Perturbations, Optimization, and Statistics

Neural Information Processing Series

Michael I. Jordan and Thomas Dietterich, editors
Advances in Large Margin Classifiers, Alexander J. Smola, Peter L. Bartlett,
Bernhard Scholkopf, and Dale Schuurmans, eds., 2000

Advanced Mean Field Methods: Theory and Practice, Manfred Opper and David
Saad, eds., 2001

Probabilistic Models of the Brain: Perception and Neural Function, Rajesh P. N.
Rao, Bruno A. Olshausen, and Michael S. Lewicki, eds., 2002

Ezxploratory Analysis and Data Modeling in Functional Neuroimaging, Friedrich T.
Sommer and Andrzej Wichert, eds., 2003

Advances in Minimum Description Length: Theory and Applications, Peter D.
Griinwald, In Jae Myung, and Mark A. Pitt, eds., 2005

Nearest-Neighbor Methods in Learning and Vision: Theory and Practice, Gregory
Shakhnarovich, Piotr Indyk, and Trevor Darrell, eds., 2006

New Directions in Statistical Signal Processing: From Systems to Brains, Simon
Haykin, José C. Principe, Terrence J. Sejnowski, and John McWhirter, eds., 2007

Predicting Structured Data, Gokhan Bakir, Thomas Hofmann, Bernhard Schélkopf,
Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan, eds., 2007

Toward Brain-Computer Interfacing, Guido Dornhege, José del R. Millan, Thilo
Hinterberger, Dennis J. McFarland, and Klaus-Robert Miiller, eds., 2007

Large-Scale Kernel Machines, Léon Bottou, Olivier Chapelle, Denis DeCoste, and
Jason Weston, eds., 2007

Learning Machine Translation, Cyril Goutte, Nicola Cancedda, Marc Dymetman,
and George Foster, eds., 2009

Dataset Shift in Machine Learning, Joaquin Quinonero-Candela, Masashi
Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, eds., 2009

Optimization for Machine Learning, Suvrit Sra, Sebastian Nowozin, and Stephen
J. Wright, eds., 2012

Practical Applications of Sparse Modeling, Irina Rish, Guillermo A. Cecchi, Aurelie
Lozano, and Alexandru Niculescu-Mizil, eds., 2014

Advanced Structured Prediction, Sebastian Nowozin, Peter V. Gehler, Jeremy Janc-
sary, and Christoph H. Lampert, eds., 2014

Perturbations, Optimization, and Statistics, Tamir Hazan, George Papandreou, and
Daniel Tarlow, eds., 2016

Perturbations, Optimization, and Statistics

Edited by Tamir Hazan, George Papandreou, and Daniel Tarlow

The MIT Press
Cambridge, Massachusetts
London, England

(© 2016 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in M TEX by the authors and editors. Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Hazan, Tamir, editor. | Papandreou, George, editor. | Tarlow, Daniel,
editor.

Title: Perturbations, optimization and statistics / edited by Tamir Hazan, George
Papandreou, and Daniel Tarlow.

Description: Cambridge, MA : The MIT Press, [2016] | Series: Neural information
processing series | Includes bibliographical references.

Identifiers: LCCN 2016023007 | ISBN 9780262035644 (hardcover : alk. paper)

Subjects: LCSH: Machine learning. | Perturbation (Mathematics) | Mathematical
optimization.

Classification: LCC Q325.5 .P47 2016 | DDC 515/.392--dc23 LC record available
at https://lcen.loc.gov /2016023007

0 9 8 7 6 5 4 3 2 1

Contents

Preface

1 Introduction

Tamir Hazan, George Papandreou, and Daniel Tarlow

1.1 Scope o o e
1.2 Regularizationo
1.3 Modeling
1.4 Roadmap. e
1.5 References

2 Perturb-and-MAP Random Fields

3

George Papandreou and Alan L. Yuille
2.1 Energy-Based Models: Deterministic vs. Probabilistic Ap-
proaches L
2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs
2.3 Perturb-and-MAP for MRFs with Discrete Labels
2.4 On the Representation Power of the Perturb-and-MAP Model
2.5 Related Work and Recent Developments
2.6 Discussion e e
2.7 References

Factorizing Shortest Paths with Randomized Optimum
Models

Daniel Tarlow, Alexander Gaunt, Ryan Adams,

and Richard S. Zemel

3.1 Introduction L
3.2 Building Structured Models: Design Considerations
3.3 Randomized Optimum Models (RandOMs)
3.4 Learning RandOMs
3.5 RandOMs for Image Registration
3.6 Shortest Path Factorization
3.7 Shortest Path Factorization with RandOMs

ix

12
14

17

19
23
28
35
38
40
41

45

vl

3.8 Experiments Lo 63
3.9 Related Work, 68
3.10 Discussion 70
3.11 References 70

Herding as a Learning System with Edge-of-Chaos

Dynamics 73
Yutian Chen and Max Welling

4.1 Introduction 74
4.2 Herding Model Parameters 7
4.3 Generalized Herding 99
4.4 Experiments 109
4.5 SUMmAary e 118
4.6 Conclusion 120
4.8 Referenceso 123
Learning Maximum A-Posteriori Perturbation Models 127
Andreea Gane, Tamir Hazan, and Tommi Jaakkola

5.1 Introduction 128
5.2 Background and Notation 130
5.3 Expressive Power of Perturbation Models 131
5.4 Higher Order Dependencies 132
5.5 Markov Properties and Perturbation Models 134
5.6 Conditional Distributions 136
5.7 Learning Perturbation Models 141
5.8 Empirical Results o0, 149
5.9 Perturbation Models and Stability 152
5.10 Related Work, 155
5.11 References 156

On the Expected Value of Random Maximum A-Posteriori

Perturbations 161
Tamir Hazan and Tommi Jaakkola

6.1 Introduction 161
6.2 Inference and Random Perturbations 164
6.3 Low-Dimensional Perturbations 169
6.4 Empirical Evaluation 182
6.5 References 188
A Poisson Process Model for Monte Carlo 193

Chris J. Maddison

7.1
7.2
7.3
7.4
7.5
7.6
7.9

V1L

Introduction 193

Poisson Processes 196
Exponential Raceso 203
Gumbel Processes 210
Monte Carlo Methods That Use Bounds 216
Conclusion 226
References 230

8 Perturbation Techniques in Online Learning and
Optimization 233
Jacob Abernethy, Chansoo Lee, and Ambuj Tewari

8.1 Introduction L o 233
8.2 Preliminaries 235
8.3 Gradient-Based Prediction Algorithm 237
8.4 GenericBounds 245
8.5 Experts Setting oL 247
8.6 Euclidean Balls Setting 252
8.7 The Multi-Armed Bandit Setting 254
8.9 References L 262
9 Probabilistic Inference by Hashing and Optimization 265
Stefano Ermon
9.1 Introduction 265
9.2 Problem Statement and Assumptions 268
9.3 Approximate Model Counting via Randomized Hashing 270
9.4 Probabilistic Models and Approximate Inference: The WISH
Algorithm o 274
9.5 Optimization Subject to Parity Constraints 279
9.6 Applications 281
9.7 Open Problems and Research Challenges 282
9.8 Conclusion 284
9.9 References L 285

10 Perturbation Models and PAC-Bayesian Generalization
Bounds 289
Joseph Keshet, Subhransu Maji, Tamir Hazan, and Tommi Jaakkola

10.1
10.2
10.3
10.4
10.5

Introduction Lo 290
Background oo 292
PAC-Bayesian Generalization Bounds 294
Algorithms 296
The Bayesian Perspective 298

V14l

11

12

13

10.6 Approximate Inference
10.7 Empirical Evaluation
10.8 Discussion e
10.9 References

Adversarial Perturbations of Deep Neural Networks
David Warde-Farley and Ian Goodfellow

11.1 Introduction
11.2 Adversarial Examples
11.3 Adversarial Training,
11.4 Generative Adversarial Networks
11.5 Discussion
11.6 References

Data Augmentation via Lévy Processes

Stefan Wager, William Fithian, and Percy Liang

12.1 Introduction o
12.2 Lévy Thinning oo
12.3 Examples
12.4 Simulation Experiments
12.5 Discussion
12.6 Appendix: Proof of Theorem 12.4
12.7 References

Bilu-Linial Stability

Konstantin Makarychev and Yury Makarychev

13.1 Introduction
13.2 Stable Instances of Graph Partitioning Problems
13.3 Stable Instances of Clustering Problems
13.4 References o

311

312
312
329
330
338
339

343

343
349
361
365
368
369
371

375

Preface

In nearly all machine learning tasks, decisions must be made given current
knowledge (e.g., choose which label to predict). Perhaps surprisingly, always
making what is believed to be the best decision is not always the best strat-
egy, even when learning in a supervised learning setting. Recently, there is
an emerging body of work on learning under different rules that apply per-
turbations to the decision and learning procedures. These methods provide
simple and efficient learning rules with improved theoretical guarantees.

At the three highly successful workshops on Perturbations, Optimization,
and Statistics at Advances in Neural Information Processing Systems (NIPS-
2012, NIPS-2013, NIPS-2014), we looked at how injecting perturbations
(whether it be random or adversarial “noise”) into learning and inference
procedures can be beneficial. The focus was on two angles: first, on how
perturbations can be used to construct new types of probability models for
structured data and, second, how perturbations affect the regularization and
the generalization properties of learning algorithms.

This book is an expanded collection of the ideas presented at the work-
shops.

Tamir Hazan, George Papandreou, and Daniel Tarlow

April 2016

Introduction

Tamir Hazan tamir.hazan@technion.ac.il

Technion

Haifa, Israel

George Papandreou gpapan@google.com
Google Inc.
340 Main St., Los Angeles, CA 90291 USA

Daniel Tarlow dtarlow@microsoft.com
Microsoft Research
Cambridge, UK

1.1 Scope

Modeling and regularization lie at the foundation of statistics and machine
learning. They are avenues by which a practitioner can express assumptions
that guide the learning process. Assumptions are critical, as without as-
sumptions, learning is not possible. Without assumptions, a model will not
be able to make nontrivial predictions beyond the set of examples that was
used to train it. Assumptions can come in many forms. From the modeling
perspective, assumptions describe the process by which data is generated
and/or (soft) constraints on joint configurations of parameters and data
that are plausible. Once a model is expressed, there is a large toolbox of
methodologies for combining assumptions with observed data so that new
predictions can be made and uncertainty can be quantified. Regularization
is about expressing assumptions over which models are preferred to others

Introduction

so as to learn models that generalize beyond the training sample to novel
settings.

There are strong connections between modeling and regularization. At a
high level, they both narrow the space of possible hypotheses for how pre-
viously seen data relates to data that will be encountered in the future.
At a lower level, they are often thought of interchangeably. For example,
l9 regularization is commonly thought of both as a prior belief that pa-
rameters are distributed as zero-mean Gaussian distributions (probabilistic
modeling assumption) and as a regularizer that controls model capacity so
as to improve generalization (regularization assumption). More generally,
we can think of estimating the maximum a posteriori (MAP) parameters
in a Bayesian model as solving a regularized maximum likelihood problem,
which gives a correspondence between the probabilistic modeling and regu-
larization viewpoints. PAC-Bayesian generalization bounds further connect
regularization and generalization to prior and posterior distributions in the
probabilistic modeling setting.

While the foundations are still crucially important, machine learning is
changing, primarily along two axes. First, the quality of systems being built
is improving dramatically, enabled by easier access to larger data sets and
computational power. Tasks that were considered infeasible only several
years ago (e.g., real-time speech recognition and machine translation, plau-
sible claims of beating human performance on nontrivial image classification
tasks, systems that learn to play video games just by watching raw pixels
on the screen, a professional-caliber Go player) are becoming reality. As
the field progresses, we must revisit assumptions and recognize that certain
assumptions of the past are crude in the modern light. These crude assump-
tions apply to both modeling (e.g., using a linear classifier with hand-crafted
features for image classification) and regularization (e.g., o regularization
for all parameters in a model). We must then look to models that either
have higher model capacity or which are more carefully specified. Similarly,
we must look for regularizers that give finer-grained preferences over which
configurations of parameter should be preferred.

The second axis of change is that statistical machine learning systems are
being applied in a broader range of domains than ever before, including bi-
ology, medicine, chemistry, marketing, archaeology, government, education,
and programming languages. Along with these domains come new problems
of different shapes. There is demand for machine learning systems that in-
put or output highly structured objects like chemical molecules, scans of
human bodies, paths that cars take through a city, essays, videos, computer
programs, and DNA. As the field seeks to find success in this broad range of
domains, the challenge is again about assumptions: what assumptions need

1.1 Scope

to be made so that our learning systems correctly interpret and produce
highly structured data? Making crude assumptions in highly structured do-
mains can lead to a breakdown in learning. See Chapter 3 for an example.

So why are crude assumptions used? A key issue is that there is a conflict
between making good assumptions and being able to efficiently compute:
richer assumptions typically lead to harder computational problems. Con-
sider modeling paths that salespeople take when visiting homes in a city
under the assumption that each salesperson starts and ends at the same
location and visits each home exactly once. A plausible parameterization
of the problem would be to specify that there is an unknown cost associ-
ated with each road segment that connects the homes. A natural query is
which route is most likely under the current setting of model parameters.
However, this is the well-known Traveling Salesman problem, which is com-
putationally hard to solve in the worst case. There is then a temptation to
reformulate the problem with cruder assumptions.

Computational considerations do not just mean distinguishing between ex-
ponential and polynomial time algorithms. Often times, large datasets mean
that computation must not only be efficient asymptotically, but it must be
implemented in an optimized way. This may mean using specialized soft-
ware like highly tuned combinatorial optimization algorithms or leveraging
specialized hardware like Graphics Processing Units (GPUs), large scale dis-
tributed systems, and whatever powerful hardware is readily available. To
scale learning systems up, we need to make use of the highly optimized
computational primitives that current technology is capable of building.

With this background laid out, we can now state the central point of this
book. This book is about how to build the fundamentals of modeling and
regularization around highly optimized computational primitives. The phi-
losophy is a departure from traditional viewpoints that focus on defining
an aesthetically pleasing modeling and learning paradigm, then looking for
efficient ways to compute the needed quantities, introducing approximations
when intractable quantities arise. In this book, we seek to turn these con-
siderations around: start with highly efficient computational primitives, and
commit to using them as the core of the learning and inference procedure.
Under this constraint, build the fundamentals of probabilistic modeling and
regularization.

The key idea that ties together the work in this book is using perturbations
to build these new foundations. Perturbations pair perfectly with efficient
computational primitives, because they simply involve perturbing the inputs
— either stochastically or adversarially — to the efficient computational
routine. Consequently, no efficiency is lost when applying the computational
routine to perturbed inputs. We can then ask what can be built upon this

4 Introduction

simple idea. Can we develop modeling and regularization paradigms upon a
foundation of perturbations? How does such a paradigm relate to traditional
paradigms? The results are surprisingly positive from both theoretical and
empirical perspectives.

1.2 Regularization

Regularization is a fundamental concept in machine learning. Regulariza-
tion constrains the learning process and prevents the learning algorithm
from overfitting the data. Traditional machine learning approaches to clas-
sification, both in statistical machine learning and online learning, used the
fo—norm as a regularizer. In recent years, novel perturbation methods were
developed to regularize the learning process. In the following we describe
these traditional approaches for classification. Subsequently, we describe
how perturbation methods imply similar regularization properties. Regular-
ization through perturbation is computationally appealing since it locally
perturbs the learning process therefore it is easily integrated into complex
learners such as structured predictors (e.g., Chapter 8 and Chapter 10) and
deep learners (e.g., Chapter 11).

1.2.1 Statistical Machine Learning

Statistical machine learning utilizes non-asymptotic statistics in the form of
generalization bounds. Such bounds measure the ability of a learning rule to
generalize from a finite training dataset. Broadly, an algorithm generalizes
well if its misclassification rate on a finite training dataset approaches to
its expected misclassification error over all data instances in the world. To
formalize this statement, we assume that the world consists of instance-label
pairs, which we denote by (z,y). For example, the data-instance element
r € R?is an image and its label y € {—1,+1} indicates if the image
contains a person or not. We assume that there is a distribution D that
generates instance-label pairs and that the training sample S consists of m
pairs {(z1,41), ..., (Tm, Ym)} that are sampled independently according to the
distribution D. We say that a hyperplane w € R? classifies a data-instance x
according to sign, namely y,,(x) = sign((w, z)). A hyperplane misclassifies
a training pair (x;, ;) if yw(z;) # y;. Therefore, the misclassification rate
over the training set is
1 m
Re(w) = - " 1y (i) # v (L.1)

1=1

1.2 Regularization

The function 1[y,(z;) # y;] gets the value one if y,,(z;) # y; and zero oth-
erwise. Rg(w) is said to be the zero-one empirical risk of the hyperplane w.
The overall zero-one risk of a hyperplane w is its expected misclassification
rate, with respect to the distribution D, namely:

R(w) = Egy)~pl[yw() # Y] (1.2)

One of the earliest generalization bounds for classification considers sep-
arating hyperplanes, cf. (Mohri et al. (2012) Chapter 4 and Shalev-Shwartz
and Ben-David (2014) Chapter 15). The classifying hyperplane is determined
to maximize its distance from all training data points, namely its margin.
For simplicity, assume that the world consists of separable data, i.e., there
exists a hyperplane w that correctly labels all data with a margin «, namely
y(w, z) > a.

Denote by w® the hyperplane that maximizes the margin over the training
dataset S

w® = argmin |w||* s.t. Vi yi(w,z) >1 (1.3)
w

Assume that [|z|] < 1, then with probability of at least 1 — ¢ over the draw
of a training data set of size m holds

4/ N \/2log(2/6) (1.4)

m m

Rw) - Rsw) </

A proof for this statement appears in (Shalev-Shwartz and Ben-David, 2014,
Theorem 26.13).

The above bound holds for separable data thus it also satisfies a simpler
form since Rg(w®) = 0. In the non-separable case the program is infeasible
and w® does not exist. To learn non-separable data sets it is customary to
relax the hard separability constraints by penalizing non-separable instances:

m
r%né”w\ﬁ—i—zlmax{o,l — yi{w, x;) }. (1.5)
i=
The function max{0, 1 — y;{(w, x;)} is called the hinge-loss since it a convex
upper bound on the misclassification error. It penalizes points that are mis-
classified with respect to the margin. The regularization ||wl||?> corresponds
to the margin of the hyperplane, which is a global geometric concept. The
data points that are closest to the hyperplane are called support vectors and
the framework is widely known as the support vector machine (SVM).
Perturbation methods, specifically data perturbation and parameter per-
turbation, present other regularizations which are more local in nature.
Therefore, regularization using perturbation methods is easier to apply.

Introduction

Data perturbation amounts to shifting the data points during learning.
This approach stems from robust optimization, a subarea of optimization
that amounts to minimax learning—finding the minimizing parameters that
separate the worst data perturbation under some restriction. Learning with
data perturbation targets a classifier that gives the same result even if there
are slight changes of the data points, e.g., the colors of an image. To enforce
such a behavior there are random perturbations and adversarial
perturbations, both related to SVMs in classification tasks, (Xu et al., 2009;
Livni et al., 2012).

Random data perturbations consider an uncertainty in the data point mea-
surement x; using a probability distribution whose mean is x;. To formalize
the robust optimization program, define the set P(z;) of all probability dis-
tribution p;(z) satisfying Ey~p,[z] = x; and Eg~p,|z — x;|| = 1. Then the
following robust optimization program corresponds to the support vector
machine program in Equation (1.5), (Livni et al., 2012):

1 m

nbi)n - 2 pi%%i) Eypmax{0,1 — y;(w, x) }] (1.6)
The above robust optimization program only consists of the hinge-loss that
penalizes wrongly misclassified points. Although it does not explicitly use
the fo—norm as regularization, this robust optimization program implicitly
regularizes the learning by locally perturbing the training data. Therefore,
in classification one can refrain from globally maximizing the margin from
all data points and instead to locally perturb the data points (Livni et al.,
2012).

Regularization can also be enforced using adversarial perturbation, which
also leads to new generalization bounds (Xu et al., 2009). Both random
and adversarial perturbations can generate margin-like behavior for linear
classifiers, by implicitly enforcing the ¢ regularization. The power of reg-
ularization through perturbation is in its locality. Therefore, they can be
easily integrated into non-linear learners, such deep learners. Chapter 11
demonstrates regularization by data perturbation in deep learning.

Parameter perturbation amounts to shifting the parameters of the clas-
sifier. By doing so, parameter perturbation averages over infinitely many
classifiers and obtain a robust prediction. This approach relates to Bayesian
learning as it accounts for the uncertainty of the learning process by av-
eraging predictions. By taking into account infinitely many predictions one
stabilizes the learning process and augments the learning process with PAC-
guarantees. A PAC-Bayesian generalization bound (McAllester, 2003; Ger-
main et al., 2009; Seldin et al., 2012) asserts that with probability of at least
1 —§ over the draw of a training data set of size m holds simultaneously for

1.2 Regularization

all distributions ¢
KL(q||p) +log(1/0) + 1
Vv 8m

KL(q|lp) = [q(w)log(¢q(w)/p(w)) is the KL-divergence between distribu-
tions ¢,p. The distribution ¢(w) is called a posterior distribution since it
may be determined after seeing the training examples. For example, the ex-

EyngR(w) — EygRs(w) <

(1.7)

pected value of g(w) can be set to the empirical risk minimizer, e.g., w® in
Equation 1.3, and thus to encode the learning information. The distribution
p(w) is called the prior distribution since it is set before seeing the training
data. If both the posterior and the prior distributions represent Gaussian
random variables, the KL-divergence is the ¢s regularization. Chapter 10 de-
scribes PAC-Bayesian generalization bounds and their applications to visual
and language recognition tasks.

1.2.2 Online Learning

Online learning, or sequential prediction, is a game played between a learner
and an omniscient adversary, also known as the environment. The game is
played for T rounds. In each round ¢ the learner predicts an element x; from
a predetermined set X.

Simultaneously, the environment decides on a loss function f; : X — [0, 1]
and the learner suffers a loss of fi;(z;). The performance of the learner is
typically measured by her regret, defined as

T T
Regret = > fi(w) —min y _ fi(z) (1.8)
t=1 t=1

which the learner would like to minimize. The learner’s regret is the dif-
ference between her cumulative loss over all T rounds and the cumulative
loss of the best fixed x € X in hindsight. We say that a strategy of the
learner learns a problem if it achieves a regret that is sublinear in T, namely
Regret < o(T).

The literature typically discusses two important special cases of online
learning. The first of which is prediction with expert advice. Here, the learner
has access to K experts. At every round, the learner chooses one expert and
follows its advice; then the loss of the learner on this round is the loss
that is associated with the expert that she chose. This can be formulated
as following: the set X = {1,2,..., K} is the set of K experts and each
function f; assigns an arbitrary loss between 0 and 1 to each expert.

The second special case that we consider is the one of online convex opti-
mization. Here the set X C RY is convex and the loss functions fi, ..., fr are

Introduction

also convex. An important observation is that in general, any online learn-
ing problem can be formulated as an online convex optimization problem
via randomization. For example take the setting of prediction with expert
advice; by letting X be the (K — 1)-dimensional probability simplex, we can
associate every expert with a vertex of the simplex and think of the loss
functions f1,..., fr as linear functions over X. On every round the learner
selects x; € X — a probability distribution over experts, and then randomly
selects an expert by sampling from z;. Since the learner is now randomized,
we will measure her performance by her expected regret.

A first attempt at a learning algorithm is the Follow the Leader (FTL)
algorithm. Denote the cumulative loss at time ¢ by Fy(z) = Z’;;ll (), then
FTL involves picking x; to be a minimizer of Fi(x). FTL cannot achieve
sublinear regret.! The problem with FTL is that greedy decisions may
change too rapidly. If the environment changes the best x € X frequently
throughout the game, then the learner must suffer high regret. If, on the
other extreme, the learner always picks a single fixed x € X, the environment
can choose some other = as the best throughout the entire game, and once
again the learner suffers high regret. Therefore, intuitively, the optimal
strategy for the learner is one that interpolates between FTL and a strategy
that picks a single fixed .

There are several ways of stabilizing FTL to achieve such a strategy. The
first of which is for the case of online convex optimization and is called
Follow the Regularized Leader (FTRL). Here we assume that X is endowed
with a convex regularizer R : X — R and at every round ¢ the learner
predicts x; = argmin,c x nFy(x)+R(x), where > 0 is a step-size parameter.
Intuitively, if n is large then we expect z; to be close to the minimizer
of F; and if 7 is small then we expect x; to be close to the minimizer
of R. Another possible algorithm is Follow the Perturbed Leader (FTPL).
FTPL is the scheme of predicting an « € X that minimizes the perturbed
cumulative loss, namely z; € argmin,cy nF(z) + (I',) where I' is some
random variable. Similarly to FTRL, n controls the size of the steps that x;
makes in expectation; if 7 is large then we expect E[x;] to be close to the
minimizer of F; and if 7 is small then we expect E[z;] to be close to the

1. Consider X = [0, 1], fi(z) = z/2 and on other rounds f;(z) = |z — 2|, where z; = 0 on
odd rounds and z; = 1 on even rounds. After an even number of rounds 7', the best fixed
z € X is ¢ = 1 with a cumulative loss of (T'—1)/2. On the other hand, with the exception
of the first round, the learner plays £ = 1 on odd rounds and z = 0 on even rounds and
thus suffers a loss of 1 at every round. Then the regret of the learner is at least (7' —1)/2
which is not sublinear in 7.

1.3 Modeling

fixed point of E[argmin,¢ y (I, z)]. Chapter 8 presents the state-of-the-art in
FTRL and FTPL.

1.3 Modeling

Structured prediction refers to a class of machine learning methods that
describe systems of multiple inter-related variables. Structured prediction
models are very popular in computer vision, speech recognition, natural
language processing, computational biology, and other fields characterized
by highly-dimensional state spaces with rich domain-specific structure.

Given an input vector of noisy measurements x, our goal is to estimate
the latent state output vector y = (y1,...,yn). The elements of the state
vector y; € L can take either continuous or discrete values from the
label sets £. In image processing applications such as image inpainting
or deblurring the state vector y corresponds to a real-valued clean image
that we wish to recover from its partial or degraded version . In computer
vision applications such as image segmentation or labeling the state vector
y corresponds to an assignment of image areas to different image segments
or semantic object classes. In natural language processing, the state vector
y may correspond to a syntactic parsing of a sentence x.

Structured prediction is typically formulated as an optimization problem,
either in terms of either energy minimization or utility maximization. The
two viewpoints are equivalent and are roughly equally common in the
literature. In this introductory Chapter we follow the former viewpoint but
some of the other Chapters follow the latter viewpoint.

In the energy minimization framework, given a specific measurement x,
we quantify the quality of a particular interpretation y by means of a
deterministic energy function E(y|x). We will often be working with energy
functions of the form

E(ylz;0) = (0, ¢(y,z)) = Zé’jéj(y,w), (1.9)

where 8 € R™ is a vector of parameters and ¢(y,) is a vector of features
or potential functions extracted from the data. Sometimes, for notational
convenience, we will be suppressing the dependence of the energy function
or features on the measurements x.

The energy function assigns lower energies to more preferable configura-
tions, encouraging solutions y which are both compatible with local mea-
surements x and satisfy domain-specific global constraints on y, such as so-

10

Introduction

lution smoothness or syntactic validity. Fully specifying the energy function
requires selecting both the features ¢ and parameters 8. Feature selection is
usually informed by domain-specific considerations. Setting the parameters
is typically done with the help of typical labeled training data, in the form of
paired latent variable and measurement examples (yy, mk)i{:l. Such labeled
training data allow us to tune the parameters 8 so as the resulting model can
faithfully represent real-world examples. Parameter learning plays a central
role in both theory and practice of structured machine learning.

eeomnected [§7¢ process

euse flow troncated 12, Troncated wllshﬂlms
iialzaon lelwpstereosf"'“‘"“’”’d' e o oy L fiml i e an
T,B mﬂ?{,eddLPﬁﬂe axafion Vitephigreph. ool eifean field LP T SMV - Deterministic MAP
, n - .
i Large-margin..} MRFSU'UCtL{zEW W § = argmin £(y)
o Belief Dripgafion S““Urlﬁ,l‘i W;aﬂqumgealmg il
G p Ut Tinear programining SV UaerHdegSteeralgllgm v 2
deonosin onvex Dual deoump051t10n contmuousmma p SVMie® S
Narkor ket GOV | nleger g"""g,,h“,n KLuch ey [
fll‘l“l’seudrrﬂwleangm,"mq ‘“’g"“"“‘““"g . iy 9 =
Likelihood Primal-dual CRF Beﬁnefremrrgy plm,,almﬂm Favssmn [}
e e states y

I . Prior (R eustve, it
emire ata agmentation St i - F E_A
Probabilistic Gibbs gt y“Eﬁ lﬁ‘gordm”n““‘m%];“lt o rfectsampler;.stmmn

V —E bt 780 Fovarl bk Slmuhtcd annealing
¥~ fa(y) e Y eontragife d1verge CB o ai.?l?lMC% Ftreewene Y g
EXEENCE Texture artition tiction
o Bkl 1EHLE B IR il il
) bt beiPropp- Wllson 10DS Samp; mg seudo- llkellhood Potts model
o ()R VaI‘latlonalMetmpohs Hasnngs MRFLme process maxent™
GCJ mmwmlhhhmdhldden Behefpmpagatmn HmﬂtﬂmﬂﬂMmmd

P Sderd fgidd Ol
mjxmgnme et ™ o o g e

statesy

Figure 1.1: Deterministic energy minimization vs. probabilistic Gibbs modeling.
Perturb-and-MAP attempts to bridge the gap between these two approaches.

As illustrated in Figure 1.1, there are two quite distinct ways to work
with energy-based models. The first is entirely deterministic and amounts
to finding a single most probable (MAP) configuration of minimum energy,
y = argmin,, E(y). The second class of methods is probabilistic, assigning
to each state a Gibbs probability fo(y) o« e P®). Their key advantage over
MAP inference is that they also allow uncertainty quantification, which is
particularly important when we interpret ambiguous data. The probabilistic
framework also enables learning model parameters from training examples
using maximum likelihood.

The fact that the energy function (1.9) couples together multiple variables
induces a combinatorial nature to structure prediction problems. Both en-
ergy minimization and probabilistic inference in their general form require
solving computationally intractable problems. However, several important
families of energy functions involving both continuous and discrete-valued
variables can be efficiently tackled with fast energy minimization algorithms,

1.3 Modeling

11

which can find exact or approximate solutions even for large scale problems
involving millions of variables. On the other hand, probabilistic inference
is considerably more difficult than optimization, since it requires captur-
ing multiple solutions plausible under the posterior distribution instead of
just a single MAP configuration. For example, submodular potentials, an
important class of energy functions which favor solution smoothness, are
amenable to fast optimization yet probabilistic inference under the induced
Gibbs model is provably hard (Goldberg and Jerrum, 2007).

The observation that energy minimization is often computationally advan-
tageous compared to sampling from the Gibbs distribution provides the key
motivation for building probabilistic models on top of optimization prob-
lems, which constitutes one of the key themes of this volume. We introduce
randomness to the optimization problem by randomly perturbing the pa-
rameter vector, followed by finding the minimizing assignment of the per-
turbed energy function. This Perturb-and-MAP technique (see Papandreou
and Yuille (2011) and Chapter 2) establishes a link between the optimization
and probabilistic inference approaches to energy-based modeling and allows
us to repurpose the powerful computational arsenal of energy minimization
algorithms for the task of probabilistic inference in structured prediction
problems.

Two natural questions arise: Can the Perturb-and-MAP approach lead to
probabilistic models that resemble their Gibbs counterparts? How to best
design the perturbation process so as to minimize the mismatch between the
two models?

It turns out that extreme value statistics (Gumbel and Lieblein, 1954),
the field of statistics studying the properties of extrema of optimization
problems, offers the right tools for tackling these questions. The Gum-
bel extreme value distribution is a continuous univariate distribution with
log-concave density g(z) = exp(—(—z + €¥)). We can efficiently draw in-
dependent Gumbel variates by transforming standard uniform samples by
u — log(—log(u)).2 The Gumbel density naturally fits into the Perturb-and-
MAP model, thanks to the following key property:

Lemma 1.1 (Gumbel Lemma). Let (01,...,60p,), with6, e R, n=1,...,m.

We additively perturb them by 6, = 0, + €, with €, i.i.d. zero-mode Gumbel
samples. Then:

2. This is the min-stable version of the Gumbel distribution, appropriate for the energy
minimization setup. In the dual utility maximization setup one needs to use the max-
stable version of the Gumbel distribution. The latter has density §(z) = exp(—(z + e~ %))
and can be sampled from by u — — log(— log(u)).

12

Introduction

(Min-Stability) The minimum of the perturbed parameters O, =
min,—1.,{0n} follows a Gumbel distribution with mode 0y, where e~ % =
>y e~ 0. Note that 8y = —log Z, where Z is the partition function.
(Arg-Min) The probability — that 0, is the minimum value s
Pr{argmin(fy,...,0,) =n} = e je=0,

The Gumbel Lemma above plays such a central role in this book that we
find it noteworthy to discuss some of its history. The Min-Stability property
is a result of the study of asymptotic behavior of extreme value statistics,
which was pioneered by Fisher and Tippett (1928) and Gnedenko (1943). A
standard reference on extreme value theory is Gumbel and Lieblein (1954).
To our knowledge, the Arg-Min property was discovered by mathematical
psychologists (Luce, 1959; Yellott, 1977) and economists (McFadden, 1973)
in the context of discrete choice theory. We refer the interested reader to
Luce (1994) for a full historical discussion.

The Gumbel distribution gives an elegant exact solution to perturbation
design for unstructured prediction models over discrete domains. A natu-
ral question to ask is if similar results are achievable in structured domains
where enumeration of configurations is intractable, and in continuous do-
mains. In the case of structured domains, lower dimensional perturbations
that give rise to efficient algorithms can be employed (Chapter 2). The re-
sulting Perturb-and-MAP models are no longer equivalent to their Gibbs
counterparts. However, both experimental evidence and theoretical results
presented in this volume suggest that this design choice has strong merits.

In the case of real-valued domains, it may not be immediately clear what
the analog of Gumbel perturbations should be. However, the Gumbel Process
(see Maddison et al. (2014) and Chapter 7) is a generalization of Gumbel
perturbations in the discrete domains that has the analogous properties in
real-valued domains. In real-valued domains (and in structured domains),
the maximum perturbed value can no longer be found by enumeration.
However, A* Sampling (Maddison et al., 2014) is an algorithm that uses
bounds and A* search to solve this problem, which allows the exact optimum
to be found in many instances. Kim et al. (2016) develops related ideas for
the case of integer linear programs.

1.4 Roadmap

There are many research questions that arise upon adopting the pertur-
bations viewpoint, and this book gives an overview of the state of the art.

1.4 Roadmap

18

Roughly, the work can be split into (a) the development of new perturbation
models and learning algorithms, and (b) developing an understanding of per-
turbation models, and (c) developing and understanding new perturbation-
based regularization techniques.

There are many recent modeling ideas that have arisen within the per-
turbations framework, many of which are developed in this book. Perturb
& MAP (Chapter 2) and Randomized Optimum models (Chapter 3) define
probabilistic models that include an efficient deterministic optimizer within
the model definition. Herding (Chapter 4) develops a framework around
chaotic deterministic sequences. In Chapter 10, randomized classifiers imply
a modeling framework that is similar to P&M and RandOMs, but which is
framed directly in terms of PAC-Bayesian generalization bounds. In Chap-
ter 11, Generative Adversarial Networks use neural networks to map generic
noise to a distribution over highly structured data like images.

Perturbation models often have the property that samples are efficient to
generate, but evaluating likelihoods is difficult. This has led to a range of
interesting learning procedures for these models. Chapter 3 describes how
EM algorithms can take advantage of structure in combinatorial optimiza-
tion algorithms to speed up learning. Chapter 5 develops an improved hard
EM algorithm. Chapter 10 suggests biasing the perturbations in an impor-
tance sampling framework during learning in order to reduce the variance
in a stochastic gradient-based learning algorithm. In Chapter 2, a learning
algorithm is given that aims to directly match moments of model samples to
moments of data. Chapter 11 suggests using a discriminator neural network
to distinguish between samples from the model and data instances in such a
way that the whole system is differentiable. Follow-up work (Li et al., 2015;
Dziugaite et al., 2015) draws inspiration from statistical tests of whether
two sets of samples are drawn from the same distribution in order to de-
velop a training objective for perturbation models that again is based on
matching moments. A related problem that arises in perturbation models is
that conditioning on values of a subset of variables becomes trickier. This
is one of the most important open problems in the area. Chapter 5 studies
this problem and gives a condition under which simply fixing the observed
value is correct, but much more study is needed here.

There has also been significant progress in understanding perturbation
models and how they relate to traditional counterparts. In certain settings
there are precise relationships between the perturbations viewpoint and tra-
ditional viewpoints, which are discussed in Chapter 5, Chapter 6, and Chap-
ter 8. The perturbation viewpoint can lead to computational guarantees on
problems which are provably hard in general (Chapter 13). The perturba-
tions viewpoint can even lead to new algorithms for solving problems in the

14

Introduction

traditional setting, such as is the case with A* Sampling, which is discussed
in Chapter 7.

Empirically, dropout (Srivastava et al., 2014) is perhaps the best known
perturbation-based regularization technique, and it is credited for many
gains in the performance of recent large-scale deep learning systems. Ana-
lytic understandings of perturbation-based regularization in neural networks
were developed in Bishop (1995) and developed in the context of dropout
by Wager et al. (2013). This gives an understanding of how dropout differs
from ¢9 regularization, for example. Chapter 12 develops an extension of
Wager et al. (2013), giving deeper understandings of dropout and a general
framework for understanding dropout-like perturbations. Chapter 11 further
studies perturbations in the context of deep neural networks, considering the
effect of adversarial perturbations and using stochastic perturbations as the
basis for a generative neural network model.

Put together, this book aims to introduce the reader to a new way
of thinking about the fundamentals of statistical learning. While many
connections are made and many ideas have been developed, we still believe
there to be much more to discover in this space, and the hope is that this
book is a launch pad that helps the interested researcher jump into this
exciting area.

1.5 References

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108-116, 1995.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. In Proc. Int. Conf. on
Uncertainty in Artificial Intelligence, 2015.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Mathematical Proceedings of
the Cambridge Philosophical Society, 24(02):180-190, April 1928. doi: 10.1017/
S0305004100015681.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In ICML, pages 353-360. ACM, 2009.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics, 44(3):423-453, July 1943. doi: 10.2307/1968974.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

E. Gumbel and J. Lieblein. Statistical theory of extreme values and some practical
applications: a series of lectures, volume 33. US Govt. Print. Office, 1954.

C. Kim, A. Sabharwal, and S. Ermon. Exact sampling with integer linear pro-
grams and random perturbations. In Proc. 30th AAAI Conference on Artificial
Intelligence, 2016.

1.5 References

15

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In Proc.
Int. Conf. on Machine Learning, 2015.

R. Livni, K. Crammer, A. Globerson, E.-I. Edmond, and L. Safra. A simple

geometric interpretation of svm using stochastic adversaries. In AISTATS, pages
722-730, 2012.

R. Luce. Individual choice behavior. 1959.
R. D. Luce. Thurstone and sensory scaling: Then and now. 1994.

C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 3086-3094. Curran As-
sociates, Inc., 2014. URL http://papers.nips.cc/paper/5449-a-sampling.
pdf.

D. McAllester. Simplified PAC-Bayesian margin bounds. Learning Theory and
Kernel Machines, pages 203-215, 2003.

D. McFadden. Conditional logit analysis of qualitative choice behavior. 1973.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2012.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCYV, Barcelona,
Spain, Nov. 2011. doi: 10.1109/ICCV.2011.

Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer. Pac-
bayesian inequalities for martingales. Information Theory, IEEE Transactions
on, 58(12):7086-7093, 2012.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929-1958, 2014.

S. Wager, S. Wang, and P. S. Liang. Dropout training as adaptive regularization.
In Advances in neural information processing systems, pages 351-359, 2013.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support
vector machines. The Journal of Machine Learning Research, 10:1485-1510, 2009.

J. 1. Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory

of comparative judgment, and the double exponential distribution. Journal of
Mathematical Psychology, 15(2), 1977.

2 Perturb-and-M AP Random Fields

George Papandreou gpapan@google.com
Google Inc.
340 Main St., Los Angeles, CA 90291 USA

Alan L. Yuille alan.yuille@jhu.edu
Johns Hopkins University
Baltimore, MD, 21218 USA

Probabilistic Bayesian methods such as Markov random fields are well suited
for modeling structured data, providing a natural conceptual framework for
capturing the uncertainty in interpreting them and automatically learning
model parameters from training examples. However, Bayesian methods are
often computationally too expensive for large-scale applications compared to
deterministic energy minimization techniques.

This chapter presents an overview of the “Perturb-and-MAP” generative
probabilistic random field model, which produces in a single shot a random
sample from the whole field by first injecting noise into the energy function,
then solving an optimization problem to find the least energy configuration of
the perturbed system. Perturb-and-MAP random fields thus turn fast deter-
ministic energy minimization methods into computationally efficient proba-
bilistic inference machines and make Bayesian inference practically tractable
for large-scale problems, as illustrated in challenging computer vision appli-
cations such as itmage inpainting and deblurring, image segmentation, and
scene labeling.

We also present a new theoretical result. Specifically, we study the
representation power of the Perturb-and-MAP model, showing that it is
expressive enough to reproduce the sufficient statistics of arbitrary observed
data.

Keywords: MRF, energy minimization, Perturb-and-MAP, extreme value
statistics, graph cuts, random sampling.

18

Perturb-and-MAP Random Fields

Structured prediction models are typically built around an energy func-
tion, which assigns to each possible configuration vector y = (y1,...,yn) a
real-valued energy E(y), with more preferable configurations getting lower
energies. As explained in Chapter 1, one can approach energy-based prob-
lems in a purely deterministic fashion, which amounts to finding a single
most probable (MAP) configuration of minimum energy, § = argmin,, F(y).
Alternatively, one can build probabilistic models around the energy function,
assigning to each state a Gibbs probability fo(y) oc e™¥ (),

This chapter presents an overview of the Perturb-and-MAP method (Pa-
pandreou and Yuille, 2011a), which attempts to reduce probabilistic infer-
ence to an energy minimization problem, thus establishing a link between the
optimization and probabilistic inference approaches to energy-based model-
ing, set up in Chapter 1. As illustrated in Figure 2.1, Perturb-and-MAP is
a two-step generative process: (1) In a Perturb step, we inject additive ran-
dom noise N(y) into the system’s energy function, followed by (2) a MAP
step in which we find the minimum energy configuration of the perturbed
system. By properly designing the noise injection process we can generate
exact Gibbs samples from Gaussian MRFs and good approximate samples
from discrete-label MRFs.

function PERTURB-AND-MAP

E(y) = E(y) + N(y) b Perturb 3 >
Y = argmin,, E(y) > MAP g) g)
return y > Random sample o o
end function states y states y

(a) (b) (c)

Figure 2.1: (a) The generic Perturb-and-MAP random sampling algorithm. (b)
Original energies E(y). (c) Perturbed energies F(y). The MAP state ¢ and the
Perturb-and-MAP sample g are shown shaded in (b) and (c), respectively.

While deterministic MAP inference summarizes the solution space into
a single most probable estimate, Perturb-and-MAP gives other low energy
states the chance to arise as random samples for some instantiations of the
perturbation noise and is thus able to represent the whole probability land-
scape. Perturb-and-MAP follows a fundamentally different approach com-
pared to other approximate probabilistic inference methods such as Markov
Chain Monte-Carlo (MCMC) and Variational Bayes (VB), which are con-
trasted with Perturb-and-MAP in Figure 2.2. MCMC is broadly applica-
ble and can provide very accurate results but is typically computationally
very expensive for large scale problems. When the distribution has multiple
modes, MCMC mixes slowly and becomes particularly ineffective because it

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches 19

moves in small steps through the state space. Crucially, Perturb-and-MAP
generates samples in a single shot, completely bypassing the Markov Chain
slow mixing problem, and thus has no difficulty in dealing with multimodal
distributions. Variational Bayesian methods such as mean field or variational
bounding approximate a complicated probability landscape with a simpler
parametric distribution. VB is typically faster yet less accurate than MCMC,
and also faces difficulties in the presence of multiple modes.

Figure 2.2: Capturing a complicated probability landscape (in dashed lines) with
standard approximate inference methods vs. Perturb-and-MAP. (a) Deterministic
MAP. (b) Markov Chain Monte-Carlo. (c) Variational Bayes. (d) Perturb-and-MAP.

Perturb-and-MAP was initially developed for drawing exact random sam-
ples from Gaussian MRFs (Papandreou and Yuille, 2010). This efficient
Gaussian sampling algorithm can also be used as sub-routine and consider-
ably accellerate both MCMC and VB in applications involving continuous
sparse potentials. We discuss these in Section 2.2. This line of research led to
the development of Perturb-and-MAP for discrete MRFs (Papandreou and
Yuille, 2011a), which we discuss in Section 2.3. We summarize some related
work in Section 2.5.

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches
2.1.1 Energies and Gibbs MRF's for Modeling Inverse Problems

Structured prediction for solving inverse problems is typically formulated in
terms of energy functions. Given an input vector of noisy measurements x,
our goal is to estimate the latent state output vector y = (yi1,...,yn).
The elements of the state vector y; € L can take either continuous or
discrete values from the label set £. As shown in Figure 2.3, in image
processing applications such as image inpainting or deblurring the state
vector y corresponds to a real-valued clean image that we wish to recover

20

Perturb-and-MAP Random Fields

from its partial or degraded version . In computer vision applications such
as image segmentation or labeling the state vector y corresponds to an
assignment of image areas to different image segments or semantic object
classes. Probabilistic Bayesian techniques offer a natural framework for
combining the measurements with prior information in tackling such inverse
problems.

(a) (d)

Figure 2.3: In inverse modeling we use observations & (top row) to infer a latent
interpretation y (bottom row). Image processing examples: (a) Inpainting. (b)
Deblurring. Computer vision examples: (¢) Figure-ground segmentation. (d) Scene
labeling.

Given a specific measurement x, we quantify a particular interpretation
y by means of a deterministic energy function E(y), where for notational
convenience we are suppressing its dependence on the measurements . We
will be working with energy functions of the general form

M
E(y;0) = (0, ¢(y)) = >_ 0,0;(y), (2.1)
j=1

where 8 € RM is a real-valued parameter vector of length M, and ¢(y) =
(61(y),...,én(y))T is a vector of potentials or “sufficient statistics”. We
can interpret 0; as the weight assigned to the feature ¢;(y): we have many
different design goals or sources of information (e.g., smoothness prior,
measurements), each giving rise to some features, whose weighted linear
combination constitutes the overall energy function. Each potential often
depends on a small subset of the latent variables, which is made explicit in
a factor graph representation of the energy function shown in Figure 2.4.
The Gibbs distribution is the standard way to induce a probabilistic model
from the energy function. It defines a Markov random field whose probability

2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches 21

B m?: m? moM

ORD
(a)

(b)

Figure 2.4: (a) The factor graph representation of the energy makes explicit which
variables affect each potential. (b) A standard nearest neighbor 2-D grid MRF with
unary and pairwise potentials, ¢ = ({V;},{Vi;}).

density /mass function has the exponential family form

fa(y;0) = Z71(6) exp (—E(y; 0)), (2:2)

where Z(0) = >_, exp (—E(y; 0)) is the partition function and summation
over y should be interpreted as integration in the case of a continuous label
space L.

MAP inference in the Gibbs model, i.e., computing the most probable
configuration, § = argmax, fc(y), is equivalent to solving the energy
minimization problem § = argmin, F(y). Thanks to powerful modern
energy minimization algorithms, exact or high-quality approximate MAP
inference can be performed efficiently for several important energy models.
However, other key queries on the Gibbs model such as computing the
marginals fq(y;) = Zy\yi fa(y) or random sampling are computationally
hard.

2.1.2 Probabilistic Parameter Learning from Training Examples

While we typically select the feature set ¢ by hand, we can exercise much
control on the behavior of the energy-based model by setting the parameters
0 to appropriate values. The high-level goal is to select the weight vector 6
in a way that the model assigns low energies to desirable configurations and
high energies to “everything else”.

When the number of parameters M is small, we can set them to reason-
able values by hand. However, a more principled way is to automatically
learn the parameters from a training set of K structured labeled exam-
ples {yy }_ . Discriminative learning criteria such as structured max-margin
(Taskar et al., 2003; LeCun et al., 2007; Szummer et al., 2008; Koller and
Friedman, 2009) are very powerful and described in detail in other chap-

22

Perturb-and-MAP Random Fields

ters of this volume. Computationally, they are iterative and they typically
require modified MAP inference at each parameter update step, which is
computationally efficient for many energy models often used in practice.

In the probabilistic setting that is the focus of this chapter, max-
imum (penalized) likelihood (ML) is the natural criterion for learning
the weights. Given the labeled training set {yx}X ,, we fit the pa-
rameters 6 by maximizing the Gibbs log-likelihood function Lg(0) =
—log Z(0) — (1/K) i, E(yy; 8), possibly also including an extra penalty
term regularizing the weights. For fully observed models and energies of
the form (2.1) the log-likelihood is a concave function of the weights 6
and thus the global maximum can be found by gradient ascent (Hin-
ton and Sejnowski, 1983; Zhu et al., 1998; Koller and Friedman, 2009).
The gradient is 9La/00; = EG{¢;(y)} — En{¢;(y)}. Here E§{¢;(y)} £
S, fay:0)6;(y) = ~d(log 2)/06; and Ep{e;(y)} £ (1/K) S0, é;(ue)
are, respectively, the expected sufficient statistics under the Gibbs model and
the data distribution. Upon convergence, E§{#;(y)} = Ep{¢;(y)}. Thus,
ML estimation of the Gibbs model can be thought of as moment match-
ing: random samples drawn from the trained model reproduce the sufficient
statistics observed in the training data.

The chief computational challenge in ML parameter learning of the Gibbs
model lies in estimating the model sufficient statistics E§ {¢;(y)}. Note that
this inference step needs to be repeated at each parameter update step. The
model sufficient statistics can be computed exactly in tree-structured (and
low tree-width) graphs, but in general graphs one needs to resort to MCMC
techniques for approximating them (Hinton and Sejnowski, 1983; Zhu et al.,
1998; Hinton, 2002), an avenue considered too costly for many computer
vision applications. Deterministic approximations such as variational tech-
niques or loopy sum-product belief propagation do exist, but often are not
accurate enough. Simplified criteria such as pseudo-likelihood (Besag, 1975)
have been applied as substitutes to ML, but they can sometimes give results
grossly different to ML.

Beyond model training, random sampling is very useful in itself, to reveal
what are typical instances of the model — what the model has in its “mind” —
and in applications such as texture synthesis (Zhu et al., 1998). Further, we
might be interested not only in the global minimum energy configuration,
but in the marginal densities or posterior means as well (Schmidt et al.,
2010). In loopy graphs these quantities are typically intractable to compute,
the only viable way being through sampling. Our Perturb-and-MAP random
field model is designed specifically so as to be amenable to rapid sampling.

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 23

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRF's

Gaussian Markov random fields (GMRFs) are an important MRF class
describing continuous variables linked by quadratic potentials (Besag, 1974;
Szeliski, 1990; Weiss and Freeman, 2001; Rue and Held, 2005). They are very
useful both for modeling inherently Gaussian data and as building blocks
for constructing more complex models.

2.2.1 Exact Gaussian MRF Sampling by Local Perturbations
We will be working with a GMRF defined by the energy function
1 _ 1
E(y;60) = 5 (Fy — o) g (Fy — po) = 5y" Jy — k' y + (const) (2.3)

where J = FTﬁalF, k = FTEalpo. The energy can be cast in the
generic inner product form of Equation (2.1) by defining the parameters
0 = (k,vec(J)) and features ¢(y) = (—vy, % vec(yy?). We assume a diago-
nal matrix Xy = Diag(Xq, ..., 3s), implying that the energy can be decom-
posed as a sum of M independent terms E(y;) = Zj‘il ﬁ(f]Ty — p5)?,
where fJT is the j-th row of the measurement matrix F' and p; is the j-th
entry of the vector uyo.

The corresponding Gibbs distribution fg(y) is a multivariate Gaussian
N(p,X) with covariance matrix ¥ = J~! and mean vector u = J 'k.
The MAP estimate y = argmin, %yTJ y — kTy under this Gaussian model
coincides with the mean and amounts to solving the N x N linear system
Jup = k. Solving this linear system with direct exact methods requires a
Cholesky factorization of J, whose complexity is O(N?) for banded system
matrices with tree-width O(v/N) arising in typical image analysis problems
on 2-D grids. We can perform approximate MAP inference much faster using
iterative techniques such as preconditioned conjugate gradients (Golub and
Van Loan, 1996) or multigrid (Terzopoulos, 1988), whose complexity for
many computer vision models is O(N3/2) or even O(N).

Standard algorithms for sampling from the Gaussian MRF also require a
Cholesky factorization of J and thus have the same large time and memory
complexity of direct system solvers. The following result though shows that
we can draw eract GMRF samples by Perturb-and-MAP:

Proposition 2.1. Assume that we replace the quadratic potential mean g
by its perturbed version fig ~ N(po,X0), followed by finding the MAP of
the perturbed model y = FTZalﬂo. Then g is an exact sample from the
original GMRF N(p,X).

24

Perturb-and-MAP Random Fields

Proof. Since fig is Gaussian, y = J _1FT26 Lo also follows a multivariate
Gaussian distribution. It has mean E{y} = p and covariance matrix E{(y —
(@G- =J ' FTE'FJ 1 = 3. O

It is noteworthy that the algorithm only involves locally perturbing each
potential separately, fi; ~ N(uj,%;), and turns any existing GMRF MAP
algorithm into an effective random sampler.

As an example, we show in Figure 2.5 an image inpainting application
in which we fill in the flat areas of an image given the values at its edges
under a 2-D thin-membrane prior GMRF model (Terzopoulos, 1988; Szeliski,
1990; Malioutov et al., 2008), which involves pairwise quadratic potentials
Vij = 5% (yi — y;)? between nearest neighbors connected as in Figure 2.4(b).
We show both the posterior mean/MAP estimate and a random sample
under the model, both computed in a fraction of a second by solving a
Poisson equation by a O(NN) multigrid solver originally developed for solving
PDE problems (Terzopoulos, 1988).

Figure 2.5: Reconstructing an image from its value on edges under a nearest-
neighbor Gaussian MRF model. (a) Masked image. (b) Posterior mean/MAP
estimate y. (¢) Random sample g.

2.2.2 Efficient MCMC Inference in Conditionally Gaussian Models

Gaussian models have proven inadequate for image modeling as they fail to
capture important aspects of natural image statistics such as the heavy tails
in marginal histograms of linear filter responses. Nevertheless, much richer
statistical image tools can be built if we also incorporate into our models
latent variables or allow nonlinear interactions between multiple Gaussian
fields and thus the GMRF sampling technique we describe here is very useful
within this wider setting (Weiss and Freeman, 2007; Roth and Black, 2009;
Papandreou et al., 2008).

In (Papandreou and Yuille, 2010) we discuss the integration of our GMRF
sampling algorithm in a block-Gibbs sampling context, where the condition-

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 25

ally Gaussian continuous variables and the conditionally independent latent
variables are sampled alternately. The most straightforward way to capture
the heavy tailed histograms of natural images is to model each filter response
with a Gaussian mixture expert, thus using a single discrete assignment vari-
able at each factor (Papandreou et al., 2008; Schmidt et al., 2010). We show
in Figure 2.6 an image inpainting example following this approach in which
a wavelet domain hidden Markov tree model is used (Papandreou et al.,
2008).

Figure 2.6: Filling in missing image parts from the ancient wall-paintings of Thera
(Papandreou, 2009). Image inpainting with a wavelet domain model and block
Gibbs sampling inference (Papandreou et al., 2008).

Efficient GMRF Perturb-and-MAP sampling can also be used in conjunc-
tion with Gaussian scale mixture (GSM) models for which the latent scale
variable is continuous (Andrews and Mallows, 1974). We demonstrate this
in the context of Bayesian signal restoration by sampling from the posterior
distribution under a total variation (TV) prior, employing the GSM char-
acterization of the Laplacian density. We show in Figure 2.7 an example
of 1-D signal restoration under a TV signal model. The standard MAP es-
timator features characteristic staircasing artifacts (Nikolova, 2007). Block
Gibbs sampling from the posterior distribution allows us to efficiently ap-
proximate the posterior mean estimator, which outperforms the MAP esti-
mator in terms of mean square error/PSNR. Although individual posterior
random samples are worse in terms of PSNR, they accurately capture the
micro-texture of the original clean signal.

2.2.3 Variational Inference for Bayesian Compressed Sensing

Variational inference is increasingly popular for probabilistic inference in
sparse models, providing the basis for many modern Bayesian compressed
sensing methods. At a high level, variational techniques in this setting

26

Perturb-and-MAP Random Fields

T T T
— ORIGINAL
NOISY, 21.9dB

— TV-MAP, 29.0 dB
—— GIBBS SAMPLE, 28.4 dB|
Us F\/L'W“’f — SAMPLE MEAN, 30.0 dB

RAO-BLACK, 30.3dB

WW\\JMMM

I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7: Signal denoising under a total variation prior model and alternative
estimation criteria. From top to bottom, the graphs show: (a) Original latent clean
signal, synthesized by adding Laplacian noise increments to a piece-wise constant
signal. (b) Noisy version of the signal, corrupted by Gaussian i.i.d. noise. (c) MAP
estimator under a TV prior model. (d) A single sample from the TV posterior Gibbs
distribution. (e) Posterior mean estimator obtained by averaging multiple samples.
(f) Rao-Blackwellized posterior mean estimator (Papandreou and Yuille, 2010).

typically approximate the true posterior distribution with a parameterized
Gaussian which allows closed-form computations. Inference amounts to
adjusting the variational parameters to make the fit as tight as possible
(Wainwright and Jordan, 2008). Mostly related to our work are (Attias, 1999;
Lewicki and Sejnowski, 2000; Girolami, 2001; Chantas et al., 2010; Seeger
and Nickisch, 2011a). There exist multiple alternative criteria to quantify
the fit quality, giving rise to approximations such as variational bounding
(Jordan et al., 1999), mean field or ensemble learning, and, expectation
propagation (EP) (Minka, 2001), as well as different iterative algorithms for
optimizing each specific criterion. See (Bishop, 2006; Palmer et al., 2005) for
further discussions about the relations among these variational approaches.

