean squared error. These images show the results when predictive
generative networks are trained to generate images of 3-D models of human heads
at specified viewing angles. (Left) An example output frame from the test set.
This is the target image that the model is expected to predict. (Center) When
trained using mean squared error, the model fails to predict the presence of ears.
Ears are not salient under the mean squared error loss because they do not cause
a major change in brightness for a large enough number of pixels. (Right) When
trained using a combination of mean squared error and adversarial loss, the model
successfully predicts the presence of ears. Because ears have a repeated, predictable
structure, they are highly salient to the discriminator network. Future research
work may discover better ways of determining which aspects of the input should be
considered salient. Figures reproduced with permission from Lotter et al. (2015).

336 Adversarial Perturbations of Deep Neural Networks

resemble instances of that class from the training data. Likewise, in order

to succeed at fooling the discriminator, the generator must learn to use the

class label input to inform the characteristics of its generated sample.

In pursuit of more realistic models of natural images, Denton et al.

(2015) introduced a hierarchical model, dubbed LAPGAN, which interleaved

conditional GAN generators with spatial upsampling in a Laplacian pyramid

(Burt et al., 1983). The first generator, either class-conditional or traditional,

is trained to generate a small thumbnail image. A fixed upsampling and

blurring is performed and a second conditional generator, conditioned on the

newly upsampled image, is trained to reproduce the difference between the

image at the current resolution and the upsampled thumbnail. This process

is iterated, with subsequent conditional generators predicting residuals at

ever higher resolutions.

Also in the space of natural image generation, Radford et al. (2015) lever-

aged recent advances in the design and training of discriminative convolu-

tional networks to successfully train a single adversarial pair to generated re-

alistic images of relatively high resolution. These generator networks employ

“fractionally strided convolutions”, otherwise recognizable as the transpose

operation of “valid”-mode strided convolution commonly used when back-

propagating gradients through a strided convolutional layer, to learn their

own upsampling operations. The authors identify a set of architectural con-

straints on the generator and discriminator which allow for relatively stable

training, including the elimination of downsampling in favour of strided con-

volution in the discriminator, the use of the bounded tanh() function at the

generator output layer, careful application of batch normalization (Ioffe and

Szegedy, 2015) and the use of rectified linear units (Jarrett et al., 2009; Glo-

rot et al., 2011) and leaky rectified linear units (Maas et al., 2013) through-

out the generator and discriminator, respectively. Inspired by recent work on

word embeddings (e.g. Mikolov et al. (2013)), the authors also interrogate

the latent representations, i.e. samples from p(z), and find that they obey

surprising arithmetic properties when trained on a dataset of faces as shown

in Figure 11.7.

11.4.5 Hybrid Models

A recent body of work has examined the combination of the adversarial net-

work training criterion with other formalisms, notably autoencoders. Larsen

et al. (2015) combine a GAN with a variational autoencoder (VAE) (Kingma

and Welling, 2014; Rezende et al., 2014), dispensing with the VAE’s recon-

struction error term in favor of an squared error expressed in the space

of the discriminator’s hidden layers, combining the resulting modified VAE

11.4 Generative Adversarial Networks 337

- + =

Figure 11.7: Deep Convolutional Generative Adversarial Networks (DCGANs)
learn distributed representations that can separate semantically distinct concepts
from each other. In this example, a DCGAN has learned one direction in represen-
tation space that corresponds to gender and another direction that corresponds to
the presence or absence of glasses. Arithmetic can also be performed in this vector
space. From left to right, let a be the representation of an image of a man with
glasses, b the representation of a man without glasses, and c the representation of
a woman without glasses. The vector d = a−b+c now represents the concept of a
woman with glasses. The generator maps d to rich images from this class. Images
reproduced with permission from Radford et al. (2015).

objective with the usual GAN objective. Makhzani et al. (2015) employs

an adversarial cost as a regularizer on the hidden layer representation of

a conventional autoencoder, forcing the aggregate posterior distribution of

the hidden layer to match a particular synthetic distribution. This formula-

tion closely resembles the VAE. The VAE maximizes a lower bound on the

log-likelihood that includes both a reconstruction term and terms regulariz-

ing the variational posterior to resemble the model’s prior distribution over

the latent variables. The adversarial autoencoder removes the regularization

term and uses the adversarial game to enforce the desired conditions.

The adversarial network paradigm has also been extended in the direction

of supervised and semi-supervised learning. Springenberg (2016) generalizes

the convention adversarial network setting to employ a categorical (softmax)

output layer in the discriminator. The discriminator and generator compete

to shape the entropy of this distribution while respecting constraints on its

marginal distribution, and an optional likelihood term can add semantics

to this output layer if class labels are available. Sutskever et al. (2015)

propose an unsupervised criterion designed expressly with the intent of

improving performance on downstream supervised tasks in settings where

the space of possible outputs is large, and it is easy to obtain independent

examples from both the input and output domains. The proposed supervised

338 Adversarial Perturbations of Deep Neural Networks

mapping is adversarially trained to have an output distribution resembling

the distribution of independent output domain examples.

11.4.6 Beyond Generative Modeling

Generative adversarial networks were originally introduced in order to pro-

vide a means of performing generative modeling. The idea has since proven

to be more general. Adversarial pairs of networks may in fact be used for a

broad range of tasks.

Two recent methods have shown that the adversarial framework can be

used to impose desired properties on the features extracted by a neural

network. The feature extractor can be thought of as analogous to the

generator in the GAN framework. A second network, analogous to the

discriminator, then tries to obtain some forbidden information from the

extracted features. The feature extractor is then trained to learn features

that are both useful for some original task, such as classification, and that

yield little information to the second network. Ganin and Lempitsky (2015)

use this approach for domain adaptation. The second network attempts to

predict which domain the input was drawn from. When the feature extractor

is trained to fool this network, it is forced to learn features that are invariant

to the choice of input domain. Edwards and Storkey (2015) use a similar

technique to learn representations that do not contain private information.

In this case, the second network attempts to recover the private information

from the representation. This approach could be used to remove prejudice

from a decision making process. For example, if a machine learning model

is used to make hiring decisions, it should not use protected information

such as the race or gender of applicants. If the machine learning model

is trained on the decisions made by human hiring managers, and if the

previous hiring managers made biased decisions, the machine learning model

could discover other features of the candidates that are correlated with their

race or gender. By applying the method of Edwards and Storkey (2015),

the machine learning model is encouraged to remove features that have a

statistical relationship with the protected information, ideally leading to

more fair decisions.

11.5 Discussion

The staggering gains in many application areas brought by the introduction

of deep neural networks have inspired much excitement and widespread

adoption. In addition to remarkable success tackling difficult supervised

11.6 References 339

classification tasks, it is often the case that even misclassifications the errors

made by state-of-the-art neural networks appear to be quite reasonable

(as remarked, for example, by Krizhevsky et al. (2012)). The existence

of adversarial examples as a problem plaguing a wide variety of model

families suggests surprising deficits both in the degree to which these models

understand their tasks, and to which human practitioners truly understand

their models. Research into such phenomena can yield immediate gains

in robustness and resistance to attack for neural networks deployed in

commercial and industrial systems, as well as guide research into new

model classes which naturally resist such perturbation through a deeper

comprehension of the learning task.

Simultaneously, the adversarial perspective can be fruitfully leveraged for

tasks other than simple supervised learning. While the focus of generative

modeling in the past has often been on models that directly optimize like-

lihood, many application domains express a need for realistic synthesis, in-

cluding the generation of speech waveforms, image and video inpainting and

super-resolution, the procedural generation of video game assets, and for-

ward prediction in model-based reinforcement learning. Recent work (Theis

et al., 2015) suggests that these goals may be at odds with this likelihood-

centric paradigm. Generative adversarial networks and their extensions pro-

vide one avenue attack on these difficult synthesis problems with an intu-

itively appealing approach: to learn to generate convincingly, aim to fool a

motivated adversary. An important avenue for future research concerns the

quantitative evaluation of generative models intended for synthesis; particu-

lar desiderata include generic, widely applicable evaluation procedures which

nonetheless can be made to respect domain-specific notions of similarity and

verisimilitude.

Acknowledgements

The authors of this chapter would like to thank Martin Wattenberg and

Christian Szegedy for insightful suggestions that improved the church win-

dow plots, and to thank Martin in particular for the name “church window

plots.” Ilya Sutskever provided the observation that visual stimuli can cause

seizures.

11.6 References

P. J. Burt, Edward, and E. H. Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on Communications, 31:532–540, 1983.

340 Adversarial Perturbations of Deep Neural Networks

E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models
using a laplacian pyramid of adversarial networks. NIPS, 2015.

H. Edwards and A. J. Storkey. Censoring representations with an adversary. CoRR,
abs/1511.05897, 2015. URL http://arxiv.org/abs/1511.05897.

J. A. Frederick, D. L. Timmermann, H. L. Russell, and J. F. Lubar. Eeg coherence
effects of audio-visual stimulation (avs) at dominant and twice dominant alpha
frequency. Journal of neurotherapy, 8(4):25–42, 2005.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation.
In ICML’2015, 2015.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.
In JMLR W&CP: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS 2011), Apr. 2011.

I. J. Goodfellow. On distinguishability criteria for estimating generative models. In
International Conference on Learning Representations, Workshops Track, 2014.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning (ICML’13), pages 1319–1327.
ACM, 2013a. URL http://icml.cc/2013/.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In ICML’2013, 2013b.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. In NIPS’2014,
2014a.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014b. URL http://arxiv.org/abs/1412.
6572.

S. Gu and L. Rigazio. Towards deep neural network architectures robust to
adversarial examples. In NIPS Workshop on Deep Learning and Representation
Learning, 2014.

M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In AISTATS’2010, 2010.

R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learning with a strong
adversary. CoRR, abs/1511.03034, 2015. URL http://arxiv.org/abs/1511.
03034.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. 2015.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In Proc. International Conference on
Computer Vision (ICCV’09), pages 2146–2153. IEEE, 2009.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of
the International Conference on Learning Representations (ICLR), 2014.

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems 25 (NIPS’2012). 2012.

A. B. L. Larsen, S. K. Sønderby, and O. Winther. Autoencoding beyond pixels
using a learned similarity metric. CoRR, abs/1512.09300, 2015. URL http:
//arxiv.org/abs/1512.09300.

11.6 References 341

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

W. Lotter, G. Kreiman, and D. Cox. Unsupervised learning of visual structure
using predictive generative networks. arXiv preprint arXiv:1511.06380, 2015.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In ICML Workshop on Deep Learning for Audio,
Speech, and Language Processing, 2013.

A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015. URL http://arxiv.org/abs/1511.05644.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In International Conference on Learning Representa-
tions: Workshops Track, 2013.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing
with virtual adversarial training. In ICLR, 2015. Preprint: arXiv:1507.00677.

A. Nguyen, J. Yosinski, and J. Clune. Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images. ArXiv e-prints, Dec.
2014.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiv:1511.04508, 2015.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Prac-
tical black-box attacks against deep learning systems using adversarial examples.
arXiv preprint arXiv:1602.02697, 2016a.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Proceedings of the 1st IEEE
European Symposium on Security and Privacy. IEEE, 2016b.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML’2014, 2014.

J. O. Robinson. The psychology of visual illusion. Courier Corporation, 2013.

S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial manipulation of deep
representations. CoRR, abs/1511.05122, 2015. URL http://arxiv.org/abs/
1511.05122.

J. T. Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In International Conference on Learning Rep-
resentations, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/
papers/v15/srivastava14a.html.

I. Sutskever, R. Józefowicz, K. Gregor, D. J. Rezende, T. Lillicrap, and O. Vinyals.
Towards principled unsupervised learning. CoRR, abs/1511.06440, 2015. URL
http://arxiv.org/abs/1511.06440.

342 Adversarial Perturbations of Deep Neural Networks

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. Technical report,
arXiv:1409.4842, 2014a.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. ICLR, abs/1312.6199, 2014b.
URL http://arxiv.org/abs/1312.6199.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
Inception Architecture for Computer Vision. ArXiv e-prints, Dec. 2015.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative
models. arXiv:1511.01844, Nov 2015. URL http://arxiv.org/abs/1511.01844.

R. J. Williams. Simple statistical gradient-following algorithms connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

12 Data Augmentation via Lévy Processes

Stefan Wager swager@stanford.edu

Stanford University

Stanford, USA

William Fithian wfithian@berkeley.edu

University of California, Berkeley

Berkeley, USA

Percy Liang pliang@cs.stanford.edu

Stanford University

Stanford, USA

If a document is about travel, we may expect that short snippets of the

document should also be about travel. We introduce a general framework

for incorporating these types of invariances into a discriminative classifier.

The framework imagines data as being drawn from a slice of a Lévy process.

If we slice the Lévy process at an earlier point in time, we obtain additional

pseudo-examples, which can be used to train the classifier. We show that

this scheme has two desirable properties: it preserves the Bayes decision

boundary, and it is equivalent to fitting a generative model in the limit where

we rewind time back to 0. Our construction captures popular schemes such

as Gaussian feature noising and dropout training, as well as admitting new

generalizations.

12.1 Introduction

Black-box discriminative classifiers such as logistic regression, neural net-

works, and SVMs are the go-to solution in machine learning: they are simple

to apply and often perform well. However, an expert may have additional

344 Data Augmentation via Lévy Processes

knowledge to exploit, often taking the form of a certain family of transfor-

mations that should usually leave labels fixed. For example, in object recog-

nition, an image of a cat rotated, translated, and peppered with a small

amount of noise is probably still a cat. Likewise, in document classification,

the first paragraph of an article about travel is most likely still about travel.

In both cases, the “expert knowledge” amounts to a belief that a certain

transform of the features should generally not affect an example’s label.

One popular strategy for encoding such a belief is data augmenta-

tion: generating additional pseudo-examples or “hints” by applying label-

invariant transformations to training examples’ features (Abu-Mostafa,

1990; Schölkopf et al., 1997; Simard et al., 1998). That is, each example

(X(i), Y (i)) is replaced by many pairs (X̃(i,b), Y (i)) for b = 1, . . . , B, where

each X̃(i,b) is a transformed version of X(i). This strategy is simple and

modular: after generating the pseudo-examples, we can simply apply any

supervised learning algorithm to the augmented dataset. Figure 12.1 illus-

trates two examples of this approach, an image transformed to a noisy image

and a text caption, transformed by deleting words.

Dropout training (Srivastava et al., 2014) is an instance of data augmen-

tation that, when applied to an input feature vector, zeros out a subset of

the features randomly. Intuitively, dropout implies a certain amount of sig-

nal redundancy across features—that an input with about half the features

masked should usually be classified the same way as a fully-observed input.

In the setting of document classification, dropout can be seen as creating

pseudo-examples by randomly omitting some information (i.e., words) from

each training example. Building on this interpretation, Wager et al. (2014)

show that learning with such artificially difficult examples can substantially

improve the generalization performance of a classifier.

To study dropout, Wager et al. (2014) assume that documents can be

summarized as Poisson word counts. Specifically, assume that each document

has an underlying topic associated with a word frequency distribution π on

the p-dimensional simplex and an expected length T ≥ 0, and that, given

π and T , the word counts Xj are independently generated as Xj

∣∣T, π ∼
Pois(T πj). The analysis of Wager et al. (2014) then builds on a duality

between dropout and the above generative model. Consider the example

given in Figure 12.1, where dropout creates pseudo-documents X̃ by deleting

half the words at random from the original document X. As explained

in detail in Section 12.2.1, if X itself is drawn from the above Poisson

model, then the dropout pseudo-examples X̃ are marginally distributed as

X̃j

∣∣T, π ∼ Pois(0.5T πj). Thus, in the context of this Poisson generative

model, dropout enables us to create new, shorter pseudo-examples that

preserve the generative structure of the problem.

12.1 Introduction 345

(a) Gaussian noise

The colorful Norwegian city of
Bergen is also a gateway to majes-
tic fjords. Bryggen Hanseatic Wharf
will give you a sense of the local cul-
ture – take some time to snap photos
of the Hanseatic commercial build-
ings, which look like scenery from a
movie set.

The colorful of gateway to fjords.
Hanseatic Wharf will sense the cul-
ture – take some to snap photos the
commercial buildings, which look
scenery a

(b) Dropout noise

Figure 12.1: Two examples of transforming an original input X into a noisy, less
informative input X̃. The new inputs clearly have the same label but contain less
information and thus are harder to classify.

The above interpretation of dropout raises the following question: if

feature deletion is a natural way to create information-poor pseudo-examples

for document classification, are there natural analogous feature noising

schemes that can be applied to other problems? In this chapter, we seek to

address this question, and study a more general family of data augmentation

methods generalizing dropout, based on Lévy processes: We propose an

abstract Lévy thinning scheme that reduces to dropout in the Poisson

generative model considered by Wager et al. (2014). Our framework further

suggests new methods for feature noising such as Gamma noising based on

alternative generative models, all while allowing for a unified theoretical

analysis.

From generative modeling to data augmentation. In the above discus-

sion, we treated the expected document length T as fixed. More generally,

we could imagine the document as growing in length over time, with the

observed document X merely a “snapshot” of what the document looks like

346 Data Augmentation via Lévy Processes

Y

T θ T̃

X A X̃

class

topic

Lévy process

original thinned

Figure 12.2: Graphical model depicting our generative assumptions; note that
we are not fitting this generative model. Given class Y , we draw a topic θ, which
governs the parameters of the Lévy process (At). We slice at time T to get the
original input X = AT and at an earlier time T̃ to get the thinned or noised input
X̃ = AT̃ . We show that given X, we can sample X̃ without knowledge of θ.

at time T . Formally, we can imagine a latent Poisson process (At)t≥0, with

fixed-t marginals (At)j
∣∣π ∼ Pois(t πj), and set X = AT . In this notation,

dropout amounts to “rewinding” the process At to obtain short pseudo-

examples. By setting X̃ = AαT , we have P[X̃ = x̃
∣∣X = x] = P[AαT =

x̃
∣∣AT = x], for thinning parameter α ∈ (0, 1).

The main result of this chapter is that the analytic tools developed by

Wager et al. (2014) are not restricted to the case where (At) is a Poisson

process, and in fact hold whenever (At) is a Lévy process. In other words,

their analysis applies to any classification problem where the features X can

be understood as time-T snapshots of a process (At), i.e., X = AT .

Recall that a Lévy process (At)t≥0 is a stochastic process with A0 = 0 that

has independent and stationary increments: {Ati−Ati−1
} are independent for

0 = t0 < t1 < t2 < · · · , and At−As d=At−s for and s < t. Common examples

of Lévy processes include Brownian motion and Poisson processes.

In any such Lévy setup, we show that it is possible to devise an analogue

to dropout that creates pseudo-examples by rewinding the process back to

some earlier time T̃ ≤ T . Our generative model is depicted in Figure 12.2:

(At), the information relevant to classifying Y , is governed by a latent topic

θ ∈ Rp. Lévy thinning then seeks to rewind (At)—importantly as we shall

see, without having access to θ.

We should think of (At) as representing an ever-accumulating amount of

information concerning the topic θ: In the case of document classification,

(At) are the word counts associated with a document that grows longer as

t increases. In other examples that we discuss in Section 12.3, At will rep-

resent the sum of t independent noisy sensor readings. The independence

12.1 Introduction 347

t

TT̃

X̃1

X1 (Y1 = +1)

X̃2

X2 (Y2 = −1)

X̃3

X3 (Y3 = +1)

X̃4

X4 (Y4 = −1)

X̃5

X5 (Y5 = +1)

X̃6

X6 (Y6 = −1)

Figure 12.3: We model each input X as a slice of a Lévy process at time T .
We generate noised examples X̃ by “stepping back in time” to T̃ . Note that the
examples of the two classes are closer together now, thus forcing the classifier to
work harder.

of increments property assures that as we progress in time, we are always

obtaining new information. The stopping time T thus represents the infor-

mation content in input X about topic θ. Lévy thinning seeks to improve

classification accuracy by turning a few information-rich examples X into

many information-poor examples X̃.

We emphasize that, although our approach uses generative modeling to

motivate a data augmentation scheme, we do not in fact fit a generative

model. This presents a contrast to the prevailing practice: two classical ap-

proaches to multiclass classification are to either directly train a discrimina-

tive model by running, e.g., multiclass logistic regression on the n original

training examples; or, at the other extreme, to specify and fit a simple para-

metric version of the above generative model, e.g., naive Bayes, and then

use Bayes’ rule for classification. It is well known that the latter approach

is usually more efficient if it has access to a correctly specified generative

model, but may be badly biased in case of model misspecification (Efron,

1975; Ng and Jordan, 2002; Liang and Jordan, 2008). Here, we first seek to

devise a noising scheme X → X̃ and then to train a discriminative model

on the pseudo-examples (X̃, Y) instead of the original examples (X, Y).

Note that even if the generative model is incorrect, this approach will incur

348 Data Augmentation via Lévy Processes

limited bias as long as the noising scheme roughly preserves class bound-

aries — for example, even if the Poisson document model is incorrect, we

may still be justified in classifying a subsampled travel document as a travel

document. As a result, this approach can take advantage of an abstract

generative structure while remaining more robust to model misspecification

than parametric generative modeling.

Overview of results. We consider the multiclass classification setting

where we seek to estimate a mapping from input X to class label Y . We

imagine that each X is generated by a mixture of Lévy process, where we

first draw a random topic θ given the class Y , and then run a Lévy process

(At) depending on θ to time T . In order to train a classifier, we pick a thin-

ning parameter α ∈ (0, 1), and then create pseudo examples by rewinding

the original X back to time αT , i.e., X̃ ∼ AαT
∣∣AT .

We show three main results in this chapter. Our first result is that we can

generate such pseudo-examples X̃ without knowledge of the parameters θ

governing the generative Lévy process. In other words, while our method

posits the existence of a generative model, our algorithm does not actually

need to estimate it. Instead, it enables us to give hints about a potentially

complex generative structure to a discriminative model such as logistic

regression.

Second, under assumptions that our generative model is correct, we show

that feature noising preserves the Bayes decision boundary: P[Y | X = x] =

P[Y | X̃ = x]. This means that feature noising does not introduce any bias

in the infinite data limit.

Third, we consider the limit of rewinding to the beginning of time (α→ 0).

Here, we establish conditions given which, even with finite data, the decision

boundary obtained by fitting a linear classifier on the pseudo-examples is

equivalent to that induced by a simplified generative model. When this latter

result holds, we can interpret α-thinning as providing a semi-generative

regularization path for logistic regression, with a simple generative procedure

at one end and unregularized logistic regression at the other.

Related work. The trade-off between generative models and discriminative

models has been explored extensively. Rubinstein and Hastie (1997) empir-

ically compare discriminative and generative classifiers models with respect

to bias and variance, Efron (1975) and Ng and Jordan (2002) provide a more

formal discussion of the bias-variance trade-off between logistic regression

and naive Bayes. Liang and Jordan (2008) perform an asymptotic analysis

for general exponential families.

12.2 Lévy Thinning 349

A number of papers study hybrid loss functions that combine both a joint

and conditional likelihood (Raina et al., 2004; Bouchard and Triggs, 2004;

Lasserre et al., 2006; McCallum et al., 2006; Liang and Jordan, 2008). The

data augmentation approach we advocate in this chapter is fundamentally

different, in that we are merely using the structural assumptions implied by

the generative models to generate more data, and are not explicitly fitting

a full generative model.

The present work was initially motivated by understanding dropout train-

ing (Srivastava et al., 2014), which was introduced in the context of reg-

ularizing deep neural networks, and has had much empirical success (Ba

and Frey, 2013; Goodfellow et al., 2013; Krizhevsky et al., 2012; Wan et al.,

2013). Many of the regularization benefits of dropout can be found in logistic

regression and other single-layer models, where it is also known as “blank-

out noise” (Globerson and Roweis, 2006; van der Maaten et al., 2013) and

has been successful in natural language tasks such as document classification

and named entity recognition (Wager et al., 2013; Wang and Manning, 2013;

Wang et al., 2013). There are a number of theoretical analyses of dropout:

using PAC-Bayes framework (McAllester, 2013), comparing dropout to “al-

titude training” (Wager et al., 2014), and interpreting dropout as a form of

adaptive regularization (Baldi and Sadowski, 2014; Bishop, 1995; Helmbold

and Long, 2015; Josse and Wager, 2014; Wager et al., 2013).

12.2 Lévy Thinning

We begin by briefly reviewing the results of Wager et al. (2014), who study

dropout training for document classification from the perspective of thinning

documents (Section 12.2.1). Then, in Section 12.2.2, we generalize these

results to the setting of generic Lévy generative models.

12.2.1 Motivating Example: Thinning Poisson Documents

Suppose we want to classify documents according to their subject, e.g.,

sports, politics, or travel. As discussed in the introduction, common sense

intuition about the nature of documents suggests that a short snippet of a

sports document should also be classified as a sports document. If so, we can

generate many new training examples by cutting up the original documents

in our dataset into shorter subdocuments and labeling each subdocument

with the same label as the original document it came from. By training a

classifier on all of the pseudo-examples we generate in this way, we should

be able to obtain a better classifier.

350 Data Augmentation via Lévy Processes

In order to formalize this intuition, we can represent a document as a

sequence of words from a dictionary {1, . . . , d}, with the word count Xj

denoting the number of occurrences of word j in the document. Given

this representation, we can easily create “subdocuments” by binomially

downsampling the word counts Xj independently. That is, for some fixed

downsampling fraction α ∈ (0, 1), we draw

X̃j | Xj ∼ Binom(Xj , α). (12.1)

In other words, we keep each occurrence of word j independently with

probability α.

Wager et al. (2014) study this downsampling scheme in the context of

a Poisson mixture model for the inputs X that obeys the structure of

Figure 12.2: first, we draw a class Y ∈ {1, . . . ,K} (e.g., travel) and a “topic”

θ ∈ Rd (e.g., corresponding to travel in Norway). The topic θ specifies a

distribution over words,

µj(θ) = eθj , (12.2)

where, without loss of generality, we assume that
∑d

j=1 e
θj = 1. We then

draw a Pois(T) number of words, where T is the expected document length,

and generate each word independently according to θ. Equivalently, each

word count is an independent Poisson random variable, Xj ∼ Pois(Tµj(θ)).

The following is an example draw of a document:

Y = travel

θ = [

norway︷︸︸︷
0.5 ,

fjord︷︸︸︷
0.5 ,

the︷︸︸︷
1.2 ,

skyscraper︷︸︸︷
−2.7 , . . .]

X = [

norway︷︸︸︷
2 ,

fjord︷︸︸︷
1 ,

the︷︸︸︷
3 ,

skyscraper︷︸︸︷
0 , . . .]

X̃ = [

norway︷︸︸︷
1 ,

fjord︷︸︸︷
0 ,

the︷︸︸︷
1 ,

skyscraper︷︸︸︷
0 , . . .]

Let us now try to understand the downsampling scheme X̃ | X in the

context of the Poisson topic model over X. For each word j, recall that

X̃j | Xj ∼ Binom(Xj , α). If we marginalize over X, then we have:

X̃j | T, θ ∼ Pois (αTµj(θ)) . (12.3)

As a result, the distribution of X̃ is exactly the distribution of X if we

replaced T with T̃ = αT .

12.2 Lévy Thinning 351

We can understand this thinning by embedding the document X in a

multivariate Poisson process (At)t≥0, where the marginal distribution of

At ∈ {0, 1, 2, . . . }d is defined to be the distribution over counts when the

expected document length is t. Then, we can write

X = AT , X̃ = AT̃ . (12.4)

Thus, under the Poisson topic model, the binomial thinning procedure does

not alter the structure of the problem other than by shifting the expected

document length from T to T̃ . Figure 12.4 illustrates one realization of Lévy

thinning in the Poisson case with a three-word dictionary. Note that in this

case we can sample X̃ = AαT given X = AT without knowledge of θ.

This perspective lies at the heart of the analysis in Wager et al. (2014),

who show under the Poisson model that, when the overall document length

‖X‖1 is independent of the topic θ, thinning does not perturb the optimal

decision boundary. Indeed, the conditional distribution over class labels is

identical for the original features and the thinned features:

P[Y | X = x] = P[Y | X̃ = x]. (12.5)

This chapter extends the result to general Lévy processes (see Theorem

12.2).

This last result (12.5) may appear quite counterintuitive: for example, if

A60 is more informative than A40, how can it be that downsampling does not

perturb the conditional class probabilities? Suppose x is a 40-word document

(‖x‖1 = 40). When t = 60, most of the documents will be longer than 40

words, and thus x will be less likely under t = 60 than under t = 40. However,

(12.5) is about the distribution of Y conditioned on a particular realization

x. The claim is that, having observed x, we obtain the same information

about Y regardless of whether t, the expected document length, is 40 or 60.

12.2.2 Thinning Lévy Processes

The goal of this section is to extend the Poisson topic model from Sec-

tion 12.2.1 and construct general thinning schemes with the invariance prop-

erty of (12.5). We will see that Lévy processes provide a natural vehicle for

such a generalization: The Poisson process used to generate documents is

a specific Lévy process, and binomial sampling corresponds to “rewinding”

the Lévy process back in time.

Consider the multiclass classification problem of predicting a discrete class

Y ∈ {1, . . . ,K} given an input vector X ∈ Rd. Let us assume that the joint

distribution over (X,Y) is governed by the following generative model:

352 Data Augmentation via Lévy Processes

1. Choose Y ∼ Mult(π), where π is on the K-dimensional simplex.

2. Draw a topic θ | Y , representing a subpopulation of class Y .

3. Construct a Lévy process (At)t≥0 | θ, where At ∈ Rd is a potential input

vector at time t.

4. Observe the input vector X = AT at a fixed time T .

While the Lévy process imposes a fair amount of structure, we make no as-

sumptions about the number of topics, which could be uncountably infinite,

or about their distribution, which could be arbitrary. Of course, in such an

unconstrained non-parametric setting, it would be extremely difficult to ade-

quately fit the generative model. Therefore, we take a different tack: We will

use the structure endowed by the Lévy process to generate pseudo-examples

for consumption by a discriminative classifier. These pseudo-examples im-

plicitly encode our generative assumptions.

The natural way to generate a pseudo-example (X̃, Y) is to “rewind” the

Lévy process (At) backwards from time T (recall X = AT) to an earlier time

T̃ = αT for some α ∈ (0, 1) and define the thinned input as X̃ = AT̃ . In

practice, (At) is unobserved, so we draw X̃ conditioned on the original input

X = AT and topic θ. In fact, we can draw many realizations of X̃ | X, θ.
Our hope is that a single full example (X,Y) is rich enough to gener-

ate many different pseudo-examples (X̃, Y), thus increasing the effective

sample size. Moreover, Wager et al. (2014) show that training with such

pseudo-examples can also lead to a somewhat surprising “altitude training”

phenomenon whereby thinning yields an improvement in generalization per-

formance because the pseudo-examples are more difficult to classify than

the original examples, and thus force the learning algorithm to work harder

and learn a more robust model.

A technical difficulty is that generating X̃ | X, θ seemingly requires

knowledge of the topic θ driving the underlying Lévy process (At). In order

to get around this issue, we establish the following condition under which

the observed input X = AT alone is sufficient—that is, P[X̃ | X, θ] does not

actually depend on θ.

Assumption 12.1 (exponential family structure). The Lévy process (At)
∣∣ θ

is drawn according to an exponential family model whose marginal density

at time t is

f
(t)
θ (x) = exp [θ · x− tψ (θ)]h(t) (x) for every t ∈ R. (12.6)

Here, the topic θ ∈ Rd is an unknown parameter vector, and h(t)(x) is a

family of carrier densities indexed by t ∈ R.

12.2 Lévy Thinning 353

0 10 20 30 40

0
5

10
15

20

Poisson Document Model

t

A
 t

T
~

T

l

l

l

l

l

l X1

X
~

1

X2X
~

2

X3

X
~

3

Figure 12.4: Illustration of our Poisson process document model with a three-word
dictionary and µ(θ) = (0.25, 0.3, 0.45). The word counts of the original document,
X = (8, 7, 16), represents the trivariate Poisson process At, sliced at T = 28. The
thinned pseudo-document X̃ = (2, 4, 9) represents At sliced at T̃ = 14.

The above assumption is a natural extension of a standard exponential

family assumption that holds for a single value of t. Specifically, suppose

that h(t)(x), t > 0, denotes the t-marginal densities of a Lévy process, and

that f
(1)
θ (x) = exp [θ · x− ψ (θ)]h(1)(x) is an exponential family through

h(1)(x) indexed by θ ∈ Rd. Then, we can verify that the densities specified

in (12.6) induce a family of Lévy processes indexed by θ. The key observation

in establishing this result is that, because h(t)(x) is the t-marginal of a Lévy

process, the Lévy–Khintchine formula implies that∫
eθ·xh(t)(x) dx =

(∫
eθ·xh(1)(x) dx

)t
= et ψ(θ),

and so the densities in (12.6) are properly normalized.

We also note that, given this assumption and as T → ∞, we have that

AT /T converges almost surely to µ(θ)
def
= E [A1]. Thus, the topic θ can be

understood as a description of an infinitely informative input. For finite

values of T , X represents a noisy observation of the topic θ.