All variational algorithms we study in this chapter are of a double-loop
nature, requiring Gaussian variance estimation in the outer loop and sparse
point estimation in the inner loop (Seeger and Nickisch, 2011a; van Gerven
et al., 2010; Seeger and Nickisch, 2011b). The ubiquity of the Gaussian vari-
ance computation routine is not coincidental. Variational approximations
try to capture uncertainty in the intractable posterior distribution along the
directions of sparsity. These are naturally encoded in the covariance ma-
trix of the proxy Gaussian variational approximation. Marginal Gaussian
variance computation is also required in automatic relevance determination
algorithms for sparse Bayesian learning (MacKay, 1992) and relevance vec-

2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 27

tor machine training (Tipping, 2001); the methods we review here could also
be applied in that context.

It turns out that variance computation in large-scale Gaussian models
is computationally challenging and a host of sophisticated techniques have
been developed for this purpose, which often only apply to restricted classes
of models (Schneider and Willsky, 2001; Sudderth et al., 2004; Malioutov
et al., 2008).

(b)

(d)

Figure 2.8: Blind image deblurring with variational inference. (a) Ground truth.
(b) Blurred input image. (¢) Estimated clean image. (d) Ground truth (top-left)
and iteratively estimated blur kernel (clock-wise, starting from a diffuse Gaussian
profile at top-right).

Perturb-and-MAP allows us to efficiently sample from the GMRF model
and thus makes it practical to employ the generic sample-based estimator
for computing Gaussian variances. More specifically, we repeatedly draw
K independent GMRF samples {gy} ; from which we can estimate the

28

Perturb-and-MAP Random Fields

covariance matrix
1 K
X= > Gk — 1)@k —)" (2.4)
k=1

This Monte-Carlo estimator, whose accuracy is independent of the problem
size, is particularly attractive if only relatively rough variance estimates
suffice, as is often the case in practice. We show in Figure 2.8 an example of
applying this variational Bayesian estimation methodology in the problem
of blind image deblurring (Papandreou and Yuille, 2011b).

2.3 Perturb-and-MAP for MRFs with Discrete Labels

2.3.1 Introduction

We now turn our attention to Markov random fields on discrete labels, which
go back to the classic Ising and Potts models in statistical physics. Discrete-
valued MRFs offer a natural and sound probabilistic modeling framework
for a host of image analysis and computer vision problems involving discrete
labels, such as image segmentation and labeling, texture synthesis, and
deep learning (Besag, 1974; Geman and Geman, 1984; Zhu et al., 1998;
Hinton, 2002; Koller and Friedman, 2009). Exact probabilistic inference and
maximum likelihood model parameter fitting is intractable in general MRFs
defined on 2-D domains and one has to employ random sampling schemes
to perform these tasks (Geman and Geman, 1984; Hinton, 2002).

Recent powerful discrete energy minimization algorithms such as graph
cuts, linear programming relaxations, or loopy belief propagation (Boykov
et al.; 2001; Kolmogorov and Zabih, 2004; Kolmogorov and Rother, 2007;
Koller and Friedman, 2009) can efficiently find or well approximate the most
probable (MAP) configuration for certain important classes of MRFs. They
have had a particularly big impact on computer vision; for a recent overview,
see the volume edited by Blake et al. (2011).

Our work on the Perturb-and-MAP discrete random field model has been
motivated by the exact Gaussian MRF sampling algorithm described in
Section 2.2. While the underlying mathematics and methods are completely
different in the discrete setup, we have shown in (Papandreou and Yuille,
2011a) that the intuition of local perturbations followed by global optimiza-
tion can also lead to powerful sampling algorithms for discrete label MRF's.
Subsequent work by other groups, summarized in 2.5, has extended our re-
sults and explored related directions.

2.8 Perturb-and-MAP for MRF's with Discrete Labels 29

A surprising finding of our study has been the identification of a pertur-
bation process from extreme value statistics which turns the Perturb-and-
MAP model identical to its Gibbs counterpart even in the discrete setting.
Although this perturbation is too expensive to be applicable in large-scale
models, it nevertheless suggests low-order perturbations that result in per-
turbed energies that are effectively as easy to minimize as the original un-
perturbed one, while producing high-quality random samples.

Perturb-and-MAP endows discrete energy minimization algorithms such
as graph cuts with probabilistic capabilities that allow them to support
qualitatively new computer vision applications. We illustrate some of them
in image segmentation and scene labeling experiments experiments: First,
drawing several posterior samples from the model allows us to compute
posterior marginal probabilities and quantify our confidence in the MAP
solution. Second, efficient random sampling allows learning of MRF or CRF
parameters using the moment matching rule, in which the model parameters
are updated until the generated samples reproduce the (weighted) sufficient
statistics of the observed data.

2.3.2 Model Definition and Weight Space Geometry

We assume a deterministic energy function which takes the inner product
form of Equation (2.1), i.e., E(y;0) = (0, ¢(y)), with y; taking values in
a discrete label set £. A Perturb-and-MAP random sample is obtained
by y = argmin, F(y;0 + €), where € is a real-valued random additive
parameter perturbation vector. By construction, we can efficiently draw
exact one-shot samples from the Perturb-and-MAP model by solving an
energy minimization problem.

Thanks to the inner product form of the energy function, the Perturb-and-
MAP model has a simple geometric interpretation in the parameter space.
In particular, a state y € £V will be minimizing the deterministic energy if,
and only if, F(y;0) < E(q;0),Vq € LY. This set of |£|V linear inequalities
defines a polyhedron P, in the weight space

Py ={0 €RY : (0, d(y) — ¢p(q)) < 0,Vg € LV} (2.5)

Actually, P, is a polyhedral cone (Boyd and Vandenberghe, 2004), since
0 € Py implies af € Py, for all o > 0. These polyhedral cones are dually
related to the marginal polytope M = conv({¢(y)},y € L), as illustrated
in Figure 2.9; see (Wainwright and Jordan, 2008) for background on the
marginal polytope. The polyhedra P, partition the weight space RM into
regions of influence of each discrete state y € L. Under the Perturb-
and-MAP model, y will be assigned to a particular state y if, and only

30

Perturb-and-MAP Random Fields

€2
(
ler = —p1— X

it

(

| y=(11)
e2=—F2+A Nt te=—Bi-B
N

N . .
(=51, ~82) €1
AN

M y=(1-D1| R Rt Rk

o(y')

| 61:_/Bl+)\:

! (a) J ' (b)

Figure 2.9: Perturb-and-MAP geometry. (a) The polyhedral cones P, are dual to
the corner cones of the marginal polytope M. (b) The Ising P-M model with N = 2
nodes and perturbations only in the unary terms, 8; = 3; +¢;, for parameter values
1 = —1, B3 =0, and A\ = 1. The e-space is split into four polyhedra, with y(e) =y
iff ec Py —80.

if, @ + € € P, or, equivalently, e € P, — 0 = {e € RM : 0 + € € Py}
In other words, if a specific instantiation of the perturbation e falls in the
shifted polyhedron P, — 6, then the Perturb-and-MAP model generates y
as sample.

We assume that perturbations are drawn from a density fc(€) which does
not depend on the parameters 8. The probability mass of a state y under the
Perturb-and-MAP model is then the weighted volume of the corresponding
shifted polyhedron under the perturbation measure

fru(y; 0) :/? » fe(e)de, (2.6)

which is the counterpart of the Gibbs density in Equation (2.2). It is
intractable (NP-hard) to compute the volume of general polyhedra in a
high-dimensional space; see, e.g., (Ben-Tal et al., 2009, p. 29). However, for
the class of perturbed energy functions which can be globally minimized
efficiently, we can readily draw exact samples from the Perturb-and-MAP
model, without ever explicitly evaluating the integrals in Equation (2.6).

2.3.3 Example: The Perturb-and-MAP Ising Model

Let us illustrate these ideas by considering the Perturb-and-MAP version
of the classic Ising model. The Ising energy over the discrete “spins” y; €
{—=1,1} is defined as

N N
E(y;0) = - ST Biwi+ D Nirvivir) (2.7)

i=1 i/ =1+1

2.8 Perturb-and-MAP for MRF's with Discrete Labels 31

where ; is the external field strength (8; > 0 favors y; = 1) and \;; is
the coupling strength, with attractive coupling A;;; > 0 favoring the same
spin for y; and y;. This energy function can be written in the standard
inner product form of Equation (2.1) with @ = ({3;}, {\i#})T and ¢(y) =
_71({%}, {yiy#})T. The MRF defined by Equation (2.2) is the Ising Gibbs
random field.

Defining a Perturb-and-MAP Ising random field requires specifying the
parameter perturbation density. In this example, we leave the binary term
parameters \;: intact and only perturb the unary term parameters ;.
In particular, for each unary factor, we set BZ = B; + ¢, with ¢ ii.d.
samples from the logistic distribution with density (z) = iseChQ(g). This
corresponds to the order-1 Gumbel perturbation we discuss in Section 2.3.5
and ensures that if a particular node y; is completely isolated, it will then
follow the same Bernoulli distribution Pr{y; = 1} = 1/(1 + e~ %) as in the
Gibbs case. The e-space geometry in the case of two labels (N = 2) under
the Ising energy F(y;0) = —0.5(81y1 + Bay2 + Ay1y2) for a specific value
of the parameters 8 and perturbations only to unary terms is depicted in

Figure 2.9.

-1
-2

-2.5|
-3

-3.5 I
4 |

(c)

(d)

500 B4 57
e
o

—
@
N
—

o
=

L3l

%

IS
=)
S

k7L

w
=3
S

PERTURB-MAP RANK
5]
=)
o B

=)
o
e,

- 100 200 300 400 500
logy fa(x) GIBBS RANK

() ()

Figure 2.10: We compare the Gibbs (exact computation) and the Perturb-and-
MAP (10° Monte-Carlo runs) models induced from an Ising energy on 3x3 grid, with
B; and Ay i.i.d. from N(0, 1). (a) Gibbs log-probabilities log,, fa(y) for each of the
29 states, arranged as a 2°x2* matrix. (b) Gibbs marginal probabilities fg(y; = 1)
for each of the 9 nodes. (¢) Perturb-and-MAP log-probabilities log,q fpar(y). (d)
Perturb-and-MAP marginal probabilities fpa(y; = 1). (e) Scatter-plot of state
log probabilities under the two models. (f) Scatter-plot of states ranked by their
probabilities under the two models.

32

Perturb-and-MAP Random Fields

We compare in Figure 2.10 the Gibbs and Perturb-and-MAP models for
a small-scale Ising energy involving 9 variables on a 3x3 grid with 4-nearest
neighbors connectivity and randomly generated parameters. The probability
landscape (i.e., the probabilities of each of the 27 states) looks quite similar
under the two models, see Figure 2.10 (a) and (c). The same holds for the
corresponding marginal probabilities, shown in Figure 2.10 (b) and (d). To
further compare the probability landscape under the two models, we show
a scatter plot of their log probabilities in Figure 2.10(e), as well as a scatter
plot of the states ranked by their probability in Figure 2.10(f). Perturb-and-
MAP in this example is particularly close to Gibbs for the leading (most
probable) states but tends to under-estimate the least probable states.

2.3.4 Parameter Estimation by Moment Matching

We would like to estimate the parameters @ of the Perturb-and-MAP model
from a labeled training set {yx}2 ; by maximizing the log-likelihood

K
Lpn(0) = (1/K) Y log fru(yi; 6) - (2.8)
k=1

We can design the perturbations so as the Perturb-and-MAP log-likelihood
Lpys is a concave function of 8. This ensures that the likelihood landscape
is well-behaved and allows the use of local search techniques for parameter
estimation, exactly as in the Gibbs case. Specifically, the following result is
shown in (Papandreou and Yuille, 2011a):

Proposition 2.2. If the perturbations € are drawn from a log-concave
density fe(€), the log-likelihood Lpyi(0) is a concave function of the energy
parameters 6.

The family of log-concave distributions (Boyd and Vandenberghe, 2004),
i.e., log fe(€) is a concave function of €, includes the Gaussian, the logistic,
the Gumbel, and other commonly used distributions.

The gradient of Lpps(0) is in general hard to compute. Motivated by the
parameter update formula in the Gibbs case from Section 2.1.2, we opt for
the moment matching learning rule, 6;(t + 1) = 6;(t) + r(t)Af;, where

A0 =EgM{6;(y)} —Ep{¢;(y)} - (2.9)

Here EJM{¢;(y)} = >y frri(y; 0)8;(y) is the expected sufficient statistic
under the Perturb-and-MAP model for the current parameter values 6,
which we can efficiently estimate by drawing exact samples from it. We
typically adjust the learning rate by a Robbins-Monro type schedule, e.g.,

2.8 Perturb-and-MAP for MRFs with Discrete Labels 33

r(t) = ri1/(r2 + t). Figure 2.11 illustrates parameter learning by moment
matching in a spatially homogeneous Ising energy model.

While the above moment matching rule was originally motivated by
analogy to the Gibbs case (Papandreou and Yuille, 2011a), its fixed points do
not need to be exact minima of the Perturb-and-MAP log-likelihood (2.8).
Subsequent work has shown that moment matching performs gradient ascent
for an objective function that lower bounds the Gibbs likelihood function
(Hazan and Jaakkola, 2012). Moreover, this lower bound turns out to be
concave even for perturbation densities fe(€) which are not log-concave.

—E K
. Ed(x‘!:xj)
_E (X}

30

(a) (b) () (d)

Figure 2.11: Perturb-and-MAP Ising random field parameter learning. The two
model parameters, the global coupling strength A and field strength 5 are fitted
by moment matching. (a) Gibbs Ising model sample, used as training image. (b)
Perturb-and-MAP Ising sample at initial parameter values. (c¢) Perturb-and-MAP
Ising sample at final parameter values. (d) Model moments as they converge to
training data moments.

2.3.5 Perturb-and-MAP Perturbation Design

Although any perturbation density induces a legitimate Perturb-and-MAP
model, it is desirable to carefully design it so as the Perturb-and-MAP model
approximates as closely as possible the corresponding Gibbs MRF. The
Gibbs MRF has important structural properties that are not automatically
satisfied by the Perturb-and-MAP model under arbitrary perturbations: (a)
Unlike the Gibbs MRF, the Perturb-and-MAP model is not guaranteed to
respect the state ranking induced by the energy, i.e., E(y) < E(y’) does not
necessarily imply fpar(y) > fem(y'), see Figure 2.10(f). (b) The Markov
dependence structure of the Gibbs MRF follows directly from the support of
the potentials ¢;(y), while the Perturb-and-MAP might give rise to longer-
range probabilistic dependencies. (¢) The maximum entropy distribution
under moment constraints E{¢;(y)} = ¢; has the Gibbs form; the Perturb-
and-MAP model trained by moment matching can reproduce these moments
but will in general have smaller entropy than its Gibbs counterpart.

34

Perturb-and-MAP Random Fields

The Gumbel distribution arising in extreme value theory (Steutel and
Van Harn, 2004) turns out to play an important role in our effort to design
a perturbation mechanism that yields a Perturb-and-MAP model closely
resembling the Gibbs MRF. We can use the Arg-Min aspect of the Gumbel
Lemma 1.1 (p. 12) to construct a Perturb-and-MAP model that exactly
replicates the Gibbs distribution, as follows. The Gibbs random field on NV
sites y;, 4 = 1,..., N, each allowed to take a value from the discrete label set
L, can be considered as a discrete distribution with |£|V states. This can
be made explicit if we enumerate {y;,j = 1,..., M = |£|N} all the states
and consider the maximal equivalent re-parameterization of Equation (2.1)

E(y;0) = (6, ¢(y)) = (6, ¢(v)), (2.10)
where éj = E(y;;0) = (0, ¢(yj)), j = 1,...,M, is the fully-ezpanded

potential table and ¢;(y) is the indicator function of the state y; (i.e., equals
1, if y = y; and 0 otherwise). Using the Gumbel Lemma 1.1 we can show:

Proposition 2.3. If we perturb each entry of the fully expanded LV po-

tential table with i.i.d. Gumbel noise samples €j,j = 1,...,M, then the
Perturb-and-MAP and Gibbs models coincide, i.e., fpa(y;0) = fa(y; 0).

This order-NN perturbation is not practically applicable when N is large
since it independently perturbs all M = |£\N entries of the fully expanded
potential table and effectively destroys the local Markov structure of the
energy function, rendering it too hard to minimize. Nevertheless, it shows
that it is possible to design a Perturb-and-MAP model that exactly replicates
the Gibbs MRF.

In practice, we employ low-order Gumbel perturbations. In our simplest
order-1 design, we only add Gumbel noise to the unary potential tables.
More specifically, for an energy function E(y) = SN | Vi(yi) + > Viy))
which includes potentials V;(y;) of order-1 and potentials Vj(y;) of order-
2 or higher, we add i.i.d. Gumbel noise to each of the |{| entries of each
order-1 potential, while leaving the higher order potentials intact. This
yields perturbed energies effectively as easy to minimize as the original
unperturbed one, while producing random samples closely resembling Gibbs
MRF samples. We can improve the Perturb-and-MAP sample quality by
Gumbel perturbations of order-2 or higher, as described in (Papandreou
and Yuille, 2011a). However, high order perturbations typically make the
perturbed energy minimization problem harder to solve.

2.4 On the Representation Power of the Perturb-and-MAP Model 35

2.4 On the Representation Power of the Perturb-and-MAP Model

The moment matching parameter learning criterion in Section 2.3.4 leads
us to the following fundamental question about the representation power of
the Perturb-and-MAP model on MRFs with Discrete Labels: Is the model
expressive enough to reproduce the statistics of arbitrary observed data?

More formally, let p 2 Ep{é(y)} = (1/K) S5 ¢(yx) be the vector
of sufficient statistics observed in a dataset {yk}szl. The set of all such
possible sufficient statistics vectors for every realizable dataset forms the
marginal polytope M, which can also be expressed as the convex hull of
all possible feature vectors, i.e., M = conv({¢(y)},y € £LV) ¢ RM. We
can then pose the representation power question mathematically as follows:
Given a sufficient statistics vector g € M, does a parameter vector 8 € RM
exist such that E§M{¢(y)} = p?

The answer to the representation power problem for the Gibbs distribution
is positive. Specifically, for every pu € 1i(M), there exists 8 € RM such
that E§{¢(y)} = p. Here ri(M) denotes the relative interior of M, which
essentially includes every interior point in M. Moreover, the corresponding
Gibbs distribution has the largest entropy among all distributions satisfying
the same moment matching constraints. We refer to Wainwright and Jordan
(2008) for a detailed treatment of the classic Gibbs exponential family
representation problem.

It turns out that the answer to the representation power problem for the
Perturb-and-MAP model is also positive. We can prove this building on a
key Theorem of Hazan and Jaakkola (2012) which associates Perturb-and-
MAP moment matching with a maximization problem. We restate in our
notation their Theorem 3:

Proposition 2.4. Let p € RM. We define the maximization problem
maxgerym J(0), where

7(6) = [Ju(e)min(6 + <. glw))de ~ (0.). (211)
If the perturbation density fe(€) is differentiable in RM | then (1) J(0) is
concave and differentiable in RM and (2) VJ(0) = EfM{¢(y)} — p.

We are now ready to state and prove our Proposition on the representation
power of Perturb-and-MAP.

Proposition 2.5. If the perturbation density fc(€) is differentiable in RM
then for every p € 1i(M) there exists a 8 € RM such that E§™{¢(y)} = p.

36

Perturb-and-MAP Random Fields

Proof. Based on Proposition 2.4, it suffices to show that there exists a
0 € RM such that VJ(6) = 0. Since J(0) is concave and differentiable
in RM it suffices to show that it is coercive, i.e., J(@) — —oo, when
10]] — +oo.

To show that, we start by recentering the feature vector to ¢(y) =
¢(y) — p, which allows us to express J(0@) without the linear ramp term
dependence on 6:

0) = [fu(eymin(6 + . Bly) — u)de+ (e). (2.12)

where € = [fe(€)ede is the perturbation mean. Next, let’s write 6 = 16]|6
and define yg = argmin, (0, ¢(y) — p). Note that yz; = ye. Critically,
cp = 0, ?(yg) — m) < 0 because p € ri(M). Then, since fe(e) > 0 and
[fe(e)de =1, we can upper bound J () as follows:

0) < / Fo(€)(0 + €, Blye) — m)de + (&,) (2.13)
/ fe(€)(6, B(ys) — p)de + (&, dlye) —) + (& p) (2.14)

D (yo) — 1) + (€, d(yo)) (2.15)
:Heu<, (yp) — 1) + (& D(y,)) (2.16)
— 5101 + (& blyp))- (2.17)

Since ¢4 < 0, J(0) < ¢c4(|0]| + (€, d(yy)) — —o0 as ||@]] — +o0. O

Our Proposition has been stated under the assumption that the perturba-
tion density fc(e) is differentiable in RM but it also applies more generally
whenever the function .J(8) is differentiable in RM.

2.4.1 Applications and Experiments

We present experiments with the Perturb-and-MAP model applied to image
segmentation and scene labeling.

Our interactive image segmentation experiments have been performed
on the Grabcut dataset which includes human annotated ground truth
segmentations (Rother et al., 2004). The task is to segment a foreground
object, given a relatively tight tri-map imitating user input obtained by a
lasso or pen tool.

In our implementation we closely follow the CRF formulation of (Rother
et al., 2011), using the same parameters for defining the image-based CRF
terms and considering pixel interactions in a 8-neighborhood. We used
our Perturb-and-MAP sampling algorithm with order-2 Gumbel perturba-

2.4 On the Representation Power of the Perturb-and-MAP Model 37

tion and QPBO optimization (Kolmogorov and Rother, 2007) to learn the
weights of the potentials — 5 weights in total, one for the unary and one for
each of the 4 pairwise connections of the center pixel with its S, E, NE, SE
neighbors. Using these parameters, we obtained a classification error rate of
5.6% with the global MAP decision rule. This is similar to the best results
attainable with the particular CRF model and hand-tuned weights.

In Figure 2.12 we illustrate the ability of the Perturb-and-MAP model
to produce soft segmentation maps. The soft segmentation map (average
over 20 posterior samples) gives a qualitatively accurate estimate of the
segmentation uncertainty, which could potentially be useful in guiding user
interaction in an interactive segmentation application.

() (d)

Figure 2.12: Interactive image segmentation results on the Grabcut dataset.
Parameters learned by Perturb-and-MAP moment matching. (a) Original image.
(b) Least energy MAP solution. (c¢) Soft Perturb-and-MAP segmentation. (d) The
corresponding segmentation mask.

We next consider an application of Perturb-and-MAP random fields in
scene layout labeling (Hoiem et al., 2007). We use the tiered layout model
of (Felzenszwalb and Veksler, 2010), which allows exact global inference by
efficient dynamic programming (Felzenszwalb and Veksler, 2010). The model
has a relatively large number of parameters, making it difficult to hand
tune. Training them with the proposed techniques illustrates our ability to
effectively learn model parameters from labeled data.

We closely follow the evaluation approach of (Felzenszwalb and Veksler,
2010) in setting up the experiment: We use the dataset of 300 outdoor images
(and the standard cross-validation splits into training/test sets) with ground
truth from (Hoiem et al., 2007). Similarly to (Felzenszwalb and Veksler,
2010), we use five labels: T (sky), B (ground), and three labels for the
middle region, L (facing left), R (facing right), C (front facing), while we

38

Perturb-and-MAP Random Fields

exclude the classes “porous” and “solid”. The unary scores are produced
using classifiers that we trained using the dataset and software provided by
Hoiem et al. (2007) following the standard five-fold cross-validation protocol.

We first fit the tiered scene model parameters (pairwise compatibility
tables between the different classes) on the training data using Perturb-
and-MAP moment matching (order-1 Gumbel perturbation). Weights are
initialized as Potts CRF potentials and refined by moment matching rule;
we separated the training set in batches of 10 images each and stopped after
50 epochs over the training set. We have measured the performance of the
trained model in terms of average accuracy on the test set. We have tried
two decision criteria, MAP (least energy configuration) and marginal MODE
(i.e., assign each pixel to the label that appears most frequently in 20 random
Perturb-And-Map conditional samples from the model), obtaining accuracy
82.7% and 82.6%, respectively. Our results are better than the unary-only
baseline mean accuracy of 82.1% (Hoiem et al., 2007), and the MAP and
MODE results of 82.1% and 81.8%, respectively, that we obtained with the
hand-set weights of (Felzenszwalb and Veksler, 2010).

In Figure 2.13 we show some indicative examples of different scene layout
labelings obtained by the unary-only, the tiered MAP, and the Perturb-and-
MAP model. The uncertainty of the solution is indicated by entropy maps.
The marginal mode and entropies shown are Monte Carlo estimates using
20 Perturb-and-MAP samples.

Figure 2.13: Tiered scene labeling results with pairwise potentials learned by our
Perturb-and-MAP moment matching algorithm. Left to right: image; unary-only
MAP; tiered MAP; one tiered Perturb-and-MAP sample; tiered Perturb-and-MAP
marginal mode; tiered Perturb-and-MAP marginal entropy.

2.5 Related Work and Recent Developments

Studying the output sensitivity to input perturbations is omnipresent under
many different guises not only in machine learning but also in optimiza-

2.5 Related Work and Recent Developments 39

tion, signal processing, control, computer science, and theoretical psychol-
ogy, among others. However, Perturb-and-MAP is unique in using random
perturbations as the defining building block of a structured probabilistic
model and setting the ambitious goal of replicating the Gibbs distribution
using this approach.

To our knowledge, adding noise to the weighted edges of a graph so as
to randomize the minimum energy configuration found by mincuts was first
proposed by Blum et al. (2004) in the context of a submodular binary MRF
energy arising in semi-supervised learning. Their goal was to break graph
symmetries and allow the standard mincut algorithm to produce a different
solution at each run. They interpret the relative frequency of each node
receiving one or the other label as a confidence score for binary classification.
However, beyond randomizing the deterministic mincut algorithm, they
do not study the implied probabilistic model as a standalone object nor
attempt to design the perturbation mechanism so as to approximate the
corresponding Gibbs model. Indeed, the choice of perturbation distribution
is not discussed at all in (Blum et al., 2004).

Herding (Welling, 2009) builds a deterministic dynamical system on the
model parameters designed so as to reproduce the data sufficient statistics,
which is similar in spirit to the moment-matching algorithm we use for
learning. However, herding is still not a probabilistic model and cannot
summarize the data into a concise set of model parameters.

As pointed out to us by McAllester (2012), Perturb-and-MAP is closely
related to PAC-Bayes (McAllester, 1998) and PAC-Bayesian theorems such
as those in (Germain et al., 2009) can be adapted to the Perturb-and-MAP
setting. Model perturbations through the associated concept of stochastic
Gibbs classifier play a key role to PAC-Bayesian theory, but PAC-Bayes
typically aims at producing generalization guarantees for the deterministic
classifier instead of capturing the uncertainty in the posterior distribution.

Averaging over multiple samples, Perturb-and-MAP allows efficiently es-
timating (sum-) marginal densities and thus quantifying the per-node solu-
tion uncertainty even in graphs with loops. Max-product belief propagation
(Wainwright et al., 2005) and dynamic graph-cuts (Kohli and Torr, 2008)
can compute max-marginals, which give some indication of the uncertainty
in label assignments (Kohli and Torr, 2008) but cannot directly estimate
marginal densities.

A number of different groups have followed up on our work (Papandreou
and Yuille, 2011a) and further developed it in different directions. In their
randomized optimum models, Tarlow et al. (2012) introduce variants of the
Perturb-and-MAP model for discrete problems such as bi-partite matching

40

Perturb-and-MAP Random Fields

and pursue maximum-likelihood learning of the model parameters using
efficient MCMC algorithms.

The work in (Hazan and Jaakkola, 2012) has offered a better understand-
ing of the Perturb-and-MAP moment matching learning rule, showing that it
optimizes a well-defined concave lower bound of the Gibbs likelihood func-
tion. Moreover, they have shown how Perturb-and-MAP can be used for
computing approximations to the partition function. This connection di-
rectly relates Perturb-and-MAP to the standard MRF inference problem
and forms the basis of our study of the Perturb-and-MAP representation
power presented in Section 2.4.

Another related partition function estimation algorithm is proposed in
(Ermon et al., 2013). Interestingly, their method amounts to progressively
introducing more random constraints, followed by energy minimization, in
a randomized Constrain-and-MAP scheme.

While probabilistic random sampling allows one to explore alternative
plausible solutions, Batra et al. (2012) propose to explicitly enforce diversity
in generating a sequence of deterministic solutions.

The work in (Roig et al., 2013) is an excellent demonstration of how
uncertainty quantification can yield practical benefits in a semantic image
labeling setting. They employ Perturb-and-MAP to identify on the fly image
areas with ambiguous labeling and only compute expensive features when
their addition is likely to considerably decrease labeling entropy.

2.6 Discussion

This chapter has presented an overview of the Perturb-and-MAP method,
which turns established deterministic energy minimization algorithms into
efficient probabilistic inference machines. This is a promising new direction
with many important open questions for both theoretical and application-
driven research: (1) An in-depth systematic comparison of Perturb-and-
MAP and more established approximate inference techniques such as
MCMC or Variational Bayes is still lacking. (2) Unlike MCMC which al-
lows trading off approximation quality with computation time by simply
running the Markov chain for longer, there is currently no way to iteratively
improve the quality of Perturb-and-MAP samples. (3) The modeling ca-
pacity of Perturb-and-MAP needs to be explored in several more computer
vision and machine learning applications.

2.7 References 41

Acknowledgements

This work was done while both authors were affiliated with the Depart-
ment of Statistics at the University of California, Los Angeles. It has
been supported by the U.S. Office of Naval Research under MURI grant
N000141010933; the NSF under award 0917141; the AFOSR under grant
9550-08-1-0489; and the Korean Ministry of Education, Science, and Tech-
nology, under the Korean National Research Foundation WCU program
R31-10008. We would like to thank M. Welling, M. Seeger, T. Hazan, D.
Tarlow, D. McAllester, A. Montanari, S. Roth, I. Kokkinos, M. Raptis, M.
Ranzato, and C. Lampert for their feedback at various stages of this project.

2.7 References

D. Andrews and C. Mallows. Scale mixtures of normal distributions. J. of Royal
Stat. Soc. (Series B), 36(1):99-102, 1974.

H. Attias. Independent factor analysis. Neural Computation, 11:803-851, 1999.
D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-

best solutions in Markov random fields. In Proc. Furopean Conf. on Computer
Vision, 2012.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
Univ. Press, 2009.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. of
Royal Stat. Soc. (Series B), 36(2):192-236, 1974.

J. Besag. Statistical analysis of non-lattice data. J. of Royal Stat. Soc. Series D
(The Statistician), 24(3):179-195, 1975.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

A. Blake, P. Kohli, and C. Rother, editors. Markov Random Fields for Vision and
Image Processing. MIT Press, 2011.

A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using
randomized mincuts. In Proc. Int. Conf. on Machine Learning, 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-1239, 2001.

G. Chantas, N. Galatsanos, R. Molina, and A. Katsaggelos. Variational Bayesian
image restoration with a product of spatially weighted total variation image
priors. IEEE Trans. Image Process., 19(2):351-362, 2010.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization. In Proc. Int. Conf.
on Machine Learning, 2013.

P. Felzenszwalb and O. Veksler. Tiered scene labeling with dynamic programming.
In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2010.

42

Perturb-and-MAP Random Fields

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):
721-741, 1984.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In Proc. Int. Conf. on Machine Learning, 2009.

M. Girolami. A variational method for learning sparse and overcomplete represen-
tations. Neural Computation, 13:2517-2532, 2001.

G. Golub and C. Van Loan. Matriz Computations. John Hopkins Press, 1996.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. In Proc. Int. Conf. on Machine Learning, 2012.

G. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771-1800, 2002.

G. Hinton and T. Sejnowski. Optimal perceptual inference. In Proc. IEEE Int.
Conf. on Computer Vision and Pattern Recognition, 1983.

D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from an image. Int.
J. of Comp. Vis., 75(1):151-172, 2007.

M. Jordan, J. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37:183-233, 1999.

P. Kohli and P. Torr. Measuring uncertainty in graph cut solutions. Computer
Vision and Image Understanding, 112(1):30-38, 2008.

D. Koller and N. Friedman. Probabilistic Graphical Models. MIT Press, 2009.

V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph
cuts — areview. IEEE Trans. Pattern Anal. Mach. Intell., 29(7):1274-1279, 2007.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147-159, 2004.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.-J. Huang. A tutorial
on energy-based learning. In G. Bakir, T. Hofmann, B. Schélkopf, A. Smola,
B. Taskar, and S. Vishwanathan, editors, Predicting Structured Data. MIT Press,
2007.

M. Lewicki and T. Sejnowski. Learning overcomplete representations. Neural
Computation, 12:337-365, 2000.

D. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.

D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Low-rank variance approxi-
mation in GMRF models: Single and multiscale approaches. IEEE Trans. Signal
Process., 56(10):4621-4634, 2008.

D. McAllester. Some PAC-Bayesian theorems. In Proc. Conf. on Learning Theory,
1998.

D. McAllester. Connections between Perturb-and-MAP and PAC-Bayes. Personal
communication, 2012.

T. Minka. Expectation propagation for approximate Bayesian inference. In Proc.
Int. Conf. on Uncertainty in Artificial Intelligence, 2001.

M. Nikolova. Model distortions in Bayesian MAP reconstruction. Inv. Pr. and
Imag., 1(2):399-422, 2007.
J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for

non-Gaussian latent variable models. In Proc. Advances in Neural Information
Processing Systems, 2005.

2.7 References

43

G. Papandreou. Image Analysis and Computer Vision: Theory and Applications in
the Restoration of Ancient Wall Paintings. PhD thesis, NTUA, School of ECE,
2009.

G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In Proc.
Advances in Neural Information Processing Systems, 2010.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proc. IEEFE Int. Conf.
on Computer Vision, 2011a.

G. Papandreou and A. Yuille. Efficient variational inference in large-scale Bayesian
compressed sensing. In Proc. IEEE Workshop on Information Theory in Com-
puter Vision and Pattern Recognition (in conjunction with ICCV), 2011b.

G. Papandreou, P. Maragos, and A. Kokaram. Image inpainting with a wavelet
domain hidden Markov tree model. In Proc. IEEE Int. Conf. Acous., Speech,
and Signal Processing, 2008.

G. Roig, X. Boix, S. Ramos, R. de Nijs, and L. Van Gool. Active MAP inference in
CRFs for efficient semantic segmentation. In Proc. IEEE Int. Conf. on Computer
Vision, 2013.

S. Roth and M. Black. Fields of experts. Int. J. of Comp. Vis., 82(2):205-229,
20009.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground ex-
traction using iterated graph cuts. In Proc. ACM Int. Conference on Computer
Graphics and Interactive Techniques, pages 309-314, 2004.

C. Rother, V. Kolmogorov, Y. Boykov, and A. Blake. Interactive foreground
extraction using graph cut. In Advances in Markov Random Fields for Vision
and Image Processing. MIT Press, 2011.

H. Rue and L. Held. Gaussian Markov random fields. Theory and Applications.
Chapman & Hall, 2005.

U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRF's in low-level
vision. In Proc. IEEFE Int. Conf. on Computer Vision and Pattern Recognition,
2010.

M. Schneider and A. Willsky. Krylov subspace estimation. SIAM J. Sci. Comp.,
22(5):1840-1864, 2001.

M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design
for sparse linear models. STAM J. Imaging Sci., 4(1):166-199, 2011a.

M. Seeger and H. Nickisch. Fast convergent algorithms for expectation propagation
approximate Bayesian inference. In Proc. Int. Conf. on Artificial Intelligence and
Statistics, 2011b.

F. Steutel and K. Van Harn. Infinite divisibility of probability distributions on the
real line. Dekker, 2004.

E. Sudderth, M. Wainwright, and A. Willsky. Embedded trees: Estimation of
Gaussian processes on graphs with cycles. IEEE Trans. Signal Process., 52(11):
3136-3150, 2004.

R. Szeliski. Bayesian modeling of uncertainty in low-level vision. Int. J. of Comp.
Vis., 5(3):271-301, 1990.

M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In Proc.
European Conf. on Computer Vision, 2008.

44

Perturb-and-MAP Random Fields

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In Proc. Int. Conf. on Artificial Intelligence and Statistics, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Proc.
Advances in Neural Information Processing Systems, 2003.

D. Terzopoulos. The computation of visible-surface representations. IEEE Trans.
Pattern Anal. Mach. Intell., 10(4):417-438, 1988.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211-244, 2001.

M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian multi-
variate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage, 50:
150-161, 2010.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Found. and Trends in Machine Learning, 1(1-2):1-305,
2008.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on
trees: Message-passing and linear programming. [IEEE Trans. Inf. Theory, 51
(11):3697-3717, 2005.

Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical
models of arbitrary topology. Neural Computation, 13(10):2173-2200, 2001.

Y. Weiss and W. Freeman. What makes a good model of natural images? In Proc.
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2007.

M. Welling. Herding dynamical weights to learn. In Proc. Int. Conf. on Machine
Learning, 2009.

S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy
(FRAME): Towards a unified theory for texture modeling. Int. J. of Comp. Vis.,
27(2):107-126, 1998.

3 Factorizing Shortest Paths with
Randomized Optimum Models

Daniel Tarlow

Alexander Gaunt

Microsoft Research

Cambridge, UK

Ryan Adams

Harvard University and Twitter

Cambridge, MA, USA
Richard S. Zemel

University of Toronto
Toronto, ON, Canada

dtarlow@microsoft.com
t-algaun@microsoft.com

rpa@seas.harvard.edu

zemel@cs.toronto.edu

Randomized Optimum Models (RandOMs) are probabilistic models that de-
fine distributions over structured outputs by making use of structured opti-
mization procedures within the model definition. This chapter reviews Ran-
dOMs and develops a new application of RandOMs to the problem of fac-
torizing shortest paths; that is, given observations of paths that users take
to get from one node to another on a graph, learn edge-specific and user-
specific trait vectors such that inner products of the two define user-specific
edge costs, and the distribution of observed paths can be explained as users
taking shortest paths according to noisy samples from their cost function.

3.1 Introduction

A broad challenge in statistics and machine learning is to build probabilistic
models of structured data. This includes abstract structures like segmenta-
tions, colorings, matchings, and paths on graphs, and natural structures like

46

Factorizing Shortest Paths with Randomized Optimum Models

images, text, source code, and chemical molecules. The main difficulty is
that estimating the normalizing constant for commonly-used modeling dis-
tributions over these objects is often computationally hard. An interesting
computational phenomenon is that in some cases where it is challenging to
compute a sum over the entire space, it is efficient to find the maximum (or
minimum). For example, the problem of computing a matrix permanent,
which is #-P hard (Valiant, 1979), corresponds to computing a normalizing
constant for a probabilistic model where the most probable configuration
can be computed efficiently as a bipartite matching. More specifically, given
an energy function f(-) over structures y (e.g., a path on a graph 9) from an
output space Y (e.g., all paths on §), the normalizing constant or partition
function is Z =%, -y exp{—f(y)}. This chapter focuses on the case where
the output space is a combinatorial set, by which we mean that membership
can be tested efficiently but enumeration is intractable (Bouchard-Coté and
Jordan, 2010); however, in principle, the output space could also be contin-
uous. The corresponding optimization problem is to find the most probable
structure: argming ey f(y).

The typical approach for defining probability distributions over structured
objects is to use a Gibbs distribution. That is, make sensible assumptions
about the structure of an energy function f(y) and combinatorial set Y, and
then define p(y) o 1{y € Y} exp{f(y)}. For example, to define a model of
foreground-background segmentations of an image with D pixels, a common
choice might be y € {0,1}” and to define an energy function according to
a graph structure § = (V, €) as

F@) =Ffwi9) =D gi-vi+ Y g Hu =y},
eV ijee
which encodes the assumption that there are node-specific costs g; for each
pixel i to be labeled 1 (foreground) and that edges in the graph encourage
neighboring nodes to take on the same label with an edge-dependent cost
for differing g;;. A typical choice of edge structure would be a 4-connected
grid, where there are edges between nearest neighbor pixels.

While the above assumptions are sensible, they immediately lead to com-
putational difficulty. Consider making test-time predictions, which depend
on p(y) and therefore require the intractable Z. There are two common
choices: (1) use approximate inference like belief propagation (see e.g., Koller
and Friedman (2009)) to compute approximate marginals, or (2) use Markov
chain Monte Carlo (MCMC) to draw approximate samples (see e.g., (Robert
and Casella, 2013)). The focus of this chapter is on cases where the combina-~
torial structure of the object is important, so marginals do not suffice. The
point of Randomized Optimum Models (RandOMs) is to provide an effi-

8.2 Building Structured Models: Design Considerations 47

cient alternative to MCMC at test time without sacrificing the well-founded
probabilistic model.
The outline is as follows:

» Background on structured prediction, and design considerations for build-
ing probabilistic models of structured objects

= A review of RandOMs

= Shortest Path Factorization with RandOMs

= Experiments

= Related work

» Discussion

3.2 Building Structured Models: Design Considerations

Structured prediction is a large field, and there are many approaches for
learning models of structured objects. This section describes a high level
overview of the key considerations, with a bias towards probabilistic models
of structured objects.

A key issue that affects the choice of model is what the utility function
will be. That is, how will we evaluate the quality of a test-time output? Is
the system going to be used by some downstream process, or is it going to
be used to make a single prediction? In the former case, a natural output
for the system is a probability distribution (e.g., a probability that a patient
has cancer); in the latter case, the utility function needs to be considered by
the system (e.g., how unpleasant the patient finds the treatment, and how
much value they would place on being cured).

A second question is about the structure of the utility function, which is
relevant even if the system is producing a probability distribution, because
it has bearing on how the probability distribution should be represented.
In a structured prediction setting, a key property of utility functions to
consider is whether they are sensitive to high order structure or not. For
example, if an image segmentation system is judged based on the number
of pixel-level classifications that it gets correct, then the utility function
depends only on low order statistics of the output probability distribution,
i.e., it can be shown that the expected utility of a predictive distribution
depends only on the marginal distributions of each pixel’s label. In this
case, representing a probability distribution over pixel labelings as a set
of marginal distributions is perfectly reasonable. Even in cases where the
utility function appears at first glance to have high order interactions, such

48

Factorizing Shortest Paths with Randomized Optimum Models

as with the intersection-over-union measure that is common in evaluating
image segmentations (Everingham et al., 2010), Nowozin (2014) has shown
that marginal distributions contain enough information to make accurate
utility-aware predictions.

However, there are cases where the utility function truly is high order,
and in fact, these are very common cases. One might even argue that
most natural utility functions over structured objects depend heavily on
high order structure, and it is only computational convenience that leads to
utility functions based on low order structure. Examples of utility functions
that depend on high order structure include perceptual measures of the
naturalness of an image or image segmentation when outputting images or
pixel-wise labels (Movahedi and Elder, 2010; Lubin, 1998; Wang et al., 2004),
measures of whether code compiles when outputting source code (Nguyen
et al., 2014), measures of the meaningfulness of a generated sentence when
outputting language, and measures of whether a driver could follow a path
that is output by the model.

When the utility function has high order structure and we wish to directly
output a single prediction, then in some cases max-margin learning (Taskar
et al., 2004; Tsochantaridis et al., 2005) can be a good option. High order
utility functions present challenges, but can sometimes be handled efficiently,
such as in certain image segmentation settings (Tarlow and Zemel, 2012;
Pletscher and Kohli, 2012).

When the utility function has high order structure and we wish to output
a probability distribution, sample-based representations of the output distri-
bution are the natural choice. This is the setting that motivates RandOMs,
along with several other works, including some in this book, such as Perturb
& MAP (Chapter 2), PAC-Bayesian perturbation models (Chapter 10), and
MAP-perturbation models (Chapter 5); see Section 3.9 for a discussion of
the similarities and differences between RandOMs and other works that fo-
cus on this regime. Our focus is to train models such that at test time, we
can efficiently produce perfect samples from the model without resorting to
MCMC or rejection sampling.

3.3 Randomized Optimum Models (RandOMs)

This section introduces notation and then develops the RandOM model.
RandOMs implicitly define a probability distribution over an output

space Y via a generative procedure that includes a call to an algorithm

that performs optimization over Y. In the typical instantiation, Y is a

3.8 Randomized Optimum Models (RandOMs) 49

combinatorial set and the optimization algorithm is a discrete optimization
procedure.

3.3.1 Notation

Let fw :Y — R be a family of scoring functions indexed by w € RP, each
of which maps a structure y to a real-valued cost. Let Y be the set of legal
structures. For example, w may be node weights for a weighted vertex cover
algorithm or edge costs for a graph cut algorithm, and Y would be the set
of all vertex covers or the set of all graph cuts, respectively. In these cases,
the individual dimensions of w might be costs of specific nodes or edges in
some graph. A further description of f’s dependence on w appears below.

It will then be useful to define F : R — Y as the function that executes an
optimization algorithm given parameters w and returns a cost-minimizing
configuration y*; i.e., F'(w;Y) = argmingcy fuw(y). Also useful will be the
inverse set F~1(y;Y), which is defined as F~(y;Y) = {w | F(w;Y) = y}.
When the appropriate Y is clear from context, it will be dropped from the
notation, resulting in F(y) and F~1(y).

In some problems there is a notion of legal settings of w. For example, a
shortest path algorithm might reasonably assert that all edge costs should
be non-negative, or a graph cut algorithm may assert that edge potentials
are submodular. To handle these cases, the predicate £ : R — {0,1} will
be used to indicate whether a w is legal.

3.3.2 RandOM Model

The key idea of RandOM models is to define probabilistic models where
parameters w are latent variables. That is, a probabilistic model p(y;) is
defined via a distribution over w, parameterized by ; the link between y
and w values is a deterministic relationship that comes from running the
optimization algorithm:

Py) o / p(w;) {F(w) = y} 1{£(w)} dw. (3.1)

The design space of distributions over w is large and flexible. Many varia-
tions are possible, such as conditioning on inputs x:

ply | x;9) / p(w | %;6) 1{F(w) = y} 1{£(w)}dw, (3.2)

which is the form that was the focus of Tarlow et al. (2012). It would
also be straightforward to treat ¢ as random variables which themselves
have prior distributions. The key to test-time tractability is that a sample

50

Factorizing Shortest Paths with Randomized Optimum Models

from p/(w) x p(w)1{L(w)} can be drawn efficiently. Given the sample
of w, the optimization algorithm can be executed to yield a sample y; i.e.,
set y = F(w).

3.3.3 Constructing Conditional Random Field-Like f

This section describes a pattern for constructing p(w | x;1) that parallels
the energy function used in conditional random field (CRF) models. To
illustrate how this works within the RandOM formulation, we focus on a
pairwise CRF with binary variables, as would be used for the foreground-
background segmentation example in the introduction.

To review, CRF's define distributions over Y via the Gibbs distribution. For
pairwise CRF's with binary variables, the energy function f(y) is constructed
as a sum of unary and pairwise terms:

F@) =Y 6iwoxv) + > 6ii(vivj, % 0). (3.3)
i€V ijee

The g(-) terms are parameterized by weights ¢ and can depend arbitrarily
on the input x, but have only local dependence on y. The g(-) functions
are usually constructed as a weighted sum of unary features and pairwise
features. An example unary feature would be an affinity for the average color
of image x around pixel i to class y;. An example pairwise feature would be
a cost for neighboring pixels ¢ and j to take different classes with strength

depending on the difference of appearance of the pixels.
Finally, the probability of a configuration is defined by the Gibbs distri-

bution: p(y) x exp{—f(y)}.

3.3.3.1 CRF Energy Functions in RandOM Notation

First, a vector of sufficient statistics of vy are chosen, de-
noted p(y) = (pp(y));;l where p, : Y — {0,1}. Each p,(-) is an indicator
function that selects out some statistic of y that is relevant for the model.
Example indicator functions are whether a particular subset of dimensions
of y take on a particular joint configuration, or they could indicate whether
the number of dimensions of y taking on a particular value (say a) is equal
to some value (say b); i.e., pp(y) = 1{(>_, 1{y; = a}) = b}.

As another example, in a pairwise graphical model, there are unary
and pairwise sufficient statistics. The unary sufficient statistics are func-
tions indicating if y; = a for each variable ¢ and each possible value a.
Pairwise sufficient statistics are defined over all edges and might in-
dicate all joint configurations of a pair of neighboring variables, i.e.,

3.8 Randomized Optimum Models (RandOMs) 51

(H{yi=0Ay; =0},--- ,1{y; = 1 Ay; = 1}), or just whether neighboring
variables take on the same label, i.e., (1{y; = y;}). There is flexibility in
the choice of sufficient statistics. The main issue to be mindful of is that the
choice of sufficient statistics can impact the tractability of the minimization
problem, so some care must be taken. More examples of choices of sufficient
statistics that lead to tractable optimization appear below.

Given a vector of sufficient statistics, the definition of fy,(y) is then simply
that each dimension of w weights the sufficient statistic in the corresponding
dimension:

fu(y) =w'p(y). (3.4)

To produce an equivalent f,, using the RandOM formulation, de-
fine p(w | x;1) to be a deterministic function of input x and parameters v
as follows.

First, rewrite f as

) = 505" 1w = dihau(in xs) (3.5)

v g,
+ 30> Wy =i Ay = 13194550 05, %5 0). (3.6)
1J€E §i,7;

Then it becomes clear that by defining sufficient statistics vector p(y) to
be a concatenation of (1{y; = a}) for all ¢ and a with (I1{y; = 0 Ay; =
0h, {ys = 0Ny = 1}y = LAy = 0L {ys = 1 Ay; = 1}) for
all ij € &, and analogously defining g to be a vector of the g;(-) or g;;(-)
functions corresponding to the entries of p(y), then setting w = g ensures
that f(y) = fw(y) for all y.

Of course, if w is a deterministic function of x and %), then the output
distribution will be degenerate and assign nonzero probability to a single y.
Instead, to induce a meaningful distribution over outputs, w must be
random. This is in contrast to CRFs, which define an energy function to be
deterministically constructed from inputs, but then the distribution over y
given the energy function is random.

3.3.3.2 Exzample: The Gibbs Distribution

As noted by Papandreou and Yuille (2011) and extended by Hazan and
Jaakkola (2012), it is possible to leverage properties of Gumbel distributions
in order to exactly represent the Gibbs distributions that arises in standard
CRF models. While this connection is of theoretical interest, it is not
a practical construction because it requires the set of sufficient statistics

52

Factorizing Shortest Paths with Randomized Optimum Models

to be exponentially large, with one sufficient statistic for each possible
configuration of y. The connection is presented here for completeness. See
Chapters 2, 6 and 7 for additional discussions of related issues.

A random variable G is said to have a Gumbel distribution with loca-
tion m € R if the CDF is p(G < g) = exp(—exp(—g+m)). The key
property of Gumbel distributions is that for a collection of independent
Gumbels G1,...,Gg with locations my, ..., mg respectively, the distribu-
tion of the maximum is also Gumbel-distributed but with location equal to
the logsumexp of the locations, and the argmax is distributed according to
the Gibbs distribution where my, is the negative energy of configuration k.
More precisely,

K
max G ~ Gumbel <log2exp(mk)> , and (3.7)

F k=1
argmax Gy, ~ Kexp(mk) . (3.8)

k > p—1 exp(my)
Letting p = 1,...,|Y| index all configurations and g(p) be the p'* con-

figuration under this ordering, we can then let p(y) = (1{y = :l)(p)})li'l;

i.e., there is one sufficient statistic for each ¥ € Y indicating whether y
is exactly equal to g(p). Finally, let w = (—f(g)(p)))gi‘l
tor that puts the negative energy of configuration p in dimension p, and
let —w, ~ Gumbel(w),) for all p. Then

be the vec-

argmin pr(g(p)) = argmax —w, ~ exp(wy) _ eXP(—f(Q(p))z

P P >opexp(wy) > exp(=f(9()))
(3.9)

which shows the equivalence to the Gibbs distribution.
3.3.3.3 FExample: Bipartite Matching f

The weighted perfect bipartite matching problem is defined in terms of a
bipartite graph § with partite sets A and B with J = |A| = |B|. The only
edges in G are between a node v € A and v € B; we will additionally
assume that all possible edges exists, so there is an edge from each v € A to
each v’ € B.

A perfect matching is a one-to-one mapping between nodes in A and nodes
in B. Each edge (v,v’) is assigned a cost w,,, and the cost of a matching is
the sum of the costs of edges that are included in the matching.

To formalize this in terms of above notation, let y,, € {0,1} be an
indicator that edge (v,v’) is used in a matching. Let y be an ordered list

3.8 Randomized Optimum Models (RandOMs) 53

of indicators for each edge {y, : v € A,v" € B}. Let w be an analogous
ordered list {wy,y : v € A,v" € B} such that element p of w is the weight
for edge being indicated by element p of y. Finally, let Y be the set of
binary vectors of length J? that correspond to valid matchings according
to the encoding of y above. Then the cost of any matching y € Y is
simply fw(y) = w'y. (To match the general form in (3.4), p could be
set to be the identity p(y) = y, and then f,(y) = w' p(y) as above.)

3.3.3.4 Exzample: Shortest Paths f

An encoding of a shortest paths problem is similar. The shortest path
problem is defined in terms of a weighted graph G, and a start-end node
pair (s,t). The combinatorial problem is to find the shortest path in G from s
to t, where the cost of a path is a sum of the costs of the edges traversed by
the path.

To encode an f function corresponding to this problem, let y be a vector
of indicators of edges (as above), with dimension p indicating whether edge p
is used in the path. Let w be the corresponding vector of edge costs. Then
as in the bipartite matching case, f,(y) = w'y.

The combinatorial set Y = Y(s,t) is the set of all simple paths from s to ¢
(i.e., paths with no repeating vertices).

3.3.4 Other Types of f

In all of the above examples, f has been defined as an inner product between
w and a vector of sufficient statistics p(y). It is always possible to define
p(y) = (1{y = 9})gey, and thus if f,(y) = w' p(y) then each y € Y has an
independent entry of w and all possible energy functions can be expressed;
this is the equivalent of representing an energy function in a tabular form
that assigns some cost to each configuration.

While such a construction is as flexible as possible, it does not mean
that all interesting fu,(y) are of the form w'p(y). Indeed, for F(w) to
be implemented efficiently, w must be represented in some compact form
(such as edge costs in the above example), and each efficient combinatorial
optimization routine expects an input of a particular form.

3.3.4.1 FExzample: Connected Components f

For example, consider the weighted connected components problem. Given
a weighted graph G, cut all edges with weight less than some parameter 7
to get an unweighted graph G’ that contains the uncut edges in G, then

54 Factorizing Shortest Paths with Randomized Optimum Models

partition the nodes into connected components; that is, two nodes v and v’
are in the same connected component iff there is a path from v to v’ in §'.

For a given 7, the natural parameterization of the problem is to have one
dimension of w to represent each edge cost in §. There is some flexibility
in how to represent y, but one reasonable choice is to let y; € {1,...,|V|}
be equal to the smallest index j such that nodes ¢ and j are in the same
connected component. Then Y is the set of all y such that all nodes with
a given label [are connected via edges where both endpoints are labeled
. One might then ask if there is some choice of sufficient statistics p such
that fu(y) = w'p(y) and argmin, fo(y) gives the same output as the
connected components algorithm described above. It turns out that this is
not possible.

Lemma 3.1. Let G : RIEl — Y be the function that maps w to the solution to
the above weighted connected component problem with parameter 7. There is

no choice of sufficient statistics p(y) such that for all w, argmin,, w' p(y) =
G(w;T).

Proof. (By contradiction). Suppose there were a choice of p(y) such that
for all w, argmin, w'p(y) = G(w). Then F~1(y) is an intersection of
halfspaces {w : w' p(y) < w' p(y')} for each y’ € Y, and is thus a convex
set. However, G~!(y) is not a convex set, and thus F' cannot be equivalent
to G.

To see that G~1(y) is not a convex set, consider the fully connected graph
on three vertices 1,2, 3 with edges (1,2), (1,3),(2,3) and 7 = 1—e¢. Let w? =
(1,1,0), wh = (0,1,1), and y* be the configuration where all nodes belong to
a single connected component. Clearly w? € G~!(y*) and w? € G~ (y*).
However, consider w” = Jw? + Jw? = (.5,1,.5). G(w") assigns node 2
to its own connected component, and thus w® ¢ G~!(y) and G~1(*) is not
always a convex set. O

3.4 Learning RandOMs

There are two main approaches to learning RandOMs. Both are based on an
Expectation Maximization (EM) algorithm (Dempster et al., 1977) with w
as latent variables. A fully Bayesian treatment would also be straightforward,
in which case the M step in the Monte Carlo EM variant would be replaced
with an MCMC update, but this approach is not discussed further.

The difference between the two EM approaches is how distributions over w
are estimated. In the Monte Carlo EM algorithm (MCEM) (Wei and Tanner,

8.4 Learning RandOMs 55

1990), values of w are sampled from a posterior distribution over w; in the
Hard EM algorithm, a single most likely estimate of w is used.

In more detail, the EM algorithm can be understood as optimizing a
single objective (Neal and Hinton, 1998) via an alternating maximization
scheme. In the case of general RandOMs (3.1), the objective given a data

set D = {y™ I is J(v, {QM)

N
=Y Euqupy |log (py™ | @)p(sv)) —log Q)| (3.10)
n=1

N
= Epegom([log Hy™ = F()} + log p(w; 1) — log Q™ (ﬁ’)} -
"~ (3.11)

EM algorithms alternate between maximizing J with respect to {Q™}N_,
(E step) and with respect to ¢ (M step). Note that the E step is amenable
to embarassingly parallel computation.