Now, given this structure, we show that the distribution of X̃ = AαT
conditional on X = AT does not depend on θ. Thus, feature thinning is

possible without knowledge of θ using the Lévy thinning procedure defined

below. We note that, in our setting, the carrier distributions h(t)(x) are

354 Data Augmentation via Lévy Processes

always known; in Section 12.3, we discuss how to efficiently sample from the

induced distribution g(αT) for some specific cases of interest.

Theorem 12.1 (Lévy thinning). Assume that (At) satisfies the exponential

family structure in (12.6), and let α ∈ (0, 1) be the thinning parameter.

Then, given an input X = AT and conditioned on any θ, the thinned input

X̃ = AαT has the following density:

g(αT)(x̃;X) =
h(αT)(x̃)h((1−α)T)(X − x̃)

h(T)(X)
, (12.7)

which importantly does not depend on θ.

Proof. Because the Lévy process (At) has independent and stationary in-

crements, we have that AαT ∼ f
(αT)
θ and AT − AαT ∼ f

((1−α)T)
θ are in-

dependent. Therefore, we can write the conditional density of AαT given

AT as the joint density over (AαT , AT) (equivalently, the reparametrization

(AαT , AT −AαT)) divided by the marginal density over AT :

g(αT)(x̃;X) =
f

(αT)
θ (x̃)f

((1−α)T)
θ (X − x̃)

f
(T)
θ (X)

(12.8)

=
(

exp [θ · x̃− αTψ(θ)]h(αT)(x̃)
)

×
(

exp [θ · (X − x̃)− (1− α)Tψ(θ)]h((1−α)T)(X − x̃)
)

×
(

exp [θ ·X − Tψ(θ)]h(T)(X)
)−1

,

where the last step expands everything (12.6). Algebraic cancellation, which

removes all dependence on θ, completes the proof.

Note that while Theorem 12.1 guarantees we can carry out feature thin-

ning without knowing the topic θ, it does not guarantee that we can do

it without knowing the information content T . For Poisson processes, the

binomial thinning mechanism depends only on α and not on the original T .

This is a convenient property in the Poisson case but does not carry over

to all Lévy processes — for example, if Bt is a standard Brownian motion,

then the distribution of B2 given B4 = 0 is N(0, 1), while the distribution of

B200 given B400 = 0 is N(0, 100). As we will see in Section 12.3, thinning in

the Gaussian and Gamma families does require knowing T , which will cor-

respond to a “sample size” or “precision.” Likewise, Theorem 12.1 does not

guarantee that sampling from (12.7) can be carried out efficiently; however,

in all the examples we present here, sampling can be carried out easily in

closed form.

12.2 Lévy Thinning 355

Procedure 1. Logistic Regression with Lévy Regularization

Input: n training examples (X(i), Y (i)), a thinning parameter α ∈ (0, 1), and a feature
map φ : Rd 7→ Rp.

1. For each training example X(i), generate B thinned versions (X̃(i,b))Bb=1 according
to (12.7).

2. Train logistic regression on the resulting pseudo-examples:

β̂
def
= argmin

β∈Rp×K

{
n∑
i=1

B∑
b=1

`
(
β; X̃(i,b), Y (i)

)}
, (12.9)

where the multi-class logistic loss with feature map φ is

`(β;x, y)
def
= log

(
K∑
k=1

eβ
(k)·φ(x)

)
− β(y) · φ(x). (12.10)

3. Classify new examples according to

ŷ(x) = argmin
k∈{1, ..., K}

{
ĉ(k) − β̂(k) · φ(x)

}
, (12.11)

where the ĉk ∈ R are optional class-specific calibration parameters for k = 1, . . . ,K.

12.2.3 Learning with Thinned Features

Having shown how to thin the input X to X̃ without knowledge of θ, we

can proceed to defining our full data augmentation strategy. We are given n

training examples {(X(i), Y (i))}ni=1. For each original input X(i), we generate

B thinned versions X̃(i,1), . . . , X̃(i,B) by sampling from (12.7). We then pair

these B examples up with Y (i) and train any discriminative classifier on

these Bn examples. Algorithm 1 describes the full procedure where we

specialize to logistic regression. If one is implementing this procedure using

stochastic gradient descent, one can also generate a fresh thinned input X̃

whenever we sample an inputX on the fly, which is the usual implementation

of dropout training (Srivastava et al., 2014).

In the final step (12.11) of Algorithm 1, we also allow for class-specific

calibration parameters . After the β̂(k) have been determined by logistic

regression with Lévy regularization, these parameters ĉ(k) can be chosen

by optimizing the logistic loss on the original uncorrupted training data.

As discussed in Section 12.2.5, re-calibrating the model is recommended,

especially when α is small.

356 Data Augmentation via Lévy Processes

12.2.4 Thinning Preserves the Bayes Decision Boundary

We can easily implement the thinning procedure, but how will it affect the

accuracy of the classifier? The following result gives us a first promising

piece of the answer by establishing conditions under which thinning does

not affect the Bayes decision boundary.

At a high level, our results rely on the fact that under our generative

model, the “amount of information” contained in the input vector X is

itself uninformative about the class label Y .

Assumption 12.2 (Equal information content across topics). Assume there

exists a constant ψ0 such that ψ(θ) = ψ0 with probability 1, over random θ.

For example, in our Poisson topic model, we imposed the restriction that

ψ(θ) =
∑d

j=1 e
θj = 1, which ensures that the document length ‖At‖1 has the

same distribution (which has expectation ψ(θ) in this case) for all possible

θ.

Theorem 12.2. Under Assumption 12.2, the posterior class probabilities

are invariant under thinning (12.7):

P
[
Y = y

∣∣ X̃ = x
]

= P
[
Y = y

∣∣X = x
]

(12.12)

for all y ∈ {1, . . . ,K} and x ∈ X.

Proof. Given Assumption 12.2, the density of At | θ is given by:

f
(t)
θ (x) = eθ·xe−tψ0h(t)(x), (12.13)

which importantly splits into two factors, one depending on (θ, x), and the

other depending on (t, x). Now, let us compute the posterior distribution:

P
[
Y = y

∣∣At = x
]
∝ P [Y = y]

∫
P [θ | Y] f

(t)
θ (x)dθ (12.14)

∝ P [Y = y]

∫
P [θ | Y] eθ·xdθ, (12.15)

which does not depend on t, as e−tψ0h(t)(x) can be folded into the normal-

ization constant. Recall that X = AT and X̃ = AT̃ . Substitute t = T and

t = T̃ to conclude (12.12).

To see the importance of Assumption 12.2, consider the case where we

have two labels (Y ∈ {1, 2}), each with a single topic (Y yields topic θY).

Suppose that ψ(θ2) = 2ψ(θ1)—that is, documents in class 2 are on average

twice as long as those in class 1. Then, we would be able to make class 2

documents look like class 1 documents by thinning them with α = 0.5.

12.2 Lévy Thinning 357

Remark 12.1. If we also condition on the information content T , then an

analogue to Theorem 12.2 holds even without Assumption 12.2:

P
[
Y = y

∣∣ X̃ = x, T̃ = t
]

= P
[
Y = y

∣∣X = x, T = t
]
. (12.16)

This is because, after conditioning on T , the e−tψ(θ) term factors out of the

likelihood.

The upshot of Theorem 12.2 is that thinning will not induce asymptotic

bias whenever an estimator produces P
[
Y = y

∣∣X = x
]

in the limit of

infinite data (n → ∞), i.e., if the logistic regression (Algorithm 1) is

well-specified. Specifically, training either on original examples or thinned

examples will both converge to the true class-conditional distribution. The

following result assumes that the feature space X is discrete; the proof can

easily be generalized to the case of continuous features.

Corollary 12.3. Suppose that Assumption 12.2 holds, and that

the above multi-class logistic regression model is well-specified, i.e.,

P
[
Y = y

∣∣X = x
]
∝ eβ

(y)·φ(x) for some β and all y = 1, ..., K. Then, as-

suming that P [At = x] > 0 for all x ∈ X and t > 0, Algorithm 1 is consis-

tent, i.e., the learned classification rule converges to the Bayes classifier as

n→∞.

Proof. At a fixed x, the population loss E
[
`
(
β; X, Y

∣∣X = x
)]

is minimized

by any choice of β satisfying:

exp
[
β(y) · φ(x)

]∑K
k=1 exp

[
β(k) · φ(x)

] = P
[
Y = y

∣∣X = x
]

(12.17)

for all y = 1, ..., K. Since the model is well-specified and by assumption

P[X̃ = x] > 0 for all x ∈ X, we conclude that weight vector β̂ learned using

Algorithm 1 must satisfy asymptotically (12.17) for all x ∈ X as n→∞.

12.2.5 The End of the Path

As seen above, if we have a correctly specified logistic regression model,

then Lévy thinning regularizes it without introducing any bias. However, if

the logistic regression model is misspecified, thinning will in general induce

bias, and the amount of thinning presents a bias-variance trade-off. The

reason for this bias is that although thinning preserves the Bayes decision

boundary, it changes the marginal distribution of the covariates X, which

in turn affects logistic regression’s linear approximation to the decision

boundary. Figure 12.5 illustrates this phenomenon in the case where At

358 Data Augmentation via Lévy Processes

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5 l

l
l
l

l

l
l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l
l l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

ll l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l l
l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l l

l

l

l
l

l

l

l

ll

l
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l l

Bayes boundary
Logistic reg., T = 0.1
Logistic reg., T = 0.4
Logistic reg., T = 1

 T=1 T=1 T=0.4 T=0.4 T=0.1 T=0.1

Figure 12.5: The effect of Lévy thinning with data generated from a Gaussian
model of the form X

∣∣ θ, T ∼ N
(
T θ, σ2T Ip×p

)
, as described in Section 12.3.1.

The outer circle depicts the distribution of θ conditional on the color Y : black
circles all have θ ∝ (cos(0.75π/2), sin(0.75π/2)), whereas the grey squares have
θ ∝ (cos(ω π/2), sin(ω π/2)) where ω is uniform between 0 and 2/3. Inside this
circle, we see 3 clusters of points generated with T = 0.1, 0.4, and 1, along with
logistic regression decision boundaries obtained from each cluster. The dashed line
shows the Bayes decision boundary separating the black and grey points, which
is the same for all T (Theorem 12.2). Note that the logistic regression boundaries
learned from data with different T are not the same. This issue arises because the
Bayes decision boundary is curved, and the best linear approximation to a curved
Bayes boundary changes with T .

is a Brownian motion, corresponding to Gaussian feature noising; Wager

et al. (2014) provides a similar example for the Poisson topic model.

Fully characterizing the bias of Lévy thinning is beyond the scope of

this paper. However, we can gain some helpful insights about this bias by

studying “strong thinning”—i.e., Lévy thinning in the limit as the thinning

parameter α→ 0:

β̂0+
def
= lim

α→0
lim
B→∞

β̂(α,B), (12.18)

where β̂(α,B) is defined as in (12.9) with the explicit dependence on α and

B. For each α, we take B → ∞ perturbed points for each of the original

12.2 Lévy Thinning 359

n data points. As we show in this section, this limiting classifier is well-

defined under weak conditions; moreover, in some cases of interest, it can

be interpreted as a simple generative classifier. The result below concerns

the existence of β̂0+, and establishes that it is the empirical minimizer of a

convex loss function.

Theorem 12.4. Assume the setting of Procedure 1, and let the feature map

be φ(x) = x. Assume that the generative Lévy process (At) has finitely many

jumps in expectation over the interval [0, T]. Then, the limit β̂0+ is well-

defined and can be written as

β̂0+ = argmin
β∈Rp×K

{
n∑
i=1

ρ
(
β; X(i), Y (i)

)}
, (12.19)

for some convex function ρ(·; x, y).

The proof of Theorem 12.4 is provided in the appendix. Here, we begin by

establishing notation that lets us write down an expression for the limiting

loss ρ. First, note that Assumption 12.1 implicitly requires that the process

(At) has finite moments. Thus, by the Lévy–Itō decomposition, we can

uniquely write this process as

At = bt+Wt +Nt, (12.20)

where b ∈ Rp, Wt is a Wiener process with covariance Σ, and Nt is a

compound Poisson process which, by hypothesis, has a finite jump intensity.

Now, by an argument analogous to that in the proof of Theorem 12.1, we

see that the joint distribution of WT and NT conditional on AT does not

depend on θ. Thus, we can define the following quantities without ambiguity:

µT (x) = bT + E
[
WT

∣∣AT = x
]
, (12.21)

λT (x) = E
[
number of jumps in (At) for t ∈ [0, T]

∣∣AT = x
]
, (12.22)

νT (z; x) = lim
t→0

P
[
Nt = z

∣∣Nt 6= 0, AT = x
]
. (12.23)

More prosaically, νT (·; x) can be described as the distribution of the first

jump of Ñt, a thinned version of the jump process Nt. In the degenerate

case where P
[
NT = 0

∣∣AT = x
]

= 0, we set νT (·; x) to be a point mass at

z = 0.

360 Data Augmentation via Lévy Processes

Given this notation, we can write the effective loss function ρ for strong

thinning as

ρ (β; x, y) = −µT (x) · β(y) +
T

2

1

K

K∑
k=1

β(k)>Σβ(k) (12.24)

+ λT (x)

∫
` (β; z, y) dνT (z; x),

provided we require without loss of generality that
∑K

k=1 β
(k) = 0. In other

words, the limiting loss can be described entirely in terms of the distribution

of the first jump of Ñt, and continuous part Wt of the Lévy process. The

reason for this phenomenon is that, in the strong thinning limit, the pseudo-

examples X̃ ∼ AαT can all be characterized using either 0 or 1 jumps.

Aggregating over all the training examples, we can equivalently write this

strong thinning loss as

n∑
i=1

ρ
(
β; X(i), Y (i)

)
=

1

2T

n∑
i=1

γ−1
Y (i)

∥∥∥γY (i) µT

(
X(i)

)
− TΣβ(Y (i))

∥∥∥2

Σ−1

+

n∑
i=1

λT (X(i))

∫
`
(
β; z, Y (i)

)
dνT (z; X(i)), (12.25)

up to ‖µT ‖22 terms that do not depend on β. Here, 1
2 ‖v‖

2
Σ−1 = 1

2v
′Σ−1v cor-

responds to the Gaussian log-likelihood with covariance Σ (up to constants),

and γy = K
∣∣{i : Y (i) = y

}∣∣ /n measures the over-representation of class y

relative to other classes.

In the case where we have the same number of training examples from

each class (and so γy = 1 for all y = 1, ..., K), the strong thinning

loss can be understood in terms of a generative model. The first term,

namely 1
2T

∑n
i=1

∥∥∥µT (X(i))− TΣβ(Y (i))
∥∥∥2

Σ−1
, is the loss function for linear

classification in a Gaussian mixture with observations µT (X(i)), while the

second term is the logistic loss obtained by classifying single jumps. Thus,

strong thinning is effectively seeking the best linear classifier for a generative

model that is a mixture of Gaussians and single jumps.

In the pure jump case (Σ = 0), we also note that strong thinning is closely

related to naive Bayes classification. In fact, if the jump measure of Nt has

a finite number of atoms that are all linearly independent, then we can

verify that the parameters β̂0+ learned by strong thinning are equivalent to

those learned via naive Bayes, although the calibration constants c(k) may

be different.

At a high level, by elucidating the generative model that strong thinning

pushes us towards, these results can help us better understand the behavior

12.3 Examples 361

of Lévy thinning for intermediate value of α, e.g., α = 1/2. They also suggest

caution with respect to calibration: For both the diffusion and jump terms,

we saw above that Lévy thinning gives helpful guidance for the angle of

β(k), but does not in general elegantly account for signal strength
∥∥β(k)

∥∥
2

or

relative class weights. Thus, we recommend re-calibrating the class decision

boundaries obtained by Lévy thinning, as in Algorithm 1.

12.3 Examples

So far, we have developed our theory of Lévy thinning using the Poisson

topic model as a motivating example, which corresponds to dropping out

words from a document. In this section, we present two models based on

other Lévy processes—multivariate Brownian motion (Section 12.3.1) and

Gamma processes (Section 12.3.2)— exploring the consequences of Lévy

thinning.

12.3.1 Multivariate Brownian Motion

Consider a classification problem where the input vector is the aggregation

of multiple noisy, independent measurements of some underlying object. For

example, in a biomedical application, we might want to predict a patient’s

disease status based on a set of biomarkers such as gene expression levels

or brain activity. A measurement is typically obtained through a noisy

experiment involving an microarray or fMRI, so multiple experiments might

be performed and aggregated.

More formally, suppose that patient i has disease status Y (i) and expres-

sion level µi ∈ Rd for d genes, with the distribution of µi different for each

disease status. Given µi, suppose the t-th measurement for patient i is dis-

tributed as

Zi,t ∼ N(µi,Σ), (12.26)

where Σ ∈ Rd×d is assumed to be a known, fixed matrix. Let the observed

input be X(i) =
∑Ti

t=1 Zi,t, the sum of the noisy measurements. If we could

take infinitely many measurements (Ti →∞), we would have X(i)/Ti → µi
almost surely; that is, we would observe gene expression noiselessly. For

finitely many measurements, X(i) is a noisy proxy for the unobserved µi.