3.4.1 M Step

In both the MCEM and Hard EM algorithms, Q() is represented via
a set of L samples w™) ... @™ The M step is an incremental M
step (Neal and Hinton, 1998), meaning that rather than updating ¥ to
optimality, an update is made that just increases J. Note that given fixed
samples from {Q}N_, where each sample is in the corresponding inverse
set F~1(y(™), the M step objective (dropping terms that do not depend

on 1)) is
N 1 L
> 7 > logp(w™:y). (3.12)
n=1 =1

This is a standard maximum likelihood objective with parameters ¢ and

") which can be optimized with whatever standard optimizer is

data w(
most appropriate for the specific form of p(wj; 1)) that is chosen. For example,

if p(w;1)) is a neural network, then stochastic gradient ascent can be used.
3.4.2 Monte Carlo E Step

The optimal choice for Q™ (-) in the E step is to set it equal to the
posterior distribution p(w | y™;v) x p(w;¢)1{F(w) = y™}L(w). For
most RandOMs, it does not appear possible to represent this posterior in
closed form. Instead, in Monte Carlo EM, Q(”)(-) is represented via a set

56 Factorizing Shortest Paths with Randomized Optimum Models

of L samples from this posterior. In principle, any MCMC method can be
used in the E step, but Slice Sampling (Neal, 2003) is particularly well suited
to handle the structure of the problem, as will be discussed in more detail
in Section 3.7.3.

3.4.3 Hard E Step

In the Hard EM algorithm, sampling from the posterior is replaced with a
maximization step: w is chosen so as to be the argmax,, p(w;¥)1{F(w) =
y™M}L(w). When fy(y) is a linear function of w (as in (3.4)) and p(w; 1))
is a Gaussian distribution (log quadratic), then the argmax computation is
a quadratic program (QP). More details of this approach appear in Tarlow
et al. (2012). An improved Hard EM algorithm appears in Gane et al. (2014).

3.5 RandOMs for Image Registration

In Tarlow et al. (2012), RandOMs are applied to registration problems. The
main application is deformable image registration in volumetric CT scans
of human lungs. For each human subject in the data set, data consists of
scans at different stages of the respiratory process that are annotated with
landmarks. The problem is to take a pair of images with their associated
landmarks and determine the correspondences between landmarks across
the two images. To formulate this problem as a RandOM, Y is the set of all
bipartite matchings with the first (second) partite set being landmarks in
the first (second) image. The sufficient statistics indicate whether landmark
i in the first image matches to landmark j in the second image, and w
assigns a cost for each i, j pair. Features are extracted for each pair based
on the difference in appearance of the volume around the landmarks, and
parameters 1) weight the importance of different features.

Experimentally, RandOMs are compared against a Structural SVM ap-
proach (Taskar et al., 2004; Tsochantaridis et al., 2005) and Perturb & MAP
(Papandreou and Yuille, 2011). Results show that RandOMs are competitive
with the alternatives and perform best in terms of accuracy.

3.6 Shortest Path Factorization

This section introduces the problem studied in detail in this chapter.
The Shortest Path Factorization (SPF) problem is to observe a data set D
of pairs of driver ids and paths D = {(d,, yn)}g:1 where each y,, is a path

8.6 Shortest Path Factorization 57

through a graph § = (V,€) and d,, € {1,..., D} denotes the identity of the
driver. The goal is to infer properties of the edges and drivers’ preferences for
edge properties under the assumption that drivers are taking shortest paths
according to noisy copies of an underlying cost function. Given inferred
driver preferences and edge costs, it is then possible to make predictions
about the routes that will be taken by a driver on edges that have never been
encountered by the driver before. For example, we can imagine learning from
a driver traversing the streets of London and then make predictions about
what routes the driver will prefer in Toronto. Alternatively, if city planners
were considering changing road structures and they wanted to forecast how
drivers would behave given a new road topology, a shortest path factorization
model might be a good choice. In the factorization problem, we assume that
driver-specific edge costs have a low-rank structure.

More specifically, paths are assumed to be shortest paths according to the
driver’s cost function. The cost function for a path is the sum of costs of
edges on the path. Noise-free driver-specific edge costs are computed as the
inner product of trait vector U, € RX for each edge e with a driver-specific
preference vector Vg € R¥ for each driver d. Noisy edge costs are drawn
independently from Gaussian distributions with mean equal to the noise-free
cost that are truncated to ensure that edge costs are non-negative.

The SPF problem is to infer U and V from the observations of paths.
Intuitively, suppose that edges correspond to road segments, and drivers
are members of the driving population. Paths are the routes that drivers
take to get from home to work, from home to the grocery store, from
a family member’s house to the gas station, etc. The assumption is that
there are a small number of traits that characterize each road segment. For
example, real roads vary based on the average speed of traffic, start-stop
frequency, the risk of traffic build-ups, their crowdedness, the scenery, the
degree to which being an aggressive driver helps speed progress, etc. The
degree to which a road segment e has such traits would be the kind of
information stored in U,. The corresponding dimensions of V would then
denote how important each of these traits is to each driver. Some drivers
may be aggresive drivers concerned only about the total transit time, while
others may prefer a minimal stress drive, even if it is slower. These different
types of drivers could be represented via different V4 vectors. As in other
matrix factorization-based algorithms like those used in recommendation
systems (Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2007), it is not
assumed that the traits are given ahead of time. The assumption is simply
that this low rank structure exists, and it is up to the learning algorithm to
discover which edges and drivers have which traits.

58 Factorizing Shortest Paths with Randomized Optimum Models

3.7 Shortest Path Factorization with RandOMs

This section describes how to apply the RandOM formulation to the
SPF problem.

3.7.1 Generative Model

The RandOM generative model for SPF given a graph § = (V,€) is as

follows:
U, ~ Gaussian(0, o°T) for each e € € (3.13)
V4 ~ Gaussian(0, o°T) foreachd =1,...,D (3.14)
where o2 is a fixed variance.

Next sample each path conditional upon a driver d, a start node s, and
an end node t. To sample each path:

we ~ TruncGaussian(U/] V4 4 b,1) for each e € € (3.15)
y = ShortestPath(s,t, G, w) (3.16)

where b is a fixed bias, TruncGaussian(u, 02) is a Truncated Gaussian that
is constrained to be greater than 0, and ShortestPath(s, ¢, G, w) returns the
shortest path from s to ¢ in G using edge costs given by w.

3.7.2 Learning

The learning problem is to observe the data set D and infer parameters U
and V. Learning is done via MCEM.

The EM objective (Neal and Hinton, 1998) for a single data
point J(U,V,Q;D,,) is

Ew~q() [log (p(yn | w)p(w [U, V)p(U)p(V)) — log Q(w)] . (3.17)

The EM algorithm alternates between performing E (expectation) steps and
M (maximization) steps. In the E step, U and V are held fixed and Q(-) is
updated to optimize J. Here there is a separate (), for each n. The standard
result is that optimal choice for Q,(-) is to set it equal to the posterior

3.7 Shortest Path Factorization with RandOMs 59

distribution
p(w | yn,dn, U, V) x {y, = F(w)}p(w | U, V,d,) (3.18)
=y, = F(w)} H TruncGaussian(we; U] Vg, 1).
ecé
(3.19)

In the M step, all Q,(+) are held fixed, and J is optimized with respect to U
and V. The objective including all n is

N
U,V = a%g;%e}leawn(.) [log (p(| U, V/)p(U')p(V'))] . (3.20)
’ n=1

These updates are not tractable to perform exactly, so instead an incremen-
tal MCEM algorithm is used (Neal and Hinton, 1998). In this variant, for
each n, L samples w™Y, ... ") are drawn from (3.19) using a specialized
slice sampler (described below). Then the M step objective is replaced with
a Monte Carlo approximation:

N L
1 .
> [log (@™ | U, VIp(UIR(V)) | (3.21)
n=1 =1
and U and V are updated using a small number of steps of gradient ascent.
3.7.3 Slice Sampling for the E Step

This section describes how to implement the Monte Carlo E step using a
specialized slice sampler. The section begins by reviewing slice sampling,
and then it describes how to combine slice sampling with combinatorial
algorithms to obtain a fast sampler. This section describes a slice sampler
tailored to the shortest paths problem, and it makes a general observation
that may lead to minor improvements over Tarlow et al. (2012) for general
RandOM slice samplers.

3.7.3.1 Review of Slice Sampling

Slice sampling (Neal, 2003) is a Markov Chain Monte Carlo (MCMC)
method. It has favorable properties over alternatives like Metropolis Hast-
ings in being less sensitive to parameters of a proposal distribution, and
it has been shown to mix in polynomial time when run on log concave
distributions (Lovész and Vempala, 2003). Tarlow et al. (2012) describe a
specialization of slice sampling to RandOM models.

60

Factorizing Shortest Paths with Randomized Optimum Models

Slice sampling is used to draw samples from an unnormalized probability
distribution p(w). The basic idea is to sample uniformly from the region
R = {(w,u) : 0 < u < p(w)} using an MCMC algorithm that alternates
between resampling w conditioned on u and resampling u conditioned on w
so as to leave the distribution invariant.

The definition of R ensures that [p(w,u)du o p(w), so it is valid to jointly
sample w and u, and then discard the u components of the sample. Starting
from a current point wg, the next point is chosen as follows:

» Sample u ~ Uniform(0, p(wp)) (note: this should all be implemented in
log-space).

» Sample w uniformly from the slice, {w’ : p(w') > u}.

We say that w is in the slice if p(w) > u. The second step cannot always
be implemented exactly, so Neal (2003) gives alternative updates that leave
the uniform distribution over the slice invariant. The main suggestion is to
do the following;:

s Construct a random initial interval [w;, w,] such that wg € [wy, w,].

» Step outwards by incrementing w; = w;—« until p(w;) < u, where a € Ry
is a parameter that controls the speed at which the interval is expanded.
Similarly, step outwards by incrementing w, = w, + « until p(w,) < w.
At this point, a contiguous section of the slice lies completely within the
interval.

» Step inwards by sampling w ~ Uniform(wy, w,). If @ is in the slice, then
finish and transition to w. Otherwise, shrink the interval so that wy remains
inside the interval and w is one of the endpoints. Repeat the stepping inwards
step.

The above describes how to use slice sampling with a 1D w. To handle
higher dimensions as will be needed when sampling w € R”, a standard
approach is to choose a random direction A € R¥ uniformly from the
surface of a sphere centered at w, and then to sample along the line defined
by w + AA for A € (—o0,00).

3.7.3.2 Specialization to General RandOMs

This section gives guidance on how slice samplers should be implemented in
general for RandOM models.

The problem is to perform one step of slice sampling on the MCEM pos-
terior (e.g., (3.19)). We are given an initial wg € F~(y) and a direction A,

3.7 Shortest Path Factorization with RandOMs 61

and would like to choose a A that leaves the distribution invariant (i.e., do
a slice sampling update). The key idea is to define three sub-slices.

» The legal slice {\: L{w + A\A)}.
= The y-slice {\: w + \A € F~1(y)}.
» The prior slice {\:p(w+ AA|U,V,d) > u}.

The slice is then the intersection of these three sub-slices.
There are then properties of the subslices that can be useful to improve
efficiency.

Convexity. The first source of efficiency is convexity, which can arise in
all three types of sub-slice (but in any specific model may only arise in a
subset of the sub-slices). For example:

1. If £L(w) measures whether all dimensions of w are positive, then the legal
slice is a convex set.

2. F7l(y) can be defined as {w : fu(y) < fu(y') Vy' € Y} If fi(y) is
a CRF-like energy function as discussed in Section 3.3.3, then f,(y) is a
linear function of w (see (3.4)), so F~l(y) is an intersection of halfspaces
and thus convex set, and the y-slice is also a convex set.

3. If p(w | ...) is a log-concave distribution, then the prior slice is a convex
set.

Convexity of the individual slices can be leveraged during the Stepping In
phase of slice sampling. Since the initial point wg will always be inside the
slice and the interval resulting from the Stepping Out phase will always have
endpoints outside the slice, convexity implies that there is a single transition
point in between wy and each endpoint where one leaves each convex sub-
slice. For example, suppose for some A > 0, wg+ AA is in the y-slice but not
in the slice (maybe the point is not in the prior slice); it is then immediately
known that [0,] is fully contained in the y-slice, and there is no need for
calling an expensive combinatorial algorithm for any later A\ in this range
that is encountered; it suffices to simply return true. When the union of
the subslices is substantially different from the intersection, this can provide
significant savings.

Combinatorial Algorithms for the y-slice The second type of efficiency
comes from the combinatorial optimization view of F'(w) and the fact that
a slice sampling step always starts with a setting of w that is in the y-slice.
This source of efficiency can be leveraged in addition to convexity structure

62

Factorizing Shortest Paths with Randomized Optimum Models

if both are present. There are three ways of framing the problem of testing
whether a particular w € F~!(y):

1. Run a combinatorial optimization algorithm with weights w and check
whether y is an argmin.

2. Suppose we have recently solved a combinatorial optimization algorithm
with weights w’. Use a dynamic combinatorial optimization algorithm to
update the solution to be the one for w, and check whether y is an argmin.

3. Suppose we have recently solved a combinatorial optimization algorithm
with weights w’ and that y was an argmin. Check whether the argmin
changes given weights w.

Tarlow et al. (2012) shows how to use (2) to improve efficiency for bipar-
tite matching RandOMs using dynamic combinatorial algorithms. The new
observation here is that (3) can be more efficient than (2). Details for the
shortest path case are given in the next section.

Ordering the Slices. The final suggestion is to test whether a point is
in the slice by checking each of the sub-slices in order of least expensive
to most expensive, and to short-circuit the computation as soon as a point
is determined not to be in any of the sub-slices, since this implies that
the point is not in the slice. This saves runs of the more expensive sub-
slice computations and also makes the implementation more convenient by
checking for legality of a point before calling the combinatorial optimization.

3.7.3.3 Efficiently Handling the y-Slice with Shortest Path Trees

Given a source node s in a weighted graph G with all edge costs > 0, we
can run Dijkstra’s algorithm to get a shortest path tree. A shortest path tree
is represented via a pointer from each node v # s to a parent pa(v), and
a cost c(v) for each node. Such a structure is a shortest path tree if c(v)
represents the distance from s to v via the shortest path in G and if the last
step in the shortest path from s to v is to go from v’s parent to v. This
implies c¢(v) = ¢(pa(v)) + Wpa(v),v, Where wy, is the cost of edge uv.

An interesting property of shortest path trees is that they can be verified
more efficiently than they can be constructed. They can be constructed
in O(|V|log|V| + |€|) time using Dijkstra’s algorithm but verified in O(|€|)
time using a simple loop over edges (Cormen et al., Exercise 24.3-4 Solution).

To leverage this property within the slice sampler, we need a fast method
for proposing a shortest path tree T(w) given a shortest path tree T(wy).
The new suggestion is to keep the parent structure of T(w) fixed and update

3.8 FExperiments

63

the node costs c(v) so that c(v) = c(pa(v)) +wpa(v),o- By iterating over nodes
in topological order, this can be done in one loop over nodes (O(|V]) time).
We can then run the verification algorithm on the newly proposed shortest
path tree. If the verification algorithm succeeds, then we have proven that w
is in the y-slice. If the verification algorithm fails, then it is necessary to run
a more expensive check (e.g., run Dijkstra’s algorithm from scratch), since it
is possible for the structure of the shortest path tree to change while leaving
the shortest path from s to some target node v unchanged. However, perhaps
there is a more efficient method for determining whether the shortest path
has changed; this could be studied in future work. In general, the suggestion
when working with RandOMs is to focus on the dynamic combinatorial
verification problem (which returns true or false as to whether the argmin
has changed) instead of focusing on the dynamic combinatorial optimization
problem (which returns a full configuration).

The verification procedure is most useful in the Stepping Out phase of slice
sampling. If « is chosen to be small, then it will induce small changes in w
that do not affect the structure of the shortest path tree. In these cases, the
above procedure provides a fast way of verifying that a particular A remains
in the y-slice.

3.8 Experiments

3.8.1 Baseline Model

The goal in choosing a baseline model is to illustrate a common tradeoff when
modelling structured data: models that ignore the combinatorial structure
of the data can be appealing because they are often simpler to train, and
sometimes a post-hoc cleanup step can enforce the combinatorial constraints
(e.g., using rejection sampling). The baseline model adopts this philosophy.

The baseline model ignores the combinatorial structure of paths and
produces a distribution that factorizes fully over the choice of each edge.
More specifically, the approach follows 3-way factored models (Memisevic
and Hinton, 2007; Krizhevsky et al., 2010; Kiros et al., 2014). There are
three input components: the driver d, the start and end nodes s and ¢, and
the edge identity e. Given the three inputs, the model produces a probability
that edge e is used p(u.) in the shortest path from s to ¢t. The goal of the
model is to assign high probability to edges that are used on an observed
path and low probability to edges that are not used. A training instance is
then composed of the tuple (d, s, t,u}).

64

Factorizing Shortest Paths with Randomized Optimum Models

More specifically, p(u. | d, s,t) is defined as
plue | d,s,t) = o (UeT (Va@ (T, + Tt))) , (3.22)

where o(-) is the logistic sigmoid and & is either elementwise addition
or multiplication for additive and multiplicative variants of the model,
respectively. U € RIEXK vV e RP*K and T e RIVIXK are parameter
matrices for edges, drivers, and nodes respectively. Subscripts select rows,
so there is a K-dimensional real-valued representation vector for each entity.
Note that the T parameters are needed so that the distribution over which
edges are used is a function of the start and end points of the path. The
training objective is then a standard maximum likelihood objective that can
be optimized with gradient ascent.

3.8.2 Data

To test the RandOM model on the SPF problem we create a data set of N
paths describing the routes of D = 3 drivers traversing a square grid graph
with dimensions 3 x 6. We synthesize this data, by constructing K = 2
dimensional ground truth trait vectors Ug; and Vg from which we generate
noisy edge costs

w e~ TruncGaussian(U;Vgt,), (3.23)

where 7 sets the scale of the noise. For simplicity, we start by setting
the elements of the trait vectors to be random numbers uniformly drawn
from [0, 1). Later, we will consider a more carefully crafted Uy designed to
highlight differences between the baseline and RandOM models (see Section
3.8.4).

Using these edge costs we construct an element (d,,y,) in the data set
by picking a random driver, d,, € {1,2,3}, and random distinct nodes, s,
and t, on the graph and then constructing the shortest path y, from s,
to t, according a sample from w 4, .

3.8.3 Quantitative Results as a Function of Noise and Data Size

To measure the performance of the learned parameters U and V, we
draw 3 x 10% samples from the RandOM model to obtain Monte-Carlo
estimates of log(p(y, | U, V,d,)) for each path (dy,y,) in the data. We
report the “training score” as the average of these log probabilities over the
training data and similarly compute a “test score” for 200 test paths not seen
during training. If none of the Monte-Carlo samples match y,,, we remove y,

3.8 FExperiments

65

from the evaluation procedure and separately report the proportion of such
failures as the sampling failure rate.

For the baseline model, we compute the equivalent training and test scores
using

p(yn ’ U,V,T,dn> = H p(ue ‘ d’msmtn) H (1 _p<ue ‘ dmsmtn)) .
eCYn e¢y71
(3.24)

We find that the baseline model assigns a significant probability to configu-
rations of edges which do not correspond to valid paths between s,, and t,.
A simple fix for this is to reject these samples at test time until a valid
path is produced, but this comes at a computational cost. The score of this
rejection-sampled baseline is analytically computed on our small 3 x 6 node
example by enumerating all valid paths, Y(s,,t,), between s, and ¢, and
then evaluating

N
1
N > log (p(yn | U, V, T, dy)) —log(4,)], (3.25)
n=1
where
A, = p(y | U, V,T,d,). (3.26)

yGy (Sn 7tn)

The average value of A, is the typical acceptance rate for the rejection
sampler which gives an indication the computational inefficiency of this
method.

Figure 3.1(a) shows the convergence of the training and test scores during
the training of a RandOM model on a data set of N = 100 paths generated
with noise n = 0.01. We find that even after the scores have plateaued, the
values of U and V continue to evolve, indicating a flat objective function
near the chosen solution. At convergence, the RandOM model considerably

Model Training Score Test Score Test Acceptance
Baseline (& : multiply) -8.035 -8.655 1.0
+Rejection -0.389 -0.572 0.003
Baseline (& : add) -7.594 -8.369 1.0
+Rejection -0.337 -0.542 0.003
RandOM -0.097(0%) -0.337(3.5%) 1.0

Table 3.1: Quantitative results for data size 100 and noise 0.01. Numbers in
parentheses indicate the sample failure rate.

66

Factorizing Shortest Paths with Randomized Optimum Models

(a) (b)
0.0 0.0
o
o § -0.8
0-0.5 @
A g-16 19, —=—RandOM n = 0.1 8
o Training =)/ -o-Baseline n=0.01
1.0 ‘ —e—Test | 2.4 d -D-Ba}selinen:O.l | 6 ‘
0 50 100 0 100 200 0.0001 0.01 1
Epoch / 103 N n

Figure 3.1: Performance of the RandOM model on the SPF problem. (a) Con-
vergence of the training and test scores for a RandOM model trained on a data
set with N = 100 and n = 0.01. (b) Comparison of the RandOM model with the
baseline (@ : add) as a function of N for n € {0.1,0.01}. (c) The decay of the mean
magnitude of the edge costs found by the RandOM model trained on N = 100
paths as the noise in the data set increases

outperforms the baseline models in predicting the shortest path taken by the
drivers. This superiority remains true even with costly rejection sampling
of the baseline model at test time (see table Table 3.1). We find that
surprisingly few paths are required in the training data set for the RandOM
model to achieve a good performance at test time (see Figure 3.1(b)), and
for all parameters (IV,) we tested the RandOM model outperforms the
baselines.

Besides inferring U and V, we can also ask whether the RandOM model
captures the noise in the training data. The RandOM model can represent
variability in paths with a fixed standard deviation in (3.23) by changing
the magnitude of w; smaller (larger) values cause the fixed noise to have less
(more) effect on which paths are chosen. Comparing (3.23) and (3.15), we
expect the mean magnitude, w, of the elements of [UTV 4] to scale as 7.
In Figure 3.1(c) we do not see this precise scaling, but we can correctly
observe the decay of w with increasing 7.

Here we have shown that the RandOM model quantitatively outperforms
the baseline in a simple scenario. In the next section we describe a different
scenario, which is engineered to highlight the key qualitative difference
between the models.

3.8.4 Qualitative Results: Bias Resulting from Ignoring Combinatorial
Structure

In the E step, the RandOM model only samples configurations of edge
costs which are consistent with the shortest path structures observed in
the data. The baseline model, in contrast, treats each edge independently,

3.8 FExperiments

67

(a)

—
o
-

(V]
i —_— o
Island1 Bridge Island 2 [1,0] 2
3
o
[0,1] S
g —e—RandOM
OT © —e—Baseline (add)
[0,2] § —o—Baseline (multiply)
8 T T T T 1

1 2 3 4 5
Bridge edges

Figure 3.2: Biasing the baseline model. (a) By carefully arranging cheap, expensive
and “impassable” edges (black lines), we implement a scenario resembling two
islands linked by a bridge (grey outline). For the case illustrated the bridge contains
2 edges. We add the avoided decoy edge (D) and create a data set of paths starting
at the circled node. (b) The score (representing the mean log probability oveer the
test set of generating valid paths avoiding the decoy edge) for the RandOM model
and baselines as a function of the bridge length.

and tries to learn to assign a high probability to edges used frequently in the

training data (conditioning on the path start and end nodes). In this section

we present an exaggerated scenario where the baseline’s ignorance of the

combinatorial structure in the data significantly hampers its performance.
We create a square grid graph that consists of three types of edge:

» “cheap” edges have feature vectors [1, 0]
= “expensive” edges have feature vectors [0, 1]

» “Impassable” edges have feature vectors [0, 2]

The appropriate qualitative properties of these edges can be obtained by
setting all driver feature vectors to [vy, 1], where v, < 1. We build two
separate “islands” of cheaply-linked nodes and connect these islands with
impassable edges. Then we allow one path of expensive edges (a “busy
bridge”) to link the islands. Finally, we place a single “decoy” expensive
edge on one of the islands which is never used in the ground truth paths
due to it’s cost (see Figure 3.2(a)). During training we give this carefully
constructed Uy to the models and only learn the remaining parameters.

If we observe drivers crossing from one island to the other, the baseline
model will interpret the expensive edges on the bridge as being desirable,
since they are used frequently. This bias means that the baseline will
assign a significant probability for using the decoy edge even though this
is inconsistent with the observed paths when correctly interpreting the
constraints of the problem: if a driver is trying to get from one island to the
other, there is no choice but to use the bridge, so the fact that the bridge is
used should be irrelevant to determining the desirability of the decoy edge.

68

Factorizing Shortest Paths with Randomized Optimum Models

Instead, one should only look at whether the decoy edge is used or avoided,
and in the data it is always avoided. The RandOM model correctly makes
this inference and learns to avoid the decoy edge.

We generate a set of N = 100 training paths and separate set of 200 test
paths on our engineered graph with edge cost noise 7 = 0.01. All paths start
at one end of the decoy edge and finish at randomly chosen points on the
graph.

Here we score the models by how often they produce samples which
correctly avoid the decoy edge when trained on this data. For the Ran-
dOM model, the decoy avoidance score is computed as the average of
Monte Carlo estimates of log (p(y € Yp(sn,tn) | Ugt, V,dp)) over the test
set, where Y5 (sn,ty) is the set of valid paths between s, and t¢,, avoiding
the decoy edge. For the baseline model, we again consider the case where
invalid paths are rejected and compute the decoy avoidance score as

1
2 los| D P U V.T.dn) | —log(An)| . (3.27)
n yEHD(snvt")

Figure 3.2(b) shows how these scores vary as we increase the length of the
bridge between the islands. As the bridge extends there are more observa-
tions of drivers on expensive edges, which increasingly biases the baseline
towards paths containing the decoy edge. In contrast, the RandOM model
correctly interprets the shortest path structures in the data as indicating
that the decoy edge is undesirable.

3.9 Related Work

There are several areas related to RandOMs. One place where there has
been significant interest in perturbation-based models is in online learning,
and in particular on Follow the Perturbed Leader algorithms (Kalai and
Vempala, 2005). These algorithms have been applied to online learning in
combinatorial settings such as shortest paths (Takimoto and Warmuth, 2003;
Kalai and Vempala, 2005). See Chapter 8 for a detailed discussion of how
perturbations are used and can be understood in the online learning setting.

For the purpose of semi-supervised learning, Blum et al. (2004) construct
random graphs and find min-cuts that agree with labeled data. This lever-
ages the idea of solving random combinatorial optimization problems, but
no learning algorithm is presented. Perturb and MAP (P&M) (Papandreou
and Yuille, 2011) learn structured models that involve a combinatorial op-
timization algorithm within the model definition, focusing on the case of

3.9 Related Work

69

using efficient minimum cut algorithms for image segmentation. The mod-
elling formulation is very similar, although the RandOM formulation seems
to extend more naturally to a broader range of models and optimization
procedures. The main difference comes in the approach to learning. P&M
proposes a moment-matching objective that is easy to optimize and that
works well in practice, but the probabilistic underpinnings are less clear;
i.e., learning is not directly maximizing the likelihood of observed data un-
der the generative model. It is also not clear how, for example, P&M would
be extended to a fully Bayesian treatment. Hazan and Jaakkola (2012) devel-
ops an understanding of how the expected score of the argmax configuration
relates to the partition function of the more traditional Gibbs distribution.
Gane et al. (2014) delves deeper into the correlation structure that results
from using perturbation models with factorized perturbations.

There are other approaches to learning probabilistic structured prediction
models to optimize high order utility functions. As mentioned previously,
Gane et al. (2014) propose an improved Hard EM algorithm for the RandOM
formulation that avoids a degeneracy that is heuristically worked around by
Tarlow et al. (2012). Kim et al. (2015) employ an empirical risk minimization
approach that directly minimizes expected losses in RandOM-like models
using the combinatorial structure of the optimizer in order to do more
efficient integration. Premachandran et al. (2014) propose a pragmatic
approach of producing a set of diverse M-best proposals with combinatorial
optimization algorithms (Batra et al., 2012), and then re-calibrating a
probabilistic model over the proposals for use within a Bayesian decision
theory-like decision procedure. The downside of this approach is that it is
a two-stage procedure without a single objective function to optimize. For
the shortest paths application, Ratliff et al. (2006) present a max-margin
based approach that leverages efficient search procedure; however, there is
no probabilistic interpretation.

A somewhat different line of work that shares the basic motivation is vari-
ational autoencoders (Kingma and Welling, 2014), generative adversarial
networks (Goodfellow et al., 2014), and generative moment matching net-
works (Li et al., 2015). The generative adversarial networks and moment
matching networks use different learning objectives from maximum likeli-
hood. The commonality is that a generative model is built around highly
efficient deterministic primitives; in these cases, rather than using a com-
binatorial optimization algorithm, these works use neural networks as the
primitive. More precisely, if we let w = (0, u), where 6 are neural network pa-
rameters and w is random noise, then we could define F'(w) to be the result
of applying a neural network parameterized by 6 to inputs u. To make most
sense in this analogy, the output should be a structured discrete object, such

70 Factorizing Shortest Paths with Randomized Optimum Models

as a sentence. This formulation would apply equally if 8 were a parameter
or a random quantity as in Bayesian formulations of neural networks. The
challenge with this direction is that in the RandOM formulation, F~!(y) is
typically more structured than such a neural net formulation, which makes
the sampling in the E step more plausibly effective. It is not immediately
obvious, for example, how one would find a w = (0, u) such that F(w) =y
for a given a gy, much less sample from the space of such w’s. However, if
this could be done effectively then an MCEM algorithm analogous to the
RandOM formulation would be a reasonable learning formulation.

3.10 Discussion

This chapter reviewed Randomized Optimum Models (RandOMs) and pre-
sented a new application of RandOMs to the problem of factorizing shortest
paths into edge-specific and driver-specific trait vectors. The key computa-
tional challenge in RandOM formulations is developing a sampler for the
E step of Monte Carlo EM. For this problem, slice sampling is particularly
well-suited, and this chapter gives an additional illustration beyond Tarlow
et al. (2012) about how to construct a slice sampler that takes advantage
of the combinatorial structure in the problem. While it may be appealing
to design simpler models that ignore the combinatorial structure present in
the data (such as the baseline from Section 3.8.1), it is shown in Section
3.8.4 that this can lead to biases in the learned model that cause the wrong
qualitative conclusions to be drawn from the observed data.

Looking forward, we would like to apply a similar formulation to models of
highly structured natural data such as images and text, and to explore opti-
mization routines beyond standard combinatorial optimization algorithms.

3.11 References

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-
best solutions in markov random fields. In Computer Vision-ECCV 2012, pages
1-16. Springer, 2012.

A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learn-
ing using randomized mincuts. In Proceedings of the twenty-first international
conference on Machine learning, page 13. ACM, 2004.

A. Bouchard-Cé6té and M. I. Jordan. Variational inference over combinatorial
spaces. In Advances in Neural Information Processing Systems, pages 280288,
2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms.

8.11 References

71

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1-38, 1977.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303-338, 2010.

A. Gane, T. Hazan, and T. Jaakkola. Learning with maximum a-posteriori pertur-

bation models. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 247-256, 2014.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672-2680, 2014.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. arXiv preprint arXiv:1206.6410, 2012.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291-307, 2005.

A. Kim, K. Jung, Y. Lim, D. Tarlow, and P. Kohli. Minimizing expected losses in
perturbation models with multidimensional parametric min-cuts. In Proceedings
of Uncertainty in Artificial Intelligence (UAI), 2015.

D. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In
Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 595-603, 2014.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. 2009.

A. Krizhevsky, G. E. Hinton, et al. Factored 3-way restricted boltzmann machines
for modeling natural images. In International Conference on Artificial Intelli-
gence and Statistics, pages 621-628, 2010.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. arXiv
preprint arXiv:1502.02761, 2015.

L. Lovész and S. Vempala. Hit-and-run is fast and fun. 2003.

J. Lubin. A human vision system model for objective image fidelity and target
detectability measurements. In Proc. EUSIPCO, volume 98, pages 10691072,
1998.

R. Memisevic and G. Hinton. Unsupervised learning of image transformations. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1-8. IEEE, 2007.

V. Movahedi and J. H. Elder. Design and perceptual validation of performance
measures for salient object segmentation. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on,
pages 49-56. IEEE, 2010.

R. M. Neal. Slice sampling. Annals of Statistics, 31(3):705-767, 2003.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies
incremental and other variants. In M. I. Jordan, editor, Learning in Graphical
Models. Kluwer, Dordrecht, Netherlands, 1998.

72

Factorizing Shortest Paths with Randomized Optimum Models

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Migrating code with statisti-
cal machine translation. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 5b44-547. ACM, 2014.

S. Nowozin. Optimal decisions from probabilistic models: the intersection-over-
union case. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 548-555. IEEE, 2014.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proceedings of the
IEEE International Conference on Computer Vision, 2011.

P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order
statistics. In AISTATS, 2012.

V. Premachandran, D. Tarlow, and D. Batra. Empirical minimum bayes risk
prediction: How to extract an extra few% performance from vision models
with just three more parameters. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 1043-1050. IEEE, 2014.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In
International Conference on Machine Learning, 2006.

J. D. Rennie and N. Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713-719. ACM, 2005.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257-1264, 2007.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. The
Journal of Machine Learning Research, 4:773-818, 2003.

D. Tarlow and R. Zemel. Structured output learning with high order loss functions.
In Artificial Intelligence and Statistics (AISTATS), 2012.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized optimum models for
structured prediction. In Artificial Intelligence and Statistics (AISTATS), 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances
in Neural Information Processing Systems 16: Proceedings of the 2003 Confer-
ence, volume 16, page 25. MIT Press, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453-1484, 2005.

L. G. Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189-201, 1979.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality as-
sessment: from error visibility to structural similarity. Image Processing, IEEE
Transactions on, 13(4):600-612, 2004.

G. C. Wei and M. A. Tanner. A monte carlo implementation of the em algorithm
and the poor man’s data augmentation algorithms. Journal of the American
statistical Association, 85(411):699-704, 1990.

4 Herding as a Learning System with
Edge-of-Chaos Dynamics

Yutian Chen yutianc@google.com
Google DeepMind

London, UK

Max Welling m.welling@uva.nl

University of Amsterdam
Amsterdam, Netherlands

Herding defines a deterministic dynamical system at the edge of chaos. It
generates a sequence of model states and parameters by alternating parame-
ter perturbations with state maximizations, where the sequence of states can
be interpreted as “samples” from an associated MRF model. Herding differs
from mazximum likelihood estimation in that the sequence of parameters does
not converge to a fixed point and differs from an MCMC posterior sampling
approach in that the sequence of states is generated deterministically. Herd-
ing may be interpreted as a “perturb and map” method where the parameter
perturbations are generated using a deterministic nonlinear dynamical sys-
tem rather than randomly from a Gumbel distribution. This chapter studies
the distinct statistical characteristics of the herding algorithm and shows that
the fast convergence rate of the controlled moments may be attributed to edge
of chaos dynamics. The herding algorithm can also be generalized to models
with latent variables and to a discriminative learning setting. The perceptron
cycling theorem ensures that the fast moment matching property is preserved
in the more general framework.

74 Herding as a Learning System with Edge-of-Chaos Dynamics

4.1 Introduction

The traditional view of a learning system is one where an initial parameter
vector wg is updated until some convergence criterion is met: wg, wy, .., W
with (in theory) T'— oo and wo, = W* a fixed point of the updates. These
updates usually maximize some objective such as the log-likelihood of the
data. We can view this process as a dynamical system with a contractive
map wyy1 = Fy(wy) which is designed to iterate to a fixed point. The map
F; can be either deterministic or stochastic. For instance, batch gradient
descent is an example of a deterministic map while stochastic gradient
descent is an example of a stochastic map. A natural question is whether the
existence of a fixed point w* is important, and whether meaningful learning
systems can exist that do not converge to any fixed point but traverse
an attractor set. To answer this question we can draw inspiration from
Markov chain Monte Carlo (MCMC) procedures which generate samples
from a posterior distribution P(w|D) (with D indicating the data). MCMC
also generates a sequence of parameter values wg, .., wpr but one that does
not converge to a fixed point. Rather the samples form an attractor set
with a measure (density) equal to the posterior distribution. One can make
meaningful predictions with MCMC chains by making predictions for every
sampled model w; separately and subsequently averaging the predictions.
There is also evidence that learning in the brain is a dynamical process. For
instance, Aihara and Matsumoto (1982) have described chaotic dynamics in
the Hodgkin-Huxley equations for membrane dynamics and studied them
experimentally in squid giant axons. Also, much evidence has now been
accumulated that synapses are subject to fast dynamical processes such as
postsynaptic depression and facilitation (Tsodyks et al., 1098).

Herding (Welling, 2009a) is perhaps the first learning dynamical system
based on a deterministic map and with a nontrivial attractor (i.e. not a single
fixed point). It emerged from taking the limit of infinite stepsize in the usual
(maximum likelihood) updates for a Markov random field (MRF) model. It
can be observed that in this limit the parameters will not converge to a fixed
point but rather traverse a usually non-periodic trajectory in weight space.
The information contained in the data is now stored in the trajectories (or
the attractor) of this dynamical system, rather than in a point estimate of a
collection of parameters. In fact it can be shown that this dynamical system
is neither periodic (under some conditions) nor chaotic, a state which is
associated with “edge of chaos” dynamics. As illustrated in this chapter,
by slowly increasing the stepsize (or equivalently lowering the temperature)
we will move from a standard MRF maximum likelihood learning system

4.1 Introduction

75

with a single fixed point, through a series of period doublings to a system
on the edge of chaos. One can show that the attractor is sometimes fractal,
and that the Lyapunov exponents of this system are equal to 0 implying
that two nearby trajectories will eventually separate but only polynomially
fast (and not exponentially fast as with chaotic systems). Many of the
dynamical properties of this system are described by the theory of “piecewise
isometries” (Goetz, 2000).

Herding can thus be viewed as a dynamical system that generates state-
space samples si,..,s7 that are highly similar to the samples that would
be generated by a learned MRF model with the same features. The state-
space samples satisfy the usual moment matching constraints that defines
an MRF and can be used for making meaningful predictions. In a way,
herding combines learning and inference in one dynamical system. However,
the distribution from which herding generates samples is not identical to
the associated MRF because while the same moment matching constraints
are satisfied, the entropy of the herding samples is usually somewhat lower
than the (maximal) entropy of the MRF. The sequence of samples in state
space Si,..,St has very interesting properties. First, it forms an infinite
memory sequence as every sample depends on all the previous samples and
not just the most recent sample as in Markov sequences. It can be shown
that the number of distinct subsequences of length 7' grows as O(log(T))
implying that their (topological) entropy vanishes. For simple systems these
sequences can be identified with “low discrepancy sequences” and Sturmian
sequences (Marston Morse, 1940). Probably related to this is the fact that
Monte Carlo averages based on these sequences converge as O(1/7'). This
should be contrasted with random independent samples from the associated
MRF distribution for which the convergence follows the usual O(1/v/T) rate.
Herding sequences thus exhibit strong negative auto-correlations leading to
the faster convergence of Monte Carlo averages. It is conjectured that this
property is related to the edge of chaos characterization of herding, and that
both stochastic systems (such as samplers) as well as fully chaotic systems
will always generate samples that can at most result in O(1/+v/T) convergence
of Monte Carlo averages.

Similar to “perturb and map” (Papandreou and Yuille, 2011), the execu-
tion of the herding map requires one to compute the maximum a posteriori
(MAP) state defined by the current parameter setting. While maximization
is sometimes easier than computing the expectations required to update the
parameters of an MRF, for complex models maximization can also be NP
hard. A natural question is therefore if one can relax the requirement of
finding the MAP state and get away with partial maximization to, say, a
local maximum instead of the global maximum. The answer to this ques-

76

Herding as a Learning System with Edge-of-Chaos Dynamics

tion comes from a theorem that was proven a long time ago in the context
of Rosenblatt’s perceptron (Rosenblatt, 1958) and is known as the “per-
ceptron cycling theorem” (PCT) (Minsky and Papert, 1969). This theorem
states precisely which conditions need to be fulfilled by herding at every
iteration in order for the algorithm to satisfy the moment constraints. The
PCT therefore allows us to relax the condition of finding the MAP state at
every iteration, and as a side effect also allows us to run herding in an online
setting or with stochastic minibatches instead of the entire dataset. A fur-
ther relaxation of the herding conditions was described in Chen et al. (2014)
where it was shown that herding with inconsistent moments as input (mo-
ments that can not be generated by a single joint probability distribution)
still makes sense and generates the Euclidean projections of these moments
on the marginal polytope.

Like MRF models can be extended to models with hidden variables and to
discriminative models such as the conditional Markov random field (CRF)
models, herding can also be generalized along these same dimensions. Herd-
ing with hidden variables was described in Welling (2009b) and shown to
increase the ability of this dynamical system to represent complex dependen-
cies. Conditional herding was described in Gelfand et al. (2010) and shown
to be equivalent to the voted perceptron algorithm Freund and Schapire
(1999) and to Collins’ “voted HMM” Collins (2002) in certain special cases.
The herding view allowed the extension of these discriminative models to
include hidden variables.

Herding is related to (or has been connected to) a number of optimiza-
tion, learning and inference methods. Herding has obvious similarities to the
concept of “fast weights” introduced by Tieleman and Hinton (2009). Fast
weights follow a dynamics that is designed to make the Markov chain embed-
ded in a MRF learning process mix fast. A similar idea was used in Breuleux
et al. (2011) to speed up the mixing rate of an (approximate) sampling pro-
cedure. By applying herding dynamics conditionally w.r.t. its parent-states
for every variable in a graphical model yet another fast mixing sampling al-
gorithm was developed, called “herded Gibbs” Bornn et al. (2013). Herding
was extended in Chen et al. (2010) to a deterministic sampling algorithm
in continuous state spaces (known as “kernel herding”). The view espoused
in that paper led to an analysis of herding as a conditional gradient opti-
mization algorithm (or Franke-Wolfe algorithm) in Bach et al. (2012) from
which an improved convergence analysis emerged as well generalizations to
versions of herding with non-uniform weights. In related work of Huszar and
Duvenaud (2012) it was shown that an optimally weighted version of (ker-
nel) herding is equivalent to Bayesian quadrature, again resulting in faster
convergence. Harvey and Samadi (2014) focused on the convergence rate of

4.2 Herding Model Parameters 77

herding with respect to the dimensionality of the feature vector and pro-
posed a new algorithm that scaled near-optimally with the dimensionality.

Perhaps the method closest related to herding is “perturb and map” esti-
mation, where the parameters of a MRF model are perturbed by sampling
from a Gumbel distribution followed by maximization over the states. Like
in herded Gibbs, the procedure is only “exact” if exponentially many pa-
rameters are perturbed. Herding is however different from perturb and map
in that the perturbations are generated sequentially and deterministically.

This chapter is built on the results reported earlier in a series of conference
papers Welling (2009a,b); Welling and Chen (2010); Chen et al. (2010);
Gelfand et al. (2010). Our current understanding of herding is far from
comprehensive but rather represents a first attempt to connect learning
systems with the theory of nonlinear dynamical systems and chaos. We
believe that it opens the door to many new directions of research with
potentially surprising and exciting discoveries.

The chapter is organized as follows. In Section 4.2 we introduce the herd-
ing algorithm and study its statistical property as both a learning algorithm
and a dynamical system. In Section 4.3 we provide a general condition for
herding to satisfy the fast moment matching properties, under which the
algorithm is extended for partially observed models and discriminative mod-
els. We evaluate the performance of the introduced algorithms empirically
in Section 6.4. The chapter is concluded with a summary in Section 4.5 and
a conclusion in Section 4.6.

4.2 Herding Model Parameters
4.2.1 The Maximum Entropy Problem and Markov Random Fields

Define x € X to be a random variable in the domain X, and ¢ = {¢(x)} to
be a set of feature functions of x, indexed by «. In the maximum entropy
problem (MaxEnt), given a data set of D observations D = {x;}2,, we
want to learn a probability distribution over x, P(x), such that the expected
features, a.k.a. moments, match the average value observed in the data set,
denoted by ¢,. For the remaining degrees of freedom in the distribution
we assume maximum ignorance which is expressed as maximum entropy.
Mathematically, the problem is to find a distribution P such that:

P = arg max H(P) s.t. Exp[pa(X)] = da, Ya (4.1)

The dual form of the MaxFEnt problem is known to be equivalent to finding
the maximum likelihood estimate (MLE) of the parameters w = {w,} of a

78

Herding as a Learning System with Edge-of-Chaos Dynamics

Markov Random Field (MRF) defined on x, each parameter associated with
one feature ¢,:

D
wyLe = argmax P(D;w) = arg maxH P(x;;w), (4.2)

1
Z(W) €xp (Za: wad)oz(x))) (4'3)

where the normalization term Z(w) =)" _exp()_, wapa(x)) is also called
the partition function. The parameters {w, } act as Lagrange multipliers to
enforce the constraints in the primal form 4.1. Since they assign different
weights to the features in the dual form, we will also called them “weights”
below.

P(x;w) =

It is generally intractable to obtain the MLE of parameters because the
partition function involves computing the sum of potentially exponentially
many states. Take the gradient descent optimization algorithm for example.
Denote the average log-likelihood per data item by

D
(w) def % Z log P(x;;w) = wl ¢ — log Z(w) (4.4)
i=1

The gradient descent algorithm searches for the maximum of ¢ with the
following update step:

Wil = Wi+ 10 — Expiow,) [9(x)]) (4.5)

Notice however that the second term in the gradient that averages over
the model distribution, E p(x;w)[¢(x)], is derived from the partition function
and cannot be computed efficiently in general. A common solution is to
approximate that quantity by drawing samples using Markov chain Monte
Carlo (MCMC) at each gradient descent step. However, MCMC is known to
suffer from slow mixing when the state distribution has multiple modes or
variables are strongly correlated (Neal, 1993). Furthermore, we can usually
afford to run MCMC for only a few iterations in the nested loop for the sake
of efficiency (Neal, 1992; Tieleman, 2008), which makes it even harder to
obtain an accurate estimate of the gradient.

Even when the MRF is well trained, it is usually difficult to apply the
model to regular tasks such as inference, density estimation, and model
selection, because all of those tasks require the computation of the par-
tition function. One has to once more resort to running MCMC or other
approximate inference methods during the prediction phase to obtain an
approximation.

4.2 Herding Model Parameters 79

Is there a method to speed up the inference step that exists in both the
training and test phases? The herding algorithm was proposed to address
the slow mixing problem of MCMC and combine the execution of MCMC
in both training and prediction phases into a single process.

4.2.2 Learning MRFs with Herding

When there exist multiple local modes in a model distribution, an MCMC
sampler is prone to getting stuck in local modes and it becomes difficult to
explore the state space efficiently. However, that is not a serious issue at
the beginning of the MRF learning procedure as observed by, for example,
Tieleman and Hinton (2009). This is because the parameters keep being
updated with a large learning rate n at the beginning. Specifically, when the
expected feature vector is approximated by a set of samples E p(y.w)[@(x)] ~
ﬁ Z%zl ¢(x;,) in the MCMC approach, after each update in Equation 4.5,
the parameter w is translated along the direction that tends to reduce the
inner product of w’ ¢(x,,), and thereby reduces the state probability around
the region of the current samples. This change in the state distribution helps
the MCMC sampler escape local optima and mix faster.

This observation suggests that we can speed up the MCMC algorithm by
updating the target distribution itself with a large learning rate. However,
in order to converge to a point estimate of a model, 1 needs to be decreased
using some suitable annealing schedule. But one may ask if we are necessarily
interested in a fixed value for the model parameters? As discussed in the
previous subsection, for many applications one needs to compute averages
over the (converged) model which are intractable anyway. In that case, a
sequence of samples to approximate the averages is all we need. It then
becomes a waste of resources and time to nail down a single point estimate
of the parameters by decreasing n when a sequence of samples is already
available. We will actually kill two birds with one stone by obtaining samples
during the training phase and reuse them for making predictions. The idea
of the herding algorithm originates from this observation.

The herding algorithm proposed in Welling (2009a) can be considered as
an algorithm that runs a gradient descent algorithm with a constant learning
rate on an MRF in the zero-temperature limit. Define the distribution of an
MRF with a temperature by replacing w with w/T', where T is an artificial
temperature variable. The log-likelihood of a model (multiplied by 7) then
becomes:

fr(w) = w'§ — Tlog (Z exp <2 1§?¢a<x>>> (4.6)

80

Herding as a Learning System with Edge-of-Chaos Dynamics

When T approaches 0, all the probability is absorbed into the most
probable state, denoted as s, and the expectation of the feature vector, ¢,
equals that of state s. The herding algorithm then consists of the iterative
gradient descent updates in the limit, 7' — 0, with a constant learning rate,

n:
St = arg max Z Wey,t—10a(X) (4.7)
«

wie=wi_1 +n(¢p — P(sy)) (4.8)

We usually set n = 1 except when mentioned explicitly because the herding
dynamics is invariant to the learning rate as explained in Section 4.2.3.
We treat the sequence of most probable states, {s;}, as a set of “samples”
for herding and use it for inference tasks. At each iteration, we find the
most probable state in the current model distribution deterministically, and
update the parameter towards the average feature vector from the training
data subtracted by the feature vector of the current sample. Compared
to maintaining a set of random samples in the MCMC approach (see e.g.
Tieleman, 2008), updating w with a single sample state facilitates updating
the distribution at an even rate.

If we divide both sides of Equation 4.8 by T' and redefine % — w’ in both

Equations 4.7-4.8,
Wil Wi U
N DG B [6() (4.9)

we see that, after taking the limit 7' — oo, we can interpret herding

as maximum likelihood learning with infinitely large stepsize and rescaled
weights. The surprising observation is that the state sequence {s;} generated
by this process is still meaningful and can be interpreted as approximate
samples from an MRF model with the correct moment constraints on the
features ¢(x).

One can obtain an intuitive impression of the dynamics of herding by
looking at the change in the asymptotic behavior of the gradient descent
algorithm as we decrease T in Equation 4.9 from a large value towards
0. Assume that we can compute the expected feature vector w.r.t. the
model exactly. Given an initial value of w, the gradient descent update
equation 4.9 with a constant learning rate is a deterministic mapping in
the parameter space. When T is large enough (/T is small enough), the
optimization process will converge and w/T will approach a single point
which is the MLE. As T decreases below some threshold (/T is above some
threshold), the convergence condition is violated and the trajectory of wy
will move asymptotically into an oscillation between two points, that is,

4.2 Herding Model Parameters 81

-7 -5 -3 -1
thresh"‘1 0 Tthresh+10 Tthresh+10 T 10

T

thresh*

-0.6 -04 -0.2 0 (3\;2 04 06 08 1
Temperature 1

Figure 4.1: Attractor bifurcation for a model with 4 states and 2-dimensional
feature vectors. Left: Asymptotic period of the weight sequence (i.e. size of the
attractor set) repeatedly doubles as the temperature decreases towards a threshold
value (right to left). Tipresn =~ 0.116 in this example. The dynamics transits from
periodic to aperiodic at that threshold. Right: The evolution of the attractor set of
the weight sequence. As the temperature decreases (from dark to light colors), the
attractor set split from a single point to two points, then to four, to eight, etc. The
black dot cloud in the background is the attractor set at T' = 0.

the attractor set splits from a single point into two points. As T' decreases
further, the asymptotic oscillation period doubles from two to four, four
to eight, etc, and eventually the process approaches an infinite period at
another temperature threshold. Figure 4.1 shows an example of the attractor
bifurcation phenomenon. The example model has 4 discrete states and each
state is associated with 2 real valued features which are randomly sampled
from N(0, 1). Starting from that second threshold, the trajectory of w is still
bounded in a finite region as shown shortly in Section 4.3.1 but will not be
periodic any more. Instead, we observe that the dynamics often converges to
a fractal attractor set as shown in the right plot of Figure 4.1. The bifurcation
process is observed very often in simulated models although it is not clear
to us if it always happens for any discrete MRF. We discuss the dynamics
related to this phenomenon in more detail in Section 4.2.6.

4.2.3 Tipi Function and Basic Properties of Herding

We will discuss a few distinguishing properties of the herding algorithm in
this subsection. When we take the zero temperature limit in Equation 4.6,
the log-likelihood function becomes

lo(w) =wlep— max [WT¢(X)] (4.10)

82

Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.2: “Tipi function” (Welling, 2009a): the log-likelihood function at the zero
temperature limit. The black dots show the attractor set of the sequence of wy.

This function has a number of interesting properties that justify the name
“Tipi function”! (see Figure 4.2) (Welling, 2009a):

1. o is continuous piecewise linear (C° but not C*). It is clearly linear in
w as long as the maximizing state s does not change. However, changing w
may in fact change the maximizing state in which case the gradient changes
discontinuously.

2. {y is a concave, non-positive function of w with a mazimum at £5(0) = 0.
This is true because the first term represents the average Ep[w” ¢(x)] over
some distribution P, while the second term is its maximum. Therefore, ¢ < 0.
If we furthermore assume that ¢ is not constant on the support of P then
fy < 0 and the maximum at w = 0 is unique. Concavity follows because the
first term is linear and the second maximization term is convex.

3. £y is scale free. This follows because £y(fw) = Bly(w),V3 > 0 as can be
easily checked. This means that the function has exactly the same structure
at any scale of w.

Herding runs gradient descent optimization on this Tipi function. There is
no need to search for the maximum as w = 0 is the trivial solution. However,
the fixed learning rate will always result in a perpetual overshooting of the
maximum and thus the sequence of weights will never converge to a fixed
point. Every flat face of the Tipi function is associated with a state. An
important property of herding is that the state sequence visited by the

1. A Tipi is a traditional native Indian dwelling.

4.2 Herding Model Parameters 83

gradient descent procedure satisfies the moment matching constraints in
Equation 4.1, which will be discussed in details in Section 4.2.5. There are
a few more properties of this procedure that are worth noticing.

Deterministic Nonlinear Dynamics

Herding is a deterministic nonlinear dynamical system. In contrast to the
stochastic MLE learning algorithm based on MCMC, the two update steps
in Equation 4.7 and 4.8 consist of a nonlinear deterministic mapping of
the weights as illustrated in Figure 4.3. In particular it is not an MCMC
procedure and it does not require random number generation.

The dynamics thus produces pseudo-samples that look random, but should
not be interpreted as random samples. Although reminiscent of the Bayesian
approach, the weights generated during this dynamics should not be in-
terpreted as samples from some Bayesian posterior distribution. We will
discuss the weakly chaotic behavior of the herding dynamics in detail in
Section 4.2.6.

Figure 4.3: Herding as a nonlinear dynamical system.

Invariance to the Learning Rate

Varying the learning rate n does not change the behavior of the herding
dynamics. The only effect is to change the scale of the invariant attractor
set of the sequence wy. This actually follows naturally from the scale-free
property of the Tipi function. More precisely, denote with v; the standard
herding sequence with n = 1 and w; the sequence with an arbitrary learning
rate. It is easy to see that if we initialize v;—g = %wtzo and apply the
respective herding updates for w; and v; afterwards, the relation v; = %wt
will remain true for all ¢ > 0. In particular, the states s; will be the same

for both sequences. Therefore we simply set n = 1 in the herding algorithm.

84

Herding as a Learning System with Edge-of-Chaos Dynamics

Of course, if one initializes both sequences with arbitrary different values,
then the state sequences will not be identical. However, if one accepts
the conjecture that there is a unique invariant attractor set, then this
difference can be interpreted as a difference in initialization which only
affects the transient behavior (or “burn-in” behavior) but not the (marginal)
distribution P(s) from which the states s; will be sampled.

Notice however that if we assign different learning rates {n,} across the
dimensions of the weight vector {wg}, it will change the distribution P(s).
While the moment matching constraints are still satisfied, we notice that
the entropy of the sample distribution varies as a function of {n,}. In fact,
changing the relative ratio of learning rates among feature dimensions is
equivalent to scaling features with different factors in the greedy moment
matching algorithm interpretation of Section 4.2.4. How to choose an optimal
set of learning rates is still an open problem.

Negative Auto-correlation

A key advantage of the herding algorithm we observed in practice over sam-
pling using a Markov chain is that the dynamical system mixes very rapidly
over the attractor set. This is attributed to the fact that maximizations are
performed on an ever changing model distribution as briefly mentioned at
the beginning of this subsection. Let m(x) be the distribution of training
data D, and s; be the maximizing state at time ¢t. The distribution of an
MRF at time t with a regular temperature 7' =1 is

P wi1) o exp(w $(x)) (4.11)

After the weights are updated with Equation 4.8, the probability of the new
model becomes

P(x; wy) o< exp(wi ¢(x)) = exp((wi—1 + ¢ — (s1))" p(x))

=exp (Wi 10x)+ > w(y)p(y) d(x) — (1 —7(s:))p(se) p(x)
Y#S:
(4.12)

Comparing Equation 4.12 with 4.11 we see that probable states (with large
7(x)) are rewarded with an extra positive term 7(x)p(x)? ¢(x), except the
most recently sampled state s;. This will have the effect (after normalization)
that state s; will have a smaller probability of being selected again. Imagine
for instance that the sampler is stuck at a local mode. After drawing samples
at that mode for a while, weights are updated to gradually reduce that mode

4.2 Herding Model Parameters 85

and help the sampler escape it. The resulting negative auto-correlation would
help mitigate the notorious problem of positive auto-correlation in most
MCMC methods.

We illustrate the negative auto-correlation using a synthetic MRF with
10 discrete states, each associated with a 7-dimensional feature vector. The
parameters of the MRF model are randomly generated from which the
expected feature values are then computed analytically and fed into the
herding algorithm to draw 7' = 10 samples. We define the auto-correlation
of the sample sequence of discrete variables as follows:

ﬁ Z;Zj:_lt [[s;r = srq¢] — Zs %tP(3)2
11—, 5tP(s)?

where I is the indication function and %tP is the empirical distribution
of the 10° samples. It is easy to observe that R(t = 0) = 1 and if the
samples are independently distributed R(t) = 0,¥¢ > 0 up to a small
error due to the finite sample size. We run herding 100 times with different
model parameters and show the mean and standard deviation of the auto-
correlation in Figure 4.4. We can see that the auto-correlation is negative
for neighboring samples, and converges to 0 as the time lag increases. This

R(t) = (4.13)

effect exists even if we use a local optimization algorithm when a global
optimum is hard or expensive to be obtained. This type of “self-avoidance”
is also shared with other sampling methods such as over-relaxation (Young,
1954), fast-weights PCD (Tieleman and Hinton, 2009) and adaptive MCMC
(Salakhutdinov, 2010).

Autocorrelation

20 30
Time lag

Figure 4.4: Negative auto-correlation of herding samples from a synthetic MRF.

86

Herding as a Learning System with Edge-of-Chaos Dynamics

4.2.4 Herding as a Greedy Moment Matching Algorithm

As herding does not obtain the MLE, the distribution of the generated sam-
ples does not provide a solution to the maximum entropy problem either.
However, we observe that the moment matching constraints in Equation 4.1
are still respected, that is, when we compute the sampling average of the
feature vector it will converge to the input moments. Furthermore, the neg-
ative auto-correlation in the sample sequence helps to achieve a convergence
rate that is faster than what one would get from independently drawing
samples or running MCMC at the MLE. Before providing any quantitative
results, it would be easier for us to understand herding intuitively by taking
a “dual view” of its dynamics where we remove weights w in favor of the
states x (Chen et al., 2010).

Notice that the expression of wr can be expanded recursively using the
update Equation 4.8:

T
wr=wo+Td— > ¢(s) (4.14)
t=1

Plugging 4.14 into Equation 4.7 results in

T
sy = argmax(wo, () + T(6, d(x)) — D ($lse), (x)) (4.15)
t=1
For ease of intuitive understanding of herding, we temporarily make the
assumptions (which are not necessary for the propositions to hold in the
next subsection):

1. WwWo = (Z)
2. [lp(x)]l2 = R, ¥x € X

The second assumption is easily achieved, e.g. by renormalizing ¢(x) <«

% or by choosing a suitable feature map ¢ in the first place. Given the

first assumption, Equation 4.15 becomes

T
1 = argmax(d, §(x) — 71 D (9(s0): $() (4.16)

t=1

Combining the second assumption one can show that the herding update
equation 4.16 is equivalent to greedily minimizing the squared error €2T

4.2 Herding Model Parameters 87

Data

Figure 4.5: Herding as an infinite memory process on samples.

defined as
1 & ’
def || 7
&5 - 13" (s (1)
t=1

We therefore see that herding will generate pseudo-samples that greedily
minimize the distance between the input moments and the sampling average
of the feature vector at every iteration (conditioned on past samples). Note
that the error function is unfortunately not submodular and the greedy
procedure does not imply that the total collection of samples at iteration 7" is
jointly optimal (see Huszar and Duvenaud (2012) for a detailed discussion).
We also note that herding is an “infinite memory process” on s; (as opposed
to a Markov process) illustrated in Figure 4.5 because new samples depend
on the entire history of samples generated thus far.

4.2.5 Moment Matching Property

With the dual view in the previous subsection, the distance between the
moments and their sampling average in Equation 4.17 can be considered as
the objective function for the herding algorithm to minimize. We discuss
in this subsection under what condition and at what speed the moment
constraints will be eventually satisfied.

Proposition 4.1 (Proposition 1 in Welling (2009a)). Ve,
1 . 1 _

if limr e ~War = 0, then lim, o - Yoro1 Pal(st) = ¢a.

Proof. Following Equation 4.14, we have

1 1 S e
;wOAT - ;waO = Qo — ; ;Qba(st) (418)

Using the premise that the weights grow slower than linearly and observing
that wyo is constant we see that the left hand term vanishes in the limit
T — 00 which proves the result.]

88

Herding as a Learning System with Edge-of-Chaos Dynamics

What this says is that under the very general assumption that the weights
do not grow linearly to infinity (note that due to the finite learning rate
they can not grow faster than linear either), the moment constraints will
be satisfied by the samples collected from the combined learning/sampling
procedure. In fact, we will show later that the weights are restricted in a
bounded region, which leads to a convergence rate of O(1/7) as stated below.

Proposition 4.2. Vo, if there exists a constant R such that |wa| < R, Vt,
then

2R
< —.

T

1< -
T;%(st) ~ o

The proof follows immediately Equation 4.18.

Note that if we want to estimate the expected feature of a trained
MRF by a Monte Carlo method, the optimal standard deviation of the
approximation error with independent and identically distributed (i.i.d.)
random samples decays as O(%), where 7 is the number of samples.
(For positively autocorrelated MCMC methods this rate could be even
slower.) Samples from herding therefore achieve a faster convergence rate
in estimating moments than i.i.d. samples.

Recurrence of the Weight Sequence

It is important to ensure that the herding dynamics does not diverge to
infinity. Welling (2009a) discovered an important property of herding, known
as recurrence, that the sequence of the weights is confined in a ball in the
parameter space. This property satisfies the premise of both Proposition 2.1
and 2.2. It was stated in a corollary of Proposition 4.3:

Proposition 4.3 (Proposition 2 in Welling (2009a)). 3R such that a herding
update performed outside this radius will always decrease the norm ||w||sz.

Corollary 4.4 (Corollary in Welling (2009a)). 3R’ such that a herding
algorithm initialized inside a ball with that radius will never generate weights
w with norm ||w|2 > R'.

However, there was a gap in the proof of Proposition 2 in Welling (2009a).
We give the corrected proof below:

4.2 Herding Model Parameters 89

Proof of Proposition 4.3. Write the herding update equation 4.8 as w; =
wi—1+ Vwlo(wi—1) (set n = 1). Expanding the squared norm of w; leads to

[well3 = [[wee1]l3 + 2w/ | Vilo(Wi—1) + | Vwlo(wWe—1)]3
— O||wl3 < 2lp(wi_1) + B2 (4.19)

where we define §||wl|j3 = |[w||3 — ||[we-1]/3- B is an upper bound of
{IVwlo(w)|2 : w € R™I} introduced in Lemma 1 of Welling (2009a). That
exists as long as the norm of the feature vector ¢(x) is bounded in X. We
also use the fact that fo(w) = wl Vylo(Ww).

Denote the unit hypersphere as U = {w/|||w||3 = 1}. Since £y is continuous
on U and U is a bounded closed set, £y can achieve its supremum on U, that
is, we can find a maximum point w* on U where {o(w*) > {o(w),VYw € U.

Combining this with the fact that ¢y, < 0 outside the origin, we know
the maximum of ¢y on U is negative. Now taking into account the fact
that B is constant (i.e. does not scale with w), there exists some constant
R for which Rlg(w*) < —B2/2. Together with the scaling property of /g,
lo(Pw) = pBly(w), we can prove that for any w with a norm larger than R,
{o is smaller then —B2/2:

lo(w) = [wll2bo(w/|lw]2) < Réo(w*) < =B?/2, V|wl2 >R (4.20)

The proof is concluded by plugging the inequality above in Equation 4.19.
O

Corollary 4.4 proves the existence of a bound for ||wl|s and thereby the
constant R in Proposition 4.2. Harvey and Samadi (2014) further studied
the value of R and proposed a variant of herding that obtained a near-
optimal value for R = O(v/dlog?® || X|) w.r.t. the dimensionality of the
feature vector d and the size of a finite state space X. The proposed algorithm
has a polynomial time complexity in d and [|X||.

The Remaining Degrees of Freedom

Both the herding and the MaxEnt methods match the moments of the
training data. But how does herding control the remaining degrees of
freedom that are otherwise controlled by maximizing the entropy in the
MaxEnt method? This is unfortunately still an open problem. Apart from
some heuristics there is currently no principled way to enforce high entropy.
In practice however, in discrete state spaces we usually observe that the
sampling distribution from herding renders high entropy. We illustrate the
behavior of herding in the example of simulating an Ising model in the next
paragraph.

90

Herding as a Learning System with Edge-of-Chaos Dynamics

An Ising model is an MRF defined on a lattice of binary nodes, G = (E, V),
with biases and pairwise features. The probability distribution is expressed
as

P(x)=_exp | Z Jijrixy + Zhixi yo e {-1,1},VieV
(i,5)EFE eV
(4.21)

where h; is the bias parameter, J; ; is the pairwise parameter and 3 > 0 is
the inverse temperature variable. When h; = 0, J; ; = 1 for all nodes and
edges, and [is set at the inverse critical temperature, the Ising model is
said to be at a critical phase where regular sampling algorithms fail due to
long range correlations among variables. A special algorithm, the Swendsen-
Wang algorithm (Swendsen and Wang, 1987), was designed to draw samples
efficiently in this case. In order to run herding on the Ising model, we need
to know the average features, z; (0 in this case) and Z;x; instead of the
MRF parameters. So we first run the Swendsen-Wang algorithm to obtain
an estimate of the expected cross terms, 7;7;, which are constant across all
edges, and then run herding with weights for every node w; and edge wj ;.
The update equations are:

S¢ = argmax Z W j) 4—1TiT5 + Z Wi 1% (4.22)
X L. L
(7/7.7)EE %
Wi gyt = Wiig)t—1 T TiTj — SitSjt (4.23)
Wit = Wit—1 — Sit (4.24)

As finding the global optimum is an NP-hard problem we find a local
maximum for s; by coordinate descent.? Figure 4.6 shows a sample from
an Ising model on an 100 x 100 lattice at the critical temperature. We do
not observe qualitative difference between the samples generated by the Ising
model (MaxEnt) and herding, which suggests that the sample distribution
of herding may be very close to the distribution of the MRF. Furthermore,
Figure 4.7 shows the distribution of the size of connected components in the
samples. It is known that this distribution should obey a power law at the
critical temperature. We find that samples from both methods exhibit the
power law distribution with an almost identical exponent.

2. In Section 4.3.2 we show that the moment matching property still holds with a local
search as long as the found state is better than the average.

4.2 Herding Model Parameters 91

(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 4.6: Sample from an Ising model on an 100 x 100 lattice at the critical
temperature.

108 Swendsen-Wgng Samplmg - ‘ Hergmg
6 o~
N 10 ~
~ ~~ -1.556
~. -1.61 ~
108¢ ~ ™
2 S } 21 04 AN R
S 104 r N S N
9] ~~ 9 S
o ~ o o NG
T o 2 N
102} 10
0 . . . 0 . . .
10 10
10° 10" 102 10° 10* 10° 10’ 10? 10° 10
size of connected components size of connected components
(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 4.7: Histogram of the size of connected components in the samples of the
Ising model at the critical temperature.

4.2.6 Learning Using Weak Chaos

There are two theoretical frameworks for statistical inference: the frequentist
and the Bayesian paradigm. A frequentist assumes a true objective value
for some parameter and tries to estimate its value from samples. Except
for the simplest models, estimation usually involves an iterative procedure
where the value of the parameter is estimated with increasing precision. In
information theoretic terms, this means that more and more information
from the data is accumulated in more decimal places of the estimate. With
a finite data-set, this process should stop at some scale because there is
not enough information in the data that can be transferred into the decimal
places of the parameter. If we continue anyway, we will overfit to the dataset

92

Herding as a Learning System with Edge-of-Chaos Dynamics

at hand. In a Bayesian setting we entertain a posterior distribution over
parameters, the spread, or more technically speaking, entropy, of which
determines the amount of information it encodes. In Bayesian estimation,
the spread automatically adapts itself to the amount of available information
in the data. In both cases, the learning process itself can be viewed as
a dynamical system. For a frequentist this means a convergent series of
parameter estimates indexed by the learning iteration wi,wso,.... For a
Bayesian running a MCMC procedure this means a stochastic process
converging to some equilibrium distribution. Herding introduces a third
possibility by encoding all the information in a deterministic nonlinear
dynamical system. We focus on studying the weakly chaotic behavior of
the herding dynamics in this subsection. The sequence of weights never
converges but traces out a quasi-periodic trajectory on an attractor set which
is often found to be of fractal dimension. In the language of iterated maps,
wir1 = F(wy), a (frequentist) optimization of some objective results in an
attractor set that is a single point, Bayesian posterior inference results in a
(posterior) probability distribution while herding will result in a (possibly
fractal) attractor set which seems harder to meaningfully interpret as a
probability distribution.

Example: Herding a Single Neuron

We first study an example of the herding dynamics in its simplest form and
show its equivalence to some well-studied theories in mathematics. Consider
a single (artificial) neuron, which can take on two distinct states: either
it fires (x = 1) or it does not fire (z = 0). Assume that we want to
simulate the activity of a neuron with an irrational firing rate, 7 € [0, 1],
that is, the average firing frequency approaches limp_, % Zthl st =m. We
can achieve that by applying the herding algorithm with a one-dimensional

feature ¢(x) = = and feeding the input moment with the desired rate ¢ = .
Applying the update equations 4.7-4.8 we get the following dynamics:

St = H(wt,l > 0) (4.25)

Wy = Wp_1 + T — 8¢ (4.26)

where I[-] is the indicator function. With the moment matching property
we can show immediately that the firing rate converges to the desired
value 7 for any initial value of w. The update equations are illustrated in
Figure 4.8. This dynamics is a simple type of interval translation mapping
(ITM) problem in mathematics (Boshernitzan and Kornfeld, 1995). In a
general ITM problem, the invariant set of the dynamics often has a fractal

4.2 Herding Model Parameters 93

Figure 4.8: Herding dynamics for a single binary variable. At every iteration the
weight is first increased by 7. If w was originally positive, it is then depressed by 1.

dimension. But for this simple case, the invariant set is the entire interval
(m — 1,x] if 7 is an irrational number and a finite set if it is rational. As a
neuron model, one can think of w; as a “synaptic strength.” At each iteration
the synaptic strength increases by an amount 7. When the synaptic strength
rises above 0, the neuron fires. If it fires its synaptic strength is depressed
by a factor 1. The value of wq only has some effect on the transient behavior
of the resulting sequence s1, so,

It is perhaps interesting to note that by setting m# = ¢ with ¢ the golden
mean ¢ = %(\/5 —1) and initializing the weights at wg = 2¢ — 1, we exactly
generate the “Rabbit Sequence”: a well studied Sturmian sequence which
is intimately related with Fibonacci numbers3). In Figure 4.9 we plot the
weights (a) and the states (b) resulting from herding with the “Fibonacci
neuron” model. For a proof, please see Welling and Chen (2010).

When initializing wg = 0, one may think of the synaptic strength as an
error potential that keeps track of the total error so far. One can further
show that the sequence of states is a discrete low discrepancy sequence
(Angel et al., 2009) in the following sense:

Proposition 4.5. If w is the weight of the herding dynamics for a single
binary variable x with probability P(x = 1) = m, and w,; € (w—1,7| at some
step T >0, then w, € (m — 1, 7|, Vt > 7. Moreover, for T € N, we have:

T+T T+T
d I =1]-Tr[<1, | D Is=0-T(1-7)|<1 (4.27)
t=7+1 t=7+1

Proof. We first show that (m — 1,7] is the invariant interval for herding
dynamics. Denote the mapping of the weight in Equation 4.25 and 4.26 as

3. Imagine two types of rabbits: young rabbits (0) and adult rabbits (1). At each new
generation the young rabbits grow up (0 — 1) and old rabbits produce offspring (1 — 10).
Recursively applying these rules we produce the rabbit sequence: 0 —+ 1 — 10 — 101 —
10110 — 10110101 etc. The total number of terms of these sequences and incidentally
also the total number of 1’s (lagged by one iteration) constitutes the Fibonacci sequence:
1,1,2,3,5,8,....

94

Herding as a Learning System with Edge-of-Chaos Dynamics

0.6

0.4r

State Sequence (white=1, black = 0)

%) o -

Rabbit - Herding
'S

o

_0'40 2 4 6 8 1012 14 16 18 20 22 24 26 28 30

iteration

10

20

N 15 N
iteration

Figure 4.9: Sequence of weights and states generated by the “Fibonacci neuron”
based on herding dynamics. Left: Sequence of weight values. Note that the state
results by checking if the weight value is larger than 0 (in which case s; = 1) or
smaller than 0 (in which case s; = 0). By initializing the weights at wg = 2¢ — 1
and using m = ¢, with ¢ the golden mean, we obtain the Rabbit sequence (see
main text). Right: Top stripes show the first 30 iterates of the sequence obtained
with herding. For comparison we also show the Rabbit sequence below it (white
indicates 1 and black indicates 0). Note that these two sequences are identical.

T. Then we can see that the interval (7 — 1, 7] is mapped to itself as
T(r—1,7] = T(n—1,0]UT(0, 7] = 2r—1,7|U(m—1,2nr—1] = (m—1, 7] (4.28)

Consequently when w, falls inside the invariant interval, we have w; €
(m = 1,7],¥t > 7. Now summing up both sides of Equation 4.26 over t
immediately gives us the first inequality in 4.27 as:

T+T
Tr— > Tsy =1 = wrpr —wr € [-1,1]. (4.29)
t=7+1

The second inequality follows by observing that I[s; = 0] = 1—1[s; = 1]. O
As a corollary of Proposition 4.5, when we initialize wy = m —1/2, we can

improve the bound of the discrepancy by a half.

Corollary 4.6. If w is the weight of the herding dynamics in Proposition
4.5 and it is initialized at wo = m — 1/2, then for T € N, we have:

T+T 1
> s =0]-T(1—m)| < 5 (430)
t=7+1

T+T

> Ilsy=1]-Tr

t=7+1

<

9

N |

The proof immediately follows Equation 4.29 by plugging 7 = 0 and
wo = m — 1/2. In fact, setting wy = m — 1/2 corresponds to the condition
in the greedy algorithm interpretation in Section 4.2.4. One can see this

4.2 Herding Model Parameters 95

by constructing an equivalent herding dynamics with a feature of constant

norm as:
1 ifze=1
'(z) = 4.31
¢ () -1 ifx=0 ()
When initializing the weight at the moment w) = ¢ = 27 — 1, one

can verify that this dynamics generates the same sample sequence as the
original one and their weights are the same up to a constant factor of 2,
i.e. w; = 2wy, Vt > 0. The new dynamics satisfies the two assumptions in
Section 4.2.4 and therefore the sample sequences in both dynamical systems
greedily minimize the error of the empirical probability (up to a constant
factor):

=2

%th:u—w

t=1

1 T
D LACARICLESY (432)
t=1

This greedy algorithm actually achieves the optimal bound one can get with
herding dynamics in the 1-neuron model, which is 1/2.

Example: Herding a Discrete State Variable

The application of herding to a binary variable can be extended naturally
to a discrete state variables. Let x be a variable that can take one of the
D states, {0,1,...,D — 1}. Given any distribution over these D states in
the set ™ € RP, g:_ol mq = 1, we can run herding to simulate the activity
of the discrete variable. The feature function, ¢(x), is defined as the 1-of-
D encoding of the discrete state, that is, a vector of D binary numbers, in
which all the numbers are 0 except for the element indexed by the value of x.
For example, for a variable with 4 states, the feature function of ¢(x = 3) is
[0,0,1,0]. It is easy to observe that the expected value of the feature vector
under the distribution 7 is exactly equal to 7. Now, let us apply the herding
update equations with the feature map ¢ and input moment 7:

s; = argmax wi_; () = argmax wy ;1 (4.33)
x T
Wi =W + T — P(s¢) (4.34)

The weight variables act similarly to the synaptic strength analogy in
the neuron model example. At every iteration, the state with the highest
potential gets activated, and then the corresponding weight is depressed
after activation. Applying Proposition 4.2, we know that the empirical
distribution of the samples converges to the input distribution at a faster

96

Herding as a Learning System with Edge-of-Chaos Dynamics

i
— |

Il

s=3

Figure 4.10: Cones in parameter space
{w1, w2} that correspond to the dis-
crete states si,...,86. Arrows indicate
the translation vectors associated with
the cones.

Figure 4.11: Fractal attractor set for
herding with two parameters. The cir-
cles represent the feature-vectors eval-
uated at the states si,..., s¢. Hausdorff
dimension for this example is between 0

and 1.

rate than one would get from random sampling:

;g¢(st) _xl=0 (;) (4.35)

The dynamics of the weight vector is more complex than the case of a
binary variable in the previous subsection. However, there are still some
interesting observations one can make about the trajectory of the weights
which we explain in the appendix.

Weak Chaos in the Herding Dynamics

Now let us consider herding in a general setting with D states and each state
is associated with a K dimensional feature vector. The update equation for
the weights 4.8 can be viewed as a series of translations in the parameter
space, w — W + p(x), where each discrete state x € X corresponds to one
translation vector (i.e. p(x) = ¢—p(x)). See Figure 4.10 for an example with
D =6 and K = 2. The parameter space is partitioned into cones emanating
from the origin, each corresponding to a state according to Equation 4.7.
If the current location of the weights is inside cone x, then one applies the
translation corresponding to that cone and moves along p(x) to the next
point. This system is an example of what is known as a piecewise translation
(or piecewise isometry more generally) (Goetz, 2000).

4.2 Herding Model Parameters 97

It is clear that this system has zero Lyapunov exponents? everywhere (ex-
cept perhaps on the boundaries between cones but since this is a measure
zero set we will ignore these). As the evolution of the weights will remain
bounded inside some finite ball the evolution will converge to some attrac-
tor set. Moreover, the dynamics is non-periodic in the typical case (more
formally, the translation vectors must form an incommensurate (possibly
over-complete) basis set; for a proof see Appendix B of Welling and Chen
(2010)). It can often be observed that this attractor has fractal dimension
(see Figure 4.11 for an example). All these facts point to the idea that herd-
ing is on the edge between full chaos (with positive Lyapunov exponents)
and regular periodic behavior (with negative Lyapunov exponents). In fact,
herding is an example of what is called “weak chaos”, which is usually defined
through its (topological) entropy discussed below. Finally, as we have illus-
trated in Figure 4.1, one can construct a sequence of iterated maps of which
herding is the limit and which exhibits period doubling. This is yet another
characteristic of systems that are classified as “edge of chaos”. Whether the
attractor set is of fractal dimension in general remains an open question. For
the case of single neuron model, the attractor is the entire interval (r — 1, 7]
if is irrational but for systems with more states it remains unknown.

We will now estimate the entropy production rate of herding. This will
inform us further of the properties of this system and how it processes
information. From Figure 4.10 we see that the sequence si,so,... can be
interpreted as the symbolic system of the continuous dynamical system
defined for the parameters w. A sequence of symbols (states) is sometimes
referred to as an “itinerary.” Every time w falls inside a cone we record
its label which equals the state x. The topological entropy for the symbolic
system can be defined by counting the total number of subsequences of
length 7', which we will call M (7). One may think of this as a dynamical
language where the subsequences are called “words” and the topological
entropy is thus related to the number of words of length T". More precisely,
the topological entropy is defined as,

h= lim B(T) = lim 2220

4.36
T—oo T—o00 T ()

4. The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate
of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase
space with initial separation [§Z(0)| diverge (provided that the divergence can be treated
within the linearized approximation) at a rate given by [0Z(t)| =~ e**|6Z(0)| where X is
the Lyapunov exponent.

98

Herding as a Learning System with Edge-of-Chaos Dynamics

It was rigorously proven in Goetz (2000) that M (T") grows polynomially in 7’
for general piecewise isometries, which implies that the topological entropy
vanishes for herding. It is however interesting to study the growth of M (T")
as a function of T' to get a sense of how chaotic its dynamics is.

For the simplest model of a single neruon with 7 being an irrational
number, it turns out M (T') = T'+ 1, which is the absolute bare minimum for
sequences that are not eventually periodic. It implies that our neuron model
generates Sturmian sequences for irrational values of m which are precisely
defined to be the non-eventually periodic sequences of minimal complexity
(Lu and Wang, 2005). (For a proof, please see Welling and Chen (2010).)

To count the number of subsequences of length T for a general model,
we can study the T-step herding map that results from applying herding T’
steps at a time. The original cones are now further subdivided into smaller
convex polygons, each one labeled with the sequence si, so, ..., s7 that the
points inside the polygon will follow during the following T steps. Thus as we
increase T', the number of these polygons will increase and it is exactly the
number of those polygons which partition our parameter space that is equal
to the number of possible subsequences. We first claim that every polygon,
however small, will break up into smaller sub-pieces after a finite amount
of time. This is proven in Welling and Chen (2010). In fact, we expect
that in a typical herding system every pair of points will break up as well,
which, if true, would infer that the diameter of the polygons must shrink. A
partition with this property is called a generating partition. Based on some
preliminary analysis and numerical simulations, we expect that the growth of
M(T) in the typical case (a.k.a. with an incommensurate translation basis,
see Appendix B of Welling and Chen (2010)) is a polynomial function of the
time, M(T) ~ t¥, where K is the number of dimensions (which is equal to
the number of herding parameters). Since it has been rigorously proven that
any piecewise isometry has a growth rate that must have an exponent less
or equal than K (Goetz, 2000), this would mean that herding achieves the
highest possible entropy within this class of systems with H(T) = Th(T)
for a sequence of length T' (for T large enough) as:

H(T) = Klog(T) (4.37)

This result should be understood in comparison with regular and random
sequences. In a regular (constant or periodic) sequence, the number of
subsequences is constant with respect to the length, i.e. H(T) = const. In
contrast, the dominant part of the Kolmogorov-Sinai entropy of a random
sequence (considering, e.g., a stochastic process) or a fully chaotic sequence

4.3 Generalized Herding 99

grows linearly in time 7', i.e. Hext(T) = AT due to the injected random
noise.

4.3 Generalized Herding

The moment matching property in Proposition 4.1 and 4.2 requires only
a mild condition on the Lo norm of the dynamic weights. That grants us
with great flexibility in modifying the original algorithm for more practical
implementation as well as a larger spectrum of applications. Gelfand et al.
(2010) provided a general condition on the recurrence of the weight sequence,
from which we discuss how to generalize the herding algorithm in this section
with two specific examples. Chen et al. (2014) described another extension of
herding that violated the condition but it achieved the minimum matching
distance instead in a constrained problem.

4.3.1 A General Condition for Recurrence — The Perceptron Cycling
Theorem

The moment matching property of herding relies on the recurrence of the
weight sequence (Corollary 4.4) whose proof again relies on the premise that
the maximization is carried out exactly in the herding update equation 4.7.
However, the number of model states is usually exponentially large (e.g.
|X| = J™ when x is a vector of m discrete variables each with J values) and
it is intractable to find a global maximum in practice. A local maximizer has
to be employed instead. One wonders if the features averaged over samples
will still converge to the input moments when the samples are suboptimal
states? In this subsection we give a general and verifiable condition for the
recurrence of the weight sequence based on the perceptron cycling theorem
(Minsky and Papert, 1969), which consequently suggests that the moment
matching property may still hold at the rate of O(1/7") even with a relaxed
herding algorithm.

The invention of the perceptron (Rosenblatt, 1958) goes back to the very
beginning of AI more than half a century ago. Rosenblatt’s very simple,
neurally plausible learning rule made it an attractive algorithm for learning
relations in data: for every input x;, make a linear prediction about its label:
yi = sign(w]_;x;,) and update the weights as,

wi = w1 + X, (i, — U;,)- (4.38)

A critical evaluation by Minsky and Papert (1969) revealed the perceptron’s
limited representational power. This fact is reflected in the behavior of

100

Herding as a Learning System with Edge-of-Chaos Dynamics

Rosenblatt’s learning rule: if the data is linearly separable, then the learning
rule converges to the correct solution in a number of iterations that can
be bounded by (R/7)?, where R represents the norm of the largest input
vector and « represents the margin between the decision boundary and the
closest data-case. However, “for data sets that are not linearly separable,
the perceptron learning algorithm will never converge” (quoted from Bishop
et al. (2006)).

While the above result is true, the theorem in question has something
much more powerful to say. The “perceptron cycling theorem” (PCT)
(Minsky and Papert, 1969) states that for the inseparable case the weights
remain bounded and do not diverge to infinity. The PCT was initially
introduced in Minsky and Papert (1969) but had a gap in the proof that
was fixed in Block and Levin (1970).

Theorem 4.7 (Boundedness Theorem). Consider a sequence of vectors
{w}, wg € RP, t = 0,1,... generated by the iterative procedure of Al-
gorithm 4.1.

Algorithm 4.1 Algorithm to generate the sequence {w;}.

V is a finite set of vectors in RP.
Wy is initialized arbitrarily in RP.
for t =0 — T (T could be c0) do
Wit1 = Wy + V¢, where v, € V satisfies WtTVt <0
end for

Then, ||w¢|| < ||woll + M,¥t > 0 where M is a constant depending on V
but not on wy.

The theorem still holds when V' is a finite set in a Hilbert space. The
PCT leads to the boundedness of the perceptron weights where we identify
Vi = X, (Vi — y;‘tﬂ), a finite set V = {x;(y; — y/)|yi = 1,y = £1,i =
1,..., N} and observe

Wi ve =w{ X, (Ui, —vE,) = W X, | (sign(w xi,,,)yi,,, —1) <0 (4.39)
When the data is linearly separable, Rosenblatt’s learning rule will find a w
such that w’v; = 0,Vi and the sequence of w; converges. Otherwise, there
always exists some v; such that w’'v; < 0 and PCT guarantees the weights
are bounded.

The same theorem also applies to the herding algorithm by identifying
vi = ¢ — ¢P(si11) with s;41 defined in Equation 4.7, a finite set V =

4.3 Generalized Herding 101

{¢ — ¢(x)|x € X}, and observing that
wivi=w ¢—w/P(si11) <0 (4.40)

It is now easy to see that, in general, herding does not converge because
under very mild conditions we can always find an s;;1 such that th vy < 0.
More importantly, the boundedness theorem (or PCT) provides a general
condition for the recurrence property and hence the moment matching
property of herding. Inequality 4.40 is easy to be verified at running time
and does not require s¢41 to be the global optimum.

4.3.2 Generalizing the Herding Algorithm

PCT ensures that the average features from the samples will match the
moments at a fast convergence rate as long as the algorithm we are running
satisfies the following conditions:

1. The set V is finite,
2. wlivi=wlo—wlo(s) <0,Vt,

This set of mild conditions allows us to generalize the original herding
algorithm easily.

Firstly, the PCT provides a theoretical justification for using a local search
algorithm that performs partial maximization. For example, we may start
the local search from the state we ended up in during the previous itera-
tion (a so-called persistent chain (Younes, 1989; Neal, 1992; Yuille, 2004;
Tieleman, 2008)). Or, one may consider contrastive divergence-like algo-
rithms (Hinton, 2002), in which the sampling or mean field approxima-
tion is replaced by a maximization. In this case, maximizations are ini-
tialized on all data-cases and the weights are updated by the difference
between the average over the data-cases minus the average over the {s;}
found after (partial) maximization. In this case, the set V is given by:
V ={¢ - % Zi’;l ¢(si)|s; € X,Vi}. For obvious reasons, it is now guar-
anteed that WtTVt <0.

Secondly, we often use mini-batches of size d < D in practice instead
of the full data set. In this case, the cardinality of the set V is enlarged
to, e.g., |V| = C(d,D)J™, with C(d, D) representing the “d choose D”
ways to compute the sample mean cf)(d) based on a subset of d data-
cases. The negative term remains unaltered. Since the PCT still applies:
|+ 220 by — + i qﬁ(st)H2 = O(1/7). Depending on how the mini-
batches are picked, convergence onto the overall mean ¢ can be either

102

Herding as a Learning System with Edge-of-Chaos Dynamics

0(1/+/7) (random sampling with replacement) or O(1/7) (sampling without
replacement which has picked all data-cases after [D/d] rounds).

Besides changing the way we compute the positive and negative terms in
vy, generalizing the definition of features will allow us to learn a much wider
scope of models beyond the fully visible MRF's as discussed in the following
sections.

4.3.3 Herding Partially Observed Random Field Models

The original herding algorithm only works for fully visible MRFs because
in order to compute the average feature vector of the training data we have
to observe the state of all the variables in a model. In this subsection, we
generalize herding to partially observed MRFs (POMRFs) by dynamically
imputing the value of latent variables in the training data during the run
of herding. This extension allows herding to be applied to models with a
higher representative capacity.

Consider a MRF with discrete random variables (x,z) where x will be
observed and z will remain hidden. A set of feature functions is defined on x
and z, {¢a(x,2)}, each associated with a weight w,. Given these quantities
we can write the following Gibbs distribution,

1
P ; = 4.41
(x,2z; W) Z(w) exp (; waqﬁa(x,z)) (4.41)
The log-likelihood function with a dataset D = {x;}2, is defined as

Zlog (Z exp (T¢) xz,zz))> —log Z(w) (4.42)

Analogous to the duality relationship between MLE and MaxEnt for fully
observed MRFs, we can write the log-likelihood of a POMRF as

RS
(= %zt)}iml%n — z;ﬂ{(Qz) — H(R) (4.43)
+ Z We (Q (zi)[¢a(xiv Zz)] - IER(x,z) [¢O&(X7 Z)}) (444)

where {Q;} are variational distributions on z, and R is a variational distri-

EMbﬁb

bution on (x,z). The dual form of MLE turns out as a minimax problem on

4.3 Generalized Herding 108

% Z?Zl H(Q;) — H(R) with a set of constraints

1 D
5 2B (a0 [0a(xi 2)] = Enpez) [0 (X, 2)] (4.45)
=1

We want to achieve high entropy for the distributions {Q;} and R, and mean-
while the average feature vector on the training set with hidden variables
marginalized out should match the expected feature w.r.t. to the joint distri-
bution of the model. The weights w,, act as Lagrange multipliers enforcing
those constraints.

Similar to the derivation of herding for fully observed MRFs, we now
introduce a temperature in Equation 4.42 by replacing w with w/T'. Taking
the limit T — 0 of 47 &ef ¢, we see that the entropy terms vanish. For a given
value of w and in the absence of entropy, the optimal distribution {@;} and
R are delta-peaks and their averages should be replace with maximizations,
resulting in the objective,

D
lo(w) = % > maxw! p(xi, z;) — maxw' p(s) (4.46)
=1

where we denote s = (x, z).
Taking a gradient descent update on ¢y with a fixed learning rate (n = 1)
defines the herding algorithm on POMRFs (Welling, 2009b):

z;, = arg maxth_lqb(xi, z;), Vi (4.47)
s; = argmax wy_;¢p(s) (4.48)
S
1 2D
wi=wr s |53 o zf»] - () (4.49)

We use a superscript “*” to denote states obtained by maximization. These
equations are similar to herding for the fully observed case, but different in
the sense that we need to impute the unobserved variables z; for every data-
case separately through maximization. The weight update also consist of a
positive “driving term,” which is now a changing average over data-cases,
and a negative term, which is identical to the corresponding term in the
fully observed case.

Moment Matching Property

We can prove the boundedness of the weights with PCT by identifying
v, = [% Zil ¢(xi,z;t+1)} — @(sjyq), a finite set V' = {v;({zi},s)|z; €

104

Herding as a Learning System with Edge-of-Chaos Dynamics

Xz, Vi,s € X}, and observing the inequality

wivy = [ZWt Xz,zztﬂ)] — W?gb(s;fﬂ) (4.50)
1 2D
= [D Zmz?xth¢(X¢,zi)] - mgxthqb(s) <0 (4.51)
i=1

The last inequality holds because the second term maximizes over more
variables than the first term. Again, we do not have to be able to solve the
difficult optimization problems of Equation 4.47 and 4.48. Partial progress
in the form of a few iterations of coordinate-wise descent is often enough to
satisfy the condition in Equation 4.50 which can be checked easily.

Following a similar proof as Proposition 4.2, we obtain the fast moment
matching property of herding on POMRFs:

Proposition 4.8. There exists a constant R such that herding on a partially
observed MRF satisfies

Z Z% Xi, %) Z% < —R,Va (4.52)

Notice that besides a sequence of samples of the full state {s;} that
form the joint distribution in the herding algorithm, we also obtain a
sequence of samples of the hidden variables {z} for every data case x;
that forms the conditional distribution of P(z;|x;). Those consistencies
in the limit of 7 — oo in Proposition 4.8 are in direct analogy to the
maximum likelihood problem of Equation 4.42 for which the following
moment matching conditions hold at the MLE for all «,

D

1

5 Z EP(Zi‘Xi;WMLE) [¢O& (Xi7 ZZ)] - EP(X,Z;WMLE) [¢CM (X7 Z)] (453)
i=1

These consistency conditions alone are not sufficient to guarantee a good
model. After all, the dynamics could simply ignore the hidden variables by
keeping them constant and still satisfy the matching conditions. In this case
the hidden and visible subspaces completely decouple, defeating the purpose
of using hidden variables in the first place. Note that the same holds for the
MLE consistency conditions alone. However, an MLE solution also strives
for high entropy in the hidden states. We observe in practice that the herding
dynamics usually also induces high entropy in the distributions for z avoiding
the decoupling phenomenon described above.

4.3 Generalized Herding 105

The proof of the boundedness of weights depends on the assumption that
we can find the global maximum in Equation 4.48, which is an intractable
problem. Welling (2009b) also proposed a fully tractable herding variant
that was guaranteed to satisfy PCT.

Proposition 4.9. Call A any tractable optimization algorithm to locate a
local maximum in the product qub(x, z). This algorithm will be used to
compute both z; and s*. Call & 4(x;, W) = —wl ¢p(x;,2}) the energy of data-
case i (note that this definition depends on the algorithm A). Assume that
given any initialization, A always return a state with an energy no larger
than its initial state. Then the following tractable herding algorithm will
remain in a compact region of weight space: Apply the usual herding updates
with the difference that the optimization for s* is initialized at the state
(x4+,2}.) which represents the data-case with lowest energy € 4(Xi, W).

Proof. The proof is trivial using the PCT condition as:

wivy=— [11) XD: En(xs, wy)| + Ea(s™, wy) (4.54)
o i=1

< - [D ;((:A(Xiawt) + Ealxi-, wy) <0 (4.55)

O

4.3.4 Herding Discriminative Models

We have been talking about running herding dynamics in an unsupervised
learning setting. The idea of driving a nonlinear dynamical system to match
moments can also be applied to discriminative learning by incorporating
labels into the feature functions. Recalling the perceptron learning algorithm
in Section 4.3.1, the learning rule in Equation 4.38 can be reformulated in
herding style:

v, = argmax wi_ (x;,y) (4.56)
ye{_171}

Wi = W1+ Xi, Vi, — Xi,Yj, (4.57)

where we identify the feature functions as ¢;(x,y) = 24,5 = 1,...,m,

use mini-batches of size 1 at every iteration, and do a partial maximization
of the full state (x,y) with the covariate x clamped at the input x;,. The
PCT guarantees that the moments (correlation between covariates and la-
bels) Ep [xy] from the training data are matched with Ep_p(y»|x)[xy*] where
p(y*|x) is the model distribution implied by how the learning process gen-

106

Herding as a Learning System with Edge-of-Chaos Dynamics

erates y* with the sequence of weights w,. The voted perceptron algorithm
(Freund and Schapire, 1999) is an algorithm that runs exactly the same up-
date procedure, applies the weights to make a prediction on the test data at
every iteration Y. ;, and obtains the final prediction by averaging over iter-
ations yl. = sign(1 37, Ytest,t)- This amounts to learning and predicting
based on the conditional expectation Ep(,«x)[y* = 1[Xtest| in the language
of herding.

Let us now formulate the conditional herding algorithm in a more general
way (Gelfand et al., 2010). Denote the complete state of a data-case by
(x,¥,z) where x is the visible input variable, y is the label, and z is
the hidden variable. Define a set of feature functions {¢n(x,y,z)} with
associated weights {wq}. Given a set of training data-cases, D = {x;,y;},
and a test set Diest = {Xtest,j}, we run the conditional herding algorithm to
learn the correlations between the inputs and the labels and make predictions
at the same time using the following update equations:

zj, = argmax w/ (X, yi, %), V(xi,y;) € D (4.58)
(¥ir»25y) = argmax wi_ (i, ¥4, %), Vx; € Dy (4.59)
(yi,2:)

Wt = Wi +

D D
1 1
5 Z¢(Xlayl7z'lzt)] - [D Z ¢(X’iay’?t7zz<t)] (460)
=1 =1
(yzest,j,t’ztest,j,t) = arg I;HZX W?¢(Xtest,jayja Zj)avxtest,j € Dtest
(4.61)

In the positive term of Equation 4.60, we maximize over the hidden variables
only, and in the negative term we maximize over both hidden variables and
the labels. The last equation generates a sequence of labels, Yiest,j¢» that can
be considered as samples from the conditional distribution of the test input
from which we obtain an estimate of the underlying conditional distribution:

-
P(yxies) ® = 3 1Yo =) (162)
t=1

In general, herding systems perform better when we use normalized fea-
tures: ||p(x,2,y)|| = R, V(x,2,y). The reason is that herding selects states
by maximizing the inner product w’ ¢ and features with large norms will
therefore become more likely to be selected. In fact, one can show that
states inside the convex hull of the ¢(x,y,z) are never selected. For bi-
nary (%1) variables all states live on the convex hull, but this need not be
true in general, especially when we use continuous attributes x. To rem-

4.3 Generalized Herding 107

edy this one can either normalize features or add one additional feature®

¢0 X,y,z \/Rmax ||¢ X,yY, %z)||27 Where Rmax = maxx,y,z H¢(XaY7Z)H
with x only allowed to vary over the data-cases.

We may want to use mini-batches D, instead of the whole training set for
a more practical implementation, and the argument on the validity of using
mini-batches in Section 4.3.2 applies here as well. It is easy to observe that
Rosenblatts’s perceptron learning algorithm is a special case of conditional
herding when there are no hidden variables, y is a single binary variable,
the feature function is ¢ = xy, and we use a mini-batch of size 1 at every
iteration.

Compared to the herding algorithm on partially observed MRFs, the
main difference is that we do partial maximization in Equation 4.59 with
a clamped visible input x on every training data-case instead of a joint
maximization on the full state. Notice that in this particular variant of
herding, the sequence of updates may converge when all the training data-
cases are correctly predicted, that is, yj, = y;,Vi = 1,...,D at some t.
For an example, the convergence is guaranteed to happen for the percepton
learning algorithm on a linearly separable data set. We adopt the strategy
in the voted perceptron algorithm (Freund and Schapire, 1999) which stops
herding when convergence occurs and uses the sequence of weights up to
that point for prediction in order to prevent the converged weights from
dominating the averaged prediction on the test data.

Clamping the input variables allows us to achieve the following moment
matching property:

Proposition 4.10. There exists a constant R such that conditional herding
with the update equations 4.58-4.60 satisfies

D Z Z¢a leyzta zt .D Z Z¢a Xi,Yi, Zt) <

The proof is straightforward by applying PCT where we identify

1 & RS
Vi = [D Z ¢(Xia Yi, Z;t)] - [D Z ¢(Xi> y;'kt’ Zzt)] ’ (464)
=1 =1

the finite set V' = {v({z,},{y/},{z/})|z, € X,,y] € Xy,z] € X,}, and
observe the inequality w}v; < 0 because of the same reason as herding
on POMRFs. Note that we require V' to be of a finite cardinality, which in
return requires Xy and X, to be finite sets, but there is not any restriction on

—R,\m (4.63)

5. If in test data this extra feature becomes imaginary we simply set it to zero.

108

Herding as a Learning System with Edge-of-Chaos Dynamics

the domain of the visible input variables x. Therefore we can run conditional
herding with input x as continuous variables.

Zero Temperature Limit of CRF

Consider a CRF with the probability distribution defined as

P(y’ Z|X; W) = Z(V\l/X) exp <Z wa¢a (X7 Yy, Z)) (465)

where Z(w,x) is the partition function of the conditional distribution. The
log-likelihood function for a dataset D = {x;,y;}2 | is expressed as

D
= %Z (log (Z exp (WT(b(Xi,yZ',Zi)) —log Z(W,xi)> (4.66)
=1 Z;

Let us introduce the temperature 7" by replacing w with w/7" and take the
.. def
limit T"— 0 of {7 =
function

T¢. We then obtain the familiar piecewise linear Tipi

bo(w =D Z <maxw D(xi,yi,Zi) — f;}f%zi(WT¢(Xz',y@',Zi)> (4.67)
Running gradient descent updates on £y(w) immediately gives us the update
equations of conditional herding 4.58-4.60.

Similar to the duality relationship between MLE on MRF's and the Max-
Ent problem, MLE on CRFs is the dual problem of maximizing the entropy
of the conditional distributions while enforcing the following constraints:

D D

1 1

D E I['EP(z|x7¢,yi) [Pa(Xi,yi, 2)] = D E IEP(y,z\xi) [Pa(xi,y,2)], Vo (4.68)
=1 =1

When we run conditional herding, those constraints are satisfied with the
moment matching property in Proposition 4.10, but how to encourage high
entropy during the herding dynamics is again an open problem. We suggest
some heuristics to achieve high entropy in the next experimental section.
Note that there is a difference between MLE and conditional herding when
making predictions. While the prediction of a CRF with MLE is made with
the most probable label value at a point estimate of the parameters, con-
ditional herding resorts to a majority voting strategy as in the voted per-
ceptron algorithm. The regularization effect via averaging over predictions
often provides more robust performance as shown later.

4.4 FErperiments 109

4.4 Experiments

We study the empirical performance of the herding algorithm introduced in
Section 4.2 and the extension with hidden variables in Section 4.3.3 and for
discriminative models in Section 4.3.4.

4.4.1 Herding with Fully Visible Models

In the following experiments we will determine the ability of herding to
convert information about the average value of features in the training
data into estimates of some quantities of interest. In particular the input
to herding will be joint probabilities of pairs of variables (denoted H.XX)
and sometimes triples of variables (denoted H.XXX) where all variables will
be binary valued (which is easily relaxed).

In experiment I we will consider the quantity P(k) = E[I[)>_, X; =
k — 1]] which is the distribution of the total number of 1’s across all
attributes. This quantity involves all variables in the problem and cannot
be directly estimated from the input which consists of pairwise information
only. This experiment measures the ability of herding to generalize from
local information to global quantities of interest. In total 100K samples were
generated and used to estimate P(k). The results were compared with the
following two alternatives: 1) sampling 100K pseudo-samples from the single
variable marginals and using them to estimate P(k) (denoted “MARG”), 2)
learning a fully connected, fully visible Boltzmann machine using the pseudo-
likelihood method® (denoted PL), then sampling 200K samples from that
model and using the last 100K to estimate P(k).

In experiment II we will estimate a discriminant function for classifying
one attribute (the label) given the values of other attributes. Our approach
was simply to perform online learning of a logistic regression function after
each pseudo-sample collected from herding. Again, local pairwise informa-
tion is turned into a global discriminant function which is then compared
with some standard classifiers learned directly from the data. In particu-
lar, we compared against Naive Bayes, 5-nearest neighbors, logistic regres-
sion and a fully observed, fully connected Boltzmann machine learned with
pseudo likelihood on the joint space of attributes and labels. The learned
model’s conditional distribution of label given the remaining attributes was
subsequently used for prediction.

We have used the following datasets in our experiments.

6. This method is close to optimal for this type of problem (Parise and Welling, 2005).

110

Herding as a Learning System with Edge-of-Chaos Dynamics

Dataser H.XXX H.XX PL MARG
BowLinGg 5E-3 4.1E-2 1.2E-1 4.3E-1
ABELONE 8E-4 2.5E-3 2.2E-2 1.8E0
DiciTs - 6.2E-2 3.3E-2 4E-1
NEwsS - 2.5E-2 1.9E-2 5E-1

Table 4.1: Abelone/Digits/NewsGroups: KL divergence between true (data)
distribution and the estimates from 1) herding algorithm using all triplets, 2)
herding with all pairs, 3) samples from pseudo-likelihood model and 4) samples
from single marginals.

A) The “Bowling Data” set.” Each binary attribute represents whether a
pin has fallen during two subsequent bowls. There are 10 pins and 298 games
in total. This data was generated by P. Cotton to make a point about the
modelling of company default dependency. Random splits of 150 train and
148 test instances were used for the classification experiments.

B) Abalone dataset.® We converted the dataset into binary values by
subtracting the mean from all (8) attributes and labels and setting all
obtained values to 0 if smaller than 0 and 1 otherwise. For the classification
task we used random subsets of 2000 examples for training and the remaining
2177 for testing.

C) “Newsgroups-small”® prepared by S. Roweis. It has 100 binary at-
tributes and 16,242 instances and is highly sparse (4% of the values is 1).
Random splits of 10,000 train and 6,242 test instances were used for the
classification experiments.

D) Digits: 8 x 8 binarized handwritten digits. We used 1100 examples from
the digit classes 3 and 5 respectively (a total of 2200 instances). The dataset
contains 30% 1’s. This dataset was split randomly in 1600 train and 600 test
instances.

The results for experiment I are shown in Table 4.1 and Figure 4.12. Note
that the herding algorithms are deterministic and repetition would have
resulted in the same values.

We observe that herding is successful in turning local average statistics
into estimates of global quantities. Providing more information such as joint
probabilities over triplets does significantly improve the result (the triplet
results for Digits and News took too long to run due to the large number
of triplets involved). Also of interest is the fact that for the low dimensional

7. http://www.financialmathematics.com/wiki/Code:tenpin/data
8. Downloadable from UCI repository
9. Downloaded from: http://wuw.cs.toronto.edu/~roweis/data.html

4.4 Ezperiments

111

0.35 ‘ ‘ :
Il Empirical
I H. XXX
0.3r [IH.XX
EPL
EEMARG
0.25-
0.2r
=
a
0.151
0.1f
0.051
) b

12345&7891011

Figure 4.12: Estimates of P(k) for the Bowling dataset. Each group of 5 bars
represent the estimates for 1) ground truth, 2) herding with triples, 3) herding with
pairs, 4) pseudo-likelihood, 5) marginals.

Dataser H.XXY PL 5NN NB LR
ABELONE 0.24 +0.004 0.244+0.004 0.33+0.1 0.27£0.006 0.24 £ 0.004
BowLING 0.23 £0.03 0.28 £0.06 0.32 £0.05 0.23 £0.03 0.23£0.03
DicITs 0.05 £ 0.01 0.06 £ 0.01 0.05 £0.01 0.09 £0.01 0.06 £ 0.02
NEWS 0.11+0.005 0.04+£0.001 0.13+£0.006 0.12£0.003 0.11 £0.004

Table 4.2: Average classification results averaged over 5 runs.

data H.XX outperformed PL but for the high-D datasets the opposite was
true while both methods seem to leverage the same second order statistics
(even though PL needs the actual data to learn its model).

The results for the classification experiment are shown in Table 4.2. On
all tasks the online learning of a linear logistic regression classifier did just
as well as running logistic regression on the original data directly. This
implies that the herding algorithm generates the information necessary
for classification and that the decision boundary can be learned online
during herding. Interestingly, the PL procedure significantly outperformed
all standard classifiers as well as herding on the Newsgroup data. This
implies that a more sophisticated decision boundary is warranted for this
data.

To see if the herding sequence contained the information necessary to
estimate such a decision boundary we reran PL on the first 10,000 pseudo-

112

Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.13: Top half: Sequence of 300 pseudo-samples generated from a herding
algorithm for the “Newsgroup” dataset. White dots indicate the presence of certain
word-types in documents (represented as columns). Bottom half: Newsgroup data
(in random order). Data and pseudo-samples have the same first and second order
statistics.

samples generated by herding resulting in an error of 0.04, answering the
question in the affirmative. A plot of the herding pseudo-samples as com-
pared to the original data is shown in Figure 1.

4.4.2 Herding with Hidden Variables

We studied generalized herding on the architecture of a restricted Boltzmann
machine (Hinton, 2002) (RBM). We used features ¢(x, z) = {z;, 2k, x;21},
where j and k are indices of variables, and the {—1,+1} representation be-
cause we found it worked significantly better than the {0, 1} representation.
To increase the entropy of the hidden units we left out the growth update
for the features {zx} implying that p(zx = 1) ~ 0.5. The intuition is the
same as for bagging: we want to create a high diversity of (almost inde-
pendent) ways to reconstruct the data because it will reduce the variance
when making predictions. We observed that high entropy hidden represen-
tations automatically emerged when using a large number of hidden units.
In contrast, for a small number of hidden units (say K < 30) there is a
tendency for the system to converge on low entropy representations and the
trick delivers some improvement.

We applied herding to the USPS Handwritten Digits datasetl® which
consists of 1100 examples of each digit 0 through 9 (totaling 11,000 ex-

10. Downloaded from http://www.cs.toronto.edu/~roweis/data.html

4.4 Ezperiments

118

amples). Each image has 256 pixels and each pixel has a value between
[1..256] which we turned into a binary representation through the mapping
!, = 20(5¢5 — 0.2) — 1 with ©(z > 0) = 1 and 0 otherwise. Each digit class
was randomly split into 700 train, 300 validation and 100 test examples.
As benchmarks we used 1NN using Manhattan distance and multinomial
logistic regression, both in pixel space.

We used two versions of herding, one where the maximization over s was
initialized at the value from the previous time step (H) and one where we
initialize at the data-case with the lowest energy (SH — the tractable al-
gorithm). In both cases we ran herding for 2000 iterations for each class
individually. During the second 1000 iterations we computed the energies
for the training data in that class, as well as for all validation and test data
across all classes. At each iteration we then used the training energies to
standardize the validation and test energies by computing their Z-scores:
&, = (& — pr)/0tm where gy and oy, represent the mean and standard
deviation of the energies of the training data at that iteration. The standard-
ized energies for test and validation data were subsequently averaged over
herding iterations (using online averaging). Once we have collected these
average standardized energies across all digit classes we fit a multinomial
logistic regression classifier to the validation data, using the 10 class-specific
energies as features.

We also compared these results against models learned with contrastive
divergence (Hinton, 2002) (CD) and persistent CD (Tieleman, 2008) (PCD).
For both CD and PCD we first applied (P)CD learning for 1000 iterations
in batch mode, using a stepsize of n = 1073. A momentum parameter of 0.9
and 1-step reconstructions were used for CD. No momentum and a single
sample in the negative phase was used for PCD. In the second 1000 iterations
we continued learning but also collected standardized validation and test
energies as before which we subsequently used for classification. We have also
experimented with chains of length 10 and found that it did not improved
the results but became prohibitively inefficient. To improve efficiency we
experimented with learning in mini-batches but this degraded the results
significantly, presumably because the number of training examples used to
standardize the energy scores became less reliable.

The results reported in Figure 4.14 show the classification results averaged
across 4 runs with different splits and for different values of hidden units.
Without trying to claim superior performance we merely want to make the
case that herding can be leveraged to achieve state-of-the-art performance
(note that USPS error rates are higher than MNIST error rates). We also see
that the tractable version of herding did not perform as well as the herding
using local optimization, which in turn performed equally well as learning a

114

Herding as a Learning System with Edge-of-Chaos Dynamics

0.1
0.09
50.08
<
=
Wo.07
c
k]
50.06
L
£o0.05
o]
So.04
[&]
0.03
0.02

0.01

0 MLRINN H1 H2 H3 H4 H5 SH1 SH2 SH3 SH4 SH5CD1CD2CD3PCD
Method

Figure 4.14: Classification results on USPS digits. 700 digits per class were used
for training, 300 for validation and 100 for testing. Shown are average results over
4 different splits and their standard errors. From left to right: MLR (multinomial
logistic regression), 1NN (1-nearest neighbor), H1-H5 (herding using local opti-
mization with 50,100,250,500 and 1000 hidden units respectively), SH1-SH5 (safe,
tractable herding from section 7 with 50,100,250,500 and 1000 hidden units respec-
tively), CD1-CD3 (contrastive divergence with 50,100,250 hidden units respectively)
and PCD (persistent CD with 500 hidden units).

SEECE

[@@ W [@B@ @]Fu

Figure 4.15: Discriminative Restricted Boltzmann Machine model of distribution
p(y.z[x).

model using CD. Persistent CD did not give very good results presumably
because we did not use optimal settings for step-size, weight-decay etc.. It
is finally interesting to observe that there does not seem to be any sign of
over-fitting for herding. For the model with 1000 hidden units, the total
number of real parameters involved is around 1.5 million which represents
more capacity than the 1.5 million binary pixel values in the data.

4.4.3 Discriminative Herding

We studied the behavior of conditional herding on two artificial and four real-
world data sets, comparing its performance to that of the voted perceptron
(Freund and Schapire, 1999) and that of discriminative RBMs (Larochelle
and Bengio, 2008). All the experiment results in this subsection are accred-
ited to the authors of Gelfand et al. (2010).

4.4 Ezperiments

115

« Voted perceptron
——Discr. RBM
=== Cond. herding

(a) Banana data set. (b) Lithuanian data set.

Figure 4.16: Decision boundaries of VP, CH, and dRBMs on two artificial data
sets.

We studied conditional herding in the discriminative RBM (dRBM) ar-
chitecture illustrated in Figure 4.15, that is, we use the following parame-
terization

wlp(x,y,z) =x Wz +y' Bz+ 60Tz +aly. (4.69)

where W, B, 8 and a are the weights, z is a binary vector and y is a binary
vector in a 1-of-K scheme.
Per the discussion in Section 4.3.4, we added an additional feature ¢o(x) =

VRZ . — ||x]|? with Rpax = max; ||x;]| in all experiments.

Ezxperiments on Artificial Data

To investigate the characteristics of the voted perceptron (VP), discrimina-
tive RBM (dRBM) and conditional herding (CH), we used the techniques
discussed in Section 4.3.4 to construct decision boundaries on two artificial
data sets: (1) the banana data set; and (2) the Lithuanian data set. We ran
VP and CH for 1,000 epochs using mini-batches of size 100. The decision
boundary for VP and CH is located at the location where the sign of the
prediction y;{. changes. We used conditional herders with 20 hidden units.
The dRBMs also had 20 hidden units and were trained by running conjugate
gradients until convergence. The weights of the dRBMs were initialized by
sampling from a Gaussian distribution with a variance of 10~4. The decision
boundary for the dRBMs is located at the point where both class posteriors
are equal, i.e., where p(Yiost = —1|Xtest) = P(Ytost = +1|Xtest) = 0.5.