We can model the process of accumulating measurements with a multi-

variate Brownian motion (At):

At = tµ+ Σ1/2Bt, (12.27)

362 Data Augmentation via Lévy Processes

where Bt is a d-dimensional white Brownian motion.1 For integer values of

t, At represents the sum of the first t measurements, but At is also defined

for fractional values of t. The distribution of the features X at a given time

T is thus

X | µ, T ∼ N(Tµ, TΣ), (12.28)

leading to density

f (t)
µ (x) =

exp
[

1
2(x− tµ)>(tΣ)−1(x− tµ)

]
(2π)d/2 det(Σ)

(12.29)

= exp

[
x>Σ−1µ− t

2
µ>Σ−1µ

]
h(t)(x),

where

h(t)(x) =
exp

[
− 1

2tx
>Σ−1x

]
(2π)d/2 det(Σ)1/2

. (12.30)

We can recover the form of (12.6) by setting θ = Σ−1µ, a one-to-one mapping

provided Σ is positive-definite.

Thinning. The distribution of X̃ = AαT given X = AT is that of a

Brownian bridge process with the following marginals:

X̃ | X ∼ N (αX,α(1− α)TΣ) . (12.31)

In this case, “thinning” corresponds exactly to adding zero-mean, additive

Gaussian noise to the scaled features αX. Note that in this model, unlike in

the Poisson topic model, sampling X̃ from X does require observing T—for

example, knowing how many observations were taken. The larger T is, the

more noise we need to inject to achieve the same downsampling ratio.

In the Poisson topic model, the features (Xi,1, . . . , Xi,d) were independent

of each other given the topic θi and expected length Ti. By contrast, in

the Brownian motion model the features are correlated (unless Σ is the

identity matrix). This serves to illustrate that independence or dependence

of the features is irrelevant to our general framework; what is important is

that the increments Zt = At −At−1 are independent of each other, the key

property of a Lévy process.

Assumption 12.2 requires that µ>Σ−1µ is constant across topics; i.e., that

the true gene expression levels are equally sized in the Mahalanobis norm

1. By definition of Brownian motion, we have marginally that Bt ∼ N(0, tI).

12.3 Examples 363

defined by Σ. Clearly, this assumption is overly stringent in real situations.

Fortunately, Assumption 12.2 is not required (see Remark 12.1) as long as

T is observed—as it must be anyway if we want to be able to carry out Lévy

thinning.

Thinning X in this case is very similar to subsampling. Indeed, for integer

values of T̃ , instead of formally carrying out Lévy thinning as detailed above,

we could simply resample T̃ values of Zi,t without replacement, and add

them together to obtain X̃. If there are relatively few repeats, however, the

resampling scheme can lead to only
(T
T̃

)
pseudo-examples (e.g. 6 pseudo-

examples if T = 4 and T̃ = 2), whereas the thinning approach leads

to infinitely many possible pseudo-examples we can use to augment the

regression. Moreover, if T = 4 then subsampling leaves us with only four

choices of α; there would be no way to thin using α = 0.1, for instance.

12.3.2 Gamma Process

As another example, suppose again that we are predicting a patient’s

disease status based on repeated measurements of a biomarker such as gene

expression or brain activity. But now, instead of (or in addition to) the

average signal, we want our features to represent the variance or covariance

of the signals across the different measurements.

Assume first that the signals at different genes or brain locations are

independent; that is, the t-th measurement for patient i and gene j has

distribution

Zi,j,t ∼ N(µi,j , σ
2
i,j). (12.32)

Here, the variances σ2
i = (σ2

i,1, . . . , σ
2
i,d) parameterize the “topic.” Suppress-

ing the subscript i, after T + 1 measurements we can compute

Xj,T =

T+1∑
t=1

(Zi,j,t − Z̄i,j,T+1)2, where Z̄i,j,T+1 =
1

T + 1

T+1∑
t=1

Zi,j,t.

(12.33)

Then Xj,T ∼ σ2
jχ

2
T , which is a Gamma distribution with shape parameter

T/2 and scale parameter 2σ2
j (there is no dependence on µi). Once again,

as we accumulate more and more observations (increasing T), we will have

XT /T → (σ2
1, . . . , σ

2
d) almost surely.

We can embed Xj,T in a multivariate Gamma process with d independent

coordinates and scale parameters σ2
j :

(At)j ∼ Gamma(t/2, 2σ2
j). (12.34)

364 Data Augmentation via Lévy Processes

The density of At given σ2 is

f
(t)
σ2 (x) =

d∏
j=1

x
t/2−1
j e−xj/2σ

2
j

Γ(t/2)2t/2σ
2(t/2)
j

(12.35)

= exp

− d∑
j=1

xj/2σ
2
j − (t/2)

d∑
j=1

log σ2
j

h(t)(x),

where

h(t)(x) =

∏
j x

t/2−1
j

Γ(t/2)d2dt/2
. (12.36)

We can recover the form of (12.6) by setting θj = −1/2σ2
j , a one-to-one

mapping.

Thinning. Because X̃j ∼ Gamma(αT/2, 2σ2
j) is independent of the incre-

ment Xj − X̃j ∼ Gamma((1− α)T/2, 2σ2
j), we have

X̃j

Xj
| Xj ∼ Beta (αT/2, (1− α)T/2) . (12.37)

In other words, we create a noisy X̃ by generating for each coordinate an

independent multiplicative noise factor

mj ∼ Beta (αT, (1− α)T) (12.38)

and setting X̃j = mjXj . Once again, we can downsample without knowing

σ2
j , but we do need to observe T . Assumption 12.2 would require that

∏
j σ

2
j

is identical for all topics. This is an unrealistic assumption, but once again

it is unnecessary as long as we observe T .

General covariance. More generally, the signals at different brain loca-

tions, or expressions for different genes, will typically be correlated with

each other, and these correlations could be important predictors. To model

this, let the measurements be distributed as:

Zi,t ∼ N(µi,Σi), (12.39)

where Σ represents the unknown “topic”—some covariance matrix that is

characteristic of a certain subcategory of a disease status.

12.4 Simulation Experiments 365

After observing T + 1 observations we can construct the matrix-valued

features:

XT =

T+1∑
t=1

(Zi,t − Z̄i,T+1)(Zi,t − Z̄i,T+1)>. (12.40)

Now XT has a Wishart distribution: XT ∼ Wishd(Σ, T). When T ≥ d, the

density of At given Σ is

f
(t)
Σ (x) = exp

{
−1

2
tr(Σ−1x)− t

2
log det(Σ)

}
h(t)(x), (12.41)

where

h(t)(x) =

(
2
td

2 det(x)
t−d−2

2 Γd

(
t

2

))−1

, (12.42)

Γd

(
t

2

)
= π

d(d−1)

4

d∏
j=1

Γ

(
t

2
+

1− j
2

)
, (12.43)

supported on positive-definite symmetric matrices. If X = AT and αT ≥ d

as well, we can sample a “thinned” observation X̃ from density proportional

to

h(αT)(x̃)h(T−αT)(X − x̃) ∝ det(x̃)
2+d−αT

2 det(X − x̃)
2+d−(1−α)T

2 , (12.44)

or after the affine change of variables X̃ = X1/2MX1/2, we sample M from

density proportional to det(m)
2+d−αT

2 det(Id − m)
2+d−(1−α)t

2 , a matrix beta

distribution. Here, M may be interpreted as matrix-valued multiplicative

noise.

12.4 Simulation Experiments

In this section, we perform several simulations to illustrate the utility of

Lévy thinning. In particular, we will highlight the modularity between Lévy

thinning (which provides pseudo-examples) and the discriminative learner

(which ingests these pseudo-examples). We treat the discriminative learner

as a black box, complete with its own internal cross-validation scheme that

optimizes accuracy on pseudo-examples. Nonetheless, we show that accuracy

on the original examples improves when we train on thinned examples.

More specifically, given a set of training examples {(X,Y)}, we first

use Lévy thinning to generate a set of pseudo-examples {(X̃, Y)}. Then

we feed these examples to the R function cv.glmnet to learn a linear

classifier on these pseudo-examples (Friedman et al., 2010). We emphasize

366 Data Augmentation via Lévy Processes

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

naive Bayes <−−− alpha −−−> ridge logistic regression

cl
as

si
fic

at
io

n
er

ro
r

n: 30
n: 600

Figure 12.6: Performance of Lévy thinning with cross-validated ridge-regularized
logistic regression, on a random Gaussian design described in (12.45). The curves
depict the relationship between thinning α and classification error as the number of
training examples grows: n = 30, 50, 75, 100, 150, 200, 400, and 600. We see that
naive Bayes improves over ridge logistic regression in very small samples, while in
moderately small samples Lévy thinning does better than either end of the path.

that cv.glmnet seeks to choose its regularization parameter λ to maximize

its accuracy on the pseudo-examples (X̃, Y) rather than on the original

data (X, Y). Thus, we are using cross-validation as a black box instead of

trying to adapt the procedure to the context of Lévy thinning. In principle,

we might be concerned that cross-validating on the pseudo-examples would

yield a highly suboptimal choice of λ, but our experiments will show that

the procedure in fact works quite well.

The two extremes of the path correspond to naive Bayes generative model-

ing at one end (α = 0), and plain ridge-regularized logistic regression at the

other (α = 1). All methods were calibrated on the training data as follows:

Given original weight vectors β̂, we first compute un-calibrated predictions

µ̂ = Xβ̂ for the log-odds of P
[
Y = 1

∣∣X], and then run a second univariate

logistic regression Y ∼ µ̂ to adjust both the intercept and the magnitude of

the original coefficients. Moreover, when using cross-validation on pseudo-

examples (X̃, Y), we ensure that all pseudo-examples induced by a given

12.4 Simulation Experiments 367

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

naive Bayes <−−− alpha −−−> ridge logistic regression

cl
as

si
fic

at
io

n
er

ro
r

n: 30
n: 1600

Figure 12.7: Performance of Lévy thinning with cross-validated ridge-regularized
logistic regression, on a random Poisson design described in (12.46). The curves
depict the relationship between thinning α and classification accuracy for n =
30, 50, 100, 150, 200, 400, 800, and 1600. Here, aggressive Lévy thinning with
small but non-zero α does substantially better than naive Bayes (α = 0) as soon as
n is moderately large.

example (X, Y) are in the same cross-validation fold. Code for reproducing

our results is available at https://github.com/swager/levythin.

Gaussian example. We generate data from the following hierarchical

model:

Y ∼ Binomial (0.5) , µ
∣∣Y ∼ LY , X

∣∣µ ∼ N (µ, Id×d) , (12.45)

where µ, X ∈ Rd and d = 100. The distribution LY associated with each

label Y consists of 10 atoms µ
(Y)
1 , ..., µ

(Y)
10 . These atoms themselves are all

randomly generated such that their first 20 coordinates are independent

draws of 1.1T4 where T4 follows Student’s t-distribution with 4 degrees of

freedom; meanwhile, the last 80 coordinates of µ are all 0. The results in

Figure 12.6 are marginalized over the randomness in LY ; i.e., different simu-

lation realizations have different conditional laws for µ given Y . Figure 12.6

shows the results.

368 Data Augmentation via Lévy Processes

Poisson example. We generate data from the following hierarchical model:

Y ∼ Binomial (0.5) , θ
∣∣Y ∼ LY , Xj

∣∣ θ ∼ Pois

(
1000

eθj∑d
j=1 e

θj

)
, (12.46)

where θ ∈ Rd, X ∈ Nd, and d = 500. This time, however, LY is deterministic:

If Y = 0, then θ is just 7 ones followed by 493 zeros, whereas

θ
∣∣Y = 1 ∼

0, ..., 0︸ ︷︷ ︸
7

∣∣ τ, ..., τ︸ ︷︷ ︸
7

∣∣ 0, ..., 0︸ ︷︷ ︸
486

 , with τ ∼ Exp(3).

This generative model was also used in simulations by Wager et al. (2014);

the difference is that they applied thinning to plain logistic regression,

whereas here we verify that Lévy thinning is also helpful when paired with

cross-validated ridge logistic regression. Figure 12.7 shows the results.

These experiments suggest that it is reasonable to pair Lévy thinning

with a well-tuned black box learner on the pseudo-examples (X̃, Y), without

worrying about potential interactions between Lévy thinning and the tuning

of the discriminative model.

12.5 Discussion

In this chapter, we have explored a general framework for performing data

augmentation: apply Lévy thinning and train a discriminative classifier on

the resulting pseudo-examples. The exact thinning scheme reflects our gener-

ative modeling assumptions. We emphasize that the generative assumptions

are non-parametric and of a structural nature; in particular, we never fit an

actual generative model, but rather encode the generative hints implicitly

in the pseudo-examples.

A key result is that under the generative assumptions, thinning preserves

the Bayes decision boundary, which suggests that a well-specified classifier

incurs no asymptotic bias. Similarly, we would expect that a misspecified

but powerful classifier should incur little bias. We showed that in limit

of maximum thinning, the resulting procedure corresponds to fitting a

generative model. The exact bias-variance trade-off for moderate levels of

thinning is an interesting subject for further study.

While Lévy processes provide a general framework for thinning examples,

we recognize that there are many other forms of coarsening that could lead

to the same intuitions. For instance, suppose X | θ is a Markov process over

words in a document. We might expect that short contiguous subsequences

of X could serve as good pseudo-examples. More broadly, there are many

12.6 Appendix: Proof of Theorem 12.4 369

forms of data augmentation that do not have the intuition of coarsening

an input. For example, rotating or shearing an image to generate pseudo-

images appeals to other forms of transformational invariance. It would be

enlightening to establish a generative framework in which data augmentation

with these other forms of invariance arise naturally.

12.6 Appendix: Proof of Theorem 12.4

To establish the desired result, we show that for a single training example

(X, Y), the following limit is well-defined for any β ∈ Rp×K :

ρ (β; X, Y) = lim
α→0

1

α

(
Ẽ
[
`
(
β; X̃, Y

)]
− log (K)

)
(12.47)

= −β(Y) ·X + lim
α→0

1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·X̃

)]
,

where on the second line we wrote down the logistic loss explicitly and

exploited linearity of the term involving Y as in Wager et al. (2013). Here

Ẽ denotes expectation with respect to the thinning process and reflects

the B → ∞ limit. Because ` is convex, ρ must also be convex; and by

equicontinuity β̂(α) must also converge to its minimizer.

Our argument relies on the decomposition At = bt + Wt + Nt from

(12.20). Without loss of generality, we can generate the pseudo-features X̃

as X̃ = bt + W̃αT + ÑαT , where W̃αT and ÑαT have the same marginal

distribution as WαT and NαT . Given this notation,

1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(αbT+W̃αT+ÑαT)

)]

=
1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(αbT+W̃αT)

) ∣∣ ÑαT = 0

]
P
[
ÑαT = 0

]
+

1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(αbT+W̃αT+ÑαT)

) ∣∣ ÑαT 6= 0

]
P
[
ÑαT 6= 0

]
.

We now characterize these terms individually. First, because Nt has a finite

jump intensity, we can verify that, almost surely,

lim
α→0

1

α
P
[
ÑαT 6= 0

]
= λT (X),

370 Data Augmentation via Lévy Processes

where λT (X) is as defined in (12.22). Next, because W̃αT concentrates at 0

as α→ 0, we can check that

lim
α→0

Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(αbT+W̃αT+ÑαT)

) ∣∣ ÑαT 6= 0

]

= lim
α→0

Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·ÑαT

) ∣∣ ÑαT 6= 0

]

=

∫
log

(
1

K

K∑
k=1

eβ
(k)·z
)
dνT (z; X)

where νT (·; X) (12.23) is the first jump measure conditional on X.

Meanwhile, in order to control the remaining term, we note that we can

write

W̃αT = αW̃T + B̃αT ,

where B̃t is a Brownian bridge from 0 to T that is independent from W̃T .

Thus, noting that limα→0 P
[
ÑαT = 0

]
= 1, we find that

lim
α→0

1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(αbT+W̃αT)

) ∣∣ ÑαT = 0

]
P
[
ÑαT = 0

]
= lim

α→0

1

α
Ẽ

[
log

(
1

K

K∑
k=1

eβ
(k)·(α(bT+W̃T))+B̃αT

)]

= β̄ · µT (X) +
T

2

(
1

K

K∑
k=1

β(k)>Σβ(k) − β̄>Σβ̄

)
,

where µT (X) is as defined in (12.21) and β̄ = K−1
∑K

k=1 β
(k). The last

equality follows from Taylor expanding the log(
∑

exp) term and noting that

3rd- and higher-order terms vanish in the limit.

12.7 References 371

Bringing back the linear term form (12.47), and assuming without loss of

generality that β̄ = 0, we finally conclude that

ρ (β; X, Y) = −β(Y) ·X +
T

2

1

K

K∑
k=1

β(k)>Σβ(k)

+ λT (X)

∫
log

(
1

K

K∑
k=1

eβ
(k)·z
)
dνT (z; X)

= −β(Y) · µT (X) +
T

2

1

K

K∑
k=1

β(k)>Σβ(k)

+ λT (X)

∫
−β(Y) · z + log

(
K∑
k=1

eβ
(k)·z
)
− log(K) dνT (z; X),

where for the second equality we used the fact that X = µT (X) +

λT (X)
∫
z dνT (z; X). Finally, this expression only differs from (12.24) by

terms that do not include β; thus, they yield the same minimizer.

12.7 References

Y. S. Abu-Mostafa. Learning from hints in neural networks. Journal of Complexity,
6(2):192–198, 1990.

J. Ba and B. Frey. Adaptive dropout for training deep neural networks. In Advances
in Neural Information Processing Systems (NIPS), pages 3084–3092, 2013.

P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial intelligence,
210:78–122, 2014.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108–116, 1995.

G. Bouchard and B. Triggs. The trade-off between generative and discriminative
classifiers. In International Conference on Computational Statistics, pages 721–
728, 2004.

B. Efron. The efficiency of logistic regression compared to normal discriminant
analysis. Journal of the American Statistical Association (JASA), 70(352):892–
898, 1975.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22,
2010.

A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature
deletion. In International Conference on Machine Learning (ICML), pages 353–
360, 2006.

I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In International Conference on Machine Learning (ICML), pages
1319–1327, 2013.

372 Data Augmentation via Lévy Processes

D. P. Helmbold and P. M. Long. On the inductive bias of dropout. Journal of
Machine Learning Research (JMLR), 16:3403–3454, 2015.

J. Josse and S. Wager. Stable autoencoding: A flexible framework for regularized
low-rank matrix estimation. arXiv preprint arXiv:1410.8275, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems (NIPS), pages 1097–1105, 2012.

J. A. Lasserre, C. M. Bishop, and T. P. Minka. Principled hybrids of generative and
discriminative models. In Computer Vision and Pattern Recognition (CVPR),
pages 87–94, 2006.

P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and
pseudolikelihood estimators. In International Conference on Machine Learning
(ICML), pages 584–591, 2008.

D. McAllester. A PAC-Bayesian tutorial with a dropout bound. arXiv preprint
arXiv:1307.2118, 2013.

A. McCallum, C. Pal, G. Druck, and X. Wang. Multi-conditional learning: Gener-
ative/discriminative training for clustering and classification. In Association for
the Advancement of Artificial Intelligence (AAAI), 2006.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems (NIPS), 2002.

R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification with hybrid gen-
erative/discriminative models. In Advances in Neural Information Processing
Systems (NIPS), 2004.

Y. D. Rubinstein and T. Hastie. Discriminative vs informative learning. In
International Conference on Knowledge Discovery and Data Mining (KDD),
volume 5, pages 49–53, 1997.

S. P. Schölkopf, P. Simard, V. Vapnik, and A. Smola. Improving the accuracy and
speed of support vector machines. In Advances in Neural Information Processing
Systems (NIPS), pages 375–381, 1997.

P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation
Invariance in Pattern Recognition—Tangent Distance and Tangent Propagation.
Neural networks: Tricks of the trade Springer, 1998.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

L. van der Maaten, M. Chen, S. Tyree, and K. Q. Weinberger. Learning with
marginalized corrupted features. In International Conference on Machine Learn-
ing (ICML), pages 410–418, 2013.

S. Wager, S. I. Wang, and P. Liang. Dropout training as adaptive regularization.
In Advances in Neural Information Processing Systems (NIPS), 2013.

S. Wager, W. Fithian, S. I. Wang, and P. Liang. Altitude training: Strong bounds
for single-layer dropout. In Advances in Neural Information Processing Systems
(NIPS), 2014.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning
(ICML), pages 1058–1066, 2013.

12.7 References 373

S. I. Wang and C. Manning. Fast dropout training. In International Conference
on Machine Learning (ICML), pages 118–126, 2013.

S. I. Wang, M. Wang, S. Wager, P. Liang, and C. Manning. Feature noising
for log-linear structured prediction. In Empirical Methods in Natural Language
Processing (EMNLP), 2013.

13 Bilu-Linial Stability

Konstantin Makarychev komakary@microsoft.com

Microsoft Research

Redmond, WA, USA

Yury Makarychev yury@ttic.edu

Toyota Technological Institute at Chicago

Chicago, IL, USA

This chapter describes recent results on Bilu-Linial stability, also known

as perturbation resilience. It offers an overview of the subject and presents

algorithms for stable and weakly stable instances of graph partitioning and

clustering problems, including Max Cut, Minimum Multiway Cut, k-center,

and clustering problems with separable center-based objectives.

13.1 Introduction

In this chapter, we survey recent research on instance stability and pertur-

bation resilience. Many discrete optimization problems in machine learning,

operations research, and other areas are NP-hard. For many of them, not

only the exact but even a good approximate solution cannot be found ef-

ficiently in the worst case. At the same time, instances appearing in real

life can often be solved exactly or almost exactly. This raises the following

question:

Why are real-life instances often significantly easier than worst-case

instances?

To formally study this question, we must define a model for real-life in-

stances. The two most popular approaches are either to assume that a real-

376 Bilu-Linial Stability

life instance has certain structural properties, or to assume that it is gener-

ated in a random or semi-random process. Both approaches are very natural

and have led to the discovery of many interesting results. In this chapter,

we study the former approach, focusing on stable instances of clustering and

graph partitioning problems. We refer the reader to several papers describ-

ing the latter approach (Blum and Spencer, 1995; Feige and Kilian, 1998;

Mathieu and Schudy, 2010; Makarychev et al., 2012, 2014a, 2013, 2015; Feige

et al., 2015).

Instance stability, or perturbation resilience, was introduced by Bilu and

Linial (2010). Informally, an instance is Bilu-Linial stable if the optimal

solution does not change when we perturb the instance.

Definition 13.1. Consider an instance of a graph partitioning problem,

a graph G = (V,E,w) with a set of edge weights we. An instance G′ =

(V,E,w′) is an α-perturbation (α ≥ 1) of G if w(e) ≤ w′(e) ≤ αw(e); that

is, if we can obtain the perturbed instance from the original by multiplying

the weight of each edge by a number from 1 to α (the number may be different

for every edge).

Now, consider an instance I = (V, d) of a clustering problem, where V is a

set of points and d is a metric on V . An instance (V, d′) is an α-perturbation

of (V, d) if d(u, v) ≤ d′(u, v) ≤ αd(u, v); here, d′ does not have to be a metric.

If, in addition, d′ is a metric, then d′ is an α-metric perturbation of d.

Definition 13.2. An instance I is α-stable if every α-perturbation of I has

the same optimal solution as I.

Adhering to the literature, we will refer to α-stable instances of graph par-

titioning problems as “Bilu-Linial stable” and to α-stable instances of clus-

tering problems as “α-perturbation resilient”. Additionally, for clustering

problems, we will consider a weaker, and perhaps somewhat more natural,

notion of α-metric perturbation resilience.

Definition 13.3. An instance (V, d) of a clustering problem is α-metric

perturbation resilient if every α-metric perturbation of (V, d) has the same

optimal solution as I.

Why is it reasonable to assume that many real-life instances are stable?

As Bilu and Linial (2010); Balcan et al. (2009); Bilu et al. (2013) argue,

the reason is that often the optimal solution “stands out” among all other

solutions — it is significantly better than all other solutions, and, therefore,

the optimal solution remains the same even if we slightly perturb the

instance. Also, we are often interested not in optimizing the objective

function per se, but rather in finding the “true” clustering or partitioning.

13.1 Introduction 377

Problem Main Results Reference

Max Cut & 2-corre- O(
√

logn log logn) Makarychev et al. (2014b)

lation clustering (incl. weakly stable instances)

SDP gap and hardness result

Min Multiway Cut 4, (incl. weakly stable instances) Makarychev et al. (2014b)

Max k-Cut hardness for ∞-stable instances Makarychev et al. (2014b)

sym./assym. k-center 2 Balcan et al. (2015)

hardness for (2− ε)-pert. resil.

s.c.b. objective 1 +
√

2 Balcan and Liang (2016)

(2 +
√

3, ε) for k-median

2, assuming cluster verifiability Balcan et al. (2015)

s.c.b., Steiner points 2 +
√

3 Awasthi et al. (2012)

min-sum objective O(ρ) and (O(ρ), ε), where ρ is Balcan and Liang (2016)

the ratio between the sizes of

the largest and smallest clusters

TSP 1.8 Mihalák et al. (2011)

Table 13.1: The table summarizes some known results for Bilu-Linial stability.
It shows a number α if there is an algorithm for α-stable/perturbation resilient
instances; it shows (α, ε) if there is an algorithm for (α, ε)-perturbation resilient
instances. “s.c.b.” is a shortcut for a clustering problem with a separable center-
based objective.

If the optimal solution changes drastically when we slightly perturb the

weights, then by solving the problem exactly, we will likely not find the true

clustering since we often know the values of edge weights or distances only

approximately. Therefore, if the instance is not stable, we are not interested

in solving it in the first place.

Nevertheless, the definition of Bilu-Linial stability is somewhat too strict.

Perhaps, it is more natural to require that the optimal solution to a per-

turbed instance be “ε-close” but not necessarily equal to the optimal solution

for the original instance. This notion is captured in the definitions of α-weak

Bilu-Linial stability and (α, ε)-perturbation resilience (we present a formal

definition of weak Bilu-Linial stability for Max Cut in Section 13.2.3).

Let us now briefly describe the research on Bilu-Linial stability. We refer

the reader to Table 13.1 for the list of known results. The notion of instance

stability was introduced by Bilu and Linial (2010). They offered the first

evidence that stable instances are much easier than worst-case instances;

specifically, they gave an exact algorithm for O(n)-stable instances of Max

Cut. This result was improved by Bilu et al. (2013), who designed an

algorithm for O(
√
n)-stable instances. Makarychev et al. (2014b) developed

378 Bilu-Linial Stability

a general approach to analyzing stable instances of graph partitioning

problems, showing that if there exist a convex relaxation and a rounding

scheme for a problem satisfying certain properties, then

the convex relaxation for stable instances of the problem is integral;

there are polynomial-time algorithms for stable and weakly stable in-

stances of the problem;

the algorithm for stable instances is robust — it either solves the problem

or certifies that the instance is not stable.

In particular, this result applies to O(
√

log n log log n)-stable and weakly

stable instances of Max Cut, and 4-stable and weakly stable instances of

Minimum Multiway Cut. Moreover, the results for Max Cut are essentially

tight; see (Makarychev et al., 2014b) for details.

Awasthi et al. (2012) initiated the study of perturbation resilience of

clustering problems. They defined a wide class of clustering problems with

separable center-based objectives, including such problems as k-center, k-

means, and k-median, and presented an algorithm for solving 3-perturbation

resilient instances of such problems. Additionally, in a more general setting,

where Steiner points are allowed, they gave an algorithm for (2 +
√

3)-

perturbation resilient instances, and showed that there is no polynomial-time

algorithm for 3-perturbation resilient instances with Steiner points.

Later, Balcan and Liang (2016) improved the result of Awasthi et al.

(2012) for clustering problems with separable center-based objectives (with-

out Steiner points), by showing that (1+
√

2)-perturbation resilient instances

can be efficiently solved. In addition, they gave an approximation algorithm

for (2 +
√

3, ε)-perturbation resilient (weakly stable) instances. They also

presented an algorithm for clustering with the min-sum objective, as well as

sub-linear algorithms for clustering problems.

Most recently, Balcan et al. (2015) designed algorithms for 2-perturbation

resilient instances of symmetric and asymmetric k-center and obtained a

matching hardness result. They also considered clustering instances with

separable center-based objectives satisfying the cluster verifiability condi-

tion. This condition requires that there be a polynomial-time algorithm that,

given a set S, determines which is of the following statements holds true:

(1) S = Ci for some i, (2) S ⊂ Ci for some i, (3) S ⊃ Ci for some i

(where C1, . . . , Ck is the optimal clustering); under the promise that one of

these statements is true. Balcan et al. (2015) showed how to solve 2-stable

instances satisfying this condition.

13.1 Introduction 379

There has also been research on algorithms for stable instances of other

problems. Mihalák et al. (2011) gave an algorithm for 1.8-stable instances of

the Travelling Salesperson Problem (TSP). Balcan and Braverman (2010)

studied the problem of finding the Nash equilibrium under stability assump-

tions. Also of much interest are the papers by Ostrovsky et al. (2006) and

Balcan et al. (2009), which study notions of stability closely related to Bilu-

Linial stability. Finally, let us mention that Leontev gave a similar definition

of stability for combinatorial optimization problems in 1975. However, his

motivation for studying instance stability was different from the motiva-

tion of Bilu and Linial; and the questions studied in his paper (Leontev,

1975) and a number of subsequent papers are not related to the questions

addressed in this survey.

13.1.1 Organization

We describe several results for stable instances of graph partitioning and

clustering problems. We begin with a general definition of graph partitioning

problems in Section 13.2.1. Then, we prove that convex relaxations for

γ-stable instances of graph partitioning problems, which satisfy certain

assumptions, are integral (for the appropriate choice of γ), and, therefore,

these instances can be solved in polynomial time. In Section 13.2.2, we apply

this theorem to the Minimum Multiway Cut problem to show that 4-stable

instances of the problem have an integral LP relaxation. In Section 13.2.1, we

also state a general theorem for weakly stable instances of graph partitioning

problems (Theorem 13.1, part II). However, we omit the proof in this

survey. Instead, in Section 13.2.3, we prove a special case of the theorem,

presenting an algorithm for γ-weakly stable instances of Max Cut (for

γ ≥ c√log n log log n).

Then we proceed to clustering problems. In Section 13.3.1, we give an

algorithm for 2-metric perturbation resilient instances of k-center (due to

Balcan et al., 2015). Then, in Section 13.3.2, we give the definition of

clustering problems with a center-based objective and present an algorithm

for solving (
√

2+1)-metric perturbation resilient instances of such problems

(due to Balcan and Liang, 2016).

380 Bilu-Linial Stability

13.2 Stable Instances of Graph Partitioning Problems

13.2.1 Relaxations for Stable Instances Are Integral

In this section, we study stable instances of graph partitioning problems.

We show that under certain conditions convex relaxations (e.g., linear pro-

gramming and semidefinite programming relaxations) for stable instances

of graph partitioning problems are integral. In particular, the result of

this section implies that 4-stable instances of Minimum Multiway Cut and

c
√

log n log log n-stable instances of Max Cut have integral convex relax-

ations.

The result applies to a wide class of graph partitioning problems. Let us

start with defining graph partitioning problems — our definition will include

such problems as Min Cut, Max Cut, Minimum Multiway Cut, Minimum

Balanced Cut, Minimum Multicut, and many others.

Definition 13.4. In a graph partitioning problem, we are given a graph

G = (V,E,w) with positive edge weights w(e). Our goal is to remove a

subset of edges Ecut ⊂ E that satisfies certain conditions, which depend on

the specific problem at hand, so as to minimize or maximize the weight of cut

edges. Specifically, in a minimization problem, we minimize
∑

e∈Ecut w(e);

in a maximization problem, we maximize
∑

e∈Ecut w(e).

Consider a few examples that show how our definition captures standard

graph partitioning problems; for each problem, we will state the require-

ments on the set Ecut. The global Min Cut problem is a minimization prob-

lem, in which we require that the set of edges Ecut consist exactly of all the

edges between some set A and its complement Ā (both sets A and Ā must

not be empty). Max Cut is a maximization problem, in which we similarly

require that Ecut consist of all the edges between sets A and Ā. Minimum

Multiway Cut is a minimization problem, in which we require that every two

terminals si are sj in a given set of terminals {s1, . . . , sk} be disconnected

in G− Ecut.
We show an interesting connection between Bilu-Linial stability and

rounding algorithms or schemes for convex relaxations of graph partition-

ing problems. First, let us briefly discuss how rounding schemes are used in

solving graph partitioning problems. We write a linear programming (LP) or

semidefinite programming (SDP) relaxation for the problem. The relaxation

has two types of feasible solutions. First of all, the relaxation has feasible

integral solutions, which are in one-to-one correspondence with feasible so-

lutions to the graph partitioning problem (we will refer to solutions of the

13.2 Stable Instances of Graph Partitioning Problems 381

graph partitioning problem as combinatorial solutions). Secondly, the relax-

ation has solutions that do not correspond to any combinatorial solutions.