Plots of the decision boundary for the artificial data sets are shown in
Figure 4.16. The results on the banana data set illustrate the representa-

116

Herding as a Learning System with Edge-of-Chaos Dynamics

tional advantages of hidden units. Since VP selects data points at random to
update the weights, on the banana data set, the weight vector of VP tends
to oscillate back and forth yielding a nearly linear decision boundary.!! This
happens because VP can regress on only 241 = 3 fixed features. In contrast,
for CH the simple predictor in the top layer can regress onto M = 20 hidden
features. This prevents the same oscillatory behavior from occurring.

Ezxperiments on Real-World Data

In addition to the experiments on synthetic data, we also performed experi-
ments on four real-world data sets - namely, (1) the USPS data set, (2) the
MNIST data set, (3) the UCI Pendigits data set, and (4) the 20-Newsgroups
data set. The USPS data set consists of 11,000, 16 x 16 grayscale images of
handwritten digits (1,100 images of each digit 0 through 9) with no fixed
division. The MNIST data set contains 70,000, 28 x 28 grayscale images of
digits, with a fixed division into 60,000 training and 10,000 test instances.
The UCI Pendigits consists of 16 (integer-valued) features extracted from
the movement of a stylus. It contains 10, 992 instances, with a fixed division
into 7,494 training and 3,498 test instances. The 20-Newsgroups data set
contains bag-of-words representations of 18,774 documents gathered from
20 different newsgroups. Since the bag-of-words representation comprises of
over 60,000 words, we identified the 5,000 most frequently occurring words.
From this set, we created a data set of 4,900 binary word-presence features
by binarizing the word counts and removing the 100 most frequently occur-
ring words. The 20-Newsgroups data has a fixed division into 11, 269 training
and 7,505 test instances. On all data sets with real-valued input attributes
we used the ‘normalizing’ feature described above.

The data sets used in the experiments are multi-class. We adopted a 1-of- K
encoding, where if y; is the label for data point x;, then y; = {yi1,....¥i k }
is a binary vector such that y;; = 1 if the label of the ith data point is k
and y; , = —1 otherwise. Performing the maximization in Equation 4.59 is
difficult when K > 2. We investigated two different procedures for doing
so. In the first procedure, we reduce the multi-class problem to a series of
binary decision problems using a one-versus-all scheme. The prediction on
a test point is taken as the label with the largest online average. In the
second procedure, we make predictions on all K labels jointly. To perform
the maximization in Equation 4.59, we explore all states of y in a one-of-K
encoding - i.e. one unit is activated and all others are inactive. This partial

11. On the Lithuanian data set, VP constructs a good boundary by exploiting the added
‘normalizing’ feature.

4.4 Ezperiments

117

maximization is not a problem as long as the ensuing configuration satisfies
w]v; < 0.12 The main difference between the two procedures is that in
the second procedure the weights W are shared amongst the K classifiers.
The primary advantage of the latter procedure is its less computationally
demanding than the one-versus-all scheme.

We trained the dRBMs by performing iterations of conjugate gradients
(using 3 line searches) on mini-batches of size 100 until the error on a
small held-out validation set started increasing (i.e., we employed early
stopping) or until the negative conditional log-likelihood on the training
data stopped coming down. Following Larochelle and Bengio (2008), we use
Lo-regularization on the weights of the dRBMs; the regularization parameter
was determined based on the generalization error on the same held-out
validation set. The weights of the dRBMs were initialized from a Gaussian
distribution with variance of 1074.

CH used mini-batches of size 100. For the USPS and Pendigits data sets
CH used a burn-in period of 1, 000 updates; on MNIST it was 5,000 updates;
and on 20 Newsgroups it was 20,000 updates. Herding was stopped when
the error on the training set became zero.!3

The parameters of the conditional herders were initialized by sampling
from a Gaussian distribution. Ideally, we would like each of the terms in
the energy function in Equation 4.69 to contribute equally during updating.
However, since the dimension of the data is typically much greater than the
number of classes, the dynamics of the conditional herding system will be
largely driven by W. To negate this effect, we rescaled the standard deviation
of the Gaussian by a factor 1/M with M the total number of elements of
the parameter involved (e.g. ow = o/(dim(x) dim(z)) etc.). We also scale
the learning rates 1 by the same factor so the updates will retain this scale
during herding. The relative scale between 17 and ¢ was chosen by cross-
validation. Recall that the absolute scale is unimportant (see Section 4.3.4
for details).

In addition, during the early stages of herding, we adapted the param-
eter update for the bias on the hidden units € in such a way that the
marginal distribution over the hidden units was nearly uniform. This has
the advantage that it encourages high entropy in the hidden units, lead-
ing to more useful dynamics of the system. In practice, we update 0 as

12. Local maxima can also be found by iterating over yfe’ft,z:éft’j, but the proposed
procedure is more efficient.

13. We use a fixed order of the mini-batches, so that if there are D data cases and the
batch size is d, if the training error is 0 for [D/d] iterations, the error for the whole
training set is 0.

118

Herding as a Learning System with Edge-of-Chaos Dynamics

Orr1 =01+ 13- >, (1=) (z;,) — 2, where i indexes the data points in the
mini-batch at time ¢, D, is the size of the mini-batch, and (z;,) is the batch
mean. A is initialized to 1 and we gradually half its value every 500 updates,
slowly moving from an entropy-encouraging update to the standard update
for the biases of the hidden units.

VP was also run on mini-batches of size 100 (with a learning rate of 1).
VP was run until the predictor started overfitting on a validation set. No
burn-in was considered for VP.

The results of our experiments are shown in Table 4.3. In the table,
the best performance on each data set using each procedure is typeset
in boldface. The results reveal that the addition of hidden units to the
voted perceptron leads to significant improvements in terms of generalization
error. Furthermore, the results of our experiments indicate that conditional
herding performs on par with discriminative RBMs on the MNIST and USPS
data sets and better on the 20 Newsgroups data set. The 20 Newsgroups data
is high dimensional and sparse and both VP and CH appear to perform quite
well in this regime. Techniques to promote sparsity in the hidden layer when
training dRBMs exist (see Larochelle and Bengio (2008)), but we did not
investigate them here. It is also worth noting that CH is rather resilient to
overfitting. This is particularly evident in the low-dimensional UCI Pendigits
data set, where the dRBMs start to badly overfit with 500 hidden units,
while the test error for CH remains level. This phenomenon is the benefit of
averaging over many different predictors.

4.5 Summary

We introduce the herding algorithm in this chapter as an alternative to
the maximum likelihood estimation for Markov random fields. It skips the
parameter estimation step and directly converts a set of moments from
the training data into a sequence of model parameters accompanied by a
sequence of pseudo-samples. By integrating the intractable training and
testing steps in the regular machine learning paradigm, herding provides
a more efficient way of learning and predicting in MRFs.

We study the statistical properties of herding and show that herding
dynamics introduces negative auto-correlation in the sample sequence which
helps to speed up the mixing rate of the sampler in the state space.
Quantitatively, the negative auto-correlation leads to a fast convergence rate
of O(1/T) between the sampling statistics and the input moments. That is
significantly faster than the rate of O(1/+/T) that an ideal random sampler
would obtain for an MRF at MLE. This distinctive property of herding

4.5 Summary

119

One-Versus-All Procedure

VP Discriminative RBM || Conditional herding
Data Set
100 200 100 200

MNIST 7.69% || 3.57% 3.58% 3.97% 3.99%
USPS 5.03% || 3.97% 4.02% 3.49% 3.35%

(0.4%) | (0.38%) (0.68%) (0.45%) (0.48%)
UCI Pendigits || 10.92%| 5.32% 5.00% 3.37% 3.00%
20 Newsgroups || 27.75% || 34.78% 34.36% 29.78% | 25.96%

Joint Procedure

vP Discriminative RBM Conditional herding
Data Set
50 100 500 50 100 500
MNIST 8.84% 3.88% | 2.93% | 1.98% || 2.89% | 2.09% | 2.09%
USPS 4.86% 3.13% | 2.84% | 4.06% || 3.36% | 3.07% | 2.81%

(0.52%) |/ (0.73%) | (0.59%) | (1.09%) || (0.48%) | (0.52%) | (0.50%)
UCI Pendigits || 6.78% || 3.80% | 3.23% | 8.89% | 3.14% | 2.57% | 2.86%
20 Newsgroups || 24.89% - 30.57% | 30.07% - 25.76% | 24.93%

Table 4.3: Generalization errors of VP, dRBMs, and CH on 4 real-world data
sets. dRBMs and CH results are shown for various numbers of hidden units. The
best performance on each data set is typeset in boldface; missing values are shown
as ‘-’. The std. dev. of the error on the 10-fold cross validation of the USPS data
set is reported in parentheses.

should also be attributed to its weak-chaotic behavior as a deterministic
dynamic system, whose characteristics deserve its own interest for future
research.

Experiments confirms that the information contained in the pseudo-
samples of herding can be used for inference and prediction. It achieves
comparable performance with traditional machine learning algorithms in-
cluding the MRFs, even though the sampling distribution of herding does
not guarantee the maximum entropy.

We further provide a general condition, PCT, for the fast moment match-
ing property. That condition allows more practical implementations of herd-
ing. We also use it to derive extensions of the herding algorithm for a wider
range of applications. As more flexible feature functions defined on both vis-
ible and latent variables can now be handled in the generalized algorithm,
we apply herding to training partially observed MRFs. Experiments on the
USPS dataset show a classification accuracy on par with the state-of-art
training algorithms on the same model. Furthermore, we propose a discrim-
inative learning variant of herding for supervised problems by including la-
belling information in the feature definition. The resulting conditional herd-

120 Herding as a Learning System with Edge-of-Chaos Dynamics

ing provides an alternative to training CRFs. Empirical evaluation shows
competitive performance of herding compared with standard algorithms.

4.6 Conclusion

The view espoused in this chapter is that we can view learning as an iterated
map: w1 = F'(wy) and that we can study the properties of this map using
the tools of nonlinear dynamics systems. The usual learning approaches
based on point estimates form a contractive map where all of parameter
space is eventually mapped to a point. In Bayesian approaches we seek to find
a posterior distribution over parameters and the map should thus converge
to a distribution (or measure). For MCMC for instance the map consists
of convolving the current distribution with a kernel. Herding offers a third
possibility where the attractor is neither a point, nor a measure in the usual
sense, but rather a highly complex, possibly fractal set. Interestingly, the
more recent approach “perturb and map” is related to herding in the sense
that it consists of a sequence of perturbations of the parameters followed by
an optimization over the state space. However, it is different from herding
in the sense the perturbations are generated randomly and IID, while in
herding the perturbations are deterministic and dynamic (i.e. depend on
the previous parameters).

The surprising and powerful insight is that we can use a new set of tools
from the mathematics literature to study these maps. For instance, it was
shown in this chapter that herding dynamics is a special instance of the class
of piecewise isometry maps, and should neither be classified as regular nor
chaotic, but rather as what is known as “edge of chaos”. We suspect that
this type of dynamics has useful properties in the context of learning from
data. For instance, it seems related to the fact that the certain empirical
moments averages exhibit very fast convergence. This is supported by the
observations that 1) piecewise isometries have vanishing topological entropy,
2) exhibit the “period doubling route to chaos” and 3) have vanishing
Lyapunov exponents. We believe that these type of concepts from the field
of nonlinear dynamical systems may one day play an important role in the
field of machine learning.

4.6 Conclusion

121

Appendix:

Some Results on Herding in Discrete Spaces

The following proposition shows that the weight vectors move inside a D —1
dimensional subspace.

Proposition 4.11. For any herding dynamics with D states and K dimen-
sional feature vectors, the trajectory of the weight vector lies in a subspace of
a dimension K* < max{D — 1, K}. Also, there exists an equivalent herding
dynamics with D states and K* dimenstonal feature vectors, which generates
the same sequence of samples.

Proof. Let {qb(xd)}fl);()l be the set of D state feature vectors. Denote by
® the subspace spanned of the set of D — 1 vectors, {¢(zq) — ¢(1:0)}dD;11
in R¥, and by ®1 its complement. The dimension of ® is apparently at
most max{D — 1, K'}. We want to construct a herding dynamics in ® that
generates the same sequence of states as the original dynamics.

Decompose the initial weight vector wg and all the feature vectors into ®
and ®1, denoting the component in ® with a superscript I'and in ®+ with +.
Then ¢ (2q) = (¢(za) —¢(w0)+d(20)) " = ¢ (20), Vd as p(xa)—¢p(w0) € P,
and ¢ll(z4) = ¢(xq) — ¢ (x0), Vd. Consequently ¢l = ¢ — ¢ () as ¢ is a
convex combination of the feature vectors.

Let us consider a new herding dynamics (denoted by a superscript *)
with feature vectors { | (xd)}g:_ol and the moment ¢!l. We initialize with a
weight vector wj = wg. As ® is closed with respect to the herding update in
Equation 4.8 w} € ®,Vt > 0. Now we want to show that the set of samples
St &t {5y} is the same as St &t {s;}E | for any T > 0.

Obviously this holds at 7= 0 as wj; € ® and S5 = Sr = (. Assume that

%

7 = St holds for some T > 0. Following the recursive representation of
wr in Equation 4.14, we get

T T
wi = wi+Tol —Z ol(s)) = Wo—wé—i—Tq’_)—Z &(st) = wr—wp (4.70)
t=1 t=1
The sample to be generated at iteration 7'+ 1 is computed as

St = argmax(wi) @l (x) = argmax(wy) " §(x) — (wi) ¢ (w0) = 5741

(4.71)

Therefore, S7.., = Sti1, and consequently S7. = S7,VI' € [0,00) by
induction. As a by-product of Equation 4.70, we observe that the trajectory

122

Herding as a Learning System with Edge-of-Chaos Dynamics

Figure 4.17: Example of the torus projection on herding dynamics with 3 states
and 2-dimensional feature vectors. The red lines show the lattice and the torus
(solid only) formed by ¢(z1) — ¢d(xo) and @(z2) — ¢(x0), and the purple dashed
arrows ghow that the herding dynamics corresponds to a constant rotation on the
torus T=.

of the original herding dynamics {w;} lies in the K* dimensional affine
subspace, W& + . O

The proposition above suggests that the number of effective dimensions of
the feature vector is upper-bounded by the number of states in the herding
system. Also, the orthogonal component in the initial weight vector WOL does
not affect the sequence of generated samples. In our example of sampling
a D-valued discrete distribution with the 1-of-D encoding, the D feature
vectors {¢(z4)}2= are linearly independent with each other and hence we
achieve the maximum number of feature dimensions K* = D — 1. The affine
subspace can be easily computed as {w : chl)=1 wq = 1}. In the rest of this
subsection, we will study the characteristics of a relatively more general type
of herding dynamics with D = K + 1 states, whose feature vectors consist
of a linearly independent set in the K dimensional feature space.

Let £ be the lattice formed by the set of vectors {¢(z4) — @ (20) 5,
and let TX be the K dimensional torus R¥/L. A torus is a circular
space with every pair of opposite edges connected with each other. See
Figure 4.17 for an example of a 2D torus. Denote by G : RX — TX the
canonical projection. For any point v € R¥, we have the property that
G(u+ (p(rq) — ¢(20))) = G(u),¥d = 0,..., K. Let T: R — RE be the
mapping of the herding dynamics in the feature space, which takes the form
of a translation T(w) = w + ¢ — ¢(x(w)), where z(w) is the sample to be
generated by Equation 4.7. We can observe that the herding update on w

4.8 References

128

corresponds a rotation on the torus:

G(w+ ¢ — ¢(z(w)))
G(w + (¢ — ¢(20)) — (d(x(W)) — ¢(0)))
G(w) + (¢ — ¢(x0)), Yw € R (4.72)

GoT(w)

where the translation operator in T¥ in the last equation refers to a rotation
in the torus. This is an interesting property of herding with a maximum
number of feature dimensions as it suggests that no matter what sample the
dynamics takes, the trajectory of w under the torus projection is driven by
a constant rotation. Furthermore, if the set of elements in the translation
vector ¢ — ¢(x¢) is independent on rational numbers4, the trajectory on
TX fills the entire torus, which leads to a non-fractal attractor set with a
finite volume in the original feature space.

4.8 References

K. Aihara and G. Matsumoto. Temporally coherent organization and instabilities
in squid giant axons. Journal of theoretical biology, 95(4):697-720, 1982.

O. Angel, A. E. Holroyd, J. B. Martin, and J. Propp. Discrete low-discrepancy
sequences. arXiv preprint arXiw:0910.1077, 2009.

F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding
and conditional gradient algorithms. In J. Langford and J. Pineau, editors,
Proceedings of the 29th International Conference on Machine Learning (ICML-
12), ICML ’12, pages 1359-1366, New York, NY, USA, July 2012. Omnipress.
ISBN 978-1-4503-1285-1.

C. M. Bishop et al. Pattern Recognition and Machine Learning, volume 1. springer
New York, 2006.

H. Block and S. Levin. On the boundedness of an iterative procedure for solving a
system of linear inequalities. Proceedings of the American Mathematical Society,
26(2):229-235, 1970.

L. Bornn, Y. Chen, N. de Freitas, M. Eskelin, J. Fang, and M. Welling. Herded
Gibbs sampling. In Proceedings of the International Conference on Learning
Representations, 2013.

M. Boshernitzan and I. Kornfeld. Interval translation mappings. FErgodic Theory
and Dynamical Systems, 15(5):821-832, 1995.

O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples
from an rbm-derived process. Neural Computation, pages 1-16, 2011.

14. Independence of a set of numbers, x1, ..., Tk, on rational numbers means that there
does not exist a set of rational numbers a1,...,ax that are not all zeros, such that
Zle aqrq = 0.

124

Herding as a Learning System with Edge-of-Chaos Dynamics

Y. Chen, A. Smola, and M. Welling. Super-samples from kernel herding. In
Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-10), pages 109-116, Corvallis, Oregon, 2010. AUAI
Press.

Y. Chen, A. E. Gelfand, and M. Welling. Advanced Structured Prediction, chapter
Herding for Structured Prediction, page 187. The MIT Press, 2014.

M. Collins. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the ACL-02 con-
ference on Empirical methods in natural language processing-Volume 10, page 8.
Association for Computational Linguistics, 2002.

Y. Freund and R. Schapire. Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277-296, 1999.

A. Gelfand, Y. Chen, L. van der Maaten, and M. Welling. On herding and the
perceptron cycling theorem. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 694-702, 2010.

A. Goetz. Dynamics of piecewise isometries. Illinois Journal of Mathematics, 44
(3):465-478, 2000.

N. Harvey and S. Samadi. Near-optimal herding. In Proceedings of The 27th
Conference on Learning Theory, pages 1165-1182, 2014.

G. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771-1800, 2002.

F. Huszar and D. Duvenaud. Optimally-weighted herding is Bayesian quadrature.
In Proceedings of the Twenty-Eighth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-12), pages 377-386, Corvallis, Oregon, 2012.
AUAT Press.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltz-
mann machines. In Proceedings of the 25" International Conference on Machine
learning, pages 536-543. ACM, 2008.

K. Lu and J. Wang. Construction of Sturmian sequences. J. Phys. A: Math. Gen.,
38:2891-2897, 2005.

G. A. H. Marston Morse. Symbolic dynamics ii. sturmian trajectories. American
Journal of Mathematics, 62(1):1-42, 1940. ISSN 00029327, 10806377. URL
http://www. jstor.org/stable/2371431.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-
etry, volume 1988. MIT press Cambridge, MA, 1969.

R. Neal. Connectionist learning of belief networks. Articial Intelligence, 56:71-113,
1992.

R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-
nical Report CRG-TR-93-1, University of Toronto, Computer Science, 1993.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In Proc. IEEE Int. Conf.
on Computer Vision (ICCV), pages 193-200, Barcelona, Spain, Nov. 2011. doi:
10.1109/ICCV.2011.6126242.

S. Parise and M. Welling. Learning in Markov random fields: An empirical study.
In Joint Statistical Meeting, volume 4, page 7, 2005.

4.8 References

125

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386-408, 1958.

R. Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. In
J. Firnkranz and T. Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 943-950, Haifa, Israel, June
2010. Omnipress. URL http://www.icml2010.org/papers/441.pdf.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):80-88, 1987.

T. Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. In Proceedings of the International Conference on Machine
Learning, volume 25, pages 1064—1071, 2008.

T. Tieleman and G. Hinton. Using fast weights to improve persistent contrastive
divergence. In Proceedings of the International Conference on Machine Learning,
volume 26, pages 1064-1071, 2009.

M. Tsodyks, K. Pawelzik, and H. Markram. Neural networks with dynamic
synapses. Neural Computation, 10(4):821-835, 1098.

M. Welling. Herding dynamical weights to learn. In Proceedings of the 21st
International Conference on Machine Learning, Montreal, Quebec, CAN, 2009a.

M. Welling. Herding dynamic weights for partially observed random field models. In
Proceedings of the Twenty-Fifth Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-09), pages 599-606, Corvallis, Oregon, 2009b. AUAI
Press.

M. Welling and Y. Chen. Statistical inference using weak chaos and infinite memory.
In Proceedings of the Int’l Workshop on Statistical-Mechanical Informatics (IW-
SMI 2010), pages 185-199, 2010.

L. Younes. Parametric inference for imperfectly observed Gibbsian fields. Probabil-
ity Theory and Related Fields, 82:625-645, 1989.

D. Young. Iterative methods for solving partial difference equations of elliptic type.
Trans. Amer. Math. Soc, 76(92):111, 1954.

A. Yuille. The convergence of contrastive divergences. In Advances in Neural
Information Processing Systems, volume 17, pages 1593-1600, 2004.

5 Learning Maximum A-Posteriori
Perturbation Models

Andreea Gane agane@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, MA

Tamir Hazan tamir.hazan@technion.ac.il
Technion
Haifa, Israel

Tommi Jaakkola tommi@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, MA

Perturbation models are families of distributions induced from perturbations.
They combine randomization of the parameters with maximization to draw
unbiased samples. In this chapter, we describe randomization both as a mod-
eling tool and as a means to enforce diversity and robustness in parameter
learning. A perturbation model defined on the basis of low order statistics typ-
ically introduces high order dependencies in the samples. We analyze these
dependencies and seek to estimate them from data. In doing so, we shift the
modeling focus from the parameters of the potential function (base model)
to the space of perturbations. We show how to estimate dependent pertur-
bations over the parameters using a hard EM approach, cast in the form
of inverse convex programs and illustrate the method on several computer
vision problems.

128 Learning Mazimum A-Posteriori Perturbation Models

5.1 Introduction

In applications that involve structured objects, such as object boundaries,
textual descriptions, or speech utterances, the key problem is finding expres-
sive yet tractable models. In these cases, the likely assignments are guided
by potential functions over subsets of variables. The feasibility of inference
is typically linked to the structure of the potential function and the tradeoff
is between rich, faithful models defined on complex potential functions on
one hand, and limited but manageable models on the other.

For instance, in natural language parsing, the goal is to return a depen-
dency tree where arcs encode dependency relations, such as between a predi-
cate and its subject. Whenever the interactions are of high order, computing
the dependency tree corresponds to an NP-hard combinatorial optimization
problem (McDonald and Satta, 2007), but when resorting to tractable for-
mulations by limiting the type of interactions, the expressive power of the
model is limited. In general, most realistic models for natural language pars-
ing (Koo et al., 2010a), speech recognition (Rabiner and Juang, 1993) or
image segmentation/captioning (Nowozin and Lampert, 2011; Fang et al.,
2015) involve interactions between distant words in the sequence or large
pixel neighborhoods.

Typical probabilistic models defined on structured potential functions
make use of the Gibbs’ distribution and its properties. Specifically, the
structure of the potential function can be encoded as a graph that specifies
conditional independencies (Markov properties) among the variables: two
sets of vertices in the graph are conditionally independent when they are
separated by observed vertices (e.g., Wainwright and Jordan (2008); Koller
and Friedman (2009)). These assumptions are central for designing efficient
exact or approximate inference techniques. Successful methods exploiting
them include belief propagation (Pearl, 1988), Gibbs sampling (Geman and
Geman, 1984), Metropolis-Hastings (Hastings, 1970) or Swendsen-Wang
(Wang and Swendsen, 1987). In specific cases one can sample efficiently
from a Markov random field model by constructing a rapidly mixing Markov
chain (cf. (Jerrum and Sinclair, 1993; Jerrum et al., 2004a; Huber, 2003)).
Such approaches do not extend to many practical cases where the values
of the variables are strongly guided by both data (high signal) and prior
knowledge (high coupling). Indeed, sampling in high-signal high-coupling
regime is known to be provably hard (Jerrum and Sinclair, 1993; Goldberg
and Jerrum, 2007).

Finding a single most likely assignment (MAP) structure is considerably
easier than summing over the values of variables or drawing an unbiased

5.1 Introduction

129

sample. Substantial effort has gone into developing algorithms for recovering
MAP assignments, either based on specific structural restrictions such as
super-modularity (Kolmogorov, 2006) or by devising linear programming
relaxations and successively refining them (Sontag et al., 2008; Werner,
2008). Furthermore, even when computing the MAP is provably hard,
approximate techniques, such as loopy belief propagation (Murphy et al.,
1999), tree reweighed message passing (Wainwright et al., 2005), local search
algorithms (Zhang et al., 2014) or convex relaxations (Koo et al., 2010b) are
often successful in recovering the optimal solutions (Koo et al., 2010a).

Recently, MAP inference has been combined with randomization to define
new classes of probability models that are easy to sample from (Papandreou
and Yuille, 2011; Tarlow et al., 2012; Hazan and Jaakkola, 2012; Hazan
et al., 2013; Orabona et al., 2014; Maji et al., 2014). Each sample from
these perturbation models involve randomization of Gibbs’ potentials and
finding the corresponding maximizing assignment. The models are shown to
provide unbiased samples from the Gibbs distribution when perturbations
are independent across assignments (Papandreou and Yuille, 2011; Tarlow
et al., 2012) and have been applied to several applications where the base
model is difficult to sample from: boundary annotation (Maji et al., 2014),
image partitioning (Kappes et al., 2015), and others. Nonetheless, having a
full account of the properties and power of perturbation models remains an
open problem.

In this chapter, we describe and extend our work (Gane et al., 2014) on
understanding and exploiting the expressive power of perturbation models.
Specifically, the properties of the induced distribution are heavily governed
by randomization. In contrast to Gibbs’ distributions, low order potentials,
after undergoing randomization and maximization, lead to high order de-
pendencies in the induced distributions. Furthermore, we discuss condition-
ing, which is straightforward in Gibbs’ distributions, but requires additional
constraints on randomizations in perturbation models.

Finally, we explore the interplay between learning algorithms and
tractability of inference procedures on complex potential functions by us-
ing dependent perturbations as a modeling tool. Perturbation models are
latent variable models and we learn distributions over perturbations using
a hard-EM approach. In the E-step, we use an inverse convex program to
confine the randomization to the parameter polytope responsible for gener-
ating the observed answer. We illustrate the approach on several computer
vision problems.

130 Learning Mazimum A-Posteriori Perturbation Models

5.2 Background and Notation

In this chapter we are concerned with modeling distributions over structured
objects x € X, such as image segmentations and keypoint matchings,
where X = X1 x --- x X, is a discrete product space. We are scoring the
possible assignments via a real valued potential function 6(z) = 0(x1, ..., z,),
where excluded configurations are implicitly encoded by setting 6(x) = —oo
whenever x ¢ dom(0). For instance, a foreground-background segmentation
over an image of size n X m can be encoded by = = (24j)icn) jem] €
{0,1}™*™ where z;; = 1 denotes a foreground pixel at position (i, 7). If
we want to explicitly encode that a foreground object is always present,
then 6(z) = —oo whenever z;; = 0,Vi € [n],j € [m].

Since dealing with arbitrary scoring functions is computationally in-
tractable, 6(z) is typically defined as a sum of local potentials 6(z) =
Y aca fa(x), where a denotes a small subset of variables (a factor) and
A denotes the set of all such factors. In the image segmentation case, the
set A may include local neighborhoods of the form {(i + d;,j + d;)|d;,d; €
{+1,0,—1}}. In the following, we will often skip specifying A and write
O(x) =), 0a(zx) for simplicity.

Traditionally, the potentials are mapped to the probability scale via the
Gibbs’ distribution:

1

Z(0)

p(T1, .y Ty) = exp(0(x1, ..., xp)) (5.1)

Distributions defined in this manner have a number of desirable properties.
For instance, the maximum-a-posteriory (MAP) prediction corresponds to
the highest scoring assignment (& = argmax, 6(z)), the set of conditional
dependencies can be read from the structure of the potential function,
and the model can be easily extended to handle partially observed data.
Unfortunately, such distributions are challenging to learn and sample from,
depending on how the potential function decomposes.

Our approach is based on randomizing potentials in Gibbs’ distributions.
We add a random function v : X — R to the potential function and draw
samples by solving the resulting MAP prediction problem:

x* = arg mea%{é?(ac) +v(z)}. (5.2)
The distribution induced by the samples is given by
P(z) = Py|% € arg mg:g{{@(x) +v(z)} (5.3)

and its properties are heavily dependent on the nature of randomization.

5.8 FEaxpressive Power of Perturbation Models 131

The simplest approach to designing the perturbation function ~ is to
associate an ii.d. random variable 7(z) for each z € X. The following
result characterizes the induced distribution in this case, assuming that
perturbations are Gumbel distributed. Specifically, due to the max-stability
property of the Gumbel distribution, one can preserve the Markov properties
of the Gibbs model. However, each realization z* in this setup requires an
independent draw of y(z), z € X, i.e., a high dimensional randomization.

Theorem 5.1. (Gumbel and Lieblein, 1954) Let X be finite and let
{y(z),x € X} be a collection of i.i.d. zero mean Gumbel distributed
random wvariables, whose cumulative distribution functions is F(t) =
exp(—exp(—(t+c))) and ¢ = 0.5772 is the Euler-Mascheroni constant. Then

P, [:E € arg I;leaj)ci{Q(x) + ’y(x)}} = Z?&) exp(6(z)) (5.4)

Since perturbation models are useful only if they can be succinctly
parametrized, our focus is on investigating low-dimensional perturbations
which have the same structure as the potential function:

P(#) = P, & € argmax { Y (fa(za) +7a(wa))}] (5.5)

In this case, each sample requires instantiating v, (zo) for each o and each
assignment x, which is typically a much smaller set. Finally, since the noise
function shares the structure of the potential function, the optimization
algorithms designed for the original potential function remain applicable.
We will often refer to the new (randomized) potential function as 6(x) =

S 0a(20), where O, (70) = 0o (Ta) + Yalza)-

5.3 Expressive

Power of Perturbation Models

Perturbation models were originally introduced as a way to approximate
intractable Gibbs’ distributions. In this chapter, we use perturbation models
as a modeling tool, seeking to understand their properties, and how to
estimate them from data.

The idea of specifying distributions over combinatorial objects by linking
randomization and combinatorial optimization is not inherently limiting.
At one extreme, the randomization may correspond to samples from the
target distribution itself. Of course, the combination is advantageous only
when both the randomization and the associated combinatorial problem are
tractable. To this end, we focus on randomizing potentials in Gibbs’ distri-
butions whose MAP assignment can be obtained in polynomial time. The

132 Learning Mazimum A-Posteriori Perturbation Models

randomization we introduce will therefore have to respect how the poten-
tial functions decompose. For example, randomization of 6(z) = > 0a(x)
should only directly affect individual terms 6, (z).

One of the key questions we address is how the resulting perturbation
models differ from the associated Gibbs’ models that they are based on.
Gibbs’ distributions are naturally understood in terms of Markov proper-
ties. Will these carry over to perturbation models as well? We will show
that in contrast to Gibbs’ distributions, low order potentials, after under-
going randomization and maximization, lead to high order dependencies in
the induced distributions. Such induced dependences can be viewed as ad-
ditional modeling power and specifically exploited and learned from data.
Markov properties can be enforced in special cases such as with tailored
perturbations in tree structured models, if desired.

Perturbation models yield simple mechanisms for drawing unbiased sam-
ples but they are cumbersome with respect to conditioning. Indeed, “plug-
in” conditioning natural in Gibbs’ distributions does not carry over to per-
turbation models. Conditioning requires care, restricting the randomization
such that the setting of the observed variables are indeed obtained as part of
maximizing assignments. We show how this can be done in simple examples.

5.4 Higher Order Dependencies

In this section, we show that perturbation models defined via low dimen-
sional randomizations do not follow the Markov-type dependencies inherent
in Gibbs distributions. We focus on perturbation models with tree struc-
tured potential functions and edge-based randomization, but the results can
be generalized to more complex graphs.

The following theorem shows that when i.i.d. perturbations follow the
edge structure of the potential function, we are able to capture dependencies
above and beyond the initial structure.

Theorem 5.2. Most perturbation models with tree structured potential
functions and i.i.d. perturbation variables {vj(x;,x;)} indexed by (i,j) €
E,(z;,2z;) € X; x Xj result in an induced model (5.5) that includes depen-
dencies above and beyond the original tree structure.

Proof. Consider a simple chain with three variables (z1,x2,x3), potential
function 0(x) = 612(z1, x2) + 623(z2, x3) and perturbations given by v(z) =
'ylz(xl,a:g) + 723(:U2,x3). Let P(fa) be defined as

NGRS {fy DBy € argg{ax{@(x) + 'y(:c)}} (5.6)

5.4 Higher Order Dependencies 133

and, similarly, for all subsets a, 8 C {1,...,n}, let
['(Zo|2p) = {fy . Io € argmax {0(x) + ’y(x)}} (5.7)
QTGX,.'Eﬁ:{i‘[-;
be the set of perturbation assignments for which z,, is optimal if we plug-in
values 7.
We illustrate that x; L z3]zs need not hold. To this end, consider
probabilities:

T((iﬂ.@g) = P7 (P(iﬂi’g)‘f‘(i‘g)) s fori e {1, 3}

Note that the set I'(#1|#2) is governed by the constraint 6qo(Z1,#2) +
y12(Z1, Z2) > maxy, {012(x1, £2) +712(21, £2)} and similarly, T'(Z3|22) is gov-
erned by an analogous constraint on 3. I'(Z2), in contrast, involves inequal-
ities that couple all the perturbation variables together: max,, {012(x1, Z2)+
Y12(21, £2) } + maxy, {023(22, ¥3) +v23(22, 73) } > max,{0(z) + ma(z1,22) +
~vo3(x2,x3)}. Since in general these constraints cannot be decomposed as
(712,723), the set is not a product space.

Consider the following example, where x; € {0,1} and 612(1,1) =
1.9, 912<0,0) = 1.2, 012(0, 1) = 1.1, 912(1,0) = 0 and 923(&,[)) =
012(b,a),Va,b € {0,1} . For &2 = 1, I'(&2) includes the constraint max{1.9+
72(1,1), 1.1+ 72(0, 1)} + max{1.9 +723(1, 1), 1.1 +723(1,0)} > max{1.2+
712(0,0), v12(1, 0) }+max{1.24+723(0,0), 723(0, 1) }. We argue that there exist
i.i.d. perturbation distributions over (712, 723) for which the constraint cou-
ples the two variables. In particular, if yi2(z1,22) ~ U{—1,1} V(z1,22) €
{0,1}2, yo3(w2,23) ~ U{~1,1} ¥(z2,23) € {0,1}? and U is the uniform
distribution, then for ~;; = (745(1,1),4:5(0,1),4i;(0,0),7i;(1,0)), the config-
urations (v12,723) € {((1,1,-1,1),(-1,1,1,1)), ((1,1,-1,1),(1,1,—-1,1)),
((-1,1,1,1),(1,1,—1,1))}, are in T'(d2), but ((=1,1,1,1),(=1,1,1,1)) is
not, thus it cannot be a product space in this case.

As a result, 12 and 93 become dependent if we condition on I as the
maximizing value. In other words, the indicator functions corresponding
to I'(Z1]|#2) and I'(Z3|#2) are also dependent if v € I'(Z2). Whenever x;
and x3 depend non-trivially on the corresponding perturbation variables,
we conclude that x; A x3|xs. This is typically the case.

O

The key role of this theorem is to highlight how perturbation models might
posses higher modeling power than their Gibbs counterparts. The choice of
tree structured potential functions is often guided by computational reasons,
rather than the need for conditional independence. Specifically, in a pose
estimation application the goal is to relate a set of keypoints z = (z;);e[n),
where dimensions z; are (pixel) locations arms, legs, body trunk or head

134 Learning Mazimum A-Posteriori Perturbation Models

and n is the total number of keypoints. A typical scoring function is
0(x) = Z(i’j)eE 0i;(zi, xj), where the set of edges E includes pairs such as
pair-trunk, arm-trunk, leg-trunk and the local scores 6;;(x;, ;) depend on
the distance between the keypoints. From the structure of 6(x), the Gibbs’
distribution implies that the limbs locations are independent given the trunk.
Perturbation models have the potential to capture additional long range
dependencies between the parts without increasing the complexity of the
scoring function.

5.5 Markov Properties and Perturbation Models

Given that typically low order perturbations lead to high order dependencies,
we ask whether enforcing the Markov properties is possible in this case.

In the simplest case, whenever the Gibbs distribution is independent, it
can indeed be represented using low order potentials. Specifically, recall
that a probability distribution is independent whenever p(z) = [, p(z:),
where p(zi) = 3 ,\,, p(x) are its marginal probabilities. To show that the
perturbation model matches the Gibbs distribution in this case we apply
Theorem 6.1 for each dimension ¢ = 1,...,n while setting 0;(x;) = log p(x;)
and using i.i.d. perturbations ~;(z;) that follow the Gumbel distribution.

In the following, we show that the tree structured potentials can also be
randomized such that the induced distribution corresponds to the Gibbs’
distribution.

5.5.1 Tree-Structured Perturbation Models

Distributions can be described by their conditional probabilities
p(x1, .y y) = H?:l p(xjlxi,...,xj—1), and in Markov random fields these
conditional probabilities are simplified by their dependency graphs. Specifi-
cally, assume a tree structured MRF and let E be any directed version of the
tree. For notational convenience, assume that the vertices {1, ...,n} are topo-
logically sorted and that there is an arc (i — j). Then p(zj|z1,...,2j-1) =
p(xj|z;). Furthermore, for a tree, specifying 6(z) is equivalent to specifying
marginals probabilities p(z;), i = 1,...,n, and p(z;, z;), (i,j) € E, which
can be related as follows:

p(l'iv J:j)
p(xi)p(z;)
The following theorem shows that in this case, for any potential function

0;(x;) = logp(x;), 0j(x;,x;) =log (5.8)

there are low dimensional perturbation models that preserve these the
independencies:

5.5 Markov Properties and Perturbation Models 135

Theorem 5.3. Consider the Gibbs distribution with a tree structured
Markov random field. Then for any potential function

0(x) = Zez‘(l’z‘)+ Z 03 (i, ;) (5.9)
=1 (i.j)€E

there are random variables {v;j(x;,x;)} indexed by (i,5) € E,(xs,2;) €

Xi x Xj such that

p(2) = P, [:% € argn&ax{@(a:) + Z vij (i, x5)} (5.10)
re .
(i.j)ek

Proof. Let 4j(z;, ;) be iid. random variables that follow the Gumbel
distributions. Let E be a directed version of the tree and assume that
the vertices {1,...,n} are topologically sorted and that there is an arc
(1 — 2). Let y12(x1, 22) = Y12(21, x2) and for any other edge (i — j) define
Yij (i, x5) =

%j(aci, xj) — II;E}X {91](331, x;) + 9](323) + ’Ayij(a:i, x;)} (5.11)

Let p(x1,32) = 3 .\ (4,,0,) P(¥) be the marginal probabilities of Gibbs
distribution. We begin by showing that

p(&1,&2) = Py [d1, 82 € argmax{6(z) + Y 7yij(zi,75)}] (5.12)
et (i)€E
To this end, any sample (Z1,Z2) from the induced marginal distribution is
obtained by

Z1,8 = argmax max {0(z)+ Z Yij(zi,) }
T1,T2 CC\{thUz} .
(i.j)ek

= argmax { log p(z1, x2) + 12(71, 72) }

Z1,T2

where the equality follows from the definition of ~;j(x;,x;) that enforces
maxy, {0ij(xi, ;) + 05(x;) + vij(xs, 2;)} = 0, applied recursively to each
leaf in the tree. Theorem 6.1 implies that marginal probabilities of the
Gibbs distribution and the MAP perturbation distribution are the same
since yi2(x1, x2) are independent Gumbel random variables.

To complete the proof we show that for every (i — j) the conditional
probability of MAP perturbations is the same as the Gibbs. For that end,
define for every o C {1,..,n} the subset of indexes x, = (¥)icq, and I'(Z4)
the set of perturbation assignments for which Z, is optimal, as in (5.7).
Recall the vertices are topologically ordered, thus we aim at showing that

pasles) = Py (D(@r, oo)@, i)) (5.13)

136 Learning Mazimum A-Posteriori Perturbation Models

By our construction, for any values of z1,...,z;_1 the argument z; is chosen
to maximize Gj(xj) + Gij(xi,a:j) + ’%’j(xi,l‘j). Since Hj(fj) + Qij(SUi,Ij) =
log p(xj|z;) and 4;j(xs, z;) are ii.d. with zero mean Gumbel distribution,
the result follows by applying Theorem 6.1. O

The perturbation models may describe tree structured Gibbs distribu-
tions. Perhaps surprisingly, the random variables that enforce the Markov
properties in this case are not independent nor identically distributed. This
demonstrates the potential power of induced models when allowing depen-
dent perturbation variables.

5.6 Conditional Distributions

Modeling and efficiently using conditional distributions are key issues in
applications involving partially observed data. These include finding dense
correspondences across images when only partial human annotations are
provided, combining information from multiple predictors (semi-supervised
learning) and so on. In Gibbs’ models, regardless of the difficulty of inference
calculations, conditioning is typically a straightforward operation, performed
by plugging in the observed data. On the other hand, conditioning in
perturbation models is a challenging open problem. In this case we cannot
merely set the observed variables to their values. Instead, we must ensure
that the observed values are selected via global maximization.

Specifically, for any subset of variables zo,2z5,0N S = 0,a,8 € V, the
conditional P(£,|Z5) is obtained by first sampling noise realizations that
are consistent with observed data and maximizing the perturbed potential
over the remaining variables:

v~ Oy € D(Ep)) (5.14)
fq ¢ argmaxmaxf(z) 5.15)
T TV\«

Recall that I'(2g) is the set of perturbations for which the maximizing
argument agrees with #g. The resulting distribution of &, is typically
different from the one obtained by fixing the observed values 3 while
maximizing over the remaining ones:

q(Zal|2p) = Pr(Zq € argmax max é(mv\ﬂ,ﬁ:g)) (5.16)

T TVA{@B)

To show how these two approaches may lead to different induced distribu-
tions, consider the example provided in the proof of Theorem 5.2. When
conditioning on %2 in the three-variable chain x; — 9 — x3, the perturbation

5.6 Conditional Distributions 137

variables 712 and 793 become coupled and this is shown to imply conditional
dependency between x; and x3. However, in the distribution obtained by fix-
ing the value of Z3 and sampling v;2,v23 from their original (independent)
distributions, x1 and z3 become independent. Therefore, the two distribu-
tions are in general not the same and in particular, the ability to perform
conditioning by “plugging in” the observed variables is related to the higher
order dependencies that arise with perturbation models.

In practice, the key difficulty for conditioning in perturbation models
stems from dealing with the set I'(Z), which is often a union of (disparate)
cones. This makes the posterior distribution p(y|y € I'(2g)) difficult to
describe and sample from.

In the rest of this section, our aim is to characterize models for which we
can perform conditioning with respect to a restricted subset of variables. We
start by describing model constraints which ensure conditional independence
(with respect to a single variable) in a three-variable chain. Furthermore, the
conditions can be extended to enforce conditional independence in models
whose potential functions decompose along the edges of the tree. We then
show that when such conditions are met, we can perform conditioning on
a single variable by fixing the observed variable to its value. While the
conditions are restrictive, we show that there exist tree structured models
which satisfy this set of conditions.

5.6.1 Max-marginals

We start by defining max-marginals since they arise when dealing with
marginalization in perturbation models. For two adjacent nodes k and j,
we define the max-sum message from j to k,

mjsk(eey) = max Oz o)+ Y mis(en)} (5.17)

1EN(5)\k
the corresponding maximizing assignment,
Tjk(zh;y) = argmax {0k (2, 2157) + Z mij(x557)} (5.18)
’ iEN(j)\k

and the resulting max-marginal for node k, my(zx;y), which sums over all
the neighbors,

me(rsy) = > misk(@R). (5.19)
JEN (k)

Furthermore, we use mjﬁk(’y) to refer to the vector of messages from j to
k, whose coordinates are the individual messages m;_,x(zx;), and similarly
we use Zj_(7) for the vector of maximizing assignments.

138

Learning Mazimum A-Posteriori Perturbation Models

Conditioning typically implies comparing differences of messages. To this
end, we define for simplicity normalized messages and max-marginals by
subtracting from each dimension the maximum over the vector of messages:

mjp(Tr,y) = mjﬁk(kaaV)_II;?ijak(x;g?')’) (5.20)
k
my (k) = mg(eg,y) — maxmy(a;y) (5.21)
k

After normalization, the difference of max-marginals is preserved mg (xg;v)—
mi(zy;y) = mg(ak;y) — myg(x);y), Vo, 2, € X, and the same is true for
individual messages.

Note that the various quantities defined here are random variables induced
by the perturbations v and it makes sense to talk about their pairwise statis-
tical dependency. One possible question is whether the messages m;_;(2;)
or mj_k(xk;y) are independent of the corresponding maximizing assign-
ments Zj_,(xx;7y). Clearly this is true whenever the noise magnitudes are
limited such that the maximizing assignments do not depend on the particu-
lar noise realizations. Similarly, the independence statement is trivially true
whenever the individual messages or the normalized messages are constant
with respect to perturbations (i.e. when randomizations “cancel out” re-
gardless of the maximizing assignments). For instance, this is possible when
perturbation variables are dependent, like in the proof of Theorem 5.3. One
remaining open question is whether there are distributions of perturbations
~ for which the statement is more generally true.

In the following we will show how the statistical dependency of max-
marginals and maximizing assignments relate to conditional independency
in perturbation models.

5.6.2 Conditional Independence

Since low-order perturbations typically give rise to dependencies that go
beyond the structure of the potential function, one key question is whether
any conditional independencies are maintained.

The first lemma claims that in a three-variable chain 1 — zo — 3, the
conditional independence statement z; 1 x3|ze holds if for at least one of
the two neighbors, the normalized max-marginals are independent of the
corresponding maximizing assignments.

Lemma 5.4. Assume a chain structured model with 3 variables x1,xs, 3,
a randomized potential function of the form 0(x) = 012(x1,x2) + O23(x2, 3)
such that 012 1 023, and the induced perturbation model p(x).

5.6 Conditional Distributions 139

Then the independence statement x1 L x3|ze holds if one of the following
statements holds:

T152(w2,7) L mia(wy,y) Vo, o (5.22)
3?73_,2(332, ’y) A1 m3_>2(x’2, ")/) Vo, x’2 (523)

Proof. When conditioning on xo = &3 we restrict the perturbations v to the

set T'(Z2), defined via: 1[y € ['(Z2)] =

[, ex Hmisa(Zo;7) + ma—a(Ze;7) > masa(ze;y) + masa(ze;y)]. This

can be more compactly written via max-marginals: 1[y € I'(Z2)]=

[Lo, ex Lma(d2;7) — ma(z2;7) = 01=[1,,cx Hma(Z2;7) — ma(w2;y) = 0.
If condition (5.22) holds, then #1_9(&2;7) L ma(zh,), Va), which im-

plies Z1,9(Z2;y) L mo(Za;y) — ma(ah;y),Vah and finally &1_,9(Z2;y) L

1[y € I'(Z32)]. Furthermore &1_,9(&2;v) L #3-2(Z2;7) from the independence

of perturbations across edges and assignments. We can then show that

p(&1, 3|T2) (5.24)

= Pr(#,#3 € argmaxmax 0(z)|y € ['(&2)) (5.25)
T1,T3 T2

= Pr(z1 € 2152(22;7) A w3 € B352(22;7)|y € I'(22)) (5.26)

Pr(zs € Z3-2(2L2;7)|y € ['(22)) Pr(z1 € £152(22;7)) (5.27)

= p(&1]22)p(23]2) (5.28)

Intuitively, the independency between messages and the maximizing as-
signments is used to enforce that at least one of &1 or &3 is not affected by
the joint constraints imposed to ensure that Zo is selected through global
maximization.

In the following lemma, we show that under the same restrictions, we can
condition on a single node by setting the observed variables to their values.

Lemma 5.5. Assume a chain structured model with 3 variables x1,x9, T3,
a randomized potential function 0(z) = O1o(x1, x2) + O23(xa, x3) such that
015 L a3, and the induced perturbation model p(x).

If #150(za,y) L mio(ah,v),Vaoo, 2 and T'(22) # 0, then Pr(z; =
T152(Z2;7)) = p(x1]Z2). In other words, by fizing x2 and perturbing the edge
corresponding to x1 only, we obtain the conditional distribution p(xi|Z2).

140 Learning Mazimum A-Posteriori Perturbation Models

Furthermore, if for all x1, 2,23, 2", x5, o we have:
) 1) bl y M1y A2y 43

T1o0(x2,7) L mia(xh,) and T'(z2) # 0, (5.29)
Zos1(z1,y) L mei(2),7) and T'(z1) # @ (5.30)
Z3o0(x2,y) L msa(xh,y) and T'(za) # (5.31)
Fo3(ws,y) L maos(ah,) and T(xs) # (5.32)
Tonquay (1, 3,7) L Mgq gy(2h, 25, y) and F($1’$3) #0 (5.33)
then we can condition by plugging in values for any p(zqo|zg), N B = 0.
Proof. Using the same argument as above, we have that #1_9(Z2;7y) L
1[y € I'(#2)], therefore p(z1|Z2) = Pr(z1 = &152(22;7)|1[y € T'(22)]) =

Pr(z1 = #152(22;7))-

Furthermore, by applying this for possible subsets of variables in the
chain p(z1|z2), p(ze|z1), p(xs|z2), p(za|zs), p(w2|21,73) We obtain the set
of conditions (5.29)-(5.33). O

We can easily extend these results to tree structured models and show
that the restrictions on max-product messages provide a feasible method
of conditioning on a single variable. One can ask whether there are any
trees that satisfy the conditions above at every node and at every subset of
nodes. The next lemma provides an example where the conditions hold at
every node, but not at pairs of nodes.

Lemma 5.6. There is a tree structured model for which the conditions of
Lemma 5.5 hold for every node symmetrically. In this case, we can condition
on every node by plugging in the fized values.

Proof. Consider a tree structured graphical model, with binary random
variables in {—1,1} and with randomized potential function #(z) =

Z(Z,])EE wazx] If node [is a leaf, then my_x(zx;v) = r?ml(}{Hlkxlxk} =
‘élk’| In general, for any node k and any [€ N(k), we have
misk(esy) = Y [0l (5.34)
e€T(l;k)

where T'(I;k) denotes the subtree rooted at node [and which does not
contain k, e € T'(I; k) is an edge in the subtree. Furthermore, the normalized
messages and maximizing assignments are given by

misk(zr;y) = 0 (5.35)
Tiok(zk;y) = sgn(Opak) (5.36)

5.7 Learning Perturbation Models 141

Since the normalized message is always equal to 0, we have ;5 A
my_k, Vk,Vl € N(k) and therefore this model satisfies the conditions and
we can do plug-in conditioning for any node k.

However, the two-variable conditions do not hold. Assume n = 3 and
consider conditioning on x1, x3:

mas13(x1,23;7) = |frax1 + Oa33] (5.37)

ma13(21,23;7) = |01221 + O2323| — max |61221 + O2323] (5.38)
1,43

Fo13(x1,m357) = sgn(Braxy + fosws) (5.39)

In this case, ma_1,3(y) and Z2-,1 3(7y) will not be independent in general. [J

In this section we provided a preliminary analysis of conditioning in per-
turbation models. In particular, we showed how max-marginals can provide
sufficient conditions for conditional independencies with respect to single
variables. Unfortunately the methods do not easily extend to condition-
ing on sets of variables, which remains an open question. Furthermore, we
showed examples of perturbations which satisfy the restrictions in Lemma
5.4, which typically involve either the maximizing assignments or the mes-
sages to be constant with respect to perturbations. A further question to
explore is whether there is a more general characterization of the type of
perturbations that satisfy these restrictions.

5.7 Learning Perturbation Models

One of the most distinctive characteristics of perturbation models is that
they give rise to dependencies that are not expressed in the base potential
function. In the previous chapters we showed that such dependencies arise
even when perturbations are independent across the different potential
function terms, and across the local assignments within a term. Going a
step further, if the perturbations are allowed to be coupled, then we can
learn to create and enforce dependencies. This suggests that perturbation
models have modeling capacity beyond their base Gibbs’ distributions. For
example, a tree-structured base model is itself rather restrictive but can be
used to induce interactions of all orders in a perturbation setting.

In this section, our goal is to take advantage of this modeling power and
learn perturbation models from data. Unlike Gibbs’ models, the connection
between the structure of the potential function and the properties of the
induced distribution is less understood. To this end, we consider complex
potential functions equipped with efficient algorithms for computing the

142

Learning Mazimum A-Posteriori Perturbation Models

maximizing assignment and with expressive dependent perturbations and
rely on the learning algorithm to infer the optimal dependency structure.

For the rest of the chapter, we define perturbation models with respect
to linear potential functions of the form 0(z,w) = w? ¢(z), where w is a
vector of parameters and ¢(z) is a vector of features. For instance, for im-
age segmentation, where the prediction is determined by binary variables
per pixel location = = (%ij)icn) jem) € 10, 1}"*™, a possible feature may
check whether neighboring pixels (7, j) and (k,[) are assigned the same class
Gij i (Tij, Tr1) = 1[zsj = xp). In contrast to additive perturbations consid-
ered earlier, we define w directly as a random variable. The distribution
p(w;n) governs the randomization and 7 are the (hyper-)parameters we aim
to learn. This includes the additive case as a special case by simply using
w = wgy + v where wy are fixed parameters and v is a vector of random
perturbations.

The induced distribution over the product space X is now given by:

PGain) = [plwsn)[(o = argmaxd(asw))du (5.40)

The goal is to learn the hyper-parameters n that maximize the induced log-
likelihood of the data), g log P(2;7). This is a latent variable model with
continuous hidden variables w. In principle, we could use the EM algorithm
resulting in the following iterative updates

= argmax Z Epeop(wldin®) [log p(w;n)] (5.41)
T zes

n(t-i—l)

Evaluating the expectation requires sampling from the inverse set I'(Z).
One way of approaching this issue is to use specialized MCMC algorithms.
For instance, (Tarlow et al., 2012) uses a Slice Sampling algorithm which
takes advantage of the structure of the problem to avoid fully recomputing
the maximizing assignment at every step.

The second approach, which we pursue in this chapter, is to replace the
expectation in the E-step with a maximization over w, obtaining a single
point in the inverse set I'(z). This hard-EM algorithm is given by

(t+1)

n = argmax max logp(w;n) (5.42)
s WEL(@)

n
While this approach requires a single inner maximization, the problem
remains challenging since the number of constraints specifying the inverse
set can be exponential in the number of variables. For example, we might
need to enforce w'@(#) > w' ¢(x) for every = € dom(¢). However, we will
show below that there are many problems of interest for which the inverse
set can be described compactly.

5.7 Learning Perturbation Models 148

5.7.1 Inverse Optimization

Optimization problems over discrete sets such as maximization of w' ¢(z)
over x € dom(¢), can be cast as continuous optimization problems over the
corresponding convex hull conv({¢(z) : © € dom(¢)}). The convex hull is a
polytope defined by linear constraints {z : Az < b,z > 0}, and the vertexes
of this polytope are exactly the statistics ¢(z). Thus w € T'(2) if and only if
% is the maximizer of the linear objective f(z) = w2 over the polytope. In
many cases, the constraint matrix A is totally unimodular.

Naively one may verify that Z is the maximizer by trying all the extreme
points. More efficiently, we appeal to convex duality in order to maintain a
certificate of optimality for Z. A dual certificate is a dual feasible solution
that satisfies the complementary slackness constraints: if Z; > 0 then the
corresponding constraint on the dual variable y; is satisfied with equality
[ATy]; = w;, and if [A2]; < b; then y; = 0. Using the dual certificate, we
can maintain the optimality of Z while changing w. Specifically, we write the
inner maximization problem in (5.42) as a convex program:

max log p(w;) (

st. ATy >w,y>0 (
y; = 0, for i € {ZHAZA:]Z < b} (5.45
[ATy]; = wj, for j € {j|z; > 0} (

Such inverse linear programs have been used before in operations research.
The goal is typically to find the parameter setting closest to a given wg while
ensuring that Z remains optimal. The distance is a weighted L, norm, mostly
L; and Lo, norms (Ahuja and Orlin, 2001). Also see (Chatalbashev) for a
related usage. In our case, p(w;n) is a multivariate Gaussian and thus the
resulting convex program is quadratic, solved using standard QP solvers.

When the linear program (LP) admits a compact representation, we can
represent the inverse set compactly as well since there is a dual variable for
every primal constraint. Cases of interest to us include bipartite matching,
maximum spanning tree, and so on. When the LP formulation is a relaxation,
the constraints (5.45-5.46) are tighter than necessary. The inverse program
will return a point within a smaller set contained in the inverse set I'(z) (or
the empty set).

We describe below a few examples that are relevant for our models.

144

Learning Mazimum A-Posteriori Perturbation Models

Example 1: Image Matching

We start with an assignment problem. For a graph G = (U J, E,w),E C
I x J with edges weighted by w;; and |I| = |J| = n, the goal is to find the
maximum weight matching that assigns each element in I to exactly one
element in J. Document ranking and key-point matching in images can be
modeled as assignment problems.

By reweighing the edges, the optimal assignment can be formulated as
a minimum cost matching problem, which can be computed in polynomial
time using the Hungarian algorithm (Schrijver, 2003). Note that sampling
and computing the partition function remain #P-complete (Valiant, 1979)
though MCMC-based fully-polynomial approximation schemes exist (Jer-
rum et al., 2004b). In comparison, perturbation models rely only on the
efficient polynomial time maximization.

The minimum cost matching can be obtained by minimizing a linear
objective f(z) = w’
each vertex is incident to exactly one edge in the matching >, ;zx; =

z subject to constraints. The constraints ensure that

1,> hey ik = 1 (Schrijver, 2003). Using dual certificates, we can formulate
the inverse problem, i.e., max,cp(z) log p(w;n) as a convex program:

max log p(w;n)

w,u,v

s.t. u; + Vj = Wiy, (Z,j) S {(l,])‘éw 75 0}

ui +vj < wij, (4,5) € {(4,5)]%; = 0}

where 2 is the observed assignment and u and v are dual variables. The com-
pact description involves 2n? constraints and 2n additional (dual) variables.

Example 2: Pose Estimation

In pose estimation, the human body is modeled as a tree-structured graph-
ical model, where nodes correspond to body parts. The highest scoring la-
beling specifies the estimated locations for the parts (Yang and Ramanan,
2011). The tree structure is computationally appealing, but it assumes that
limbs are independent given the body position. Perturbation models can
capture longer range dependencies even when the potential function corre-
sponds to a tree.

While inference and sampling in tree-structured models is easy, sampling
from the inverse set is difficult. The constraints enforcing the solution &
to be optimal extend beyond the tree structure. The MAP solution can
be nevertheless cast as a maximization of a linear objective f(u) = w’p
over the local polytope Mp(G) = {n = 01>, Hijaia, = Hia,Vi,Js T,

5.7 Learning Perturbation Models 145

Z:C Wijiwiz, = Mjz, Vi, J,Tj, Z$ Wiw; = 1 Vi}. For trees, the solution
[is integral and corresponds to the maximum assignment & (Fromer and
Globerson, 2009b). In other words, [describes & in terms of local marginals.
Using dual certificates, we can write the inverse problem as:

max log p(w;n)
w

/ " A
st Yi— E Yijiw; — E Yjisx, > wi;a:mfor Mise; = 0
J J

/ /" A~
Yi — § y’i,j;xi - § yj,i;mi = wi;l‘“for Misx; >0
J J

/ " ~ _
Yi g + Yi gz, > wi,j;xi,xj7for i jia; o, = 0
/ I/ —_— .. ! ..
Yijsw: T Yijiw; = Wigiiayr 0T fli gy a; > 0

where y, 1/, y” are dual variables corresponding to the marginal constraints.
The constraints are satisfied with equality when the corresponding marginals
in ji are non-zero.

Example 3: Image Segmentation

Image segmentation and other computer vision tasks can be modeled as
energy minimization problems with sub-modular potentials. Minimum graph
cuts are used as tools for finding the optimal assignments (Szeliski et al.,
2007).

The s-t cut problem can be formulated as the following LP with m + n
variables and m constraints:

min w2

z

st. zj+zs;>1 (s,j)er
Zj—Zi—f—Zi,jZO (’L,j)EE
—Zi + 2z 2 1 (i,T) ek
For a graph G = (V, E,w) with |V| = n,|E| = m and edge costs given by
w, the minimum s-t cut problem aims to find a subset of vertices S, with

s € Sandt e V\S, such that the cost of the cut (weight of the edges
crossing S and V' \ S) is minimized. The dual problem is maximum-flow,

1/6

Learning Mazimum A-Posteriori Perturbation Models

and we can solve the inverse problem via
max log p(w;n)
w,y
s.t. Zyik = Zykj, Vk £ s, k#t
OZS Yij < Jijvvivj
Yij = wij, for (i,) € {(4,5)[z; > 0}

where y are the dual variables and Z encodes the observed cut. We obtain
a compact, polynomial size representation of the inverse problem, at the
cost of introducing m additional variables. For image segmentation and for
most examples we provide, the number of additional variables is at most the
number of parameters w.

Example 4: Natural Language Parsing

Dependency parsing can be formulated as a maximum directed spanning
tree problem over the words in the sentence (McDonald et al., 2005).
Different interpretations of the sentence correspond to different parse trees.
As a result, the target parse can be inherently ambiguous. Perturbation
models can be used to efficiently sample high-scoring parse trees to represent
candidate interpretations.

In this case, a polynomial size representation of the inverse problem can
be obtained via LP formulation of the minimum cost directed tree problem.
In a graph G = (V,E,w), the primal LP involves minimizing a linear
objective Z(i, J)eE WijZij subject to constraints ensuring that for every node
u

u € V\{r} there is an r-u flow f® of value 1 with fZ(J
2003). The feasible set is the projection of a high dimensional polytope in
mn dimensions, governed by at most n(2m + n) constraints. Here n and m
are the length of the sentence and the number of edges, respectively. As a
result, using the dual certificate approach (omitted), we can formulate the
inverse problem with O(mn) additional variables.

) < z;j (Schrijver,

Example 5. Subset Selection

The subset selection problem appears in machine learning in the context
of feature selection, video or text summarization, and others. The preva-
lence of the problem has lead to various modeling approaches, including
budget-based formulations which are typically intractable even for MAP
computations, and sub-modular formulations, which are often difficult to
sample from. The sub-modular approaches are often optimized in this case

5.7 Learning Perturbation Models 147

via provable greedy approximations (Gygli et al., 2015) and the perturbation
models can be defined as distributions of the (approximate) solution under
perturbations of the parameters. In this section we will instead focus on the
budget-based approaches and illustrate the inverse LP approach when the
formulation is a relaxation.

Consider the task of selecting a fixed number of items (given by a budget
B). Specifically, consider the scoring function 6(y) = > 60a(ya) where
yi € {0,1} denotes the absence or presence of an item. In the context of video
and text summarization, unary potentials may encode local information,
such as the interestingness of the video chunk or sentence, pairwise potentials
may encode the similarity between the two items and how far apart they
are in the sequence, and so on. See (Gygli et al., 2015) for a range of
objectives to consider for video summarization, and (Almeida and Martins,
2013) for text. The goal is to solve max, 6(y) s.t. >, Lyy; < B, where L; is a
weight associated with the selected item, e.g. number of frames in the video
chunk or number of words in the sentence. Furthermore, we are interested
in distributions over subsets, defined as p(y) o< exp(0(y)).

The optimization problem is in general intractable, as it includes the
knapsack problem as a special case, and it can be approached by formulating
an LP relaxation. For instance, (Almeida and Martins, 2013) use dual-
decomposition for optimizing a knapsack objective for text summarization.
Their coverage-based summarization model considers M possible sentence
topics (T,,)M_, with associated relevance scores wy,, > 0 and the goal is
to select the subset of sentences that maximizes the overall relevance of
the topics covered. Specifically, if y € {0,1}" and u € {0,1}™ are binary
vectors denoting the selected sentences and topics respectively, the integer
optimization problem to be solved is given by:

M
ue{o%z}é{m} Z:I Wmtm (5:47)
s.t. U < Z vi, Yme{l...M} (5.48)
€T,
N
> Luyn < B (5.49)
n=1

After relaxing the integrality constraints and considering the dual, we in-
troduce (N + 2M + 1) new parameters: b and (s,,)N_,; associated with
the budget constraint and topic selection constraints, and (am)%zl, (ﬁn)ﬁf:l
associated with the constraint of variables being less than 1. Finally, the

148 Learning Mazimum A-Posteriori Perturbation Models

optimality conditions lead to the following inverse problem:

min p(w;n) (5.50)
st. Smt+Qm = Wm, Vm,upm >0 (5.51)
Sm + G = Wy, VML, U, =0 (5.52)
BLn+ 8= Smi ¥n,yn>0 (5.53)

m: neT,,
BLn+Bn> D Smy Vn,yn =0 (5.54)

m: ne€T,,
b,s,a,=>0 (5.55)

5.7.2 Penalty-based Inverse Optimization

The inverse optimization framework provides a clean way of solving the inner
maximization in (5.42) for many problems of interest. For completeness, we
also provide examples where the size of the LP formulation is large relative
to the number of parameters in w.

Consider learning a perturbation model over binary images of size k x k,
guided by a potential function O(z;w) = 3731, wiri + D2 jep WijTi%j,
|E| = m. For large k, it may be impractical to learn both unary and pairwise
potentials resulting in n 4+ m parameters. We can instead estimate a subset
of parameters, e.g. fix the higher-order potentials and learn n parameters for
node potentials. Nonetheless, the min-cut inverse LP formulation in Example
3 adds additional variables for each edge and even for estimating a subset
of parameters, the number of variables is given by n 4+ m.

In many cases we must resort to constraints of the form w?¢(z) >
w’'¢(x), Vz. Assuming that the perturbations follow a multivariate Gaussian
distribution, the inverse optimization problem is quadratic

min (w—)" (w —) + C [maxw’ o(x) — w”6(2)

The objective is similar to structured SVM (Tsochantaridis et al., 2004) and
a similar approach has been explored in (Tarlow et al., 2012). The problem
can be solved using typical methods for structured SVMs, such as cutting-
planes or gradient descent methods. We illustrate this in the experimental
section using a sub-gradient descent with a decreasing step size.

5.8 FEmpirical Results 149

Kl Kl (2 EY K2 id

Figure 5.1: First line: max-margin parameters and resulting segmentation, second
line: the mean of the perturbation parameters, the average segmentation and the
four images with the highest count.

5.8 Empirical Results

We conclude the chapter by presenting experiments demonstrating that per-
turbation models capture dependencies above and beyond the structure of
the potential function. The first experiment explores an image segmentation
task and illustrates the duality approach for learning perturbation models.
While the potential function is formed of local pairwise potentials and im-
plies long range conditional independencies, the experiment suggests that
in the learned perturbation model various long range independencies do not
hold. The second experiment shows an application of learning perturbation
models in the context of image matching.

5.8.1 Image Segmentation

We selected four images from the Large Binary Image Database! represent-
ing basketball player silhouettes, with the goal of learning a model over the
basketball player poses and showing that perturbation models are able to
store multiple modes and sample from them.

We used an Ising model over labels y; € {+1, —1} with potentials 6(y;) en-
coding whether pixel 7 is foreground or background and 6(y;, y;) encouraging
adjacent pixels to have the same labels. We assumed 6(y;, y;) = viy;, 0i(yi) =
~;y; and learned a distribution over the node parameters =y;. Since the model
contained node potentials only (resulting in 2500 parameters), we solved the
inverse problem using the sub-gradient approach explained in the previous
section. For each iteration of the hard-EM algorithm, we performed 3 iter-
ations of the sub-gradient algorithm for each example, initialized with the
point estimate from the previous hard-EM iteration. Since the setting is

1. http://www.lems.brown.edu/~dmc/

150

Learning Maximum A-Posteriori Perturbation Models

-2

Figure 5.2: Correlations between a reference pixel (white) and the rest, as captured
by the covariance matrix of the perturbation distribution. We show a pixel that is
always off (so no correlations) and two pixels that are activated on different poses.

Figure 5.3: The average segmentation and samples from four models, one per
line: perturbation model where the perturbations have unrestricted vs. diagonal
covariance matrix and multivariate gaussian model with unrestricted vs. diagonal
covariance matrix.

so simple, the hard-EM algorithm converged in less than 20 iterations. For
computing the maximum likelihood estimates of 1 in the M-step we per-
formed regularization by adding a constant ¢ to the diagonal elements of
the estimated covariance matrix (we set ¢ to 0.1). We also implemented a
structural SVM approach, using a similar stochastic sub-gradient algorithm.

In Figure 5.1, second line, we show in this order the mean of the pertur-
bation parameters v, the average segmentation from 10% samples and the
four images with the highest count. In this case, the four images correspond
to the four human poses we considered and images visually similar to them
obtain a similar score. The first line shows the learned node parameters and
the max-margin maximum weight configuration.

The potential function encodes only local interactions through the lattice
structure, but the induced distribution shows longer range dependencies.

5.8 FEmpirical Results 151

This is due to the correlations in the latent space as illustrated in Figure
5.2. For pixels that are always foreground or background the covariance
matrix reveals no correlations. The others have strong positive correlations
with pixels that are only activated on the same pose, and negative correla-
tions with other poses. To further understand the perturbation models we
look at independent samples, Figure 5.3, where the perturbation distribu-
tion is a multivariate gaussian with unrestricted, resp. diagonal, covariance
matrix (first two lines). The second model captures few or no long-range
dependencies in this case.

Instead of perturbation models, one may learn a multivariate gaussian
model over the binary images and compute a sample image by thresholding
each pixel independently. We also show samples from these models in Figure
5.3, last two line, where the covariance matrix is unrestricted, resp. diagonal.
The latent space is capturing the long-range correlations, but the lack of
structure in the MAP solver results in visual artifacts.

5.8.2 Image Matching

We illustrate the LP duality approach for a matching task on images from the
Buffy Stickmen dataset?. Each frame is annotated with segment locations
for six body parts and we use the framework of (Yang and Ramanan, 2011)
to enlarge this set of locations such that we obtain 18 keypoints per image.
We select frames of the same person throughout an episode and from the
resulting set of all image pairs we randomly select two disjoint sets for
training and testing (15 train pairs and 23 test pairs). The set of keypoints
for an image pair serves as the ground truth for our matching experiments.

We represent the matching as a permutation of keypoints denoted by ,
and assume the following potential function, following (Volkovs and Zemel,
2012), O(1, I',myw) = 3, 5 wT (Y(I,4) — (I',5))?. The features (I, k) are
the SIFT descriptors evaluated keypoint k.

The inference problem can be formulated as an assignment problem, so
we learn the perturbation distribution using the hard-EM algorithm, and
computing the point estimate using the inverse optimization formulation.
In this case, the inverse problem becomes a quadratic program with 26
additional variables and 324 constraints corresponding to edges.

Figure 5.4 shows an example pair from the test set. We extract SIFT
features at scale 5 and we return the matching with the highest count after
1000 samples. In this case the perturbation model shows similar performance

2. http://www.robots.ox.ac.uk/~vgg/data/stickmen/

152 Learning Mazimum A-Posteriori Perturbation Models

Figure 5.4: Example matching returned by the randomized MAP model. This is
the matching with the highest count from 100 samples and has error equal to 4.

with SVM: the average error of the perturbation model after 1000 samples
was equal to 8.47 while the average error of max margin was 8.69.

5.9 Perturbation Models and Stability

In the previous sections we showed how to estimate perturbation models
from data and demonstrated their extended modeling power. To this end,
we focused on base models where the MAP assignment can be evaluated
efficiently even if the marginals (or the partition function) of the base Gibbs
model is not feasible. Such models remain learnable within the perturbation
framework, enriched by induced longer range dependencies.

The situation changes when the family of base potential functions no
longer permits efficient MAP assignments. For instance, in section 5.7.1 we
indicate how approximations can be used with inverse optimization. More
generally, tractability may arise as a by-product of learning perturbation
models. Indeed, while randomization is needed to introduce diversity in
samples, maximizing the likelihood of the correct assignment also serves
to carve out stable assignments. Stability, on the other hand, can be related
to tractability. We start by describing various notions of stability and their
relationship to the hardness of inference calculations.

The complex models we consider here are common in applications in
natural language processing, computer vision and bioinformatics that involve
clusters, parse trees, or arrangements. As a result, much of the work in
structured prediction has focused on designing heuristics for inference, such
as loopy belief propagation (Murphy et al., 1999), tree reweighed message
passing (Wainwright et al., 2005), local search algorithms (Zhang et al.,
2014) or convex relaxations (Koo et al., 2010b), and empirical results show
that these methods are often successful in recovering the correct (target)
solution (Koo et al., 2010b; Rush et al., 2010; Zhang et al., 2014). This

5.9 Perturbation Models and Stability 158

suggests that the instances encountered during inference are much easier
than indicated by their complexity class.

The success of the heuristics can be attributed to the additional structural
properties that are present in the typical instances. For instance, if the target
solution stands out amongst all other solutions in some manner, than we
expect heuristic approaches to discover it in polynomial time.

In theoretical computer science, the relevant work has focused on identi-
fying the interesting structural properties which can be exploited to design
specialized new algorithms or to prove the correctness of current heuristics.
Such properties include Bilu-Linial stability (Bilu et al., 2012; Awasthi et al.,
2012; Bilu and Linial, 2012; Makarychev et al., 2014), approximation stabil-
ity (Balcan and Liang, 2012), weak-deletion stability (Awasthi et al., 2012,
2010), and so on. For instance, the notion of Bilu-Linial y-stability specifies
that the optimal solution does not change upon multiplicative perturbations
of the parameters of magnitude at most v and in this case (Makarychev et al.,
2014) showed that Max-Cut is tractable whenever v > y/nloglogn for some
constant c.

In structured prediction, the additional properties that trigger the suc-
cess of approximate inference procedures can be attributed to the learn-
ing algorithms used to estimate the parameters. For example, one of the
common learning strategies is to maximize the margin between the target
solution and potential candidates: 0(z) — 6(z) > YA(&, z), Ve, where A is
a distance measure between assignments, allowing a closer margin between
similar assignments. This notion of stability (margin stability) has been em-
pirically proven to produce tractable instances under various approximate
inference algorithms (Finley and Joachims, 2008). Also, from the theoretical
perspective, one can relate the notion of margin (additive) stability to the
multiplicative stability mentioned above to provide weak guarantees, which
suggests that explicitly enforcing the saliency of target solutions brings com-
putational benefits for inference.

Even more concretely, the additive margins can be related to the empiri-
cal success of various linear programming relaxations approaches in machine
learning. For instance, considering scoring functions of the form)" 6, (zq)
on binary assignments x € {0,1}", the dual decomposition algorithm (Koo
et al., 2010b; Sontag et al., 2011) has been successfully used for parsing with
high order interactions, despite the theoretical intractability of the problem.
To illustrate this, consider the optimality conditions for the resulting lin-
ear program. When most of the local potentials agree on the maximizing
assignment, the relaxation is tight:

154

Learning Mazimum A-Posteriori Perturbation Models

Lemma 5.7. Assuming that a (1 — 6) fraction of the components support
the correct solution with a margin « (i.e. for most a, () > 00(0) +7),
and the remaining & fmction do not object by more than M (i.e. 0, (x}) >
Oa(z0) — M) and 6 <
the correct solution.

e —57, then the dual-decomposition algorithm returns

Proof. Consider the binary structured prediction problem where the max-
imizing assignment is given by & = argmax6(z). We start by rewriting it
as & = argmax y i) 0;(x;) + >, OQ(a:’a),xWhere we added constant unary
potentials (9; (;cgi) for i € {1...n}. Solving the optimization problem via dual
decomposition involves computing

6 = argmin{max E Zc?m x;))) + anx(@a(:n;) + z‘si,a(l’,))

3 = argmax{z —Z i.0(7i)
(03
2 = argrriz}x{ea z) + Zgi,a(x;)
o i

To show that a target assignment x* is optimal, we find a dual witness 6*

such that: max (3, (6:(x:) =220 070 (i) + 2o max(fa(wa) + ;070 (7)) <

S 00(af) + X O, 9)

Define 67 ,(z}) = 0 and 67 ,(1 — x7) = a:g,A(I?g,rglcg»o%’ where
A(-,-) counts the number of dimension where the assignments disagree.
Specifically, we design the dual witness §* such that it enforces local op-
timality of the target solution by increasing/decreasing the weight of the
alternative local solutions.

With this choice of dual variables and an arbitrary assignment z/, we

; Oa () =0a(z]

have: 00() + Zz zoz(z) Ha(x/a) + Zz,xﬁézj " A(Ingjjg/,)>ow
< O (xl)+ A2, m;)w = 0, (x}). Therefore, all the modified local
potentials select the target assignment via maximization and max{6, () +

22070 (2i)} = bal(ay).

To conclude the proof we need to show that max{z (i) —

Y0 0ia(mi))} <570, 0i(2). We have:

o

q)

S0 - St = Lo~ XY ea(le:,i?aﬁ

i @ 7 LT, Fxr; o

< Zez’(l‘i)— 1—68)y—0M)

5.10 Related Work

155

where we used that 0, (z%) — 0, (z7) > ~ for a (1 — 0) fraction of the local
potentials and 6, (%) — 0, (x) > —M for the rest.

If (1 —=0)y—0M >max) ,(0;(x;) — 6;(x*)), then the target solution is
optimal for the dual decgmposition algorithm. Since 0; were introduced as
constant local potentials, we have that § < WLM is sufficient to imply the
optimality of the target solution.

O

The observations in this section argue for enforcing stability with respect
to perturbations of the parameters. In fact, dual-decomposition-based infer-
ence has been successfully applied in conjunction with simple learning algo-
rithms which encourage local assignments to be consistent with the overall
solution (Koo et al., 2010Db).

Learning perturbation models is inherently tied to stability. Maximizing
the probability that a perturbation model realizes a given answer also
encourages the answer to be stable, carrying tractability benefits. Indeed,
perturbation models can be tailored to achieve various notions of stability
by designing appropriate (e.g. multiplicative) perturbations. Such variations
can remain tractable even if the base model (as a class) is not.

5.10 Related Work

The Gibbs distribution plays a key role in many areas of computer science,
statistics and physics. To learn more about its roles in machine learning we
refer the interested reader to (Koller and Friedman, 2009; Wainwright and
Jordan, 2008). The Gibbs distribution as well as its Markov properties can be
realized from the statistics of high dimensional random MAP perturbations
with the Gumbel distribution (see Theorem 6.1), (Papandreou and Yuille,
2011; Tarlow et al., 2012; Hazan and Jaakkola, 2012; Hazan et al., 2013). For
comprehensive introduction to extreme value statistics we refer the reader
to Kotz and Nadarajah (2000).

Recent work explores the different aspects of low dimensional MAP per-
turbation models (Papandreou and Yuille, 2010, 2011; Tarlow et al., 2012).
Papandreou and Yuille (2010) describe sampling from the Gaussian distri-
bution with random Gaussian perturbations. Papandreou and Yuille (2011)
show empirically that MAP predictors with low dimensional perturbations
share similar statistics as the Gibbs distribution. In our work we investi-
gate the dependencies of such probability models. Specifically, we present
non-i.i.d. low dimensional random perturbations that recover the Markov
properties of tree structured Markov random fields. We also show that inde-

156 Learning Mazimum A-Posteriori Perturbation Models

pendent low dimensional perturbations may model long-range interactions.
Tarlow et al. (2012) describe the Bayesian perspectives of these models and
their efficient sampling procedures, as well as several learning techniques
including hard-EM. In contrast, we focus on understanding the structure of
the induced distribution and our learning approach is different. We use dual
LPs in our hard-EM approach so as to obtain compact representations of the
inverse polytope when possible, while Tarlow et al. (2012) focus on cutting
plane approaches. When using cutting plane approaches for only a couple
of iterations, the hard-EM estimates often fall outside the inverse polytope.
Our dual LP approach alleviates this problem and in our experiments almost
all estimates fall within the inverse polytope.

Our experiments show that we are able to sample from the modes of
the distribution. Alternatively, one may use the M-best approach and its
diverse-versions to recover such modes (Yanover and Weiss, 2004; Fromer
and Globerson, 2009a; Batra, 2012; Mezuman et al., 2013; Batra et al., 2012;
Guzman-Rivera et al., 2012). Finding the M-best carries a computational
effort which extends beyond our learning approach whose complexity is as
a 1-best solver. Alternatively, one may sample from determinantal point
processes to retrieve the modes of the distributions (Kulesza and Taskar,
2012). This learning approach concerns problems that can be described by
determinants while our approach is based on MRF potentials.

Acknowledgements

AG and TJ were partially supported by NSF grant #1524427

5.11 References

R. K. Ahuja and J. B. Orlin. Inverse optimization. In Operations Research, 2001.

M. B. Almeida and A. F. Martins. Fast and robust compressive summarization
with dual decomposition and multi-task learning. In ACL (1), pages 196-206,
2013.

P. Awasthi, A. Blum, and O. Sheffet. Clustering under natural stability assump-
tions. 2010.

P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49-54, 2012.

M. F. Balcan and Y. Liang. Clustering under perturbation resilience. In Automata,
Languages, and Programming, pages 63—74. Springer, 2012.

D. Batra. An efficient message-passing algorithm for the m-best map problem. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2012.

5.11 References

157

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse
m-best solutions in markov random fields. In ECCV, 2012.

Y. Bilu and N. Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(05):643-660, 2012.

Y. Bilu, A. Daniely, N. Linial, and M. Saks. On the practically interesting instances
of maxcut. arXiv preprint arXiv:1205.4893, 2012.

V. Chatalbashev. Inverse convex optimization.

H. Fang, S. Gupta, F. Tandola, R. K. Srivastava, L. Deng, P. Dollar, J. Gao,
X. He, M. Mitchell, J. C. Platt, et al. From captions to visual concepts and
back. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1473-1482, 2015.

T. Finley and T. Joachims. Training structural svms when exact inference is
intractable. In Proceedings of the 25th international conference on Machine
learning, pages 304-311. ACM, 2008.

M. Fromer and A. Globerson. An lp view of the m-best map problem. Advances in
Neural Information Processing Systems (NIPS), 22:567-575, 2009a.

M. Fromer and A. Globerson. An lp view of the m-best map problem. Advances in
Neural Information Processing Systems (NIPS), 2009b.

A. Gane, T. Hazan, and T. Jaakkola. Learning with maximum a-posteriori pertur-
bation models. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, 2014.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 1984.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

E. Gumbel and J. Lieblein. Statistical theory of extreme values and some practical
applications: a series of lectures, volume 33. US Govt. Print. Office, 1954.

A. Guzman-Rivera, P. Kohli, and D. Batra. Faster training of structural svms with
diverse m-best cutting-planes. In Discrete Optimization in Machine Learning
Workshop (DISCML-NIPS), 2012.

M. Gygli, H. Grabner, and L. Van Gool. Video summarization by learning submod-
ular mixtures of objectives. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3090-3098, 2015.

W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97-109, 1970.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. ICML, 2012.

T. Hazan, S. Maji, and T. Jaakkola. On sampling from the gibbs distribution with
random maximum a-posteriori perturbations. Advances in Neural Information
Processing Systems, 2013.

M. Huber. A bounding chain for swendsen-wang. Random Structures and Algo-
rithms, 2003.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising
model. STAM Journal on computing, 22(5):1087-1116, 1993.

158

Learning Mazimum A-Posteriori Perturbation Models

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM
(JACM), 51(4):671-697, 2004a.

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM
(JACM), 51(4):671-697, 2004b.

J. H. Kappes, P. Swoboda, B. Savchynskyy, T. Hazan, and C. Schnorr. Probabilistic
correlation clustering and image partitioning using perturbed multicuts. In Scale
Space and Variational Methods in Computer Vision, pages 231-242. Springer,
2015.

D. Koller and N. Friedman. Probabilistic graphical models. MIT press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. PAMI, 2006.

T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition for
parsing with non-projective head automata. In FMNLP, 2010a.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288—
1298. Association for Computational Linguistics, 2010b.

S. Kotz and S. Nadarajah. Eztreme value distributions: theory and applications.
World Scientific Publishing Company, 2000.

A. Kulesza and B. Taskar. Determinantal point processes for machine learning.
Foundations and Trends in Machine Learning, 2012.

S. Maji, T. Hazan, and T. Jaakkola. Efficient boundary annotation using random
map perturbations. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, 2014.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu-linial stable instances
of max cut and minimum multiway cut. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 890-906. STAM,
2014.

R. McDonald and G. Satta. On the complexity of non-projective data-driven
dependency parsing. In Proceedings of the 10th International Conference on
Parsing Technologies, pages 121-132. Association for Computational Linguistics,
2007.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji¢. Non-projective dependency
parsing using spanning tree algorithms. In EMNLP, 2005.

E. Mezuman, D. Tarlow, A. Globerson, and Y. Weiss. Tighter linear program
relaxations for high order graphical models. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2013.

K. P. Murphy, Y. Weiss, and M. 1. Jordan. Loopy belief propagation for approx-
imate inference: An empirical study. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, pages 467-475. Morgan Kaufmann Pub-
lishers Inc., 1999.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer
vision. Foundations and Trends®) in Computer Graphics and Vision, 6(3-4):
185-365, 2011.

F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration of
random maximum a-posteriori perturbations. In ICML, 2014.

5.11 References

159

G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In
Advances in Neural Information Processing Systems (NIPS), 2010.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCV, 2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San
Mateo, 1988.

L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. 1993.

A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
pages 1-11. Association for Computational Linguistics, 2010.

A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2008.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for
inference. Optimization for Machine Learning, 1:219-254, 2011.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,
M. Tappen, and C. Rother. A comparative study of energy minimization methods
for markov random fields with smoothness-based priors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1068—1080, 2007.

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In AISTATS, 2012.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In ICML, page 104.
ACM, 2004.

L. Valiant. The complexity of computing the permanent. Theoretical computer
science, 1979.

M. Volkovs and R. S. Zemel. Efficient sampling for bipartite matching problems.
In Advances in Neural Information Processing Systems (NIPS), 2012.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation via agreement
on trees: message-passing and linear programming. Information Theory, IEEE
Transactions on, 51(11):3697-3717, 2005.

J. Wang and R. Swendsen. Nonuniversal critical dynamics in monte carlo simula-
tions. Physical review letters, 1987.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimization (map-mrf). In Computer Vision and
Pattern Recognition (CVPR), 2008.

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-
parts. In Computer Vision and Pattern Recognition (CVPR), 2011.

C. Yanover and Y. Weiss. Finding the m most probable configurations using loopy

belief propagation. Advances in Neural Information Processing Systems (NIPS),
2004.

Y. Zhang, T. Lei, R. Barzilay, and T. Jaakkola. Greed is good if randomized: New
inference for dependency parsing. EFMNLP, 2014.

6 On the Expected Value of Random
Maximum A-Posteriori Perturbations

Tamir Hazan tamir.hazan@technion.ac.il
Technion
Haifa, Israel

Tommi Jaakkola tommi@csail.mit.com
Massachusetts Institute of Technology
Cambridge, MA

In this chapter we present how to perform high-dimensional structured in-
ference that is based on optimization and random perturbations. This frame-
work injects randomness to maximum a-posteriori (MAP) predictors by ran-
domly perturbing its potential function. When the perturbations are of low
dimension, sampling the perturb-max prediction is as efficient as MAP opti-
mization. A classic result from extreme value statistics asserts that perturb-
max operations generate unbiased samples from the Gibbs distribution us-
ing high-dimensional perturbations. Unfortunately, the computational cost of
generating so many high-dimensional random variables can be prohibitive.
In this work we show that the expected value of perturb-maz inference with
low dimensional perturbations can be used sequentially to generate unbiased
samples from the Gibbs distribution. We also show that the expected value of
the maximal perturbations is a natural bound on the entropy of such perturb-
max models.

6.1 Introduction

Modern machine learning tasks in computer vision, natural language pro-
cessing, and computational biology involve inference of high-dimensional

162

On the Expected Value of Random Mazimum A-Posteriori Perturbations

models. Examples include scene understanding (Felzenszwalb and Zabih,
2011), parsing (Koo et al., 2010), and protein design (Sontag et al., 2008).
In these settings inference involves finding likely structures that fit the data:
objects in images, parsers in sentences, or molecular configurations in pro-
teins. Each structure corresponds to an assignment of values to random
variables and the preference of a structure is based on defining potential
functions that account for interactions over these variables. Given the ob-
served data, these preferences yield a posterior probability distribution on
assignments known as the Gibbs distribution by exponentiating the poten-
tial functions. Contemporary high dimensional models that are used in ma-
chine learning incorporate local potential functions on the variables of the
model that are derived from the data (signal) as well as higher order poten-
tial functions that account for interactions between the model variables and
derived from domain-specific knowledge (coupling). The resulting posterior
probability landscape is often “ragged” and in such landscapes Markov chain
Monte Carlo (MCMC) approaches to sampling from the Gibbs distribution
may become prohibitively expensive (Jerrum and Sinclair, 1993; Goldberg
and Jerrum, 2007, 2012). By contrast, when no data terms (local potential
functions) exist, MCMC approaches can be quite successful. These methods
include Gibbs sampling (Geman and Geman, 1984), Metropolis-Hastings
(Hastings, 1970) or Swendsen-Wang (Swendsen and Wang, 1987).

An alternative to sampling from the Gibbs distribution is to look for the
mazimum a posteriori probability (MAP) structure. Substantial effort has
gone into developing optimization algorithms for recovering MAP assign-
ments by exploiting domain-specific structural restrictions (Eisner, 1996;
Boykov et al., 2001; Kolmogorov, 2006; Gurobi Optimization, 2015; Felzen-
szwalb and Zabih, 2011; Swoboda et al., 2013) or by linear programming
relaxations (Wainwright et al., 2005b; Weiss et al., 2007; Sontag et al., 2008;
Werner, 2008). MAP inference is nevertheless limiting when there are a
number of alternative likely assignments. Such alternatives arise either from
inherent ambiguities (e.g., in image segmentation or text analysis) or due
to the use of computationally /representationally limited potential functions
(e.g., super-modularity) aliasing alternative structures to have similar scores.
For an illustration, see Figure 6.1.

Recently, several works have leveraged the current efficiency of MAP
solvers to build (approximate) samplers for the Gibbs distribution, thereby
avoiding the computational burden of MCMC methods (Papandreou and
Yuille, 2011; Tarlow et al., 2012; Hazan et al., 2013; Ermon et al., 2013a,b,c,
2014; Maddison et al., 2014; Papandreou and Yuille, 2014; Gane and
Tamir Hazan, 2014; Keshet et al., 2011; Kalai and Vempala, 2005). The
relevant works have shown that one can represent the Gibbs distribution by

6.1 Introduction

163

Figure 6.1: Comparing MAP inference and perturbation models. A segmentation
is modeled by « = (1, ..., x,) where n is the number of pixels and z; € {0,1} is a
discrete label relating a pixel to foreground (z; = 1) or background (z; = 0). §(x)
is the (super-modular) score of each segmentation. Left: original image. Middle: the
MAP segmentation argmax,, 0(x) recovered by the graph-cuts optimization algo-
rithm (Boykov et al., 2001). Note that the “optimal” solution is inaccurate because
thin and long objects (wings) are labeled incorrectly. Right: The marginal probabili-
ties of the perturb-max model estimated using 20 samples (random perturbations of
6(x) followed by executing graph-cuts). The information about the wings is recov-
ered by these samples. Estimating the marginal probabilities of the corresponding
Gibbs distribution by MCMC sampling is slow in practice and provably hard in
theory (Hazan et al., 2013; Goldberg and Jerrum, 2007).

calculating the MAP structure of a randomly perturbed potential function,
whenever the perturbations follow the Gumbel distribution (Papandreou
and Yuille, 2011; Tarlow et al., 2012). Unfortunately the total number of
structures, and consequently the total number of random perturbations, is
exponential in the structure’s dimension. We call this a perturb-maz ap-
proach.

In this work we perform high dimensional inference tasks using the ex-
pected value of perturb-max programs that are restricted to low dimen-
sional perturbations. In this setting the number of random perturbations is
linear is the structure’s dimension and as a result statistical inference is as
fast as computing the MAP structure, as illustrated in Figure 6.1. We also
provide measure concentration inequalities that show the expected perturb-
max value can be estimated with high probability using only a few random
samples. This work simplifies and extends our previous works (Hazan and
Jaakkola, 2012; Hazan et al., 2013; Maji et al., 2014; Orabona et al., 2014).

We begin by introducing the setting of high dimensional inference as
well as the necessary background in extreme value statistics in Section 6.2.
Subsequently, we develop high dimensional inference algorithms that rely on
the expected MAP value of randomly perturbed potential function, while
using only low dimensional perturbations. In Section 6.3.1 we propose a novel
sampling algorithm and in Section 6.3.2 we derive bounds on the entropy
that may be of independent interest.

16/ On the Expected Value of Random Mazimum A-Posteriori Perturbations

6.2 Inference and Random Perturbations

We first describe the high dimensional statistical inference problems that
motivate this work. These involve defining the potential function, the Gibbs
distribution, and its entropy. Further background can be found in standard
texts on graphical models (Wainwright and Jordan, 2008). We will then
describe the MAP inference problem and describe how to use extreme
value statistics to perform statistical inference while recovering the maximal
structure of randomly perturbed potential functions (Kotz and Nadarajah,
2000) and (David and Nagaraja, 2003, pp.159-61). To do this we apply
random perturbations to the potential function and use MAP solvers to
produce a solution to the perturbed problem.

6.2.1 High Dimensional Models and Extreme Value Statistics

Statistical inference for high dimensional problems involve reasoning about
the states of discrete variables whose configurations (assignments of values)
describe discrete structures. Suppose that our model has n variables x =
(x1,2,...,x,) where each z; takes values in a discrete set X;. Let X =
Xy x g x -+ x Xy, so that & € X. Let Dom(#) C X be a subset of possible
configurations and 6 : X — R be a potential function that gives a score to
an assignment or structure x. For convenience we define 6(x) = —oo for
x ¢ Dom(#). The potential function induces a probability distribution on
configurations « = (1, ..., x,) via the Gibbs distribution:

p(w)ézze)expw(:c)) where Z(6)2 Y exp(d(z). (6.1
xeX

The normalization constant Z(6) is called the partition function. Sampling
from the Gibbs distribution is often difficult because the partition func-
tion involves exponentially many terms (equal to the number of discrete
structures in X). In many cases, computing the partition function is in the
complexity class #P (e.g., (Valiant, 1979)).

6.2.2 MAP Inference

In practical inference tasks, the Gibbs distribution is constructed given
observed data. Thus we call its maximizing structure the maximum a-
posteriori (MAP) prediction. We can express MAP inference problem in

6.2 Inference and Random Perturbations 165

the same notation as Maximizing (6.1):

x* = argmax 6(x). (6.2)
xeX

Maximizing () is equivalent to maximizing p(x). Methods for performing
the optimization in (6.2) for high dimensional potential functions have been
extensively researched in the last decade (Boykov et al., 2001; Sontag et al.,
2008; Gurobi Optimization, 2015; Felzenszwalb and Zabih, 2011; Swoboda
et al., 2013). These have been useful in many cases of practical interest in
computer vision, such as foreground-background image segmentation with
supermodular potential functions (e.g., (Kolmogorov and Zabih, 2004)),
parsing and tagging (e.g., (Koo et al., 2010; Rush et al., 2010)), branch and
bound for scene understanding and pose estimation (Schwing and Urtasun,
2012; Sun et al., 2012) and dynamic programming predictions for outdoor
scene understanding (Felzenszwalb et al., 2010). Although the run-time of
these solvers can be exponential in the number of variables, they are often
surprisingly effective in practice, (Wainwright et al., 2005b; Globerson and
Jaakkola, 2007; Sontag et al., 2008; Sontag and Jaakkola, 2008).

6.2.3 Inference and Extreme Value Statistics

Although MAP prediction is NP-hard in general, it is often simpler than
sampling from the Gibbs distribution. Nevertheless, usually there are several
values of & whose scores 6(x) are close to #(x*) and we would like to sample
these structures (see Figure 6.1). From such samples it is possible to estimate
the amount of uncertainty in these models. A standard uncertainty measure
is the entropy function:

H(p)=—)_ p(x)logp(x) (6.3)
xeX

Such statistical inference tasks usually resort to MCMC methods that tend
to be slow to converge in many practical settings (Jerrum and Sinclair, 1993;
Goldberg and Jerrum, 2007, 2012). Alternatively one can draw unbiased
samples from the Gibbs distribution by perturbing the potential function
and solving the perturbed MAP problem. The perturb-max approach adds
a random function v : X — R to the potential function in (6.1) and solves
the resulting MAP problem:

x7 = ar;ggcax {0(x) +~y(x)}. (6.4)

The random function ~y(-) associates a random variable to each & € X. The
simplest approach to designing a perturbation function is to associate an

166

On the Expected Value of Random Mazimum A-Posteriori Perturbations

independent and identically distributed (i.i.d.) random variable () for each
x € X. In this case, the distribution of the perturb-max value 0(x) 4+ v(x)
has an analytic form. To verify this observation we denote by F(t) the
cumulative distribution function of v(x), namely, F(t) = P[y(x) < t]. The
independence of y(x) across € X implies that P, (maxgex {#(x) + v(x)} <
) =P,(Ve € X {6(x)+(2)} <1) = P,(ve € X {6(x)+ (@)} < 1) -
[Izex F(t — 0(x)). Unfortunately, the product of cumulative distribution
functions usually is not a simple distribution.

The Gumbel distribution, the Fréchet distribution and the Weibull distri-
bution, used in extremal statistics, are max-stable distributions. That is, the
product J],co F'(t —0(x)) can be described by their own cumulative distri-
bution function F'(-) (Fisher and Tippett, 1928; Gnedenko, 1943; Gumbel,
1954). In this work we focus on the Gumbel distribution with zero mean,
which is described by its a double exponential cumulative distribution func-
tion

G(t) = exp(—exp(—(t +¢))), (6.5)

where ¢ ~ 0.5772 is the Euler-Mascheroni constant. Throughout our work
we use the max-stability of the Gumbel distribution as described in the
following Theorem.

Theorem 6.1 (Max-stability of Gumbel perturbations (Fisher and Tippett,
1928; Gnedenko, 1943; Gumbel, 1954)). Let v = {y(x) : ¢ € X} be a
collection of i.i.d. Gumbel random variables whose commutative distribution
function is given by G(t) = Ply(x) < t] = exp(—exp(—(t + ¢))). Then

the random variable maxgcy {0(x) + v(x)} also has the Gumbel distribution
whose mean is the log-partition function Z(0).

Proof. The proof is straightforward and we add it for completeness. By the
independence assumption,

P, (max(o(a) +9(2)) <1) = [] Pr (0fa) +1(2) <),

rzeX

The random variable (x)+~(x) follows the Gumbel distribution with mean
0(x). Therefore

By (6(@) +v(2) < 1) = G(t — 6(x)).

6.2 Inference and Random Perturbations 167

Lastly, the double exponential form of the Gumbel distribution yields the
result:

H G(t —6(x)) = exp (— Z exp (—(t — 0(x) + c)))

zeX xzeX
= exp (—exp(—(t + ¢ —log Z(0)))
= G(t —log Z(0)).

O]

We can use the log-partition function to recover the moments of the Gibbs
distribution. Thus the log-partition function characterizes the stability of the
randomized MAP predictor x7 in (6.4).

Corollary 6.2 (Sampling from perturb-max models (Luce, 1959; Ben-Akiva
and Lerman, 1985; McFadden, 1974)). Under the conditions of Theorem 6.1
the Gibbs distribution measures the stability of the perturb-max argument,
namely

exp(6(2)) _
e P (
Proof. From Theorem 6.1, we have log Z(0) = E,[maxzex {0(x) + ()},

so we can take the derivative with respect to some #(x). We note that by
differentiating the left hand side we get the Gibbs distribution:

Olog Z(0) _ exp(0(#))
86/(z) Z(0)

Differentiating the right hand side is slightly more involved: First, we can
differentiate under the integral operator (cf. (Folland, 2013)) so

& = argmax {0(x) + 'y(:r)}) , (6.6)

xeX

max {0(z (a:)}d*y:/Rx ae? S {0(@) +9(a)

69 RIX] xeX

The (sub)gradient of the max-function is the indicator function (an appli-
cation of Danskin’s theorem (Bertsekas et al., 2003)):

o s (0(2) +9(2)) =1 (& = avgmax () + 5(a)}).
The corollary then follows by applying the expectation to both sides of the
last equation. O

An alternative proof of the preceding corollary can be given by consid-
ering the probability density function g(t) = G'(t) of the Gumbel dis-
tribution. This proof consists of two steps. First, the probability that

168

On the Expected Value of Random Mazimum A-Posteriori Perturbations

& maximizes 0(x) + y(z) is [g(t — 0(2)) [[pze G(t — 0(x))dt. Second,
gt — 0(x)) = exp(f(x)) - exp(—(t + ¢))G(t — 0(x)) therefore the proba-
bility that & maximizes 6(x) + () is proportional to exp(8(&)), i.e., it is
the Gibbs distribution.

We can also use the random MAP perturbation to estimate the entropy
of the Gibbs distribution.

Corollary 6.3. Let p(z) be the Gibbs distribution, defined in Equation (6.3).
Under the conditions of Theorem 6.1,

H(p) = By [y(x7)].

Proof. The proof consists of evaluating the entropy in Equation (6.3) and
using Theorem 6.1 to replace log Z(#) with E,[0(x") + v(x7)]. Formally,

H(p) =~) p(@)8(x) + E,[6(x7) +7(x")]

xeX
== p@b(x)+) 0()P, (X7 = @) + B, [7(x")]
xzcX xeX
= E,[y(x7)],
where in the last line we used Corollary 6.2, which says P,(x? = x) =
p(x). O
A direct proof of the preceding corollary can be given by showing that
E, [y(x") - 1[z = x7]] = —p(&)logp(x) while the entropy is then attained

by summing over all &, since) 5+ 1{Z = x7] = 1. To establish this equality
we note that

B, ()16 =x) = [(¢~ 6(@)a(t - 6(@)) T] Gt~ ol
TET

Using the relation between g(t) and G(t) and the fact that [[.y G(t —
0(x)) = G(t—log Z()) while changing the integration variable to f = t—6(%)
we can rephrase this quantity as [texp(—(c+t))G(t+logp(&))dt. Again by
using the relation between g(t+log p(€)) and G(t+1logp(x)) we derive that
E, [y(x7) - 1[z = x"]] = p(@) [tg(t + logp(x))dt while the integral is now
the mean of a Gumbel random variable with expected value of —log p(Z).

The preceding derivations show that perturbing the potential function
O(x) and then finding the MAP estimate x” of the perturbed Gibbs distri-
bution allows us to perform many core tasks for high-dimensional statistical
inference by using i.i.d. Gumbel perturbations. The distribution of x7 is
p(x), its expected maximum value is the log-partition function, and the ex-
pected maximizing perturbation is the entropy of p(x). While theoretically

6.3 Low-Dimensional Perturbations 169

appealing, these derivations are computationally intractable when dealing
with high-dimensional structures. These derivations involve generating high-
dimensional perturbations, namely |X| random variables in the image of (),
one for each structure in X = Xy x ---X,,, which grows exponentially with
n. The goal of this paper is to apply high-dimensional inference using max-
solvers that involve a low-dimensional perturbation term. More specifically,
we wish to involve only a linear (in n) number of random variables.

6.3 Low-Dimensional Perturbations

In this work we establish our high dimensional inference approaches by ex-
ploiting the structure of the partition function Z(6). The partition function
is a key quantity in these models — its gradient is the Gibbs distribution and
the entropy is its Fenchel dual. It is well-known that computing Z(6) for
high-dimensional models is challenging because of the exponential size of X.
This complexity carries over to the perturb-max approach to estimating the
log-partition function, which also involves generating an exponential number
of Gumbel random variables. In this section we show that the log-partition
function can be computed using low-dimensional perturbations in a sequence
of expected max-value computations. This will give us some insight on per-
forming high dimensional inference using low dimensional perturbations. In
what follows we will use the notation xf to refer to the tuple (z;, xit1, ..., ;)
for ¢ < j, with x = 2.

The partition function has a self-reducible form. That is, we can compute
it iteratively while computing partial partition functions of lower dimensions:

ZO) =) > exp(B(x1, ...y n)). (6.7)

1 2

For example, the partition function is the sum, over x1, of partial partition
functions >, . exp(f(x)). Fixing z1,...,;, the remaining summations
are partial partition functions 3>, exp(f()). With this in mind, we
can compute each partial partition function using Theorem 6.1 but with
low-dimensional perturbations for each partial partition.

Theorem 6.4. Let {v;(x;)}z.ex,i=1,..n, be a collection of independent
and identically distributed (i.i.d.) random wvariables following the Gumbel
distribution, defined in Theorem 6.1. Define v; = {Vi(x;)}z,ex,. Then

log Z = E,, max---E, max {9(93) + Z %(:cl)} . (6.8)
' o i=1

170

On the Expected Value of Random Mazimum A-Posteriori Perturbations

Proof. The result follows from applying Theorem 6.1 iteratively. Let
On(2]) = 0(2) and define

91‘_1(.%'3_1) = E"/q‘, H}Eax{el(xll) + ’YZ(:U?,)} = 27 37 sy N

If we think of x’fl as fixed and apply Theorem 6.1 to Gi(azifl,xi), we see
that from (6.7),

0; 1 (i) =log > exp(f(a})).

Applying this for i = n to i = 2, we obtain (6.8). O

The computational complexity of the alternating procedure in (6.8) is
still exponential in n. For example, the inner iteration 6, j(z7!)
E,, maxg, {0,(2]) + vn(zn)} needs to be estimated exponentially many
times, i.e., for every a:’f_l = (21,...,Zp—1). Thus from computational per-
spective the alternating formulation in Theorem 6.4 is just as inefficient as
the formulation in Theorem 6.1. Nevertheless, this is the building block that

enables inference in high-dimensional problems using low dimensional per-

turbations and max-solvers. Specifically, it provides the means for a new
sampling algorithm from the Gibbs distribution and bounds on the log-
partition and entropy functions.

6.3.1 Sampling

In the following we use low dimensional perturbations to generate unbiased
samples from the Gibbs distribution. Although Corollary 6.2 presents a
method for sampling from the full Gibbs distribution using perturb-max
operations, it requires exponentially many independent perturbations ~y(x),
for each * € X. Here we rely on low-dimensional perturbations to draw
samples from the Gibbs distribution.

Sampling from the Gibbs distribution is inherently tied to estimating the
partition function. Assume we could have compute the partition function
exactly, then we could have sample from the Gibbs distribution sequentially:
for dimension ¢ = 1,...,n sample x; with probability which is proportional
to Zﬂf?u exp(f(x)). Unfortunately, direct computations of the partition
function is #P-hard. Instead, we construct a family of self-reducible upper
bounds which imitate the partition function behavior, namely by bounding
the summation over its exponentiations.

Corollary 6.5. Let {vi(wi)} be a collection of i.i.d. random wvariables,
each following the Gumbel distribution with zero mean. Set 6;(z]) =

6.3 Low-Dimensional Perturbations 171

E, {maxx;ﬂ{Q(m) + Z?:jﬂ ’yz(:zl)}} . Then for every 7 = 1,...,n—1 and
every x = x7 the following inequality holds:

Zexp (Hj(le)) < exp (Hj,l(m]fl)) : (6.9)

In particular, for j =n we have), exp(f(z])) = exp (1 (z771)).

Proof. The result is an application of the perturb-max interpretation of the
partition function in Theorem 6.1. Intuitively, these bounds correspond to
moving expectations outside the maximization operations in Theorem 6.4,
each move resulting in a different bound. Formally, the left hand side can
be expanded as

E,, |maxE, , 5, |max O(x’f)—}—Z%(azz) , (6.10)

Tji1 .
i+ i=j

while the right hand side is attained by alternating the maximization with

respect to x; with the expectation of ;11,...,7,. The proof then follows
by exponentiating both sides. O
We use these upper bounds for every dimension ¢ = 1,...,n to sample

from a probability distribution that follows a summation over exponential
functions, with a discrepancy that is described by the upper bound. This is
formalized below in Algorithm 6.1.

Algorithm 6.1 Unbiased sampling from Gibbs distribution using randomized
prediction

Iterate over j = 1,...,n, while keeping fixed x1,...,2;-1. Set 6; (m{) as in Corollary 6.5.

L. pj(x;) = exp (6; (1)) /exp (6;-1(x1 7))

2. pi(r) =1-3, pz;)

3. Sample an element according to p;(-). If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element z; and continue the iterations.

Output: z1,...,2n

When the potential function is decomposable, namely 6(x) = >, 0;(z;),
the upper bounds in Equation (6.9) are tight and the sampling algorithm
never rejects and terminates after exactly n iterations.

We say the algorithm accepts if it terminates with an output . When
we reject the discrepancy, the probability we accept a configuration x is
the product of probabilities in all rounds. Since these upper bounds are

172

On the Expected Value of Random Mazimum A-Posteriori Perturbations

self-reducible, i.e., for every dimension 7 we are using the same quantities
that were computed in the previous dimensions 1,2,...,7 — 1, we are sam-
pling an accepted configuration proportionally to exp(f(x)), the full Gibbs
distribution. This is summarized in the following theorem.

Theorem 6.6. Let p(x) be the Gibbs distribution defined in (6.1) and
let {~i(z;)} be a collection of i.i.d. random variables following the Gumbel
distribution with zero mean given in (6.5). Then

P (Algorithm 6.1 accepts) = Z(6)/ exp (EV

max{0(z) + Y wz«)}]) .
=1

Moreover, if Algorithm 6.1 accepts then it produces a configuration x =
(1, ...,@y) according to the Gibbs distribution:

exp(0())

P (Algorithm 6.1 outputs x ’ Algorithm 6.1 accepts) = 20

Proof. Set Gj(x{) as in Corollary 6.5. The probability of sampling a config-
uration = (z1,...,z,) without rejecting is

n o exp (Oj (:U{)) exp(f(x))

j=1€exp <0j,1(a:{_1)) exp (B, [maxg {0(x) + 207 vi(w)}])

The probability of sampling without rejecting is thus the sum of this

max {0(:1:) + Z%(azz)}]) .
i=1

Therefore conditioned on accepting a configuration, it is produced according
to the Gibbs distribution. O

probability over all configurations, i.e.,

P (Alg. 6.1 accepts) = Z(0)/ exp <E7

Since acceptance/rejection follows the geometric distribu-
tion, the sampling procedure rejects k times with probability
(1 — P (Algorithm 6.1 accepts))”. The running time of our Gibbs sampler is
determined by the average number of rejections 1/P(Algorithm 6.1 accepts)
and by taking the log-scale it is

log (1/P (Alg. 6.1 accepts)) = E,

max {9(93) +) i) }] —log Z(0).
i=1

6.3 Low-Dimensional Perturbations 173

To be able to estimate the number of steps the sampling algorithm requires,
we construct an efficiently computable lower bound to the log-partition
function, that is based on perturb-max values.

Our suggested lower bound originates from the representation of the parti-
tion function by low-dimensional perturbations. It estimates each expected-
max computation by its empirical average and then follows a model expan-
sion to be able to compute this quantity with a single max-operation. Al-
though the theory below requires exponentially many perturbations to have
a tight bound, our experimental validation shows that our lower bounds is
surprisingly tight using only a few random perturbations.

Corollary 6.7. Let 0(x) be a potential function over = (x1,...,Ty).
We create multiple copies of x;, namely &; = {xip, * ki = 1,2,...,M;}
for i = 1,...,n, and define the extended potential function over & =
(il,ﬂ?g, R in)
. 1 {M:}
0@) = ——r > @1k Tnk,)- (6.11)
Hi:l Ml {ki}il

For i.i.d. perturbations 7 i,(%;,) that distributed according to the Gumbel
distribution with zero mean we define the extended perturbation model

M
o 1 M
(@) = 57 > Yik (@ik,)- (6.12)
k=1
Also, whenever 6 is clear from the context we use the shorthand Z for Z(0).
Then
N 2 [Toes 11|72
P (logZ > max {9(:13) + ZZ;%(:BZ)} - en> >1- ; TeMeE

(6.13)
Proof. The proof consists of three steps:

= developing a measure concentration analysis for Theorem 6.1, which states
that a single max-evaluation is enough to lower bound the expected max-
value with high probability;

= using the self-reducibility of the partition function in Theorem 6.4 to
show the partition function can be computed by iteratively applying low-
dimensional perturbations;

» proving that these lower dimensional partition functions can be lower
bounded uniformly (i.e., all at once) with a single measure concentration
statement.

174

On the Expected Value of Random Mazimum A-Posteriori Perturbations

We first provide a measure concentration analysis of Theorem 6.1. Specifi-
cally, we estimate the deviation of the random variable F' = maxzex{6(x)+
~v(x)} from its expected value using Chebyshev’s inequality. For this pur-
pose we recall Thoerem 6.1 which states that F' is Gumbel-distributed and
therefore its variance is 72/6. Chebyshev’s inequality then asserts that

P, (|F —E, [F]| > ¢) < 7%/6¢. (6.14)

Since we want this statement to hold with high probability for small ep-
silon we reduce the variance of the random variable while not changing
its expectation by taking a sampled average of i.i.d. perturb-max val-
ues: Let V(y) = maxg{f(x) 4+ v(x)}. Suppose we sample M ii.d. copies
V1,2, - - -, YMm of v with and generate the i.i.d. Gumbel-distributed values
F; “ g (74). Since E[F ()] = log Z, we can apply Chebyshev’s inequality
to the ﬁzlj\il V] —log Z to get

M 2
1 - s
Pl|— V. —logZ| > < . 6.15
Using the explicit perturb-max notation and considering only the lower-side
of the measure concentration bound: with probability at least 1 — #262 there
holds:
1M
log Z > i Z; r;lélj}c({G(:c) +7i(x)} —€ (6.16)
]:

To complete the first step, we wish to compute the summation over
M —maximum values using a single maximization. For this we duplicate

M copies of the variable x to the variables x1, xs,...,x) € X:
M M
. — . A 1
JZ::I max{f(@) + (@)} = - max ;{9(%) +i(x)} (6.17)

For the remainder we use an argument by induction on n, the number
of variables. Consider first the case n = 2 so that §(x) = 61 2(x1,22). The
self-reducibility as described in Theorem 6.1 states that

log Z = log <Z exp [log (Z exp(61 2(z1, :EQ)))] > (6.18)

Z1 T2

As in the proof of Theorem 6.1, define 01 (z1) = log(>_,, exp(012(z1,72)).
Thus we have log Z = log (le exp(61(z1))), which is a partition function
for a single-variable model.