We solve the relaxation and find an optimal fractional solution, which might

not be integral. However, since there is an integral solution corresponding

to the optimal combinatorial solution, the optimal fractional solution value

must be at least the optimal combinatorial value for a maximization problem

and at most the optimal combinatorial value for a minimization problem.

Now we use a (randomized) rounding scheme to transform a fractional solu-

tion to a combinatorial solution.1 Most linear and semidefinite programming

relaxations for graph partitioning problems are metric-based. Let us give a

very general definition of a metric-based fractional solution.

Definition 13.5. We say that x is a metric-based fractional solution of

value val(x) for a graph partitioning problem if there is a polynomial-time

algorithm that given x finds a distance function d : E → [0, 1] such that

val(x) =
∑

(u,v)∈E
w(u, v) d(u, v).

We say that distance d is defined by solution x.

Assume that there is a polynomial-time (optimization) algorithm A that,

given an instance of the problem, finds a metric-based fractional solution x

of value val(x),

val(x) ≥ OPT for a maximization problem,

val(x) ≤ OPT for a minimization problem,

where OPT is the value of the optimal combinatorial solution. Then we say

that x is an optimal fractional solution found by the optimization algorithm

A.

A standard example of an algorithm A is an LP or SDP solver that finds

an optimal solution to an LP or SDP relaxation of a graph partitioning

problem. Then an optimal fractional solution x is just an optimal LP or

SDP solution to the relaxation.

Definition 13.6. Consider a graph partitioning problem and an optimiza-

tion algorithm A as in Definition 13.5. We say that a randomized algorithm

R is a rounding scheme (w.r.t. A) if, given an optimal fractional solution x

for an instance of the problem, it returns a feasible solution to the instance.

1. We note that “rounding algorithms” are often very non-trivial; they do not merely
round real numbers to integers as their name might suggest.

382 Bilu-Linial Stability

Now note that, by combining an optimization procedure A and

(polynomial-time) rounding scheme R, we get a randomized approximation

algorithm (see Algorithm 13.1). The mere existence of a rounding scheme,

Algorithm 13.1 Approximation algorithm based on optimization procedure A and

rounding scheme R

1: Run A on the input instance I and get an optimal fractional solution x.
2: Run R on x and get a feasible solution to I.

however, does not guarantee that the approximation algorithm based on

it performs well. Let us say that we have a minimization problem. One of

the most common ways to ensure that the approximation algorithm has an

approximation factor of α is to use a rounding scheme R satisfying the fol-

lowing condition: given an optimal fractional solution x, R returns a random

solution E′cut such that

Pr
(
(u, v) ∈ E′cut

)
≤ αd(u, v), (13.1)

where d is the distance defined by x. Observe that, then, the expected cost

of the solution E′cut is

E
[
w(E′cut)

]
=

∑
(u,v)∈E

w(u, v) Pr
(
(u, v) ∈ E′cut

)
≤ α

∑
(u,v)∈E

w(u, v) d(u, v) = α val(x) ≤ αOPT.

That is, in expectation, the algorithm finds a solution of cost at most αOPT,

and thus has an approximation factor of α. Now consider the complementary

optimization problem of maximizing the weight of uncut edges, w(E \E′cut).
Note that an optimal solution to the original problem is also an optimal

solution to the complementary problem, since the sum of their objectives,

w(E′cut) + w(E \ E′cut) = w(E), depends only on the instance and not on

the solution E′cut. However, the problems might be very different in terms of

multiplicative approximability — a good approximation algorithm for one

of them is not necessarily good for the other. It is not hard to see that in

order to get a β approximation algorithm for the complementary problem,

we can use a rounding procedure R satisfying the following condition,

Pr
(
(u, v) /∈ E′cut

)
≥ β−1(1− d(u, v)). (13.2)

We stress that conditions (13.1) and (13.2) are completely independent, and

a rounding procedure may satisfy one of them and not the other.

13.2 Stable Instances of Graph Partitioning Problems 383

Makarychev et al. (2014b) showed that if there is a rounding scheme

R satisfying both conditions (13.1) and (13.2), then the relaxation for

(αβ)-stable instances is integral, and, consequently, there is a robust exact

algorithm for (αβ)-stable instances.

Theorem 13.1 (Makarychev et al. (2014b)). I. Consider a graph partition-

ing problem. Suppose that there is a rounding scheme that, given a graph

G = (V,E,w) and an optimal fractional solution x, returns a feasible so-

lution E′cut such that for some α ≥ 1 and β ≥ 1 (α and β may depend on

n),

For a cut minimization problem,

1. Pr ((u, v) ∈ E′cut) ≤ αd(u, v),

2. Pr (u /∈ E′cut) ≥ β−1(1− d(u, v)).

For a cut maximization problem,

1′. Pr ((u, v) ∈ E′cut) ≥ α−1d(u, v)

2′. Pr ((u, v) /∈ E′cut) ≤ β(1− d(u, v))

where distance d is defined by the fractional solution x.

Then distance d is integral for (αβ)-stable instances of the problem; specifi-

cally, for every edge (u, v) ∈ E

d(u, v) =

{
0, if (u, v) /∈ E∗cut,
1, if (u, v) ∈ E∗cut,

where E∗cut is the optimal combinatorial solution.2 Consequently, there is a

robust polynomial-time algorithm for (αβ)-stable instances.

II. Furthermore, there is an algorithm for (αβ + ε,N)-weakly stable in-

stances of the problem that finds a feasible solution E′cut ∈ N (for every

ε > 0).

The theorem also holds for graph partitioning problems with positive and

negative weights if we require that all four properties 1, 1′, 2 and 2′ hold.

In this survey, we are going to prove only part I of Theorem 13.1. Since

the proofs of Theorem 13.1 for minimization and maximization problems are

completely analogous, let us only consider a minimization problem. Before

we proceed with the proof itself, we prove the following auxiliary lemmas.

Lemma 13.2 (Bilu and Linial (2010)). Consider a γ-stable instance of

a minimization graph partitioning problem. Suppose E∗cut is the optimal

2. In particular, given d, we can find E∗cut: E
∗
cut = {(u, v) : d(u, v) = 1}.

384 Bilu-Linial Stability

combinatorial solution. Then, for any combinatorial solution E′cut, we have

γ w(E∗cut \ E′cut) < w(E′cut \ E∗cut).

Proof. Consider the following γ-perturbation of w: w′(u, v) = γw(u, v) for

(u, v) ∈ E∗cut \ E′cut; and w′(u, v) = w(u, v) otherwise. Since the instance is

is γ-stable, we have w′(E∗cut) < w′(E′cut). Write,

w′(E∗cut \ E′cut) + w′(E∗cut ∩ E′cut)︸ ︷︷ ︸
w′(E∗cut)

< w′(E′cut \ E∗cut) + w′(E∗cut ∩ E′cut)︸ ︷︷ ︸
w′(E′cut)

.

Thus, w′(E∗cut \ E′cut) < w′(E′cut \ E∗cut). Using the definition of w′, we get

the desired inequality: γ w′(E∗cut \ E′cut) < w′(E′cut \ E∗cut).
Lemma 13.3. If the distance d defined by a fractional solution x is not

integral, then the rounding algorithm returns a solution E′cut different from

the optimal combinatorial solution E∗cut with non-zero probability.

Proof. Note that if d(u, v) < 1 for some edge (u, v) ∈ E∗cut, then (u, v) /∈ E′cut
with probability at least β−1(1 − d(u, v)) > 0, and hence E∗cut 6= E′cut with

non-zero probability. So let us assume that d(u, v) = 1 for every (u, v) ∈ E∗cut.
Since the cost of the optimal combinatorial solution is at least the cost of

the optimal fractional solution x, we have∑
(u,v)∈E∗cut

w(u, v) ≥ val(x) =
∑

(u,v)∈E
w(u, v) d(u, v)

=
∑

(u,v)∈E∗cut

w(u, v) +
∑

(u,v)∈E\E∗cut

w(u, v) d(u, v).

Therefore, ∑
(u,v)∈E\E∗cut

w(u, v) d(u, v) ≤ 0,

and d(u, v) = 0 for every (u, v) ∈ E \ E∗cut.
Proof of Theorem 13.1. Consider an (αβ)-stable instance of the problem.

Let d be the distance defined by an optimal solution. We are going to prove

that d is integral. Assume to the contrary that it is not. Let E′cut be a random

combinatorial solution obtained by rounding d, and let E∗cut be the optimal

combinatorial solution. Since d is not integral, E′cut 6= E∗cut with non-zero

probability.

From (αβ)-stability of the instance (see Lemma 13.2), we get that

(αβ)w(E∗cut \ E′cut) < w(E′cut \ E∗cut) unless E∗cut = E′cut,

13.2 Stable Instances of Graph Partitioning Problems 385

and therefore (here we use that Pr(E∗cut 6= E′cut) > 0),

(αβ)E
[
w(E∗cut \ E′cut)

]
< E

[
w(E′cut \ E∗cut)

]
. (13.3)

Let

LP+ =
∑

(u,v)∈E∗cut

w(u, v)(1− d(u, v)),

LP− =
∑

(u,v)∈E\E∗cut

w(u, v) d(u, v).

From conditions 1 and 2 in the statement of the theorem, we get

E
[
w(E∗cut \ E′cut)

]
=

∑
(u,v)∈E∗cut

w(u, v) Pr((u, v) /∈ E′cut)

≥
∑

(u,v)∈E∗cut

w(u, v)β−1(1− d(u, v)) = β−1LP+,

E
[
w(E′ \ E∗)cut

]
=

∑
(u,v)∈E\E∗cut

w(u, v) Pr((u, v) ∈ E′cut)

≤
∑

(u,v)∈E∗cut

w(u, v)αd(u, v) = α LP−.

Using inequality (13.3), we conclude that LP+ < LP−. On the other hand,

from the formulas for LP+ and LP−, we get

LP+ − LP− = w(E∗cut)−
∑

(u,v)∈E
w(u, v) d(u, v) ≥ 0,

since the value of the fractional solution is at most the value of the integral

solution. We get a contradiction, which concludes the proof.

13.2.2 An LP Relaxation and Rounding Scheme for Minimum

Multiway Cut

In this section, we show that the linear programming relaxation for 4-stable

instances of Minimum Multiway Cut is integral. To this end, we present an

LP relaxation for Minimum Multiway Cut and a rounding scheme satisfying

the conditions of Theorem 13.1. Recall the definition of the Multiway Cut

problem.

Definition 13.7. An instance of Minimum Multiway Cut consists of a

graph G = (V,E,w) with positive edge weights we and a set of terminals

T = {s1, . . . , sk} ⊂ V . The goal is to partition the graph into k pieces

386 Bilu-Linial Stability

S1, . . . , Sk with si ∈ Si so as to minimize the total weight of cut edges

Ecut = {(u, v) ∈ E : u ∈ Si, v ∈ Sj for i 6= j}.

The problem has been actively studied since it was introduced by Dahlhaus

et al. (1994). There has been a series of approximation algorithms for

it (Cualinescu et al., 1998; Karger et al., 2004; Buchbinder et al., 2013); the

current state-of-the-art approximation algorithm by Sharma and Vondrák

(2014) gives a 1.30217 approximation.

We use the LP relaxation of Cualinescu et al. (1998). In this relaxation, we

have a variable ū = (u1, . . . , uk) ∈ Rk for every vertex u ∈ V . Let e1, . . . , ek
be the standard basis in Rk and ∆ = {x : ‖x‖1 = 1, x1 ≥ 0, . . . , xk ≥ 0} be

the simplex with vertices e1, . . . , ek.

minimize
1

2

∑
(u,v)∈E

w(u, v) ‖ū− v̄‖1 (13.4)

subject to:

s̄i = ei for every i,

ū ∈ ∆ for every u ∈ V.

Every feasible LP solution defines a metric on V : d(u, v) = ‖ū− v̄‖1/2. Note

that the objective function equals
∑

e∈E w(u, v) d(u, v). Let us now present

a randomized rounding scheme for this LP relaxation.

Theorem 13.4 (Makarychev et al. (2014b)). Consider a feasible LP solu-

tion {ū : u ∈ V } and metric d(u, v) = ‖ū − v̄‖1/2. There is a randomized

algorithm that finds a partition S1, . . . , Sk of V and a set Ecut such that

si ∈ Si for every i ∈ {1, . . . , k} (always),

Pr((u, v) ∈ Ecut) ≤ 2d(u,v)
1+d(u,v) for every (u, v) ∈ E. In particular,

Pr((u, v) ∈ Ecut) ≤ 2d(u, v) and Pr((u, v) /∈ Ecut) ≥
1− d(u, v)

2
.

The rounding procedure satisfies the conditions of Theorem 13.1 with

parameters α = β = 2, and, therefore, the LP relaxation for 4-stable

instances of Multiway Cut is integral.

Proof. We use the rounding algorithm by Kleinberg and Tardos (2002). The

algorithm starts with empty sets S1, . . . , Sk and then iteratively adds vertices

to sets S1, . . . , Sk. It stops when each vertex is assigned to some set Si.

In each iteration, the algorithm chooses independently and uniformly at

random r ∈ (0, 1) and i ∈ {1, . . . , k}. It adds each vertex u to Si if r ≤ ūi
and u has not yet been added to any set Sj .

13.2 Stable Instances of Graph Partitioning Problems 387

Algorithm 13.2 Rounding Algorithm for Minimum Multiway Cut

1: S1 = ∅, . . . , Sk = ∅
2: R = V . R is the set of unpartitioned vertices
3: while R 6= ∅ do
4: r ∈U (0, 1); i ∈U {1, . . . , k}
5: Si = Si ∪ {u ∈ R : ūi ≥ r}
6: R = R \ {u ∈ R : ūi ≥ r}
7: end while
8: return S1, . . . , Sk and Ecut = {(u, v) ∈ E : u ∈ Si, v ∈ Sj for i 6= j}.

First, note that we add every vertex u to some Si with probability∑k
i=1 ūi/k = 1/k in each iteration (unless u already lies in some Sj). So

eventually we will add every vertex to some set Si. Also note that we cannot

add si to Sj if j 6= i. Therefore, si ∈ Si.
Now consider an edge (u, v). Consider one iteration of the algorithm.

Suppose that neither u nor v is assigned to any set Sj in the beginning

of the iteration. The probability that at least one of them is assigned to

some Si in this iteration is

1

k

k∑
i=1

Pr(ūi ≥ r or v̄i ≥ r) =
1

k

k∑
i=1

max(ūi, v̄i)

=
1

k

k∑
i=1

(
ūi + v̄i

2
+
|ūi − v̄i|

2

)
=

1

k

(
1 +
‖ū− v̄‖1

2

)
=

1 + d(u, v)

k
.

The probability that exactly one of them is assigned to some Si is

1

k

k∑
i=1

Pr(ūi < r ≤ v̄i or v̄i < r ≤ ūi) =
1

k

k∑
i=1

|ūi−v̄i| =
‖ū− v̄‖1

k
=

2d(u, v)

k
.

We get that in one iteration, the conditional probability that u and v

are separated given that at least one of them is assigned to some set is

2d(u, v)/(1 + d(u, v)). Therefore, the probability that u and v are separated

in some iteration is 2d(u, v)/(1 +d(u, v)). Thus the probability that (u, v) is

cut is at most 2d(u, v)/(1 + d(u, v)).

13.2.3 Weakly Stable Instances of Max Cut

Bilu-Linial stability imposes rather strong constraints on an instance of

a graph partitioning problem. Can these constraints be relaxed? In this

section, we give a definition of a more robust notion — a notion of weak

stability. Then we present an algorithm for weakly stable instances of the

Max Cut problem. Note that using Theorem 13.1 from the previous section,

388 Bilu-Linial Stability

one can show that a certain SDP relaxation for Max Cut is integral for γ-

stable instances of Max Cut with γ ≥ c
√

log n log log n. However, the SDP

does not have to be integral for weakly stable instances of Max Cut. Let us

now recall the definition of Max Cut.

Definition 13.8 (Max Cut). In the Max Cut Problem, we are given a

weighted graph G = (V,E,w). Our goal is to partition the set of vertices

into two sets S and S̄ so as to maximize w(E(S, S̄)).

Max Cut is an NP-hard problem (Karp, 1972). The approximation factor

of the best known algorithm due to Goemans and Williamson (1995) is 0.878.

It cannot be improved if the Unique Games Conjecture holds true (Khot

et al., 2007). We now give the definition of weak stability for Max Cut.

Definition 13.9. Consider a weighted graph G = (V,E,w). Let (S, S̄) be

a maximum cut in G, N be a set of cuts that contains (S, S̄), and γ ≥ 1.