6.3 Low-Dimensional Perturbations 175

We wish to uniformly approximate ;(x1) over all 1 € X;. Fix 1 = a for
some a € X; and consider the single-variable model 6, 2(a, x2) over x3 which
has 61(a) as its log partition function. Then from Theorem 6.1, we have
61(a) = E,, [max,,{0(a, z2) + 72(x2)}]. Applying Chebyshev’s inequality in
(6.15) to M replicates of o, we get

,7[.2

M,
1
Pl |— g ; — > < —.
]\4‘2 = H};;.X{g(a, x2) + 721] (‘%.2)]} 91 (a’) Z € — 6M262

Taking a union bound over a € X; we have that with probability at least
2

1= [X1|gge
1 &

ﬁz Z%&X{H(%l,xg) —l—"}/z?j(xg)]} — 91(561) <e Vo1 € Xy
j=1

This implies the following one-sided inequality with probability at least
1-— yxlyﬁ uniformly over z1 € Xy:

M,
Or() = ;rggx{em,mz) (@)} — . (6.19)

Now note that the overall log partition function for the model f(x) =
012(z1,x2) is a log partition function for a single variable model with
potential 61 (z1), so log Z = log (3, exp(f1(x1))). Again using Theorem 6.1,
we have log Z = E,, [max,, {01(x1) + v1(21)}], so we can apply Chebyshev’s
inequality to M; copies of ; to get that with probability at least 1 — 6]\7;[712:

M,
1
log Z > i ; max{f (v1) +714(21)} — € (6.20)

Plugging in (6.19) into (6.20), we get that with probability at least 1 —

e |x1|# that log Z is lower bounded by

M, M,
1 1
M;Hﬁx %;%@X{H(l'l,:ﬂg) +727j(x2)} —i—’yl’k(ajl) — 2e.

(6.21)

176 On the Expected Value of Random Mazimum A-Posteriori Perturbations

Now we pull the maximization outside the sum by introducing separate
variables for each of the M; and My summands, as in (6.17):

1 2
2 max A42:g;rggx{e(xl,wz)%-vzg(ﬁz)} +71k(21)

1
= 3 2T maX*ZMm])w,J(xz,J) + ()

M, M,
1
= maxmax M, ; Zl 0(z1 5, 22,5) + 72,5 (T1 8, 22,5) + V1.86(T1 k)
g J:

Note that in this bound we have to generate |X;||X3| variables
v2,j (%1 ks T2,5), which will become inefficient as we add more variables. We
can get an efficiently computable lower bound on this quantity by maximiz-
ing over a smaller set of variables: we use the same perturbation realization
Y2, (z2,5) for every value of x1 ;. Thus we have the lower bound

M1 M2

1
log Z > _9
08 Z = max yror kZl; (@1, 2,5) + V2,5 (w25) + V1 p(T1k)) — 2€

with probability at least 1 — 6M el |DC1\6M =

Now suppose the result holds for models on n — 1 variables and consider
the model 6(x1,x9,...,x,) on n variables. Consider the 2-variable model
0(z1,xY) and define

61(z1) =log | > exp(f(x1,25)) | . (6.22)

n
T

From the analysis of the 2-variable case, as in (6.20), we have that with
probability at least 1 — n

6M ez
1 &
logZ > — Z max{91 (1) + 71k, (1)} — € (6.23)
kl_l

but now for each value of z1, the function 6 (z1) is a log partition function
on the n — 1 variables =% so applying the induction hypothesis to 6;(z1), we
have with probability at least

2 2 2 n—1 2

v v s
L _x X o= T 1% (6,24
6 Mye? ’ﬂm&@ ’ﬂ‘ﬂm42 j2|ﬂM@@m)

6.3 Low-Dimensional Perturbations 177
we have
n
01(z1) > HlaX{H(fCl,fEEL) +Z%(ff3i)} —€(n—1) (6.25)
Ty -

Taking a union bound over all x1, with probability at least

n

i 2
=) Gape (6.26)

i=1 \j=2
we have
1 M, n
log Z > A Z max {H%%X {9(3:1,:53) + Z%(:ﬁz)} + Y1,k (xl)} —en
ki=1 =2
n
> max0(Z) + > 4i(&:) — en
* i=1
as desired.

O]

Despite the theory requires M; is to exponentially large, it turns out that
M; may be very small to generate tight bounds (see Section 6.4).

6.3.2 Entropy Bounds

In the following we describe how to bound the entropy of high-dimensional
models using perturb-max values. Estimating the entropy is an important
building block in many machine learning applications. Corollary 6.3 ap-
plies the interpretation of Gibbs distribution as a perturb-max model (see
Corollary 6.2) in order to define the entropy of Gibbs distributions using
the expected value of the maximal perturbation. Unfortunately, this proce-
dure requires exponentially many independent perturbations «(x), for every
x e X.

We again use low-dimensional perturbations to upper bound the entropy
of perturb-max models. Accordingly, we extend our definition of perturb-
max models as follows. Let A be a collection of subsets of {1,2,...,n} such
that (J,cq = {1,2,...,n}. For each a € A generate a Gumbel perturbation
Yo (o) Where &y = (2;)icq. We define the perturb-max models as

p(a;0) =P, <az = argmax {9(93) +y mm}) : (6.27)

® acA

178

On the Expected Value of Random Mazimum A-Posteriori Perturbations

Our upper bound uses the duality between entropy and the log-partition
function (Wainwright and Jordan, 2008) and then upper bounds the log-
partition function with perturb-max operations.

Upper bounds for the log-partition function using random perturbations
can be derived from the refined upper bounds in Corollary 6.5. However, it is
simpler to provide an upper bounds that rely on Theorem 6.4. These bounds
correspond to moving expectations outside the maximization operations. For
example,

log Z(0) < E,

max {9(93) + Z%‘(%)}] (6.28)
i=1

follows immediately from moving all the expectations in front (or equiva-
lently, by Jensen’s inequality). In this case the bound is a simple average of
MAP values corresponding to models with only single node perturbations
vi(x;), for every i = 1,...,n and z; € X;. If the maximization over 6(x)
is feasible (e.g., due to super-modularity), it will typically be feasible after
such perturbations as well. We generalize this basic result further below.

Corollary 6.8. Consider a family of subsets a € A such that | ., o =
{1,...,n}, and let o, = {z; : i € a}. Assume that the random variables
Ya(xo) are i.i.d. according to the Gumbel distribution, for every a, xo. Then

max {9(33) +)° %(ma)}] .

acA

log Z(0) < E,

Proof. If the subsets a are disjoint, then {x, : @ € A} simply defines a
partition of the variables in the model. We can therefore use (6.28) over
these grouped variables. In the general case, a,a’ € A may overlap. For
each a € A generate an independent set of variables @/,. We define a lifted
configuration ' = {x, : @ € A} by lifting the potentials to #'(z’) and
including consistency constraints:

o) = {9(:13) if Vo,i € oty = 2y

. (6.29)
—o00 otherwise

Thus, log Z(0) = logZ(¢§') = > exp(#'(x')) since inconsistent settings
receive zero weight. Moreover,

max {9'(331) + Z Va(fcfl)} = max {9(:0) + Z va(ma)}

acA acA

6.3 Low-Dimensional Perturbations 179

for each realization of the perturbation. This equality holds after expectation
over v as well. Now, given that the perturbations are independent for each
lifted coordinate, the basic result in equation (6.28), guarantees that

Hffx {9’(&:’) + Z ’Ya(il?la)}])

aEA

log Z(9) < E,

from which the result follows. O

Establishing bounds on the log-partition function allows us to derive
bounds on the entropy. For this we use the conjugate duality between the
(negative) entropy and the log-partition function (Wainwright and Jordan,
2008). The entropy bound then follows from the log-partition bound.

Theorem 6.9. Let p(x;0) be a perturb-max probability distribution in
(10.19) and A be a collection of subsets of {1,2,...,n}. Let " be the optimal
perturb-mazx assignment using low dimensional perturbations:

z) = arg;nax {Q(m) + Z 'ya(ma)} .

acA

Then under the conditions of Corollary 6.8, we have the following upper
bound:

H(p) <E,

Z ’Ya(xzz)] .

acA

Proof. We use the characterization of the log-partition function as the
conjugate dual of the (negative) entropy function (Wainwright and Jordan,
2008):

0

H(p) = min {log Z0) = pla; G)é(fc)} :

For a fixed score function (x), let W (6) be the expected value of the low-
dimensional perturbation:

max {é(w) + Z ’ya(ma)}] :

acA

W) =E,

180 On the Expected Value of Random Mazimum A-Posteriori Perturbations

Corollary 6.8 asserts that log Z(#) < W (6). Thus we can upper bound H (p)
by replacing log Z(0) with W (#) in the duality relation:

H(p) < i {W(é) = pla; e)é(a;)}

The minimum of the right hand side is attained whenever the gradient
vanishes, i.e., whenever VW () = p(x; 6). Since the derivatives of W (#) are
perturb-max models, and so is p(x; @), then the the minimum is attained for

0 = 0. Therefore, recalling that 27 has distribution p(;6) in (10.19):
min {W@ e 9>e<w>} — W) - 3 pla: 0)8(a)

=E, max {(9(32) + Z ’Ya(afoc)}

acA

—E, [0(")

=E, |6(z7) + Z %(mg)] —E, [0(=")]

acA

- E’Y Z ’Ya(mgz)] I

LacA

from which the result follows. O

This entropy bound motivates the use of perturb-max posterior models.
These models are appealing as they are uniquely built around prediction and
as such they inherently have an efficient unbiased sampler. The computation
of this entropy bound relies on MAP solvers. Thus computing these bounds is
significantly faster than computing the entropy itself, whose computational
complexity is generally exponential in n.

Using the linearity of expectation we may alternate summation and expec-
tation. For simplicity, assume only local perturbations, i.e., ;(z;) for every
dimension ¢ = 1,...,n. Then the preceding theorem bounds the entropy by
summing the expected change of MAP perturbations H(p) < >, E,[vi(z])].
This bound resembles to the independence bound for the entropy H(p) <
>_i H(pi), where p;(x;) = >, ,, () are the marginal probabilities (Cover
and Thomas, 2012). The independence bound is tight whenever the joint
probability p(x) is composed of independent systems, i.e., p(x) = [, pi(z:).
In the following we show that the same holds for perturbation bounds.

6.3 Low-Dimensional Perturbations 181

Corollary 6.10. Consider the setting in Theorem 6.9 and the independent
probability distribution p(x) = [, pi(zi). Then there is 0(x) for which

Z %’(iﬂz)]

H(p) =E,

while

) = argmax {9(:1:) + Z %(a:z)}
* i=1

Proof. Set 6;(x;) = logpi(x;) and §(x) = logp(x) = >, 0i(x;). Consider the
perturb-max model in (10.19) with A = {{i} : i = 1,2,...,n}. Corollary
6.2 shows p(x) = p(x;0). Broadly speaking, the statement then holds
since] = argmax, {0;(x;) + vi(x;)}. Formally, H(p) = >, H(p;) while
H(p;) = E,,[vi(z])] by Corollary 6.3.

0

There are two special cases for independent systems. First, the zero-one
probability model, for which p(x) = 0 except for a single configuration
p(€) = 1. The entropy of such a probability distribution is 0 since the
distribution if deterministic. In this case, the perturb-max entropy bound

assigns 7 = @ for all random functions v = (vi(2;))is,. Since these
random variables have zero mean, it follows that E, [> ", 7i(Z;)] = 0. Another
important case is for the uniform distribution, p(x) = 1/|X| for every

x € X. The entropy of such a probability distribution is log|X|, as it
has maximal uncertainty. Since our entropy bounds equals the entropy for
minimal uncertainty and maximal uncertainty cases, this suggests that the
perturb-max bound can be used as an alternative uncertainty measure.

Corollary 6.11. Consider the setting of Theorem 6.9. Set

Ulp)=E, | mmg)] . (6.30)

Then U(p) is an uncertainty measure, i.e., it is non-negative, it attains its
minimal value for the deterministic distributions and its maximal value for
the uniform distribution.

Proof. Non-negativity follows from the non-negativity of entropy: 0 <
H(p) < U(p). As argued above, U(p) is 0 for deterministic p. To show
that the uniform distribution maximizes U(p) note that for the uniform
distribution there exists a constant ¢ such that 6(x) = ¢ for all x € X.
Suppose this distribution does not maximize U(p). Then for two configura-

182 On the Expected Value of Random Mazimum A-Posteriori Perturbations

tions @, x’ € X the corresponding 0(-) satisfies f(x) < 6(x’). Thus there are
Yoo Yal®) >, ValZa) although 27 = &, a contradiction.
O

Using efficiently computable uncertainty measure allows us to extend the
applications of perturb-max models to Bayesian active learning (Maji et al.,
2014). The advantage of using the perturb-max uncertainty measure over the
entropy function is that it does not require MCMC sampling procedures.
Therefore, our approach well fits high dimensional models that currently
dominate machine learning applications such as computer vision. Moreover,
perturb-max uncertainty measure upper bounds the entropy thus reducing
perturb-max uncertainty effectively reduces the entropy.

6.4 Empirical Evaluation

Statistical inference of high dimensional structures is closely related to es-
timating the partition function. Our proposed inference algorithms, both
for sampling and inferring the entropy of high-dimensional structures, are
derived from an alternative interpretation of the partition function as the
expected value of the perturb-max value. We begin our empirical validation
by computing the upper and lower bounds for the partition function com-
puted as the expected value of a max-function and their measure concentra-
tion qualities. We then show that the perturb-max algorithm for sampling
from the Gibbs distribution has a sub-exponential computational complex-
ity. Subsequently, we evaluate the properties of the perturb-max entropy
bounds. Lastly, we explore the deviation of the sample mean of the perturb-
max value from its expectation.

We evaluate our approach on spin glass models, where each variable
x; represents a spin, namely z; € {—1,1}. Each spin has a local field
parameter #; which correspond to the local potential function 6;(z;) = 6;z;.
The parameter 0; represents data signal, which in the spin model is the
preference of a spin to be positive or negative. Adjacent spins interact
with couplings 6; j(z;z;) = 6; jx;x;. Whenever the coupling parameters are
positive the model is called attractive as adjacent variables give higher values
to positively correlated configurations. The potential function of a spin glass
model is then

H(xl, ceey a;n) = Z@ﬂ?z + Z Hi,jxixj. (6.31)

eV (¢,4)eE

6.4 Empirical Evaluation 183

0012 .25

w‘u 2[“0 3EIW 4E‘!ﬂ 560 600 h H‘lﬂ 2E‘!ﬂ SISU ﬂ‘lU 5EIW E00
independent strong

Figure 6.2: The probability (top row) and energy (bottom row) landscapes for
all 512 configurations in a 3 x 3 spin glass system with strong local field, 6; €
[—1,1]. When 6, ; = 0 the system is independent and one can observe the block
pattern. As the coupling potentials get stronger the landscape get more ragged. By
zooming one can see the ragged landscapes throughout the space, even for negligible
configurations, which affect many local approaches. The random MAP perturbation
directly targets the maximal configurations, thus performs well in these settings.

In our experiments we consider adjacencies of a grid-shaped model. We
used low dimensional random perturbations v;(x;) since such perturbations
do not affect the complexity of the MAP solver.

Evaluating the partition function is challenging when considering strong
local field potentials and coupling strengths. The corresponding energy
landscape is ragged, and characterized by a relatively small set of dominating
configurations. An example of these energy and probability landscapes are
presented in Figure 6.2.

First, we compared our bounds to the partition function on 10 x 10
spin glass models. For such comparison we computed the partition function
exactly using dynamic programming (the junction tree algorithm). The local
field parameters 6; were drawn uniformly at random from [—f, f], where
f € {0.1,1} reflects weak and strong data signal. The parameters 6; ;

184

On the Expected Value of Random Mazimum A-Posteriori Perturbations

Attractive. Field 0.1 Attractive. Field 1

PR

pper
TRW

10 8 “ 3
g RS
_ 6 & R
5 9 l"
5 5 o 4 0".
c = I
S 8 2 s
*E T ’."
£ E o
« n
w w
-2
5 -4
-6
10 : 8
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
coupling strengths coupling strengths

Figure 6.3: The attractive case. The (signed) difference of the different bounds
and the log-partition function. These experiments illustrate our bounds on 10 x 10
spin glass model with weak and strong local field potentials and attractive coupling
potentials. The plots below zero are lower bounds and plots above zero are upper
bounds. We compare our upper bound (6.28) with the tree re-weighted upper bound.
We compare our lower bound (Corollary 6.7) with the belief propagation result,
whose stationary points are known to be lower bounds to the log-partition function
for attractive spin-glass models.

were drawn uniformly from [0,c] to obtain attractive coupling potentials.
Attractive potentials are computationally favorable as their MAP value
can be computed efficiently by the graph-cut algorithm (Boykov et al.,
2001). First, we evaluate our upper bound in Equation (6.28) that holds
in expectation with perturbations v;(x;). The expectation was computed
using 100 random MAP perturbations, although very similar results were
attained after only 10 perturbations. We compared this upper bound with
the sum-product form of tree re-weighted belief propagation with uniform
distribution over the spanning trees (Wainwright et al., 2005a). We also
evaluate our lower bound that holds in probability and requires only a single
MAP prediction on an expanded model, as described in Corollary 6.7. We
estimate our probable bound by expanding the model to 1000 x 1000 grids,
ignoring the discrepancy e. We compared this lower bound to the belief
propagation algorithm, whose stationary points are currently considered to
be the tightest lower bounds for attractive spin glass models (Willsky et al.,
2007; Ruozzi, 2012; Weller and Jebara, 2014). We computed the signed error
(the difference between the bound and log Z), averaged over 100 spin glass
models, see Figure 6.3. One can see that the probabilistic lower bound is the
tightest when considering the medium and high coupling domain, which is
traditionally hard for all methods. Because the bound holds only with high
probability probability it might generate a (random) estimate which is not

6.4 Empirical Evaluation 185

Mixed. Field 0.1 Mixed. Field 1
===" upper -l ===* upper
Wl === TRW --- TRW
I '-‘ . 35
5 5
® 5w
5 f=
S 5.
g 5
£ Ew
""""""""""""""""""""" "
s 9 Lo
- X -

5 5 B ¥ 5 P
coupling strengths coupling strengths

Figure 6.4: The (signed) difference of the different bounds and the log-partition
function. These experiments illustrate our bounds on 10 x 10 spin glass model with
weak and strong local field potentials and mixed coupling potentials. We compare
our upper bound (6.28) with the tree re-weighted upper bound.

a proper lower bound. We can see that on average this does not happen.
Similarly, our perturb-max upper bound is better than the tree re-weighted
upper bound in the medium and high coupling domain. In the attractive
setting, both our bounds use the graph-cuts algorithm and were therefore
considerably faster than the belief propagation variants. Finally, the sum-
product belief propagation lower bound performs well on average, but from
the plots one can observe that its variance is high. This demonstrates the
typical behavior of belief propagation, as it finds stationary points of the
non-convex Bethe free energy, thus works well on some instances and does
not converge or attains bad local minima on others.

We also compared our bound in the mixed case, where the coupling poten-
tials may either be attractive or repulsive, namely 0;; € [—c, ¢|. Recovering
the MAP solution in mixed coupling domain is harder than the attractive
domain. Therefore we could not test our lower bound in the mixed set-
ting as it relies on expanding the model. We also omit the comparison to
the sum-product belief propagation since it is no longer a lower bound in
this setting. We evaluate the MAP perturbation value using MPLP (Sontag
et al., 2008). One can verify that qualitatively the perturb-max upper bound
is significantly better than the tree re-weighted upper bound. Nevertheless

186

On the Expected Value of Random Mazimum A-Posteriori Perturbations

—Ilog(run-time) estimate
120 == -sqri(total vertices)

estimate values

0 2000 4000 6000 8000 10000
total vertices

Figure 6.5: Estimating our unbiased sampling procedure complexity on spin glass
models of varying sizes, ranging from 10 x 10 spin glass models to 100x 100 spin glass
models. The running time is the difference between our upper bound in Equation
(6.28) and the log-partition function. Since the log-partition function cannot be
computed for such a large scale model, we replaced it with its lower bound in
Corollary 6.7.

it is significantly slower as it relies on finding the MAP solution, a harder
task in the presence of mixed coupling strengths.

Next, we evaluate the computational complexity of our sampling proce-
dure. Section 6.3.1 describes an algorithm that generates unbiased samples
from the full Gibbs distribution. Focusing on spin glass models with strong
local field potentials, it is well-known that one cannot produce unbiased
samples from the Gibbs distributions in polynomial time (Jerrum and Sin-
clair, 1993; Goldberg and Jerrum, 2007, 2012). Theorem 6.6 connects the
computational complexity of our unbiased sampling procedure to the gap
between the log-partition function and its upper bound in (6.28). We use
our probable lower bound to estimate this gap on large grids, for which we
cannot compute the partition function exactly. Figure 6.5 suggests that in
practice, the running time for this sampling procedure is sub-exponential.

Next we estimate our upper bounds for the entropy of perturb-max
probability models that are described in Section 6.3.2. We compare them
to marginal entropy bounds H(p) < 3=, H(p;), where pi(z;) = >_,\,, (%)
are the marginal probabilities (Cover and Thomas, 2012). Unlike the log-
partition case which relates to the entropy of Gibbs distributions, it is
impossible to use dynamic programming to compute the entropy of perturb-
max models. Therefore we restrict ourselves to a 4 x 4 spin glass model to
compare these upper bounds as shown in Figure 6.6. One can see that the
MAP perturbation upper bound is tighter than the marginalization upper
bound in the medium and high coupling strengths. We can also compare the
marginal entropy bounds and the perturb-max entropy bounds to arbitrary
grid sizes without computing the true entropy. Figure 6.6 shows that the
larger the model the better the perturb-max bound.

6.4 Empirical Evaluation

4 x 4 spin glass model

5000 } | — — upper
>
7r aQ
> o
36 | "E 4000
% [0}
oo Q 3000
Q -
© 4} ©
£ g 2000
0 3l
w? a
2t | —-—-exact entropy Y 1000 _ -
——marginal entropy \ -
| —— upper g

~——

10°

Coupling strength (c)

6000

187

Entropy vs. model size (c = 5)

——marginal entropy

20

40

60

80

n (n x n spin glass model)

100

Figure 6.6: Estimating our entropy bounds (in Section 6.3.2) while comparing
them to the true entropy and the marginal entropy bound. Left: comparison on
small-scale spin models. Right: comparison on large-scale spin glass models.

Both our log-partition bounds as well as our entropy bounds hold in
expectation. Thus we evaluate their measure concentration properties, i.e.,
how many samples are required to converge to their expected value. We
evaluate our approach on a 100 x 100 spin glass model with n = 104
variables. The local field parameters 0; were drawn uniformly at random
from [—1,1] to reflect high signal. To find the perturb-max assignment
for such a large model we restrict ourselves to attractive coupling setting,
thus the parameters 6; ; were drawn uniformly from [0, ¢], where ¢ € [0,4]
to reflect weak, medium and strong coupling potentials. Throughout our
experiments we evaluate the expected value of our bounds with 100 different
samples. We note that both our log-partition and the entropy upper bounds
have the same gradient with respect to their random perturbations, thus
their measure concentration properties are the same. In the following we
only report the concentration of our entropy bounds; the same concentration
occurs for our log-partition bounds.

Acknowledgements

TJ was partially supported by NSF grant #1524427

188 On the Expected Value of Random Mazimum A-Posteriori Perturbations

6.5 References

M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis: Theory and Application
to Travel Demand, volume 9. MIT press, Cambridge, MA, USA, 1985.

D. P. Bertsekas, A. Nedi¢, and A. E. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, Nashua, NH, USA, 2003.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222-1239, November 2001. doi: 10.1109/34.969114.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, Hoboken, NJ, USA, 2012.

H. A. David and H. N. Nagaraja. Order Statistics. John Wiley & Sons, Hoboken,
NJ, USA, 3rd edition, 2003.

J. M. Eisner. Three new probabilistic models for dependency parsing: an explo-
ration. In Proceedings of the 16th Conference on Computational Linguistics
(COLING ’96), volume 1, pages 340-345. Association for Computational Lin-
guistics, 1996. doi: 10.3115/992628.992688.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of di-
mensionality: Discrete integration by hashing and optimization. In S. Dasgupta
and D. McAllester, editors, Proceedings of The 30th International Conference on
Machine Learning, volume 28 of JMLR: Workshop and Conference Proceedings,
pages 334-342, 2013a.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Optimization with parity
constraints: From binary codes to discrete integration. In Proceedings of the
Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-13), pages 202-211, Corvallis, Oregon, 2013b. AUAI Press.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Embed and project:
Discrete sampling with universal hashing. In C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information
Processing Systems 26 (NIPS 2013), pages 2085-2093. Curran Associates, Inc.,
2013c.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Low-density parity
constraints for hashing-based discrete integration. In E. P. Xing and T. Jebara,
editors, Proceedings of The 31st International Conference on Machine Learning,
volume 32 of JMLR: Workshop and Conference Proceedings, pages 271-279, 2014.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1627-1645, September 2010. doi: 10.
1109/ TPAMI.2009.167.

P. F. Felzenszwalb and R. Zabih. Dynamic programming and graph algorithms in
computer vision. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(4):721-740, April 2011. doi: 10.1109/TPAMI.2010.135.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Mathematical Proceedings of
the Cambridge Philosophical Society, 24(02):180-190, April 1928. doi: 10.1017/
S0305004100015681.

G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John
Wiley & Sons, New York, NY, USA, 2nd edition, 2013.

6.5 References

189

A. Gane and T. S. J. Tamir Hazan. Learning with maximum a-posteriori perturba-
tion models. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics (AISTATS), vol-
ume 33 of JMLR: Workshop and Conference Proceedings, pages 247—256, 2014.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEFE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721-741, November 1984. doi: 10.1109/TPAMI.
1984.4767596.

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
volume 21, pages 553—-560. Curran Associates, Inc., 2007.

B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire.

Annals of Mathematics, 44(3):423-453, July 1943. doi: 10.2307/1968974.

L. A. Goldberg and M. Jerrum. The complexity of ferromagnetic Ising with local
fields. Combinatorics Probability and Computing, 16(1):43, January 2007. doi:
10.1017/5096354830600767X.

L. A. Goldberg and M. Jerrum. Approximating the partition function of the
ferromagnetic potts model. Journal of the ACM (JACM), 59(5):25, 2012.

E. J. Gumbel. Statistical theory of extreme values and some practical applications:
a series of lectures. Number 33 in National Bureau of Standards Applied
Mathematics Series. US Govt. Print. Office, Washington, DC, USA, 1954.

Gurobi Optimization. Gurobi optimizer documentation, 2015.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97-109, April 1970. doi: 10.1093 /biomet/57.1.97.

T. Hazan and T. Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In The 29th International Conference on Machine
Learning (ICML 2012), 2012.

T. Hazan, S. Maji, and T. Jaakkola. On sampling from the Gibbs distribution
with random maximum a-posteriori perturbations. In C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 1268-1276. Curran Associates, Inc.,
2013.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the
Ising model. SIAM Journal on computing, 22(5):1087-1116, October 1993. doi:
10.1137/0222066.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291-307, October 2005. doi:
10.1016/j.jcss.2004.10.016.

J. Keshet, D. McAllester, and T. Hazan. PAC-Bayesian approach for minimization
of phoneme error rate. In Proceedings of the 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2224-2227, 2011.
doi: 10.1109/ICASSP.2011.5946923.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):
1568-1583, October 2006. doi: 10.1109/TPAMI.2006.200.

190

On the Expected Value of Random Mazimum A-Posteriori Perturbations

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):
147-159, February 2004. doi: 10.1109/TPAMI.2004.1262177.

T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (EMNLP ’10),
pages 1288-1298, 2010.

S. Kotz and S. Nadarajah. Eztreme value distributions: theory and applications.
Imperial College Press, London, UK, 2000.

R. D. Luce. Individual Choice Behavior: A Theoretical Analysis. John Wiley and
Sons, New York, NY, USA, 1959.

C. Maddison, D. Tarlow, and T. Minka. A* sampling. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in

Neural Information Processing Systems 27, pages 2085—-2093. Curran Associates,
Inc., 2014.

S. Maji, T. Hazan, and T. Jaakkola. Active boundary annotation using random
MAP perturbations. In S. Kaski and J. Corander, editors, Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 33 of JMLR: Workshop and Conference Proceedings, pages
604-613, 2014.

D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarem-
bka, editor, Frontiers in Econometrics, chapter 4, pages 105—-142. Academic Press,
New York, NY, USA, 1974.

F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration
of random maximum a-posteriori perturbations. In E. P. Xing and T. Jebara,
editors, Proceedings of The 31st International Conference on Machine Learning,
volume 32 of JMLR: Workshop and Conference Proceedings, page 1, 2014.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proceedings of the 2011
IEEE International Conference on Computer Vision (ICCV), pages 193-200,
Barcelona, Spain, November 2011. doi: 10.1109/ICCV.2011.6126242.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Reducing random
sampling to optimization, with applications in computer vision. In S. Nowozin,
P. V. Gehler, J. Jancsary, and C. H. Lampert, editors, Advanced Structured
Prediction, chapter 7, pages 159-186. MIT Press, Cambridge, MA, USA, 2014.

N. Ruozzi. The Bethe partition function of log-supermodular graphical models.
In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 117-125. Curran Associates,
Inc., 2012.

A. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings

of the 2010 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’10), pages 1-11, 2010.

A. G. Schwing and R. Urtasun. Efficient exact inference for 3D indoor scene
understanding. In Computer Vision — ECCV 2012 : 12th European Conference on
Computer Vision, volume 7577 of Lecture Notes in Computer Science, chapter 22,
pages 299-313. Springer, Berlin, Germany, 2012. doi: 10.1007/978-3-642-33783-3.

6.5 References

191

D. Sontag and T. S. Jaakkola. New outer bounds on the marginal polytope.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1393-1400. Curran Associates, Inc.,
2008.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proceedings of the Twenty-Fourth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-
08), pages 503-510, Corvallis, Oregon, USA, 2008. AUAT Press.

M. Sun, M. Telaprolu, H. Lee, and S. Savarese. An efficient branch-and-bound
algorithm for optimal human pose estimation. In Proceedings of the 2012 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1616—
1623, Providence, RI, 2012. doi: 10.1109/CVPR.2012.6247854.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):86—88, January 1987. doi: 10.1103/
PhysRevLett.58.86.

P. Swoboda, B. Savchynskyy, J. Kappes, and C. Schnorr. Partial optimality via
iterative pruning for the Potts model. In Scale Space and Variational Methods in
Computer Vision: 4th International Conference, volume 7893 of Lecture Notes in
Computer Science, chapter 40, pages 477-488. Springer, Berlin, Germany, 2013.
doi: 10.1007/978-3-642-38267-3.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized optimum models for
structured prediction. In N. Lawrence and M. Girolami, editors, Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics,
volume 22 of JMLR: Workshop and Conference Proceedings, pages 1221-1229,
2012.

L. G. Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189-201, 1979. doi: 10.1016,/0304-3975(79)90044-6.

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1—
305, 2008. doi: 10.1561,/2200000001.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds
on the log partition function. IEEE Transactions on Information Theory, 51(7):
2313-2335, July 2005a. doi: 10.1109/TIT.2005.850091.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement
on trees: Message-passing and linear programming. IEEE Transactions on
Information Theory, 51(11):3697-3717, November 2005b. doi: 10.1109/TIT.2005.
856938.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and
belief propagation with convex free energies. In Proceedings of the Twenty-Third
Conference Conference on Uncertainty in Artificial Intelligence (2007), pages
416-425, Corvallis, Oregon, USA, 2007. AUAI Press.

A. Weller and T. Jebara. Clamping variables and approximate inference. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 909-917. Cur,
2014.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF). In Proceedings of the
2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1-8, 2008. doi: 10.1109/CVPR.2008.4587355.

192 On the Expected Value of Random Mazimum A-Posteriori Perturbations

A. S. Willsky, E. B. Sudderth, and M. J. Wainwright. Loop series and Bethe vari-
ational bounds in attractive graphical models. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 1425-1432. Curran Associates, Inc., 2007.

7 A Poisson Process Model for Monte Carlo

Chris J. Maddison cmaddis@cs.toronto.edu
University of Toronto
Toronto, Canada

Simulating samples from arbitrary probability distributions is a magjor re-
search program of statistical computing. Recent work has shown promise in
an old idea, that sampling from a discrete distribution can be accomplished
by perturbing and mazximizing its mass function. Yet, it has not been clearly
explained how this research project relates to more traditional ideas in the
Monte Carlo literature. This chapter addresses that need by identifying a
Poisson process model that unifies the perturbation and accept-reject views
of Monte Carlo simulation. Many existing methods can be analyzed in this
framework. The chapter reviews Poisson processes and defines a Poisson
process model for Monte Carlo methods. This model is used to gemeralize
the perturbation trick to infinite spaces by constructing Gumbel processes,
random functions whose maxima are located at samples over infinite spaces.
The model is also used to analyze A* sampling and OS*, two methods from
distinct Monte Carlo families.

7.1 Introduction

The simulation of random processes on computers is an important tool in sci-
entific research and a subroutine of many statistical algorithms. One way to
formalize this task is to return samples from some distribution given access
to a density or mass function and to a pseudorandom number generator that
returns independent uniform random numbers. “Monte Carlo methods”, a
phrase originally referring to the casinos of Monte Carlo, is a catchall for
algorithms that solve this problem. Many Monte Carlo methods exist for spe-

194

A Poisson Process Model for Monte Carlo

cific distributions or classes of distributions (Walker, 1977; Devroye, 1986),
but there are a few generic principles. One principle is to simulate a Markov
chain whose stationary distribution is the distribution of interest. Work on
these Markov chain Monte Carlo methods has exploded over the past few
decades, because of their efficiency at sampling from complex distributions
in high dimensions. Their downside is that convergence can be slow and
detecting convergence is hard. A second principle is propose samples from
a tractable distribution and accept them according to a correction factor.
These accept-reject Monte Carlo methods are the workhorses of modern sta-
tistical packages, but their use is restricted to simple distributions on low
dimensional spaces.

Recently, a research program has developed around another principle for
sampling from discrete distributions, the so called “Gumbel-Max trick”. The
trick proceeds by simulating a random function G : {1,...,m} — R whose
maximum is located at a sample. Sampling therefore reduces to finding the
state that maximizes G. This trick has the same complexity as better known
methods, but it has inspired research into approximate methods and exten-
sions. Methods that abandon exactness for efficiency have considered intro-
ducing correlated G with a variety of applications (Papandreou and Yuille,
2011; Tarlow et al., 2012; Hazan et al., 2013). Chen and Ghahramani (2015)
consider bandit algorithms for optimizing G over low dimensional spaces
when function evaluation is expensive. Maddison et al. (2014) generalized G
with Gumbel processes, random functions over infinite spaces whose maxima
occur at samples of arbitrary distributions, and introduced A* sampling,
a branch and bound algorithm that executes a generalized Gumbel-Max
trick. Kim et al. (2016) introduced a related branch and bound algorithm
tailored to discrete distributions and successfully sampled from a large fully
connected attractive Ising model. Taken together, this view of simulation
as a maximization problem is a promising direction, because it connects
Monte Carlo research with the literature on optimization. Yet, its relation-
ship to more established methods has not been clearly expressed. This chap-
ter addresses that need by identifying a model that jointly explains both the
accept-reject principle and the Gumbel-Max trick.

As a brief introduction, we cover a simple example of an accept-reject
algorithm and the Gumbel-Max trick shown in Figure 7.1. Suppose we
are given a positive function f : {1,...,m} — RT, which describes the
unnormalized mass of a discrete random variable I,

P(IeB):Z% BC{l,...,m}. (7.1)

7.1 Introduction

195
Accept-reject Gumbel-Max trick
G* [
log f(i) + G(3) |-
mnn log f (i) 5 J
i J i I

Figure 7.1: Two simple Monte Carlo methods for a discrete distribution described
by positive function f via (7.1). The left hand plot shows the first accepted sample
J in an accept-reject scheme; note that U < f(J). The right hand plot shows a
sample I* in the Gumbel-Max trick; I* is the state that achieves the maximum

G* = max; log f (i) + G(3).

The following algorithms return an integer with the same distribution as 1.
The accept-reject algorithm is,

1. Sample J uniformly from {1,...,m}, U uniformly from [0, max]", f(i)],
2. If U < f(J), return J, else go to 1.

We can intuitively justify it by noticing that accepted pair (J,U) falls
uniformly under the graph of f(i), Figure 7.1. The sample J, which is
accepted or rejected, is often called a proposal. The Gumbel-Max trick
proceeds by optimizing a random function,

1. For i € {1,...m} sample an independent Gumbel random variable G(3).
2. Find and return I* = argmax!", log f (i) + G(7).

Because the random values log f(i) + G(i) can be seen as a perturbed
negative energy function, the function G is often called a perturbation.
Uniform and Gumbel random variables are included among the standard
distributions of statistical computing packages. So these algorithms, while
inefficient, are simple to program.

Considering their apparent differences and the fact that they have been
studied in distinct literatures, it is surprising that both algorithms can be
unified under the same theoretical framework. The framework rests on the
study of Poisson processes, a random object whose value is a countable set
of points in space (Kingman, 1992; Daley and Vere-Jones, 2007). The central
idea is to define a specific Poisson process, called an exponential race, which
models a sequence of independent samples arriving from some distribution.
Then we identify two operations, corresponding to accept-reject and the

196

A Poisson Process Model for Monte Carlo

Gumbel-Max trick, which modify the arrival distribution of exponential
races. In this view a Monte Carlo method is an algorithm that simulates
the first arrival of an exponential race, and many existing algorithms fall
into this framework.

Section 7.2 reviews Poisson processes and studies the effect of operations
on their points. Section 7.3 introduces exponential races and studies the
accept-reject and perturb operations. In Section 7.4 we construct Gumbel
processes from exponential races and study the generalized Gumbel-Max
trick. In Section 7.5 we analyze A* sampling and OS* (Dymetman et al.,
2012) and show how they use perturb and accept-reject operations, respec-
tively, to simulate the first arrival of an exponential race. All of our Poisson
process results are either known or elementary extensions; the correctness
and behaviour of the Monte Carlo methods that we study have all been es-
tablished elsewhere. Our contribution is in identifying a theory that unifies
two distinct literatures and in providing a toolset for analyzing and devel-
oping Monte Carlo methods.

7.2 Poisson Processes

7.2.1 Definition and Properties

A Poisson process is a random countable subset II € R"™. Many natural
processes result in a random placement of points: the stars in the night
sky, cities on a map, or raisins in oatmeal cookies. A good generic mental
model to have is the plane R? and pinpricks of light for all points in
II. Unlike most natural processes, a Poisson process is distinguished by

* *
*
. *
*
N(A)=3
* N(B)=1
N(C)=2

Figure 7.2: The set of x is a realization of a Poisson process in the plane. Counts
in sets A, B, C' are marginally Poisson and are independent for disjoint sets.

7.2 Poisson Processes 197

its complete randomness; the number of points in disjoint subsets are
independent random variables, see Figure 7.2. In this section we review a
general Poisson process theory culminating in two theorems, which describe
how they behave under the generic operations of removing or relocating
their points. In the next section we restrict our view to a specific Poisson
process and two specific operations, which correspond to accept-reject and
Gumbel-Max. Our study is situated in R™ for intuition, but these results
generalize naturally; for more information, the ideas of this section are
adapted from the general treatment in Kingman (1992). Readers familiar
with that treatment can safely skip this section

To identify a realization of a random countable set II C R, we use counts
of points in subsets B C R",

N(B) = #(I1N B).

where N(B) = oo if B is infinite, see Figure 7.2 again. Counts are nonneg-
ative and additive, so for any realization of IT N(B) satisfies

1. (Nonnegative) N(B) > 0,
2. (Countably additive) For disjoint B; C R"™, N(U%, B;) = Y .2, N(B;).

Set functions from subsets of R™ to the extended reals RU{co, —oco} that are
nonnegative and countably additive are called measures. Measure theory is
a natural backdrop for the study of Poisson processes, so we briefly mention
some basic concepts. In general measures p assign real numbers to subsets
with the same consistency that we intuitively expect from measuring lengths
or volumes in space. If u(R™) = 1, then p is a probability distribution.
Because it is not possible to define a measure consistently for all possible
subsets, the subsets B C R"™ are restricted here and throughout the chapter
to be from the Borel sets, a nice measurable family of subsets. The Borel
sets contain almost any set of interest, so for our purposes it is practically
unrestricted. Integration of some function f : R” — R with respect to some
measure p naturally extends Riemann integration, which we can think about
intuitively as the area under the graph of f(z) weighted by the instantaneous
measure p(dr). When a measure is equal to the integral of a nonnegative
function f : R® — R2Y with respect to u, we say f is the density with
respect to p.

The Poisson process receives its name from the marginal distribution
of counts N(B). N(B) is Poisson distributed on the nonnegative integers
parameterized by a rate, which is also its expected value.

198

A Poisson Process Model for Monte Carlo

Definition 7.1 (Poisson random variable). N is a Poisson distributed
random variable on k € {0,1,...} with nonnegative rate A € R=0 if

)\kz
H.
This is denoted N ~ Poisson(A). N ~ Poisson(0) and N ~ Poisson(oco)

are the random variables whose values are 0 and co with probability one. If
N ~ Poisson(A), then E(N) = \.

P(N = k) = exp(—2A)

The Poisson distribution is particularly suited to modelling random counts,
because it is countably additive in the rate.

Lemma 7.1. If N; ~ Poisson()\;) independent with \; € RZY, then

ZZl N; ~ Poisson (Zzl /\i> .

Proof. (Kingman, 1992). Let S, = >, N; and assume); > 0 without loss
of generality. Then for Sy,

k
P(Sy=k)=> P(Ny=r,No=k—r)
r=0
k k—r
Al Ay
= ZeXp A1)76Xp(>‘2) (k)'
— r)!
k
N exp(—)\l —)\2) k ryk—r
N k! ; r A1Ay
_exp(—A1 — >\2)<)\1 +).

k!

By induction Lemma 7.1 also holds for S,,. For infinite sums the events
{Sm < k} are nonincreasing. Thus,

m >\1;) >)‘i)j‘

i=1 J!

P(Se < k)= lim P(S,, <k) Z lim exp (—Z

m—00 m—00

O

Because expectations distribute over infinite sums of positive random vari-
ables, the Poisson rate pu(B) = E(N(B)) must also be a measure.

Instead of starting with a definition of Poisson processes, we work back-
wards from an algorithmic construction. Algorithm 7.1 is a procedure that
realizes a Poisson process II for a specified mean measure p. Algorithm 7.1
iterates through a partition {B;}2; of R™. For each B it first decides the
number of points to place in II by sampling a Poisson with rate given by

7.2 Poisson Processes 199

Algorithm 7.1 A Poisson process Il with o-finite nonatomic mean measure p

Let {B;}52, be a partition of R™ with u(B;) < oo
m=0
for i =1 to oo do
N; ~ Poisson(u(B;))
for j =1to N; do
Xij ~ p(- N Bi)/u(Bi)
II=1IuU {XZ]}
end for
end for

the measure, N; ~ Poisson(u(B;)). Then, it places N; points by sampling
independently from the probability distribution proportional to u restricted
to B;. Normally, X ~ D is just a statement about the marginal distribution
of X. In the context of an Algorithm box we also implicitly assume that it
implies independence from all other random variables. We should note that
Algorithm 7.1 operates on volumes and samples from . This is not an issue,
if we think of it as a mathematical construction. It would be an issue, if we
set out to simulate II on a computer.

Algorithm 7.1 will occasionally have pathological behaviour, unless we
restrict p further. First, we require that each subset B; of the partition has
finite measure; if p(B;) = 0o, then Algorithm 7.1 will stall when it reaches
B; and fail to visit all of R". If a partition {B;}?°, with u(B;) < oo exists
for measure p, then p is called o-finite. Second, we want the resulting counts
N(B;) to match the number of points placed N;. This can be ensured if all
of the points X;; are distinct with probability one. It is enough to require
that u({z}) = 0 for all singleton sets 2 € R™. This kind of measure is known
as nonatomic.

The crucial property of the sets II produced by Algorithm 7.1 is that the
number of points V(A;) that fall in any finite collection {A;}7; of disjoint
sets are independent Poisson random variables. Clearly, the counts N(B;)
for the partitioning sets of Algorithm 7.1 are independent Poissons; it is not
obvious that this is also true for other collections of disjoint sets. To show
this we study the limiting behaviour of N(B) by counting the points placed
in B; N B and summing as Algorithm 7.1 iterates over R".

Theorem 7.2. Let II C R"™ be the subset realized by Algorithm 7.1 with
o-finite nonatomic mean measure p and Ay, ... A, CR" disjoint. N(B) =
#(II N B) for B C R™ satisfies

1. N(A;) ~ Poisson(u(A;)),

2. N(A;) are independent.

200

A Poisson Process Model for Monte Carlo

Proof. Adapted from Kingman (1992). Let B; be the partition of Algo-
rithm 7.1 with pu(B;) > 0 without loss of generality. With probability one,

N(AJ) = N(U;’ilBZ N AJ) = ZN(Bz N Aj)
i=1

Consider the array of N(B; N A;j) for i € {1,2,...} and j € {1,...,m}. The
rows are clearly independent. Thus, by Lemma 7.1 it is enough to show

1. N(B; N Aj) ~ Poisson(pu(B; N Aj)),
2. N(B;n Aj) for j € {1,...,m} are independent,

Let Ap be the complement of U™, A;. Because p is nonatomic, each point is
distinct with probability one. Thus,

k! ﬁ w(B; N Aj)kj
kol... k! i w(B;)ki

with ko = k — >°7, k;. Now,

P(N(BlﬂAl):kl,,N(BlﬂAm):k‘m):

N kB KL T u(Bin Ay
2 ep(-n(B)) = kol . K 1 u(Bi)k
k—Z]k» Jj=
ZHexp u(Bi N Aj)) (B0 A;)
k.
0; 0 J
N\ kj
k;!
finishes the proof. O

Notice that the partition in Algorithm 7.1 has an indistinguishable effect
on the eventual counts N(B). In fact there may be entirely different algo-
rithms that realize random subsets indistinguishable from II. This motivates
the standard definition for deciding whether a random process is Poisson.

Definition 7.2 (Poisson process). Let p be a o-finite nonatomic measure
on R™. A random countable subset I C R™ is a Poisson process with mean
measure [if

1. For B CR"™, N(B) ~ Poisson(u(B)).

2. For Ay, ... A, CR" disjoint, N(A;) are independent.

7.2 Poisson Processes 201

Algorithm 7.1 together with Theorem 7.2 is an existence proof for Poisson
processes. Poisson processes are generic models for procedures that place
points completely randomly in space. In later sections we specialize them to
model the sequence of points considered by Monte Carlo methods.

7.2.2 Mapping and Thinning a Poisson Process

We are ultimately interested in understanding how the operations of accept-
reject and the Gumbel-Max trick modify distributions. They are special
cases of more generic operations on the points X € II of a Poisson process,
which modify its measure. Accept-reject corresponds to the stochastic re-
moval of points based on their location. The Gumbel-Max trick corresponds
to the deterministic relocation of points. Here we study those operations in
some generality.

The stochastic removal of points X € II is called thinning. To count the
number of points that remain after thinning, we need their joint distribution
before thinning. If we restrict our attention to one of the subsets B; of the
partition in Algorithm 7.1, then the distribution is clear: conditioned on
N(B;) = k, each point is distributed identically and independently (i.i.d.)
as u restricted to B;. This property turns out to be true for any subset
B C R" of finite measure.

Lemma 7.3. Let II C R" be a Poisson Process with o-finite nonatomic
mean measure p and B C R™ with 0 < u(B) < co. Given N(B) = k, each
X, €elINB forie{l,...k} is i.i.d. as,

X; | {N(B) = k} ~ u(- 0 B)/u(B). (7.2)
Proof. The proof is uninformative, so we leave it to the Appendix. O

Intuitively, this result ought to be true, because we could have realized II
via Algorithm 7.1 with B as one of the partitioning sets.
Now suppose we remove points X € II independently with probability
1 — p(X), where p : R™ — [0,1] is some integrable function. For B with
finite measure, given N (B) the probability of keeping X € II N B is
P(keep X =k)= =k)= / olz)
b X|N(B) = k) = E(p(X) | N(B) = k) = u(dz). (73)
B 1(B)
By summing over the value of N(B), we can derive the marginal distribution
over the number of remaining points. This is the basic strategy of the
Thinning Theorem.

Theorem 7.4 (Thinning). Let II C R"™ be a Poisson Process with o-finite
nonatomic mean measure i and S(z) ~ Bernoulli(p(z)) an independent

202

A Poisson Process Model for Monte Carlo

Bernoulli random variable for x € R™ with integrable p : R™ — [0, 1], then
thin(IL, S) = {X : X € I and S(X) =1} (7.4)
18 a Poisson process with mean measure
1 (B) = [plaln(da). (7.5)
Proof. Originally from Lewis and Shedler (1979). Let B C R"™. Define,
N*(B) = #(thin(II, S) N B)

N*(B) clearly satisfies the independence property and the result is trivial
for (B) = 0. For 0 < pu(B) < oo,

P(N*(B) = k) = 3 B(N(B) = j)P(k of S(X;) = 1|N(B) = j).
Jj=k

Let p*(B) = u(B) — p*(B). By (7.3),

S (B) (3w (B)" *(B)"
= > exp(—u(B)
]z::k p(—4 ()

gt \k) w(B)F (B
* k 0 — % Jj—k
= el)P S et ()
z
pe(B)"

— exp(—p1*(B))

k!

For pu(B) = oo, partition B into subsets with finite measure. The countable
additivity of integrals of nonnegative functions and of Poisson random
variables (Lemma 7.1) finishes the proof. O

A measurable function h : R™ — R"™ that relocates points X € II is easy to
analyze if it is 1-1, because it will not relocate two distinct points to the same
place. The key insight is that we can count the points relocated to B C R"
by counting in the preimage h~!(B); the so-called Mapping Theorem.

Theorem 7.5 (Mapping). Let IT C R™ be a Poisson process with o-finite
nonatomic mean measure 1 and h : R™ — R"™ a measurable 1-1 function,
then

h(Il) = {h(X): X € II}
1s a Poisson process with mean measure

p*(B) = p(h~'(B)) (7.6)

7.8 Ezxponential Races 203

Proof. Adapted from Kingman (1992). h is 1-1, therefore
#{n(X): X €el}NB) =#{X €T: X € h"'(B)} ~ Poisson(u(h™(B)))(7.7)

Pre-images preserve disjointness, so the independence property is guaran-
teed. 1-1 functions map partitions of the domain to partitions of the range,
so p* is still o-finite. O

7.3 Exponential Races

7.3.1 Definition and First Arrivals Distribution

In this section we specialize the Poisson process to model the sequence
of points considered by accept-reject and the Gumbel-Max trick. We call
the model an exponential race as a reference to a classical example. An
exponential race (occasionally race for short) is a Poisson process in RT xR™,
which we interpret as points in R” ordered by an arrival time in the positive
reals RT. The ordered points of an exponential race have a particularly
simple distribution; the location in R™ of each point is i.i.d. according to
some arrival distribution and the rate at which points arrive in time depends
stochastically on the normalization constant of that arrival distribution. The
Thinning and Mapping Theorems of Poisson processes have corresponding
lemmas for exponential races, which describe operations that modify the
arrival distribution of an exponential race. The ultimate value of this model
is that a variety of apparently disparate Monte Carlo methods can be
interpreted as procedures that simulate an exponential race. In Section 7.5
we present Monte Carlo methods which produce samples from intractable
distributions by operating on the simulation of an exponential race with
a tractable distribution. In this section we define an exponential race for
an arbitrary finite nonzero measure P, discuss strategies for simulating
exponential races when P is tractable, and derive two operations that modify
the arrival distribution of exponential races.

For motivation we review the traditional exponential race example (see
Durrett, 2012). Imagine instantaneous flashes of light arriving in time at m
distinct points p; scattered in R2. Suppose the arrival times of the flashes
at each p; are determined by independent Poisson processes IT; C R with
mean measure \;((0,¢]) = A\;jt and \; > 0, see Figure 7.3. The question is
which point will get the first flash of light and how long do we need to wait?
The first arrival at p; is after time ¢ iff IT; N (0, ¢] is empty,

P(T; > t) = P(#(I1L; N (0,£]) = 0) = exp(—A;t). (7.8)

204

A Poisson Process Model for Monte Carlo

{t} x R2 RY x {p1,p2,p3,pa}
D1t ; * ok
D3 x |
|
p1- Dy - P2 ; ok fok *
Ps — etk
D4 - }
Pa ¥ l * *
t

Figure 7.3: The realization of an exponential race with points arriving at p; € R2.
The left hand plot shows the location of arrivals in the plane R? and the first arrival
at time ¢ at p3. The right hand plot shows future arrival times at the four points.

(7.8) is the complementary cumulative distribution function of an exponen-
tial random variable, which we briefly review.

Definition 7.3 (Exponential random variable). E is an exponential random
variable distributed on positive t € RY with nonnegative rate A € R=0 if

P(E > t) = exp(—At). (7.9)

This is denoted E ~ Exp(\) and E ~ Exp(0) is the random variable whose
value is oo with probability one. If E ~ Exp(1), then E/X ~ Exp(}\).

Thus, the location and time of the first arrival is determined by the minimum
of m exponential random variables. For exponential random variables this is
particularly easy to analyze; the minimum is an exponential random variable
with rate Z;nzl Aj and it is achieved at the jth variable with probability
proportional to the rate ;. Surprisingly, these values are independent.

Lemma 7.6. Let Ej ~ Exp()\;) independent with nonegative \; € R=0. If

E* = min E; and J* = argmin I}, (7.10)
1<j<m 1<5<m

and at least one \; > 0 then

1. The density of E; with \j > 0 is \jexp(—\;t) fort € RT,
2. B ~Exp(3TL Aj),

3. P(J* = k) o Ak,

4. E* is independent of J*.

Proof. 1. The derivative of 1 — exp(—A\;t) is Ajexp(—A;t).

7.8 Ezxponential Races 205

2., 3., 4. Note that with probability 1 the F; will be distinct, so
P(J" =k, E*>t)= P(mj7gk{Ej > Ej > t})
= / A exp(—Ag) H#k exp(—Ajx) dx

t

)\k o0 m m
_ZT_m/t (ijl ;) exp(— ijl \jz) dx

Ak m
= =m exp(—) Ait).
Zj:l Aj ZFI ’

This finishes the lemma. O

The extension of exponential races to arbitrary distributions on R" is
straightforward. The m Poisson processes of the example are together a
single Poisson process on RT x R” with mean measure (A x P)((0,t] x B) =
> is1tAjlp(pj). A x P is the product measure on RT x R", where each
is respectively equipped with A((0,t]) = t and P(B) = >, A\jlp(pj).
Extending this idea to an arbitrary finite measure P (not just the discrete
measures) is the key idea behind exponential races. Notice that P in our
example is atomic, which is fine, because the product measure A x P is not
atomic. On the other hand, we want the points arriving in R™ to correspond
to the probability distribution P(-)/P(R"), so we will require that P is finite,
P(R™) < o0, and nonzero, 0 < P(R™). Also, in contrast to Poisson processes,
exponential races have a natural ordering in time.

Definition 7.4 (Exponential race). Let P be a finite nonzero measure on
R™. A random countable subset R C RT x R™ is an exponential race with
measure P if the following hold

1. R is a Poisson process with mean measure X x P.

2. R is totally ordered by time, the first coordinate.

If R = {(T3, Xi)}32,, then we assume the enumeration corresponds to the
ordering so that © < j implies T; < Tj.

We can realize an exponential race with a slight modification of Algo-
rithm 7.1; use the partition of rectangles B; = (i —1,¢] x R, and sort points
by their time variable. This is not the most direct characterization, so instead
we derive the joint distribution of the first m ordered points in Theorem 7.7.
The distribution of the countably infinite set R is completely described by
the joint distribution of the first m points for all finite m. The proof of
Theorem 7.7 shows that the locations X; are independently distributed as
P(-)/P(R™) and the interarrival times T; — T;_; are independent and ex-
ponentially distributed with rate P(R™). This theorem is the cornerstone

206

A Poisson Process Model for Monte Carlo

of this chapter, because it suggest a strategy for proving the correctness of
Monte Carlo methods; if we can prove that the output of an algorithm (7', X)
is the first arrival of an exponential race with measure P, then Theorem 7.7
guarantees that the location X is a sample from P(-)/P(R").

Theorem 7.7. Let P be a finite nonzero measure on R"™, X; ~ P(-)/P(R")
independent, and E; ~ Exp(P(R™)) independent, then first m points
{(T;, X;)}™, of any exponential race R C RT x R™ with measure P have
the same joint distribution as

%
QB X}t

Proof. Let T'(t, B) be the time of the first arrival in B after time ¢t > 0,
T(t,B) = min{T; : (T;, X;) € RN (t,00) x B}. (7.11)

RN ((t,s + t] x B) is finite with probability one for all s > 0, so (7.11) is
well defined. T'(t, B) — t is an exponential random variable, because

P(T(t,B) —t > s) = P(N((t, s +] x B) = 0) = exp(—P(B)s).

T(t,B) and T'(t, B¢) are independent, by Poisson process independence.
We proceed by induction. The event {7} > s,X; € B} is equivalent to
{T(0,B¢) >T(0,B) > s}. P(B) >0 or P(B°) >0, so by Lemma 7.6,

P(B)
PR

P(Ty > s,X1€B) =P(T(0,B°) > T(0,B) > s) = exp(—sP(R"))
Now, assume Theorem 7.7 holds for k. The event
(T, =t;, X; = w:}},
is completely described by counts in (0, ¢;] x R™ and thus independent of
{T(tx,, B°) > T(ty, B) > s+ ti.}
Thus

P(Ty1—Ts > 8, X1 € B{T; = 3, Xi = 2:}7))
= P(T(t, B) > T(tx, B) > s+ ti|{T; = t;, X; = z;}F))
=]P)(T(tk,Bc) > T(tk,B) > s +tk)

P(B)

= exp(—sP(R”))P(Rn)

concludes the proof. O

7.8 Ezxponential Races 207

7.3.2 Simulating an Exponential Race with a Tractable Measure

If @ is a tractable finite nonzero measure on R”, that is we have a procedure
for computing Q(R") and sampling from Q(:)/Q(R"™), then Theorem 7.7
suggests Algorithm 7.2 for simulating an exponential race R with measure
Q. Algorithm 7.2 simulates the points of an exponential race in order of
arrival time. It does not terminate, but we can think of it as a coroutine or
generator, which maintains state and returns the next arrival in R each time
it is invoked. As a simple example consider the uniform measure Q((a,b]) =
b — a on [0,1]. Algorithm 7.2 for this) simulates a sequence of arrivals
{(T3, X;)}5°, with arrival location X; ~ Uniform[0, 1] and interarrival time
Ti+1 — T; ~ Exp(1), see the left hand plot of Figure 7.4.