We say that G is a (γ,N)-weakly stable instance of Max Cut if for every

γ-perturbation G′ = (V,E,w′) of G, and every cut (T, T̄) /∈ N , we have

w′(E(S, S̄)) > w′(E(T, T̄)).

The notion of weak stability generalizes the notion of stability: an instance

is γ-stable if and only if it is (γ, {(S, S̄)})-weakly stable. We think of the set

N in the definition of weak stability as a neighborhood of the maximum

cut (S, S̄); it contains cuts that are “close enough” to (S, S̄). Intuitively, the

definition requires that every cut that is sufficiently different from (S, S̄) be

much smaller than (S, S̄), but does not impose any restrictions on cuts that

are close to (S, S̄). One natural way to define the neighborhood of (S, S̄) is

captured in the following definition.

Definition 13.10. Consider a weighted graph G. Let (S, S̄) be a maximum

cut in G, δ ≥ 0, and γ ≥ 1. We say that G is a (γ, δ)-weakly stable instance

of Max Cut if G is (γ, {(S′, S̄′) : |S∆S′| ≤ δn})-weakly stable. In other

words, G is (γ, δ)-weakly stable if for every cut (T, T̄) such that |S∆T | > δn

and |S∆T̄ | > δn, we have w′(E(S, S̄)) > w′(E(T, T̄)).

We prove the following analog of Lemma 13.2.

Lemma 13.5. Consider a (γ,N)-weakly stable instance of Max Cut G =

(V,E,w). Let (S, S̄) be a maximum cut in G. Then, for every cut (T, T̄) /∈ N :

w(E(S, S̄) \ E(T, T̄)) > γ · w(E(T, T̄) \ E(S, S̄)). (13.5)

Proof. Fix a cut (T, T̄) /∈ N . Consider the following γ-perturbation of w:

w′(u, v) = γw(u, v) for (u, v) ∈ E(T, T̄) \ E(S, S̄); and w′(u, v) = w(u, v)

13.2 Stable Instances of Graph Partitioning Problems 389

otherwise. Since G is a γ-weakly stable instance, and (T, T̄) /∈ N , we have

w′(E(S, S̄)) > w′(E(T, T̄)).

Write,

w′(E(S, S̄)) = w′(E(S, S̄) \ E(T, T̄)) + w′(E(S, S̄) ∩ E(T, T̄));

w′(E(T, T̄)) = w′(E(T, T̄) \ E(S, S̄)) + w′(E(S, S̄) ∩ E(T, T̄)).

Thus, w′(E(S, S̄)\E(T, T̄)) > w′(E(T, T̄)\E(S, S̄)). Using the definition of

w′, we get inequality (13.5).

We are now ready to state the main result.

Theorem 13.6 (Makarychev et al. (2014b)). There is a polynomial-time

algorithm that, given a (γ,N)-stable instance of Max Cut, returns a cut

from N if γ ≥ c
√

log n log log n (for some absolute constant c). The set N

is not part of the input and is not known to the algorithm.

Overview of the algorithm. The algorithm starts with an arbitrary cut

(S0, S̄0) and then iteratively improves it: first, it finds a cut (S1, S̄1) that is

better than (S0, S̄0), then a cut (S2, S̄2) that is better than (S1, S̄1), etc.

(S0, S̄0)→ (S1, S̄1)→ (S2, S̄2)→ · · · → (St, S̄t);

finally, it gets a cut (St, S̄t) that it cannot improve. This cut necessarily

belongs to the set N , and the algorithm outputs it. The key component of

the algorithm is a procedure Improve that, given a cut (Si, S̄i) /∈ N , finds

a better cut (Si+1, S̄i+1) (if (Si, S̄i) ∈ N , the procedure may either find an

improved cut or output that (Si, S̄i) ∈ N).

Now, we are going to present Improve. We note that we also must show

that the improvement process finishes in polynomially many steps, and, thus,

the running time is polynomial. In this survey, we assume for simplicity

that all edge weights are polynomially bounded integers. Then the weight of

every cut is a polynomially bounded integer; therefore, the weight of the cut

increases by at least 1 in each iteration, and the algorithm terminate after

polynomially many iterations. In the paper (Makarychev et al., 2014b), the

theorem is proved without this simplifying assumption.

Before we describe the procedure Improve, we recall the definition of

Sparsest Cut with non-uniform demands.

Definition 13.11 (Sparsest Cut with non-uniform demands). We are given

a graph H = (V,Ec, cap) with non-negative edge capacities cap(u, v), a set

of demand pairs Ed, and non-negative demands dem : Ed → R≥0. Our goal

is to find a cut (A, Ā) so as to minimize the ratio between the capacity of

390 Bilu-Linial Stability

the cut edges and the amount of separated demands

minimize
∑

(u,v)∈Ec
u∈A, v∈Ā

cap(u, v)

/ ∑
(u,v)∈Ed
u∈A, v∈Ā

dem(u, v).

We call this ratio the sparsity of the cut (A, Ā).

We use the approximation algorithm for Sparsest Cut by Arora et al.

(2008) that gives a (Csc
√

log n log log n)-approximation (where Csc is an

absolute constant).

Theorem 13.7. Let γ = Csc
√

log n log log n. There is a polynomial-time

algorithm Improve that, given a (γ,N)-weakly stable instance of Max Cut

and a cut (T, T̄) /∈ N , finds a cut (T ′, T̄ ′) of greater value,

w(E(T ′, T̄ ′)) > w(E(T, T̄)).

Proof. Define an auxiliary Sparsest Cut instance Gaux = (V,Ec, cap) on V :

Ec = E(T, T̄) cap(u, v) = w(u, v)

Ed = E \ E(T, T̄) dem(u, v) = w(u, v).

Now run the approximation algorithm for Sparsest Cut by Arora et al.

(2008) and find an approximate cut (A, Ā). Let T ′ = (T ∩ A) ∪ (T̄ ∩ Ā).

If w(T ′, T̄ ′) > w(T, T̄), return the cut (T ′, T̄ ′); otherwise, output that

(T, T̄) ∈ N .

We need to show that if (T, T̄) /∈ N then w(T ′, T̄ ′) > w(T, T̄). Let (S, S̄) be

the maximum cut. First, we prove that there is a sparsest cut with sparsity

at most 1/γ in the auxiliary graph. Let A∗ = (S ∩ T) ∪ (S̄ ∩ T̄). Since

(T, T̄) /∈ N , we have by Lemma 13.5:

w(E(S, S̄) \ E(T, T̄)) > γ · w(E(T, T̄) \ E(S, S̄)).

Note that E(A∗, Ā∗) = E(S ∩ T, S ∩ T̄) ∪ E(S ∩ T, S̄ ∩ T) ∪ E(S̄ ∩ T, S̄ ∩
T̄) ∪ E(S ∩ T̄ , S̄ ∩ T̄) (see Figure 13.1), and

E(S, S̄) \ E(T, T̄) = Ed ∩ E(A∗, Ā∗)

E(T, T̄) \ E(S, S̄) = Ec ∩ E(A∗, Ā∗).

The sparsity of the cut (A∗, Ā∗) is therefore at most

cap(Ec ∩ E(A∗, Ā∗))
dem(Ed ∩ E(A∗, Ā∗))

=
w(E(T, T̄) \ E(S, S̄))

w(E(S, S̄) \ E(T, T̄))
<

1

γ
.

13.3 Stable Instances of Clustering Problems 391

T T̄

S

S̄

Ed Ed

Ec

Ec

Ec

S ∩ T S ∩ T̄

S̄ ∩ T S̄ ∩ T̄

Figure 13.1: The figure shows sets S, S̄, T , T̄ , and their pairwise intersections.
Set Ec consists of horizontal and diagonal edges; set Ed consists of vertical edges, as
well as edges within S ∩T , S ∩ T̄ , S̄ ∩T , S̄ ∩ T̄ ; set E(A∗, Ā∗) consists of horizontal
and vertical edges.

Hence, the sparsity of the cut (A, Ā) returned by the approximation al-

gorithm is less than (Csc
√

log n log log n) × (1/γ) ≤ 1. That is, dem(Ed ∩
E(A, Ā)) > cap(Ec ∩ E(A, Ā)). We get

w(E(T ′, T̄ ′) \ E(T, T̄)) = dem(Ed ∩ E(A, Ā)) >

> cap(Ec ∩ E(A, Ā)) = w(E(T, T̄) \ E(T ′, T̄ ′)).

and, consequently,

w(T ′, T̄ ′) = w(E(T ′, T̄ ′) \ E(T, T̄)) + w(E(T ′, T̄ ′) ∩ E(T, T̄)) >

> w(E(T, T̄) \ E(T ′, T̄ ′)) + w(E(T ′, T̄ ′) ∩ E(T, T̄)) = w(T, T̄).

Thus, the weight of the cut (T ′, T̄ ′) obtained by the improvement algorithm

Improve is greater than the weight of the cut (T, T̄). This finishes the

proof.

13.3 Stable Instances of Clustering Problems

13.3.1 Metric Perturbation Resilient Instances of k-Center

In this section, we present an algorithm by Balcan et al. (2015) that

solves 2-metric perturbation resilient instances of k-center. In fact, we prove

that any α-approximation algorithm for k-center finds the optimal solution

of an α-metric perturbation resilient instance of k-center. Therefore, we

can use known 2-approximation algorithms for k-center to solve 2-metric

perturbation resilient instances of the problem (see Hochbaum and Shmoys

392 Bilu-Linial Stability

(1985), and Dyer and Frieze (1985)). Recall the definition of the k-center

problem.

Definition 13.12. Consider a set of vertices V , a metric d on V , and

a parameter k. Given a set of points (“centers”) c1, . . . , ck in V , define a

clustering C1, . . . , Ck by assigning each vertex u to the closest center among

c1, . . . , ck:

Ci = {u : d(u, ci) ≤ d(u, cj) for every i 6= j}

(we break the ties arbitrarily). We say that ci is the center of cluster Ci.

The cost of the clustering is the maximum distance between a point and the

center of the cluster it belongs to.

cost = max
i∈{1,...,k}

max
u∈Ci

d(u, ci).

In the k-center problem, our goal is to find a clustering of minimum cost

given V , d, and k.

Note that given a set of centers we can efficiently find the corresponding

clustering, and given a clustering we can efficiently find an optimal set of

centers for it. In this section, however, it will be more convenient for us to

view a solution for k-center as a clustering rather than a set of centers. The

reason for that is that in the definition of the perturbation resilience, we

do not want to require that the set of centers not change when we perturb

the distances — that would be a very strong requirement (indeed, it might

not be even satisfied by instances with k = 1; furthermore, there would be

no 2-perturbation resilient instances). Instead, we require that the optimal

clustering C1, . . . , Ck not change when we perturb the distances.

Remark 13.1. In this section, we consider perturbations d′ of the metric d

satisfying d(u, v)/γ ≤ d′(u, v) ≤ d(u, v) for all u,v instead of perturbations

satisfying d(u, v) ≤ d′(u, v) ≤ γ d(u, v) as in Definition 13.3. We can do so

as long as the clustering problem is invariant under rescaling of all distances

by the same positive factor, i.e. the clustering for d is the same as the

clustering for αd for every α > 0. All clustering problems we consider in

this section satisfy this property.

Balcan et al. (2015) obtained their result for 2-perturbation resilient in-

stances of k-center. Most recently, Makarychev and Makarychev (2016)

strengthened this result, by showing that it also holds for α-metric per-

turbation resilient instances.

13.3 Stable Instances of Clustering Problems 393

Theorem 13.8 (Balcan et al. (2015); see also Makarychev and Makarychev

(2016)). An α-approximation algorithm for k-center finds the optimal clus-

tering of an α-metric perturbation resilient instance of k-center.3

Proof. Consider the optimal clustering C1, . . . , Ck and the clustering

C ′1, . . . , C
′
k found by the approximation algorithm. We are going to show

that they are identical. Let r∗ be the value of the clustering C1, . . . , Ck. Let

{c′1, . . . , c′k} be an optimal set of centers for the clustering C ′1, . . . , C
′
k. Since

the algorithm gives an α-approximation, d(u, c′i) ≤ αr∗ for every u ∈ C ′i.
Define a new distance d′ as follows

d′(u, v) =

d(u, v)/α, if d(u, v) ≥ αr∗,
r∗, if d(u, v) ∈ [r∗, αr∗],

d(u, v), if d(u, v) ≤ r∗.

We first prove that d′ satisfies the triangle inequality. Define a function f(x)

as follows: f(x) = 1/α for x ≥ αr∗; f(x) = r∗/x for x ∈ [r∗, αr∗], and f(x) =

1 for x ≤ r∗. Observe, that d′(u, v) = f(d(u, v)) d(u, v); f(x) is a nonincreas-

ing function; xf(x) is a nondecreasing function. Consider three points u, v, w

and assume without loss of generality that d′(u,w) ≥ max(d′(u, v), d′(v, w)).

We need to prove that d′(u,w) ≤ d′(u, v)+d′(v, w). Note that since xf(x) is

a nondecreasing function, d(u,w) ≥ max(d(u, v), d(v, w)) and f(d(u,w)) ≤
min(f(d(u, v)), f(d(v, w))). Thus,

d′(u, v) + d′(v, w) = f(d(u, v))d(u, v) + f(d(v, w))d(v, w) ≥
≥ f(d(u,w))

(
d(u, v) + d(v, w)

)
≥ f(d(u,w))d(u,w) = d′(u,w).

The last inequality follows from the triangle inequality d(u, v) + d(v, w) ≥
d(u,w) for the metric d.

Next, we check that d′(u, v) is an α-perturbation, i.e. d(u, v)/α ≤
d′(u, v) ≤ d(u, v) (see Remark 13.1). We have, f(x) ∈ [1/α, 1], and, thus,

d′(u, v)/d(u, v) = f(d(u, v)) ∈ [1/α, 1].

By the definition of α-metric perturbation resilience, C1, . . . , Ck is the

unique optimal clustering for d′. However, the optimal set of centers for d′

may be different from c1, . . . , ck. Denote it by c′′1, . . . , c
′′
k. We prove that the

cost of the clustering C1, . . . , Ck is the same for metrics d and d′. Let

r(Ci) = min
c∈Ci

max
u∈Ci

d(u, c).

3. Note that the algorithm finds the optimal clustering C1, . . . , Ck but not necessarily
an optimal set of centers {c1, . . . , ck}; however, an optimal set of centers can be easily
deduced from C1, . . . , Ck.

394 Bilu-Linial Stability

Since the cost of the clustering C1, . . . , Ck equals r∗ w.r.t. d, we have

r(Ci) = r∗ for some i. Fix this i. By the definition of r(Ci), for every c ∈ Ci
there exists u ∈ Ci such that d(u, c) ≥ r(Ci) = r∗. Particularly, for c = c′′i ,
there exists u such that d(u, c′′i) ≥ r∗. Then d′(u, c′′i) ≥ r∗ as well. Hence, the

cost of the clustering C1, . . . , Ck for the metric d′ is at least r∗. (It cannot

be larger than r∗, since d′(u, v) ≤ d(u, v) for all u and v.)

To conclude the proof, we observe that the cost of the clustering C ′1, . . . , C
′
k

with centers c′1, . . . , c
′
k also equals r∗ w.r.t. the metric d′. Indeed, for u ∈ C ′i,

we have d(u, c′i) ≤ αr∗, and, therefore, d′(u, c′i) ≤ r∗. Thus, C ′1, . . . , C
′
k is

an optimal clustering for d′. Therefore, it must be equal to the clustering

C1, . . . , Ck.

13.3.2 Clustering Problems with Separable Center-based Objectives

In this section, we present an algorithm by Balcan and Liang (2016) that

solves (
√

2+1)-metric perturbation resilient instances of clustering problems

with separable center-based objectives.4

Definition 13.13. In a clustering problem, we are given a set of vertices

(points) V and a distance function d on V . Our goal is to partition the

vertices into clusters so as to minimize a cost function, which depends on

the clustering problem.

Following Awasthi et al. (2012), we define the notion of a clustering prob-

lem with a center-based objective. (We note that the definition in Awasthi

et al. (2012) makes several implicit assumptions that we make explicit here.)

Definition 13.14. Consider a clustering problem. We say that it has a

center-based objective if the following three properties hold.

1. Given a subset S ⊂ V and distance dS on S, we can find the optimal

center c ∈ S for S, or, if there is more than one choice of an optimal center,

a set of optimal centers center(S, dS). (In the former case, center(S, dS) =

{c}).

2. The set of centers does not change if we multiply all distances between

points in S by α. That is,

center(S, αdS) = center(S, dS).

4. The original result by Balcan and Liang (2016) applies to (
√

2+1)-perturbation resilient
instances; recently, Makarychev and Makarychev (2016) showed that their algorithm also
works for (

√
2 + 1)-metric perturbation resilient instances.

13.3 Stable Instances of Clustering Problems 395

Also, the optimal clustering does not change if we multiply all distances

between points in V by α.

3. Let C1, . . . , Ck be an optimal clustering of V (the clustering of minimum

cost). For every i, let ci ∈ center(Ci, d|Ci) be an optimal center for Ci (here,

d|Ci is the restriction of d to Ci). Then each point p ∈ Ci is closer to ci than

to any other center cj, d(p, ci) < d(p, cj).

A clustering-objective is separable if we can define individual cluster scores

so that the following holds.

1. The cost of the clustering is either the maximum or sum of the cluster

scores.

2. The score score(S, d|S) of each cluster S depends only on S and d|S, and

can be computed in polynomial time.

Many standard clustering problems, including k-center, k-means, and k-

median, have separable center-based objectives.

We will assume below that the instance is α-metric perturbation resilient

with α = 1+
√

2. Denote the optimal clustering by C1, . . . , Ck. Fix an optimal

set of centers c1, . . . , ck for the clustering (ci ∈ center(S, dS)). Define the

radius of cluster Ci as ri = maxu∈Ci d(ci, u). For every point u, denote the

ball of radius r around u by B(u, r): B(u, r) = {v : d(u, v) ≤ r}.
We start with proving some basic structural properties of the optimal

clustering C1, . . . , Ck.

Lemma 13.9 (Awasthi et al. (2012); Makarychev and Makarychev (2016)).

Clusters satisfy the following α-center proximity property: for all i 6= j and

p ∈ Ci,

d(p, cj) > αd(p, ci).

Proof. Suppose that d(p, cj) ≤ αd(p, ci). Let r∗ = d(p, ci). Define a new

metric d′ as follows: for all u and v,

d′(u, v) = min(d(u, v), d(u, p) + r∗ + d(cj , v), d(v, p) + r∗ + d(cj , u)).

The metric d′(u, v) is the shortest path metric on the complete graph on V

with edge lengths len(u, v) = d(u, v) for all edges (u, v) but the edge (p, cj).

The length of the edge (p, cj) equals len(p, cj) = r∗. Observe that since the

ratio d(u, v)/len(u, v) is at most d(p, cj)/r
∗ ≤ α for all edges (u, v), we have

d(u, v)/d′(u, v) ≤ α for all u and v. Hence, d′ is an α-metric perturbation

of d (see Remark 13.1).

Let us now show that d′ is equal to d within the cluster Ci and within the

cluster Cj .

396 Bilu-Linial Stability

Lemma 13.10. For all u, v ∈ Ci, we have d(u, v) = d′(u, v), and for all

u, v ∈ Cj, we have d(u, v) = d′(u, v).

Proof. I. Consider two points u, v in Ci. We need to show that d(u, v) =

d′(u, v). It suffices to prove that

d(u, v) ≤ min(d(u, p) + r∗ + d(cj , v), d(v, p) + r∗ + d(cj , u)).

Assume without loss of generality that d(u, p)+r∗+d(cj , v) ≤ d(v, p)+r∗+

d(cj , u). We have

d(u, p) + r∗ + d(cj , v) = d(u, p) + d(p, ci) + d(cj , v) ≥ d(u, ci) + d(cj , v).

Since v ∈ Ci, we have d(v, ci) < d(v, cj), and thus

d(u, p) + r∗ + d(cj , v) > d(u, ci) + d(ci, v) ≥ d(u, v).

II. Consider two points u, v in Cj . Similarly to the previous case, we need

to show that d(u, v) ≤ d(u, p) + r∗ + d(cj , v). Since now u ∈ Cj , we have

d(u, cj) < d(u, ci). Thus,

d(u, p) + r∗ + d(cj , v) =
(
d(u, p) + d(p, ci)

)
+ d(cj , v)

≥ d(u, ci) + d(cj , v) > d(u, cj) + d(cj , v) ≥ d(u, v).

By the definition of α-metric perturbation stability, the optimal clusterings

for metrics d and d′ are the same. By Lemma 13.10, the distance functions d

and d′ are equal within the clusters Ci and Cj . Hence, the centers of Ci and

Cj w.r.t. metric d′ are also points ci and cj , respectively (see Definition 13.14,

item 1). Thus, d′(ci, p) < d′(cj , p), and, consequently,

d(ci, p) = d′(ci, p) < d′(cj , p) = r∗ = d(ci, p).

We get a contradiction, which finishes the proof.

Lemma 13.11 (Awasthi et al. (2012); Balcan and Liang (2016)).

1. All points outside of Ci lie at distance greater than ri from ci. Thus,

Ci = B(ci, ri).

2. Each point p in Ci is closer to ci than to any point q outside of Ci.

Furthermore, for every p ∈ Ci and q /∈ Ci, we have
√

2 d(p, ci) < d(p, q).

3. For every two distinct clusters Ci and Cj,

d(ci, cj) >
√

2 max(ri, rj).

Proof. We will prove items in the following order: 3, 1, and finally 2.

13.3 Stable Instances of Clustering Problems 397

3. Let p be the farthest from ci point in Ci. Then ri = d(ci, p). By

Lemma 13.9, d(p, cj) > αd(p, ci) = αri. By the triangle inequality,

d(ci, cj) ≥ d(p, cj)− d(p, ci) > αri − ri =
√

2ri.

Similarly, d(ci, cj) >
√

2rj .

1. Consider a point q /∈ Ci. Assume that q ∈ Cj . Then

d(ci, cj) ≤ d(ci, q) + d(q, cj)
by Lemma 13.9

≤ d(ci, q) + d(ci, q)/α =
√

2d(ci, q).

Combining this inequality with the inequality d(ci, cj) >
√

2ri from item 3,

we get that d(ci, q) > ri.

2. Assume that q ∈ Cj . If d(cj , q) ≥ d(ci, p), we have

d(p, q) ≥ d(ci, q)− d(ci, p)
by Lemma 13.9

> αd(cj , q)− d(ci, p) ≥
√

2d(ci, p).

If d(cj , q) < d(ci, p), we similarly have

d(p, q) ≥ d(cj , p)− d(cj , q)
by Lemma 13.9

> αd(ci, p)− d(cj , q) ≥
√

2d(ci, p).

Now we sketch the algorithm of Balcan and Liang (2016). The algorithm

consists of two stages. During the first stage, the algorithm employs a greedy

approach: it starts with a trivial clustering of V , in which each vertex belongs

to its own cluster. Then it repeatedly finds and links two “closest” clusters.

The algorithm runs until it gets one cluster that contains all of the vertices.

(Importantly, the algorithm does not stop when it gets k clusters — these

k clusters are not necessarily optimal!) The result of the first stage of the

algorithm is a binary decomposition tree T of V : the leaves of the tree are

singleton clusters; internal nodes of T are intermediate clusters, obtained

during the execution of the first stage; the root of T is V . We will show that

each cluster Ci in the optimal clustering appears in the decomposition tree

T. During the second stage, the algorithm uses a simple bottom-up dynamic

program to identify all clusters Ci in T.

For the algorithm to succeed, it is important to use the right distance

between clusters. We shall now define the closure distance to be used.

Definition 13.15. We say that a point x ∈ A is an r-central point for a

set A ⊂ V if it satisfies

Coverage condition: A ⊂ B(x, r).

398 Bilu-Linial Stability

Padding condition: Every point p in B(x, r) is closer to x than to any

point outside of B(x, r); that is, if d(p, q) ≤ d(p, x) ≤ r, then d(q, x) ≤ r.
Definition 13.16. The closure distance DS(A1, A2) between two sets A1 ⊂
V and A2 ⊂ V is equal to the minimal r such that A1 ∪A2 has an r-central

point.

Note that the closure distance is well-defined since every point in A1 ∪ A2

is r-central for r = diam(V) = maxu,v∈V d(u, v).

Now we formally present Algorithm 13.3 (see the figure). It is clear that

Algorithm 13.3 Clustering Algorithm

1: Create n singleton clusters — one for each vertex in V . Add them to C. . Stage 1
2: Initialize a tree T. Add all singletons from C to T.
3: while |C| 6= 1 do
4: Find two closest clusters A and B in C w.r.t. the closure distance.
5: Merge A and B:
6: Replace A and B with A ∪B in C.
7: Add node A ∪B to T and make it the parent of A and B.
8: end while

. Stage 2
9: Using bottom-up dynamic programming, find among all clusterings (C′1, . . . , C

′
k) of V ,

in which all C′i appear in the decomposition tree T, the clustering of minimum cost.
10: return clustering (C′1, . . . , C

′
k).

the algorithm runs in polynomial time. To prove the correctness of the

algorithm, we need to show that every cluster Ci from the optimal clustering

appears in the decomposition tree.

Lemma 13.12. Consider two subsets A1 and A2 of Ci. Assume that ci ∈
A1 ∪A2. Then dS(A1, A2) ≤ ri.
Proof. We show that ci is an ri-central point for A1 ∪ A2. Indeed, by

Lemma 13.11, item 1, Ci = B(ci, ri). Thus A1 ∪ A2 ⊂ Ci = B(ci, ri). Now

consider p ∈ B(xi, ri) and q /∈ B(xi, ri). We have p ∈ Ci and q /∈ Ci, and

from Lemma 13.11, item 2, we get that d(p, q) < d(ci, p).

Lemma 13.13. Assume that a set A contains points from both Ci and the

complement of Ci. If a point x is ∆-central for A then ∆ > ri.

In particular, the closure distance between non-empty sets A1 ⊂ Ci and

A2 ⊂ V \ Ci is at least ri.

Proof. Consider two cases. First, assume that x ∈ Ci. Consider an arbitrary

point q ∈ A \ Ci. Let Cj be the cluster q lies in (then, j 6= i). Since x is

∆-central for A and q ∈ A, we have d(x, q) ≤ ∆. By Lemma 13.11, item

13.3 Stable Instances of Clustering Problems 399

2, d(q, cj) < d(q, x). From the definition of a central point, we get that

d(cj , x) ≤ ∆. By Lemma 13.9, d(ci, x) ≤ ∆/α. Therefore,

d(ci, cj) ≤ d(ci, x) + d(x, cj) ≤ ∆/α+ ∆ =
√

2∆.

On the other hand, d(ci, cj) >
√

2 ri by Lemma 13.11, item 3. We conclude

that ∆ > ri.

Now assume that x /∈ Ci. Consider a point p ∈ A∩Ci. Since x is a ∆-central

point for A, we have d(x, p) ≤ ∆. By Lemma 13.11, item 2, point p is closer

to ci than to x. Thus by the definition of a central point, ci ∈ B(x,∆).

On the other hand, by our assumption, x /∈ Ci = B(ci, ri). We get that

ri < d(ci, x) ≤ ∆. This concludes the proof.

Now consider A1 ⊂ Ci and A2 ⊂ V \ Ci. Applying the lemma to the set

A1 ∪A2, we get that DS(A1, A2) ≥ ri.
Lemma 13.14. Consider a cluster Ci in the optimal clustering.

1. Let C be a cluster/node in the decomposition tree T. Then

C ⊂ Ci, Ci ⊂ C, or C ∩ Ci = ∅. (13.6)

2. Ci appears in the decomposition tree T.

Proof. 1. We prove that the statement holds for all sets C in C by induc-

tion. Initially, all clusters C in C are singletons, and therefore, satisfy con-

dition (13.6). Now suppose that we proved that condition (13.6) holds until

some iteration, in which we merge clusters A and B, and obtain a cluster

C = A ∪B. We need to prove that C also satisfies the condition. Note that

C satisfies condition (13.6) in the following 3 cases:

Neither A nor B intersects Ci. Then C ∩ Ci = ∅.

Both sets A and B are subsets of Ci. Then C ⊂ Ci.
One of the sets A and B contains Ci. Then Ci ⊂ C.

The only remaining case is that one of the sets is a proper subset of Ci and

the other does not intersect Ci; let us say A ⊂ Ci and B ⊂ C̄i. We will show

now that this case actually cannot happen.

Since A is a proper subset of Ci, there is another cluster A′ ⊂ Ci in

C. Furthermore, if ci /∈ A, then there is A′ in C that contains ci. By

Lemma 13.12, point ci is ri-central for A∪A′, and therefore dS(A,A′) ≤ ri.
On the other hand, by Lemma 13.13, dS(A,B) > ri ≥ dS(A,A′). Therefore,

A and B are not two closest clusters in C w.r.t. the closure distance. We get

a contradiction.

400 Bilu-Linial Stability

2. Consider the smallest cluster C in T that contains Ci. If C is a singleton,

then C = Ci. Otherwise, C is the union of its child clusters A and B.

By item 1, both A and B are subsets of Ci, and so C ⊂ Ci. Therefore,

C = Ci.

13.4 References

S. Arora, J. Lee, and A. Naor. Euclidean distortion and the sparsest cut. Journal
of the American Mathematical Society, 21(1):1–21, 2008.

P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49–54, 2012.

M.-F. Balcan and M. Braverman. Approximate Nash equilibria under stability
conditions. Technical report, 2010.

M.-F. Balcan and Y. Liang. Clustering under perturbation resilience. 2016. To
appear.

M.-F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the
approximation. In Proceedings of the Symposium on Discrete Algorithms, pages
1068–1077. Society for Industrial and Applied Mathematics, 2009.

M.-F. Balcan, N. Haghtalab, and C. White. Symmetric and asymmetric k-center
clustering under stability. arXiv preprint arXiv:1505.03924, 2015.

Y. Bilu and N. Linial. Are stable instances easy? In Innovations in Computer
Science, pages 332–341, 2010.

Y. Bilu, A. Daniely, N. Linial, and M. Saks. On the practically interesting instances
of maxcut. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, pages 526–537, 2013.

A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2):204–234, 1995.

N. Buchbinder, J. S. Naor, and R. Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the Symposium on Theory
of Computing, pages 535–544, 2013.

G. Cualinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm
for multiway cut. In Proceedings of the Symposium on Theory of Computing,
pages 48–52, 1998.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864–894, 1994.

M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations
Research Letters, 3(6):285–288, 1985.

U. Feige and J. Kilian. Heuristics for finding large independent sets, with appli-
cations to coloring semi-random graphs. In Proceedings of the Symposium on
Foundations of Computer Science, pages 674–683, 1998.

U. Feige, Y. Mansour, and R. Schapire. Learning and inference in the presence of
corrupted inputs. In Proceedings of the Conference on Learning Theory, pages
637–657, 2015.

13.4 References 401

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. vol-
ume 42, pages 1115–1145, 1995.

D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of operations research, 10(2):180–184, 1985.

D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436–461, 2004.

R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable CSPs? SIAM Journal on Computing, 37
(1):319–357, 2007.

J. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields. Journal
of the ACM (JACM), 49(5):616–639, 2002.

V. Leontev. Stability of the traveling salesman problem (in Russian). volume 15,
pages 1293–1309, 1975.

K. Makarychev and Y. Makarychev. Metric perturbation resilience. 2016.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Approximation algorithms
for semi-random partitioning problems. In Proceedings of the ACM symposium
on Theory of computing, pages 367–384, 2012.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Sorting noisy data
with partial information. In Proceedings of the Conference on Innovations in
Theoretical Computer Science, pages 515–528, 2013.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Constant factor approx-
imation for balanced cut in the pie model. In Proceedings of the Symposium on
Theory of Computing, pages 41–49, 2014a.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu—Linial stable
instances of Max Cut and Minimum Multiway Cut. In Proceedings of the
Symposium on Discrete Algorithms, pages 890–906, 2014b.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering
with noisy partial information. In Proceedings of the Conference on Learning
Theory, pages 1321–1342, 2015.

C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings
of the Symposium on Discrete Algorithms, pages 712–728, 2010.

M. Mihalák, M. Schöngens, R. Šrámek, and P. Widmayer. On the complexity of the
metric tsp under stability considerations. In SOFSEM 2011: Theory and Practice
of Computer Science, pages 382–393. Springer, 2011.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of
lloyd-type methods for the k-means problem. In Proceeding of the Symposium on
Foundations of Computer Science, pages 165–176, 2006.

A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and
descending thresholds. In Proceedings of the Symposium on Theory of Computing,
pages 724–733, 2014.

	Perturbations- Optimization- and Statistics
	Introduction
	Perturb-and-MAP Random Fields
	Factorizing Shortest Paths with Randomized Optimum Models
	Herding as a Learning System with Edge-of-Chaos Dynamics
	Learning Maximum A-Posteriori Perturbation Models
	On the Expected Value of Random Maximum A-Posteriori Perturbations
	A Poisson Process Model for Monte Carlo
	Perturbation Techniques in Online Learning and Optimization
	Probabilistic Inference by Hashing and Optimization
	Perturbation Models and PAC-Bayesian Generalization Bounds
	Adversarial Perturbations of Deep Neural Networks
	Data Augmentation via L-vy Processes
	Bilu-Linial Stability