As with the initial discrete example, in which we constructed an expo-
nential race from m independent Poisson processes, this is not the only
approach. More generally, if {B;}", is any finite partition of R™ such that
Q(-N B;) is tractable, then we can simulate R by simulating m independent
exponential races R; with measure Q(- N B;)/Q(B;) via Algorithm 7.2 and
sorting the result U™, R;. This can be accomplished lazily and efficiently
with a priority queue data type, which prioritizes the races R; according
to which arrives next in time. It also possible to split the races R; online
by partitioning B; and respecting the constraint imposed by the arrivals al-
ready generated in B;. We highlight a particularly important variant, which
features in A* sampling in Section 7.5. Consider an infinitely deep tree in
which each node is associated with a subset B C R™. If the root is R™ and
the children of each node form a partition of the parent, then we call this
a space partitioning tree. We can realize an exponential race over a space
partitioning tree by recursively generating arrivals (7', X) at each node B.
Each location X is sampled independently from Q(- N B)/Q(B), and each
time 7' is sampled by adding an independent Exp(Q(B)) to the parent’s ar-
rival time. The arrivals sorted by time over the realization of the tree form
a exponential race. See Figure 7.4.

Algorithm 7.2 An exponential race R with finite nonzero measure @
R=10
To=0
for i =1 to co do
B, ~ Exp(Q(E™))
Xi~Q()/QR")
T;=T;1+E;
R=RU{(T:,X:)}
end for

208

A Poisson Process Model for Monte Carlo

1t ‘ 11 : ‘
i | : Exp(3)
o o CExp(y)
o X | R |
o o Exp(1)] o
Exp(1)} # | o ek, f
I - A
Lk o o i
0 111 1 1 0 1 1 1
RT Rt

Figure 7.4: Two methods for simulating an exponential race. The left hand
plot shows the first arrivals of a uniform exponential race on [0, 1] simulated by
Algorithm 7.2. The right hand plot shows the first arrivals of an exponential race
simulated over a space partitioning tree. Dashed lines dominate the set in which an
arrival is first.

7.3.3 Transforming an Exponential Race with Accept-Reject and
Perturb

Most finite nonzero measures P on R"™ are not tractable. Monte Carlo
methods accomplish their goal of sampling from intractable distributions
by transforming samples of tractable distributions. In this subsection we
present accept-reject and perturb operations, which transform a realization
of an exponential race with measure (Q into a realization of an exponential
race with a distinct measure P. In practice () will be tractable and P in-
tractable, so that simulating an exponential race with an intractable measure
can be accomplished by simulating the points of an exponential race with a
tractable measure, for example via Algorithm 7.2, and transforming it with
accept-reject or perturb operations. The accept-reject and perturb opera-
tions are named after their respective literatures, accept-reject corresponds
to rejection sampling and perturb corresponds to the Gumbel-Max trick.
The correspondence between the perturb operation and the Gumbel-Max
trick may not be obvious, so we discuss this in Section 7.4.

Let @ and P be finite nonzero measures in R™. We assume that they have
densities g and f with respect to some base measure p,

aB) = [swutds) PB) = [fantis) (712)
We assume that g and f have the same support and their ratio is bounded,

supp(f) = supp(g) chég < M for all = € supp(g) (7.13)

7.8 Ezxponential Races 209

where supp(g) = {z € R™ : g(x) # 0}. The assumption supp(f) =
supp(g) can be softened here and throughout the chapter to supp(f) C
supp(g), but it complicates the analysis. The accept-reject strategy is to
realize more points than needed from an exponential race with measure
MQ(+) and stochastically reject points with probability equal to the ratio of
instantaneous rates of arrival, f(z)/(g(x)M). The perturbation strategy is to
realize just the points needed from an exponential race with measure @), but
to perturb the arrival times according to the transformation t — tg(z)/ f(z)
for all points arriving at x.

Before we present the proofs, consider the following intuition. Imagine
taking a long exposure photograph of the plane as instantaneous flashes
arrive according to an exponential race with measure (). The rate at which
points arrive will determine the intensity of a heat map with regions receiving
more points brighter than those receiving fewer. Over time the relative
intensities will correspond to the probability distribution proportional to
Q. If someone were just ahead of us in time and stochastically discarded
points that arrived in B or delayed points in B relative to points in B¢, then
our perception of the likelihood of B would change. Mired in time, we would
not be able to distinguish whether points were discarded, reordered, or the
true measure () was in fact different.

The correctness of these operations on an exponential race can be justified
as special cases of the Thinning and Mapping Theorems.

Lemma 7.8 (Accept-Reject). Let Q and P be finite nonzero measures on
R™ under assumptions (7.12) and (7.13). If R C RT x R"™ is an exponential
race with measure MQ(-) and accept(t,z) ~ Bernoulli(p(t,z)) is i.i.d. for
all (t,x) with probability

f(x)
g(x)M’

pt,z) =

then thin(R, accept), from (7.4), is an exponential race with measure P.

Proof. By the Thinning Theorem, the mean measure of thin(R, accept) is

) M pu(dz)\(dt) //f (dt) = (A x P)(B).

for B C R™ x supp(g). The subsampled (7}, X;) are in order and thus an
exponential race with measure P.]

Lemma 7.9 (Perturbation). Let Q and P be finite nonzero measures on
R"™ under assumptions (7.12) and (7.13). If R C RT x R™ is an exponential

210

A Poisson Process Model for Monte Carlo

race with measure QQ and

perturb(t, z) = <t?§3, x) :

then sort(perturb(R)) is an exponential race with measure P where sort
totally orders points by the first coordinate, time.

Proof. perturb is 1-1 on supp(f), so the Mapping Theorem applies. It is
enough to check the mean measure of perturb(R) on subsets of the form
B =(0,s] x A for s € R" and A C supp(g),

/ / i) = [g(rst D utdn) = 0 (B,
A

Thus, sorting perturb(7;, X;) forms an exponential race with measure P. [

7.4 Gumbel Processes

7.4.1 Definition and Construction

The central object of the Gumbel-Max trick is a random function over a
finite set whose values are Gumbel distributed. Gumbel valued functions
over a finite choice set are extensively studied in random choice theory, where
there is a need for a statistical model of utility (Yellott, 1977 for example).
The extension to Gumbel valued functions over continuous spaces has been
explored in random choice theory (Malmberg, 2013) and in the context of
Monte Carlo simulation (Maddison et al., 2014). Following Maddison et al.
(2014) we will refer to this class of Gumbel valued functions on R™ as Gumbel
processes. Gumbel processes underpin the recent interest in perturbation
based Monte Carlo methods, because their maxima are located at samples
from probability distributions, see also (Papandreou and Yuille, 2011; Tarlow
et al., 2012; Hazan et al., 2013; Chen and Ghahramani, 2015; Kim et al.,
2016). In this section we clarify the connection between Gumbel processes
and our development of exponential races. We will show that the value of a
Gumbel process at x € R™ can be seen as the log transformed time of the first
arrival at x of some exponential race. This has the advantage of simplifying
their construction and connecting the literature on the Gumbel-Max trick
to our discussion. Related constructions have also been considered in the
study of extremal processes (Resnick, 2007). In this subsection we define
and construct Gumbel processes. In the next subsection we discuss their

7.4 Gumbel Processes 211

simulation and present a generalized Gumbel-Max trick derived from the
Perturbation Lemma.

The Gumbel distribution dates back to the statistical study of extrema
and rare events (Gumbel and Lieblein, 1954). The Gumbel is a member of
a more general class of extreme value distributions. A central limit theorem
exists for these distributions — after proper renormalization the maximum
of an i.i.d. sample of random variables converges to one of three possible
extreme value distributions (Gedenko, 1948). The Gumbel is parameterized
by a location pu € R.

Definition 7.5 (Gumbel random variable). G is a Gumbel distributed
random variable on R with location p € R if

P(G < g) = exp(—exp(—g + 1))

This is denoted G ~ Gumbel(n) and G ~ Gumbel(—oc0) is the random
variable whose value is —oo with probability one. If G ~ Gumbel(0), then
G + p ~ Gumbel(p).

The Gumbel distribution has two important properties for our purposes. The
distribution of the maximum of independent Gumbels is itself a Gumbel —
a property known as max-stability — and the index of the maximum follows
the Gibbs distribution: if G(7) ~ Gumbel(yx;), then

m
4 . exp(pi)

max G(i) ~ Gumbel(lo exp(u; argmaxG(i) ~ —=————.

max G(i) log 3 exp(u) - argmax () ~ s 0
The Gumbel-Max trick of the introduction for sampling from a discrete
distribution with mass function f : {1,...,m} — R™ is explained by taking
wi = log f(i). It is informative to understand these properties through the
Gumbel’s connection to the exponential distribution.

Lemma 7.10. If E ~ Exp(\) with nonnegative rate A € RZ9, then
—log E ~ Gumbel(log \).
Proof. P(~log E < g) = P(E > exp(—g)) = exp(—exp(—g + log \)) O

Therefore the distribution of the maximum and argmaximum of Gumbels
is explained by Lemma 7.6, because passing a maximization through — log
becomes a minimization.

A Gumbel process G : R” — R U {—oc0} is a Gumbel valued random
function. Their characterizing property is that the maximal values of a
Gumbel process over the subsets B C R™ are marginally Gumbel distributed
with a location that scales logarithmically with the volume of B according

212

A Poisson Process Model for Monte Carlo

to some finite nonzero measure P,

max G(z) ~ Gumbel(log P(B))
xe

Implicit in this claim is the assertion that the maximizations max,cp G(z)

are well-defined — the maximum exists — for all B C R".

Definition 7.6 (Gumbel process). Let P be a finite nonzero measure on
R", G:R" - RU{—00} a random function, and

G*(B) = max G(z). (7.14)

G is a Gumbel process with measure P if

1. For B CR", G*(B) ~ Gumbel(log P(B)).
2. For Ay,..., Ay, are disjoint, G*(A;) are independent.

Note, the event that argmax,cp- G(z) lands in B C R"™ depends on which
of G*(B) or G*(B°) is larger. Following this reasoning one can show that
the argmax over R™ is distributed as P(-)/P(R"™).

The study of Gumbel processes can proceed without reference to expo-
nential races, as in Maddison et al. (2014), but our construction from expo-
nential races is a convenient shortcut that allows us to import results from
Section 7.3. Consider the function that reports the arrival time of the first
arrival at © € R™ for an exponential race R with measure P,

T(x) = min{T; : (T;,z) € R}

This function is almost surely infinite at all =, but for any realization of R
it will take on finite value at countably many points in R™. Moreover, the
minimum of 7'(z) over subsets B C R" is well-defined and finite for sets
with positive measure P(B) > 0; it is exponentially distributed with rate
P(B). In this way we can see that —log T'(z) is Gumbel process, Figure 7.5.

Theorem 7.11. Let R C Rt x R™ be an exponential race with measure P.
G(x) = —logmin{T; : (T;,x) € R} (7.15)

is a Gumbel process with measure P.

Proof. First, for x € R"

min{7; : (T3, x) € R} = T(0, {z}),

7.4 Gumbel Processes 213

T'(r) = min{T; : (T;,x) € R} G(z) = —logT(x)
11 % *)
* .
% * * G(x) 3
Tk N
L 7 . |
* * o .. 1
* . *
oL * . « . *
T(x) R*

Figure 7.5: Constructing a uniform Gumbel process G : R" — RU{—oc0} on [0, 1]
with an exponential race. The left hand plot shows the first arrivals * of a uniform
exponential race R. The right hand plot shows G(z) set to —log the time T'(z) of
the first arrival at z. The graph of G(z) extends downwards to —oo taking on finite
value at all points in [0, 1] that have arrivals and —oo for all points with no arrivals.

where T'(0, B) is the first arrival time in subset B C R™ defined in (7.11)
from Theorem 7.7. Thus G*(B) of (7.14) is well defined, because
G*(B) = maéc—logmin{Ti : (Ti,z) € R} = —logT(0, B).
re

G*(B) inherits the independence properties from Poisson process indepen-
dence. Finally, Lemma 7.10 gives us the marginal distribution of G*(B). O

7.4.2 Simulating a Gumbel Process and the Gumbel-Max Trick

Gumbel processes are relevant to Monte Carlo simulation in the same sense
that we motivated exponential races — if we can simulate the maximum
value of a Gumbel process with measure P, then its location is a sample
from the distribution P(-)/P(R"™). Maddison et al. (2014) gave an algorithm
for simulating Gumbel processes with tractable measures and a generalized
Gumbel-Max trick for transforming their measure. We present those results
derived from our results for exponential races.

The Gumbel process G from construction (7.15) has value —oo everywhere
except at the countably many arrival locations of an exponential race.
Therefore, for tractable measures () we could adapt Algorithm 7.2 for
exponential races to simulate G(x). The idea is to initialize G(z) = —o0
everywhere and iterate through the points (7}, X;) of an exponential race R
setting G(X;) = —log T;. To avoid reassigning values of G(x) we refine space
as in Section 7.3.2 by removing the locations generated so far. Algorithm 7.3
implements this procedure, although it is superficially different from our

214 A Poisson Process Model for Monte Carlo

Algorithm 7.3 A Gumbel process with finite measure @

Initialize G(z) = —oo for all z € R™.

(1, Go, 1) = (R™, 00,1)

while Q(2;) > 0 do
G; ~ TruncGumbel(log Q(;), Gi—1)
Xi ~ Q(-N)/Q(%)
G(X;) = Gi % assign G(x) at X; to G;
Qip1 = Q; — { X}
1=1+1

end while

description. In particular the value G(X;) is instead set to a truncated
Gumbel G; ~ TruncGumbel(log Q(£2;),Gi—1), a Gumbel random variable
with location log Q(2;) whose domain is truncated to (—oo,G;—1]. The
connection to Algorithm 7.2 can be derived by decomposing the arrival
times T; = Zj’:l E; for E; ~ Exp(Q(£;)) and then considering the joint
distribution of G; = — log(2§:1 Ej). A bit of algebraic manipulation will
reveal that

GZ’ | Gi,1 ~ TruncGumbel(log Q(Ql), Gifl)

Thus, translating between procedures for simulating Gumbel processes and
procedures for simulating exponential races is as simple as replacing chains
of truncated Gumbels with partial sums of exponentials.

For continuous measures removing countably many points from the sample
space has no effect, and in practice the removal line of Algorithm 7.3
can be omitted. For those and many other measures Algorithm 7.3 will
not terminate; instead it iterates through the infinitely many finite values
of G(x) in order of their rank. For discrete measures with finite support
Algorithm 7.3 will terminate once every atom has been assigned a value.

Finally, for simulating Gumbel processes with intractable measures P the
Perturbation Lemma of exponential races justifies a generalized Gumbel-
Max trick. The basic insight is that multiplication by the ratio of densities
g(z)/ f(z) becomes addition in log space.

Lemma 7.12 (Gumbel-Max trick). Let Q and P be finite nonzero measures
on R"™ with densities g and f under assumptions (7.12) and (7.13). If
G:R" - RN {—o0} is a Gumbel process with measure Q, then

() = 4 187 (z) —logg(x) + G(z) x & supp(g)
—00 otherwise

7.4 Gumbel Processes 215

Figure 7.6: A continuous Gumbel-Max trick. The left hand plot shows the maximal
values of a uniform Gumbel process G(x) on [0, 1]. The right hand plot shows the
result of perturbing log f(z) with G(x). Notice that the ordering of values changes,
and X* is now the location of the maximum G* = max, log f(z) 4+ G(z). Therefore,
X* is a sample from the distribution with density proportional to f(z).

is a Gumbel process with measure P. In particular for G* = max,er» G’ ()
and X* = argmax . G'(2),

G* ~ Gumbel(log P(R")) X* ~ P(-)/P(R")

Proof. Arguing informally, this follows from the Perturbation Lemma ap-
plied to our construction (7.15) of Gumbel processes. For = € supp(g)

log f(z) —log g(x) + G(z) = —logmin{Tig(x)/ f(x) : (T;;x) € R}.
See Maddison et al. (2014) for a formal proof. O

When @ is the counting measure on {1,...,m}, Lemma 7.12 exactly de-
scribes the Gumbel-Max trick of the introduction. This brings full circle the
connection between accept-reject and the Gumbel-Max trick.

A Gumbel process is not profoundly different from an exponential race,
but the difference of perspective — a function as opposed to a random set
— can be valuable. In particular consider the following generalization of a
result from Hazan and Jaakkola of this book. Let G : R" — R U {—oc} be
a Gumbel process with measure P whose density with respect to u is f. If
G* = maxzepn G(x) and X* = argmax,cp» G(z), then

E(G") =log P(R") +~ E(-log f(X") +G") = H(f) +,

where H(f) is the entropy of a probability distribution with probability
density function proportional to f and « is the Euler-Mascheroni constant.
Therefore the representation of probability distributions through Gumbel
processes gives rise to a satisfying and compact representation of some of
their important constants.

216

A Poisson Process Model for Monte Carlo

7.5

Monte Carlo Methods That Use Bounds

7.5.1 Rejection Sampling

In this section we present practical Monte Carlo methods that use bounds on
the ratio of densities to produce samples from intractable distributions. We
show how these methods can be interpreted as algorithms that simulate
the first arrival of an exponential race. The basic strategy for proving
their correctness is to argue that they perform accept-reject or perturb
operations on the realization of an exponential race until they have provably
produced the first arrival of the transformed race. We start by discussing
the traditional rejection sampling and a related perturbation based method.
Then we study OS* (Dymetman et al., 2012), an accept-reject method,
and A* sampling (Maddison et al., 2014), a perturbation method. These
algorithms have all been introduced elsewhere in the literature, so for more
information we refer readers to the original papers.

Throughout this section our goal is to draw a sample from the probability
distribution proportional to some measure P with density f with respect to
some base measure p. We assume, as in the Accept-Reject and Perturbation
Lemmas, access to a tractable proposal distribution proportional to a mea-
sure) with density g with respect to p such that f and g have the same
support and the ratio f(x)/g(z) is bounded by some constant M. For exam-
ple consider the sample space {0, 1}" whose elements are bit vectors of length
n. A proposal distribution might be proportional to the counting measure @,
which counts the number of configurations in a subset B C {0, 1}". Sampling
from Q(-)/Q({0,1}") is as simple as sampling n independent Bernoulli(1/2).

Rejection sampling is the classic Monte Carlo method that uses bound
information. It proposes (X,U) from @ and Uniform|0, 1], respectively, and
accepts X if U < f(X)/(g(X)M). The algorithm terminates at the first
acceptance and is normally justified by noticing that it samples uniformly
from the region under the graph of f(x) by rejecting points that fall between
g(z)M and f(x), see the left hand graph on Figure 7.7 for an intuition. The
acceptance decision also corresponds exactly to the accept-reject operation
on exponential races, so we can interpret it as an procedure on the points
of an exponential race. We call this procedure REJ for short,

for (T}, X;) € R simulated by Algorithm 7.2 with measure M Q(-) do
Ui ~ Uniform|0, 1].
if U; < f(X;)/(9(X;)M) then return (7;, X;)
end if

end for

7.5 Monte Carlo Methods That Use Bounds 217

REJ N PER
o o ‘
’ o o :
O— >3k
| o

*¢-0 :
* l

o i :

Rt Ty/M Ty Rt

Figure 7.7: Algorithms REJ and PER for measure P on [0,1] with proposal
measure . The densities of Q and P are shown on the left hand side as densities
over x € [0,1]. o are arrivals of the race with measure @, * of the race with measure
P. Both plots show the proposals considered until the first acceptance. For PER
opaque solid lines represent the perturb operation. Ty is the fourth arrival from the
race with measure Q). Ty/M is the lower bound on all future arrivals, and thus all
* points to the left of Ty/M are in order.

The Accept-Reject Lemma guarantees that the returned values (7', X) will
be the first arrival of an exponential race with measure P, and Theorem 7.7
guarantees that X is a sample from P(-)/P(R™). This is the basic flavour of
the arguments of this section.

The Perturbation Lemma has a corresponding procedure, which uses the
bound M to provably return the first arrival of a perturbed exponential race.
It is shown on the right hand side of Figure 7.7, and we call it PER.

(T*, X*) = (oo, null)

for (T}, X;) € R simulated by Algorithm 7.2 with measure) do

if 7" > T;g(X;)/f(X;) then
T =Tig(X;)/ f(Xi)

X*=X;
end if
if T;11/M > T* then return (7%, X*)
end if
end for

In this procedure (T3, X;) iterates in order through the arrivals of an expo-
nential race with measure). The perturbed times T;¢(X;)/f(X;) will form
a race with measure P, but not necessarily in order. (T, X*) are variables
that track the earliest perturbed arrival so far, so T* is an upper bound on
the eventual first arrival time for the race with measure P. T}, is the arrival
time of the next point in the race with measure Q and M bounds the con-
tribution of the perturbation, so T;41/M is a lower bound on the remaining

218

A Poisson Process Model for Monte Carlo

perturbed arrivals. When 7™ and T;11/M cross, (T*, X*) is guaranteed to
be the first arrival of the perturbed race.

REJ and PER can turned into generators for iterating through all of the
arrivals of an exponential race with measure P as opposed to just returning
the first. For REJ it is as simple as replacing return with yield, so that
each time the generator is invoked it searches until the next acceptance and
returns. For PER we must store every perturbed arrival until its eventual
order in the race with measure P is determined. This can be accomplished
with a priority queue U, which prioritizes by earliest arrival time,

U = minPriorityQueue()

for (7;, X;) € R simulated by Algorithm 7.2 with measure @) do

U.pushWithPriortiy(T;9(X;)/ f(Xi), Xi)
if T;411/M > minU then yield U.pop()
end if

end for

U takes the place of T* and X* in PER. The highest priority arrival on U
will be the earliest of the unordered perturbed arrivals and T4, /M is a lower
bound on all future perturbed arrivals. When 741 /M > min U, the earliest
arrival on U is guaranteed to be the next arrival. It is informative to think
of the generator version of PER via Figure 7.7. The lower bound T;;1/M is
a bound across space that advances rightward in time, every arrival to the
left of T;4+1/M is in order and every arrival to the right is unordered.

Consider the number of iterations until the first acceptance in REJ and
PER. At first it seems that both algorithms should have different runtimes.
REJ is obviously memoryless, and it seems wasteful — no information
accumulates. On the other hand PER accumulates the earliest arrival and
its termination condition depends on a history of arrivals. Unfortunately,
both algorithms have the same geometric distribution over the number of
arrivals considered. Arguing informally, the lower bound T;,1/M of PER
plotted over the iterations will form a line with slope (MQ(R"))~!. PER
terminates when this line crosses the first arrival time of the perturbed race.
The first arrival of a race with measure P occurs at P(R™)~! in expectation,
so we expect the crossing point to occur on average at MQ(R™)/P(R™)
iterations. This is the same as the expected runtime of REJ.

Lemma 7.13. Let K(REJ) and K(PER) be the number of proposals
considered by the rejection and perturbation sampling algorithms. Then

P(R")

P(K(REJ) > k) = P(K(PER) > k) = (1 — p)* with p = QEIAL

7.5 Monte Carlo Methods That Use Bounds 219

Thus K(REJ) and K(PER) are geometric random variable with
1
E(K(REJ)) =E(K(PER)) = ;

Proof. The probability of accepting a proposal at any iteration of REJ is

B a00M) = [T8 S0) =

Each decision is independent, so the probability of k rejections is (1 — p)*.
PER exceeds k iterations if T;9(X;)/f(X;) > Tgy1/M for all ¢ < k.
Because the X; are i.i.d.,

k
P(K(PER) > k [{Ti = t:}*}) = [[P(ti/thr > (X)/(9(X)M)),
i=1
where X ~ Q(-)/Q(R™). Given Tyy1 = tg41 the T; for i < k are i.i.d.
T; ~ Uniform(0, tx+1) by Lemma 7.3. Thus 7;/Tj4+1 ~ Uniform(0,1) i.i.d.

k
P(K(PER) > k) = [[BU > £(X)/(g(X)M)) = (1 - p)*
=1

finishes the proof. O
7.5.2 Adaptive Bounds

Lemma 7.13 is disappointing, because it suggests that reasoning about per-
turbations is as inefficient as discarding proposals. The problem is funda-
mentally that information carried in the bound M about the discrepancy
between g(x) and f(x) is static throughout the execution of both algorithms.
Considering a contrived scenario will illustrate this point. Suppose that for
every failed proposal we are given a tighter bound M;1; < M; from some
oracle. Both REJ and PER can be adapted to take advantage of these
adaptive bounds simply by dropping in M; wherever M appears.

In this case PER is distinguished from REJ. REJ makes an irrevocable
decision at each iteration. In contrast PER simply pushes up the lower
bound T;11/M; without erasing its memory, bringing it closer to accepting
the earliest arrival so far. Indeed, the probability of this oracle rejection
sampling exceeding k proposals is

k
P(K(OREJ) > k) = [J(1 = pi) where p; = P(R")/(Q(R")M;).

i

220

A Poisson Process Model for Monte Carlo

On the other hand, the probability of this oracle perturbation sampling
exceeding k proposals is

k
P(K(OPER) > k) = [[P(U > f(X)/(g(X)My)) = (1— pe)*,
i=1
or the probability of rejecting k proposals as if the M;th bound was known
all along. By tracking the earliest arrival so far OPER makes efficient use
of adaptive bound information, reevaluating all points in constant time.

7.5.3 OS* Adaptive Rejection Sampling and A* Sampling

The difference between REJ and PER. exposed by considering adaptive
bounds motivates studying OS* and A* sampling, Monte Carlo methods
that use realistic adaptive bounds. Both methods iteratively refine a parti-
tion {B;}I"; of R", which allows them to use regional bounds M (B;), where
f(z)/g(xz) < M(B;) for x € B;. As with REJ and PER, OS* and A* sam-
pling are only distinguished by how they use this information. OS* reasons
about accept-reject operations, A* sampling about perturb operations. In
contrast to the relationship between REJ and PER, A* sampling makes
more efficient use of proposal samples than OS*.

OS* and A* sampling must compute volumes and samples of subsets
under the proposal measure @. It will be possibly intractable to consider
any possible B; C R”, so a user must implicitly specify a nice family F of
subsets that is closed under a user-specified refinement function split(B, z).
Hyperrectangles are a simple example. All together, the user must provide,

1. finite nonzero measure P with a method for computing the density f(x).

2. finite nonzero proposal measure) with methods for sampling restricted
to B € F, computing measures of B € F, and computing the density g(x).

3. partitioning set function split(B,z) C F for B € F that partitions B.
4. bounding set function M (B) for B € F, f(z)/g(xz) < M(B) for z € B.

Specific examples, which correspond to experimental examples, are given in
the Appendix.

OS* (OS* for short) is in a family of adaptive rejection sampling algo-
rithms, which use the history of rejected proposals to tighten the gap be-
tween the proposal density and the density of interest. The name adaptive
rejection sampling (ARS) is normally reserved for a variant that assumes
log f(z) is concave (Gilks and Wild, 1992). Accept-reject decisions are in-
dependent, so any adaptive scheme is valid as long as the rejection rate is
not growing too quickly (Casella et al., 2004). Our proof of the correctness

7.5 Monte Carlo Methods That Use Bounds 221

Algorithm 7.4 OS* adaptive rejection sampling for P with proposal Q

Po ={R"}
To=0
for i =1 to oo do
B; ~]P)(B) e Q(B)M(B) for Be P;_4
Xi~Q(-NBi)/Q(B)
B~ Bxp(S ey, | M(B)Q(B))
T,=Ti1+FE
U; ~ Uniform|0, 1]
if Us < f(X3)/(9(Xi)M(B;)) then
return (73, X;)
else
6 = Spht(Bz,Xz)
Pi=Pi1 —{Bi} +C
end if
end for

appeals to exponential races, and it works for a wider range of adaptive
schemes than just OS*.

In more detail, OS* begins with the proposal density g(z) and a parti-
tion Py = {R™}. At every iteration it samples from the distribution with
density proportional to » pcp g(x)M(B)1p(x) in a two step procedure,
sampling a subset B € P;_; with probability proportional to Q(B)M (B),
and then sampling a proposal point X from the distribution with density
g(z) restricted to B. If X is rejected under the current proposal, then P;_;
is refined by splitting B with the user specified split(B, X). There is a choice
of when to refine and which subset B € P;_1 to refine, but for simplicity
we consider just the form the splits the subset of the current proposal. OS*
continues until the first acceptance, see Algorithm 7.4.

Theorem 7.14 (Correctness of OS*). Let K(OS*) be the number of pro-
posal samples considered before termination. Then

P(R™)

P(K(OS*) > k) < (1 — p)* where p = ————"——

(K ()) < (p) p Q(R") M (R")

and upon termination the return values (T, X) of OS* are independent and
T ~ Exp(P(R")) X ~ PR’

Proof. The situation is complicated, because the proposals {(7, X;)}°, of
OS* are not an exponential race. Instead, we present an informal argument
derived from a more general thinning theorem, Proposition 14.7.1. in Daley

222

A Poisson Process Model for Monte Carlo

and Vere-Jones (2007). Let g;(z) be the proposal density at iteration 1,
Ga) =3, @M(B)In(x).

Clearly, g;(x) depends on the history of proposals so far and f(x) < g;(z) <
g(x)M (R™) for all 7. Let R be an exponential race with measure M (R™)Q(-)
and Uj;Uniform[0, 1] ii.d. for each (7}, X;) € R. Consider the following
adaptive thinning procedure, subsample all points of R that satisfy U; <
9i(X;)/(g(X;)M(R™)) where g;(X;) is defined according to the refinement
scheme in OS*, but relative to the history of points subsampled from R in
the order of their acceptance. It is possible to show that the sequence of
accepted points {(7;, X;, U;) }52, have the same marginal distribution as the
sequence of proposals in OS*.

Thus, we can see OS* and REJ as two separate procedures on the same
realization of R. For the termination result, notice that REJ considers at
least as many points as OS*. For partial correctness, the points (73, X;, U;)
such that U; < f(X;)/gi(X;) are exactly the subsampled points that would
have resulted from thinning R directly with probability f(z)/(g(x)M (R™)).
Thus, by the Accept-Reject Lemma, the returned values (T, X) will be the
first arrival of an exponential race with measure P.]

A* sampling (A* for short) is a branch and bound routine that finds the
first arrival of a perturbed exponential race. It follows PER in principle by
maintaining a lower bound on all future perturbed arrivals. The difference is
that A* maintains a piecewise constant lower bound over a partition of space
that it progressively refines. On every iteration it selects the subset with
smallest lower bound, samples the next arrival in that subset, and refines
the subset unless it can terminate. It continues refining until the earliest
perturbed arrival is less than the minimum of the piecewise constant lower
bound. The name A* sampling is a reference to A* search (Hart et al., 1968),
which is a path finding algorithm on graphs that uses a best-first criteria
for selecting from heuristically valued nodes on the fringe of a set of visited
nodes. A* sampling was originally introduced by Maddison et al. (2014) as
an algorithm that maximizes a perturbed Gumbel process. We define it over
an exponential race for the sake of consistency. Usually, it is better to work
with a Gumbel process to avoid numerical issues.

In more detail, A* searches over a simulation of an exponential race
organized into a space partitioning tree, as in the right hand plot of Figure
7.4, for the first arrival of the perturbed race. The tree is determined by
the splitting function split(B, z). Each node v of the tree is associated with
a subset B, C R™ and an arrival (T}, X,) from an exponential race with
measure (). A* iteratively expands a subtree of internal visited nodes, taking

7.5 Monte Carlo Methods That Use Bounds 228

Algorithm 7.5 A* sampling for P with proposal Q

£, U = minPriorityQueue(), minPriorityQueue()
T ~ Exp(Q(R"))
L.pushWithPriority (71 /M (R™), R™)
for i =1 to oo do
(T;/M(B:), B;) = £.pop()
X, ~ Q-1 B)/Q(B)
U.pushWithPriority (T59(X;)/ f(X:), Xi)
E ~ Exp(Q(B:))
T=T;+F
if min(min £,T/M(B;)) < minU then
C = split(B;, X;)
while C # () do
C~PC)xQ(C) forCece
L.pushWithPriority (T'/M (C), C)
e=C-{C}
E ~ Bxp(Xoee Q(C))
T=T+F
end while
else
L.pushWithPriority (T'/M (B;), B;)
end if
if min £ > minU then
return U.pop()
end if
end for

and visiting one node from the current fringe at each iteration. The fringe
L of the visited subtree is always a partition of R”. Each subset B € £ is
associated with the arrival time 7" of the next arrival of the race with measure
Q@ in B. Therefore T'/M (B) is a lower bound on all future perturbed arrivals
in B. £ is implemented with a priority queue that prioritizes the subset B
with the lowest regional bound T'/M(B). As A* expands the set of visited
nodes the lower bound min £ increases.

L is initialized with the root of the tree {(71/M(R™),R™)}. At the start
of an iteration A* removes and visits the subset (7; /M (B;), B;) with lowest
lower bound on L. Visiting a subset begins by realizing a location X; from
Q(-NB;)/Q(B;) and pushing the perturbed arrival (T;9(X;)/f(X;), X;) onto
another priority queue U. U prioritizes earlier arrivals by the perturbed
arrival times T;9(X;)/f(X;). In this way A* decreases the upper bound
minU at each iteration.

A* attempts to terminate by simulating the next arrival time T > T; in
B; of the race with measure Q. If minU < min(min £,T /M (B;)), then the
top of U will not be superseded by future perturbed arrivals and it will be
the first arrival of the perturbed race. If termination fails, A* refines the the

224

A Poisson Process Model for Monte Carlo

partition by splitting B; into a partition split(B;, X;) of children. Arrival
times for each of the children are assigned respecting the constraints of the
exponential race in B;. Each child C'is pushed onto £ prioritized by its lower
bound T'/M (C'). Because the lower bounds have increased there is a second
opportunity to terminate before continuing. A* checks if min U < min £, and
otherwise continues, see Algorithm 7.5. As with PER, A* can be turned into
a generator for iterating in order through the points of the perturbed race
by replacing the return statement with a yield statement in Algorithm 7.5.

Theorem 7.15 (Correctness of A* sampling). Let K(A*) be the number of
proposal samples considered before termination. Then
P(R™)

P(K(A*) > k) < (1 — p)* where p = QRYME™

and upon termination the return values (T, X) of A* sampling are indepen-
dent and

P()
P(R")
Proof. Adapted from Maddison et al. (2014). The proposals are generated
lazily in a space partitioning tree. If {(7;, X;)}5°, are the arrivals at every

node of the infinite tree sorted by increasing T;, then (7, X;) forms an
exponential race with measure Q.

T ~ Exp(P(R")) X ~

For the termination result, each node v of the tree can be associated with
a subset B, and a lower bound T,,/M (B,). One of the nodes will contain the
first arrival of the perturbed process with arrival time 7. A* visits at least
every node v with T,,/M(B,) > T*. If M(B) is replaced with a constant
M(R™), then this can only increase the number of visited nodes. The last
step is to realize that A* searching over a tree with constant bounds M (R"™)
searches in order of increasing T}, and so corresponds to a realization of
PER. The distribution of runtimes of PER is given in Lemma 7.13.

For partial correctness, let (7,X) be the return values with highest
priority on the upper bound priority queue U. The arrival time of unrealized
perturbed arrivals is bounded by the lower bound priority queue £. At
termination T is less than the top of the lower bound priority queue. So
no unrealized points will arrive before (7', X). By Lemma 7.9 (7, X) is the
first arrival of an exponential race with measure P. O

7.5 Monte Carlo Methods That Use Bounds 225

P Q Q N K(0S*) K(A")
clutter posterior prior 6 9.34 7.56
clutter posterior prior R? 6 38.3 33.0
clutter posterior prior R? 6 130 115
robust Bayesian regression prior R 10 9.36 6.77
robust Bayesian regression prior R 100 40.6 32.2
robust Bayesian regression prior R 1000 180 152
fully connected Ising model —uniform {-1,1}> - 4.37 3.50
fully connected Ising model uniform {-1,1}*° - 19.8 15.8

Table 7.1: Comparing A* and OS*. Clutter and robust Bayesian regression are
adapted from Maddison et al. (2014) and the Ising model from Kim et al. (2016).
2 is the support of the distribution; N is the number of data points; and K(OS*)
and K(A™*) are averaged over 1000 runs. More information in the Appendix.

7.5.4 Runtime of A* Sampling and OS*

A* and OS* are structurally similar; both search over a partition of space
and refine it to increase the probability of terminating. They will give
practical benefits over rejection sampling if the bounds M (B) shrink as the
volume of B shrinks. In this case the bound on the probability of rejecting k
proposals given in Theorems 7.14 and 7.15 can be very loose, and OS* and
A* can be orders of magnitude more efficient than rejection sampling. Still,
these methods scale poorly with dimension.

The cost of running A* and OS* will be dominated by computing the
ratio of densities f(z)/g(x) and computing bounds M (B). Because the
number of bound computations is within a factor of 2 of the number of
density computations, the number of evaluations of f(x)/g(z) (equivalently
number of proposals) is a good estimate of complexity. Table 7.1 presents
a summary of experimental evidence that A* makes more efficient use of
density computations across three different problems. For each problem the
full descriptions of P, Q, M(B), and split(B, x) are found in the Appendix.

The dominance of A* in experiments is significant, because it has access
to the same information as OS*. There are at least two factors that may
give A* this advantage. First, if all lower bounds increase sharply after some
exploration A* can retroactively take advantage of that information, as in
Section 7.5.2. Second, A* can take advantage of refined bound information
on the priority queue £ before proposing the next sample. Still, the dif-
ference in search strategy and termination condition may counteract these
advantages, so a rigorous theory is needed to confirm exactly the sense in

226 A Poisson Process Model for Monte Carlo

which A* and OS* differ. We refer readers to Maddison et al. (2014) for

more detailed experiments.

7.6 Conclusion

The study of Poisson processes is traditionally motivated by their application
to natural phenomenon, and Monte Carlo methods are developed specifically
for them (Ripley, 1977; Geyer and Mgller, 1994). We considered the inverse
relationship, using Poisson processes to better understand Monte Carlo
methods. We suspect that this general perspective holds value for future
directions in research.

Monte Carlo methods that rely on bounds are not suitable for most high
dimensional distributions. Rejection sampling scales poorly with dimension-
ality. Even for A* sampling there are simple examples where adaptive bounds
become uninformative in high dimensions, such as sampling from the uni-
form hypersphere when using hyperrectangular search subsets. Still, spe-
cialized algorithms for limited classes of distributions may be able to take
advantage of conditional independence structure to improve their scalability.

Another direction is to abandon the idea of representing arbitrary distri-
butions, and study the class of distributions represented by the maxima of
combinations of lower order Gumbel processes. This is the approach of the
perturbation models studied in Papandreou and Yuille; Gane et al.; Hazan
and Jaakkola; Tarlow et al.; and Keshet at al. of this book. In these models
a Gumbel process over a discrete space is replaced by sums of independent
Gumbel processes over discrete subspaces. The maxima of these models form
a natural class of distributions complete with their own measures of uncer-
tainty. An open direction of inquiry is developing efficient algorithms for
optimizing their continuous counterparts.

Our study of Poisson processes and Monte Carlo methods was dominated
by the theme of independence; the points of an exponential race arrive as
independent random variables and accept-reject or perturb do not introduce
correlations between the points of the transformed race. Continuing in this
direction it is natural to investigate whether other Poisson process models
or other operations on an exponential race could be used to define a new
class of Monte Carlo methods. In a separate direction the Markov Chain
Monte Carlo (MCMC) methods produce a sequence of correlated samples
whose limiting distribution is the distribution of interest. The theory of point
processes includes a variety of limit theorems, which describe the limiting
distribution of random countable sets (Daley and Vere-Jones, 2007). It would

7.6 Conclusion 227

be interesting to see whether a point process treatment of MCMC bears fruit,
either in unifying our proof techniques or inspiring new algorithms.

Acknowledgements

We would like to thank Daniel Tarlow and Tom Minka for the ideas,
discussions, and support throughout this project. Thanks to the other editors
Tamir Hazan and George Papandreou. Thanks to Jacob Steinhardt, Yee
Whye Teh, Arnaud Doucet, Christian Robert for comments on the draft.
Thanks to Sir J.F.C. Kingman for encouragement. This work was supported
by the Natural Sciences and Engineering Research Council of Canada.

Appendix: Proof of Lemma 7.3

Proof. The lemma is trivial satisfied for £k = 0. For £k > 0 and B; C B we
will express

P({X; € B;}*_||N(B) = k) (7.16)

in terms of counts. The difficulty lies in the possible overlap of B;s, so we
consider 2* sets of the form

Aj=BiNB5N...NB;

where * is blank or a complement, and A is interpreted as BNB{N...NB;.
The A; are a disjoint partition of B,
B; = Ujeri4, B= U?:lAjv
where I(i) C {1,...,2F} is some subset of indices. Let J = I(1) x I(2) x
. x I(k), so that each s € J is a vector indices (sq, S2,. .., Sk) associated
with the disjoint events {X; € A, }¥_|. Thus,

P({X; € Bi}i IN(B) = k) = Y _P({X; € A, }l1 [N (B) = k).
seJ
For s € J, let n;(s) = #{i : s; = j} be the number of indices in s equal
to j and notice that Z?kzl nj(s) = k. To relate the probability if specific
numbering {X; € A, }¥_, with counts {N(4;) = nj(s)}?il, we discount by

228 A Poisson Process Model for Monte Carlo

all ways of the arranging k£ points that result in the same counts.

2 i\S) = n;(s))2"
PU(X, € Au Yoy [N(B) — k) — L=t O PANIA) = ny(9)})

k! P(N(B) = k)
_ I A
u(B)*
Thus (7.16) is equal to
H§k1M(A) i) _ b Zje](z‘):u(Aj) B b w(B;)
% w(B)k B 1:[1 w(B) - Ul (B)

Appendix: Experimental Details
Clutter Posterior

This example is taken exactly from Maddison et al. (2014). The clutter
problem (Minka, 2001) is to estimate the mean 6 € R™ of a Normal
distribution under the assumption that some points are outliers. The task is
to sample from the posterior P over w of some empirical sample {(x;)}Y;.

0.5exp(—0.5(|0 — z;||?) = 0.5exp(—0.5z;|%/1002)
(2m)n/2 100"(277)"/2

fi(0) =

1612
8

log () = — log f(6) = log g(0) + Zlog fi(6

(a,b] ={y : aqg < yqg < by} for a,beR"
aqg ifzg < ag
Hfl (a,b,x;)) x*(a,b,x)g =< by if g > by

g O.W.

split((a, b], z) = {(a,0) N {y 1 ys < x5}, (a, 0] N {y : ys > x5}}
where s = argmax by — agq
d

Our dataset was 6 points z; € R" of the form z; = (a;,a;,...,a;) for
a; € {—5,—4,-3,3,4,5).

7.6 Conclusion

229

Robust Bayesian Regression

This example is an adaption from Maddison et al. (2014) with looser bounds.

The model is a robust linear regression y; = wx; + €¢; where the noise ¢; is

distributed as a standard Cauchy and w is a standard Normal. The task is to

sample from the posterior P over w of some empirical sample {(z;,v;)}Y,.
2

w
log g(w) = ~3

log f(w) = log g(w Zlog (1+ (wz; — y;)*)
=1

N exp(a) if yi/x; < a
M((a,b]) = [Mi((a,b]) Mi((a,0]) = { exp(b) if yi/wi > b
=1 exp(y;/x;) o.w.
split((a, b], z) = {(a, z], (z, b]}

The dataset was generated by setting w* 2; x; ~ Normal(0,1) and

N/2; and z; = x;_p/p and

IA

yi = wx; + € with € ~ Normal(0,0.12) for i
Yi = —Yi—ny2 for i > N/2.

Attractive Fully Connected Ising Model

This is an adaptation of Kim et al. (2016). The attractive fully connected
Ising model is a distribution over z € {—1,1}" described by parameters
w;j ~ Uniform[0,0.2] and f; ~ Uniform|[—1, 1].

logg(x) =0
log f(x) me + Z Wy ;T

1<j<n

We considered subsets of the form B = {z : z; = b;,i € I} where
I C{1,...,n} and b; € {0,1}. We split on one of the unspecified variables
x; by taking variable whose linear program relaxation was closest to 0.5.

split(B,z) ={BN{z:2;=0},BN{x:a; =1}}

log M (B) is computed by solving a linear program relaxation for the follow-
ing type of integer program. Let b; € {0,1} for 1 <i < n and by € {0,1}
for 1 <i<j<mnandk,le{01}.

mmz —fibi + fi(1 —b;) Z Z 1)kiH+-D0- k)’wijbijkl

1<i<j<n k,le{0,1}

230

A Poisson Process Model for Monte Carlo

subject to the constraints for 1 <i < j < n,

Z bijor =1 — b; Z bijko =1 —b;

le{0,1} ke{0,1}
Z biji = bi Z bijk1 = b;
le{0,1} ke{0,1}

as the subsets B narrowed we just solved new linear programs with constants
for the fixed variables.

7.9 References

G. Casella, C. P. Robert, and M. T. Wells. Generalized Accept-Reject sampling
schemes, volume 45 of Lecture Notes—Monograph Series. Institute of Mathemat-
ical Statistics, 2004.

Y. Chen and Z. Ghahramani. Scalable Discrete Sampling as a Multi-Armed Bandit
Problem. ArXiv e-prints, June 2015.

D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes,
Volume II: General Theory and Structure. Springer, 2007.

L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.
R. Durrett. Essentials of Stochastic Processes. Springer, 2012.

M. Dymetman, G. Bouchard, and S. Carter. The OS* Algorithm: a Joint Approach
to Exact Optimization and Sampling. arXiv preprint arXiv:1207.0742, 2012.

B. Gedenko. On a local limit theorem of the theory of probability. Uspekhi Mat.
Nauk, 3, 1948.

C. J. Geyer and J. Mgller. Simulation procedures and likelihood inference for spatial
point processes. Scandinavian Journal of Statistics, 1994.

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied
Statistics, 1992.

E. J. Gumbel and J. Lieblein. Statistical Theory of Extreme Values and Some
Practical Applications: a Series of Lectures. US Govt. Print. Office, 1954.

P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2), 1968.

T. Hazan, S. Maji, and T. Jaakkola. On Sampling from the Gibbs Distribution
with Random Maximum A-Posteriori Perturbations. In NIPS. 2013.

C. Kim, A. Sabharwal, and S. Ermon. Exact Sampling with Integer Linear Programs
and Random Perturbations. In AAAI 2016.

J. Kingman. Poisson Processes. Oxford University Press, 1992.

P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous poisson processes
by thinning. Naval Research Logistics Quarterly, 26(3), 1979.

C. J. Maddison, D. Tarlow, and T. Minka. A* Sampling. In NIPS. 2014.
H. Malmberg. Random Choice over a Continuous Set of Options. 2013.

7.9 References

231

T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI,
2001.

G. Papandreou and A. Yuille. Perturb-and-MAP Random Fields: Using Discrete
Optimization to Learn and Sample from Energy Models. In ICCV, 2011.

S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer,
2007.

B. D. Ripley. Modelling Spatial Patterns. Journal of the Royal Statistical Society.
Series B (Methodological), 1977.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized Optimum Models for
Structured Prediction. In AISTATS, 2012.

A. J. Walker. An efficient method for generating discrete random variables with
general distributions. ACM Transactions on Mathematical Software, 3(3), 1977.

J. I. Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory
of comparative judgment, and the double exponential distribution. Journal of
Mathematical Psychology, 15(2), 1977.

8 Perturbation Techniques in Online
Learning and Optimization

Jacob Abernethy jabernet@umich.edu
University of Michigan
Ann Arbor, MI

Chansoo Lee chansool@umich.edu
University of Michigan
Ann Arbor, MI

Ambuj Tewari tewaria@umich.edu
University of Michigan
Ann Arbor, MI

In this chapter we give a new perspective on so-called perturbation methods
that have been applied in a number of different fields, but in particular for
adversarial online learning problems. We show that the classical algorithm
known as Follow The Perturbed Leader (FTPL) can be viewed through the
lens of stochastic smoothing, a tool that has proven popular within convex
optimization. We prove bounds on regret for several online learning settings,
and provide generic tools for analyzing perturbation algorithms. We also
consider the so-called bandit setting, where the feedback to the learner
is significantly constrained, and we show that near-optimal bounds can be
achieved as long as a simple condition on the perturbation distribution is
met.

8.1 Introduction

In this chapter we will study the problem of online learning with the goal
of minimizing regret. A learner must iteratively play a sequence of actions,

234

Perturbation Techniques in Online Learning and Optimization

where each action is based on the data received up to the previous iteration.
We consider learning in a potentially adversarial environment, where we
avoid making any stochastic assumptions about the sequence of data. The
goal of the learner is to suffer as little regret as possible, where regret
is defined as the difference between the learner’s loss and the loss of the
best fixed action in hindsight. The key to developing optimal algorithms
is regularization, which may be interpreted either as hedging against bad
future events, or similarly can be seen as avoiding overfitting to the observed
data. In this paper, we focus on regularization techniques for online linear
optimization problems where the learner’s action is evaluated on a linear
reward function.

In the present chapter, we will mostly focus on learning settings where our
learner’s decisions are chosen from a convex subset of R, and where the
“data” we observe arrives in the form of a (bounded) vector g € R, and
the costs/gains will be linear in each. Specifically, the gain (equiv., reward)
received on a given round, when the learner plays action w and Nature
chooses vector g, is the inner product (w, g). Generally we will use the the
symbol G to refer to the cumulative gain vector up to a particular time
period.

The algorithm commonly known as Follow the Regularized Leader (FTRL)
selects an action w on a given round by solving an explicit optimization
problem, where the objective combines a “data fitness” term along with a
regularization wvia penalty function. More precisely, FTRL selects an action
by optimizing argmax,,(w, G) — R(w) where R is a strongly convex penalty
function; a well-studied choice for R is the well-known fo-regularizer || - ||3.
The regret analysis of FTRL reduces to the analysis of the second-order
behavior of the penalty function (Shalev-Shwartz, 2012), which is well-
studied due to the powerful convex analysis tools. In fact, regularization
via penalty methods for online learning in general are very well understood.
Srebro et al. (2011) proved that Mirror Descent, a regularization via penalty
method, achieves a nearly optimal regret guarantee for a general class
of online learning problems, and McMahan (2011) showed that FTRL is
equivalent to Mirror Descent under some assumptions.

Follow the Perturbed Leader (FTPL), on the other hand, uses implicit
regularization via perturbations. At every iteration, FTPL selects an action
by optimizing argmax, (w,G + z) where G is the observed data and z is
some random noise vector, often referred to as a “perturbation” of the
input. The early FTPL analysis tools lacked a generic framework and relied
substantially on clever algebra tricks and heavy probabilistic analysis (Kalai
and Vempala, 2005; Devroye et al., 2013; van Erven et al., 2014). This was in

8.2 Preliminaries

235

contrast to the elegant and simple convex analysis techniques that provided
the basis for studying FTRL and proving tight bounds.

This book chapter focuses on giving a new perspective on perturbation
methods and on providing a new set of analysis tools for controlling the
regret of FTPL. In particular, we show that the results hinge on certain
second-order properties of stochastically-smoothed convex functions. Indeed,
we show that both FTPL and FTRL naturally arise as smoothing opera-
tions of a non-smooth potential function and the regret analysis boils down
to understanding the smoothness as defined in Section 8.3. This new uni-
fied analysis framework recovers known (near-)optimal regret bounds and
provides tools for controlling regret.

An interesting feature of our analysis framework is that we can directly
apply existing techniques from the optimization literature, and conversely,
our new findings in online linear optimization may apply to optimization
theory. In Section 8.4, a straightforward application of the results on Gaus-
sian smoothing by Nesterov (2011) and Duchi et al. (2012) gives a generic
regret bound for an arbitrary online linear optimization problem. In Section
8.5 and 8.6, we improve this bound for the special cases that correspond to
canonical online linear optimization problems; we analyze the so-called “ex-
perts setting” (Section 8.5) and we also look at the case where the decision
set is the Euclidean ball (Section 8.6). Finally, in Section 8.7, we turn our
attention to the bandit setting where the learner has limited feedback. For
this case, we show that the perturbation distribution has to be chosen quite
carefully, and indeed we show that near-optimal regret can be obtained as
long as the perturbation distribution has a bounded hazard rate function.

8.2 Preliminaries

8.2.1 Convex Analysis

For this preliminary discussion, assume we are given an arbitrary norm || - ||.
Throughout the chapter we will utilize various norms, such as the ¢, ¢, £,
and the spectral norm of a matrix. In addition, we will often use || - ||« to
refer to the dual norm of || - ||, defined as ||z, = maxy.y|<1(y,2)-

Assume we are given f a differentiable, closed, and proper convex function
whose domain is dom f € RY. We say that f is L-Lipschitz with respect to
anorm | - || when f satisfies |f(z) — f(y)| < L|jx — y|| for all z,y € dom(f).

The Bregman divergence Dy(y,x) is the gap between f(y) and the linear
approximation of f(y) around z. Formally, D¢(y,z) = f(y) — f(z) —
(Vf(x),y —x). We say that f is B-strongly conver with respect to a norm

236

Perturbation Techniques in Online Learning and Optimization

| - |l if we have D¢(y,z) > glly — |2 for all #,y € dom f. Similarly, f
is said to be [-strongly smooth with respect to a norm || - || if we have
Dy(y,z) < Bly — |2 for all 2,y € dom f.

The Bregman divergence measures how fast the gradient changes, or
equivalently, how large the second derivative is. In fact, we can bound
the Bregman divergence by analyzing the local behavior of Hessian, as the
following adaptation of Abernethy et al. (2013, Lemma 4.6) shows.

Lemma 8.1. Let f be a twice-differentiable convex function with dom f C
RY. Assume that the eigenvalues of V2 f(x) all lie in the range [a,b] for
every x € dom f. Then, a|v||?/2 < Dg(z + v,2) < bllv]|?/2 for any
z,x+v € dom f.

The Fenchel conjugate of f is defined as f*(G) = sup,cqom(p){(w, G) —
f(w)}, and it is a dual mapping that satisfies f = (f*)*. If f is differentiable
and strictly convex we also have V f* € dom(f). One can also show that the
notions of strong convexity and strong smoothness are dual to each other.
That is, f is B-strongly convex with respect to a norm || - | if and only if f*
is %—strongly smooth with respect to the dual norm || - ||4. For more details
and proofs, readers are referred to an excellent survey by Shalev-Shwartz
(2012).

8.2.2 Online Linear Optimization

Let X and Y be convex and closed subsets of RY. The online linear opti-
mization (OLO) is defined to be the following repeated game between two
entities that we call the learner and the adversary:

Onround t=1,...,T,
» the learner plays w; € X;
= the adversary reveals g; € Y;
» the learner receives a reward! (wy, g;).

We say X is the decision set and Y is the reward set. Let G; = Zi:l Js
be the cumulative reward. The learner’s goal is to minimize the (external)

1. Our somewhat less conventional choice of maximizing the reward instead of minimizing
the loss was made so that we directly analyze the convex function max(-) without
cumbersome sign changes.

8.3 Gradient-Based Prediction Algorithm 237

regret, defined as:

T
Regret = glgj)é(w,GT) —;(wt,gt>. (8.1)
baseline potential
The baseline potential function ®(G) := maxyex(w,G) is the comparator

term against which we define the regret, and it coincides with the support
function of X. For a bounded compact set X, the support function of X is
positively homogeneous, subadditive, and Lipschitz continuous with respect
to any norm || - ||, where the Lipschitz constant is equal to sup,cx |||« For
more details and proofs, readers are referred to Rockafellar (1997, Section 13)
or Molchanov (2005, Appendix F).

8.3 Gradient-Based Prediction Algorithm

Follow the Leader (FTL) style algorithms select the next action wy; € X
via an optimization problem: given the cumulative reward vector G;_1, an
FTL style algorithm selects w; = argmax,,co f(w, G¢—1). The most simple
algorithm, FTL, does not incorporate any perturbation or regularization into
the optimization, and uses the objective f(w,G) = (w,G). Unfortunately
FTL does not enjoy non-trivial regret guarantees in many scenarios, due
to the inherent instability of vanilla linear optimization—that is, since the
the optimal solution can fluctuate with small changes in the input. There
are a couple of ways to induce stability in FTL. Follow the Regularized
Leader (FTRL) sets f(w,G) = (w,G) — R(w) where R is a strongly convex
regularizer providing stability to the solution. Follow the Perturbed Leader
(FTPL) sets f(w,G) = (w,G + z) where z is a random vector. The
randomness in z imparts stability to the (expected) move of the FTPL
algorithm.

We now proceed to show that a common property shared by all such
algorithms is that the action w; is exactly the gradient of some scalar-
valued potential function &Dt evaluated at Gy—j. (For the remainder of the
paper we will use the notation ® to refer to a modification of the baseline
potential ®). This perspective gives rise to what we call the Gradient-based
Prediction Algorithm (GBPA), presented in Algorithm 1. In the following
Section we give a full regret analysis of this algorithm. We note that Cesa-
Bianchi and Lugosi (2006, Theorem 11.6) presented a similar algorithm, but
our formulation eliminates all dual mappings.

238

Perturbation Techniques in Online Learning and Optimization

Algorithm 1: Gradient-Based Prediction Algorithm (GBPA)

Input: X,y C RN _ _ _
Require: convex potentials ®1,..., 7 : RY — R, with Vo.(G) € X, VG
Initialize: Go =0
for t = 1to T do
The learner plays w; = V&%(th)
The adversary reveals g: € Y
The learner receives a reward of (wy, g;)
Update the cumulative gain vector: G¢ = G¢—1 + g+

8.3.1 GBPA Analysis

We begin with a generic result on the regret of GBPA in the full-information
setting.

Lemma 8.2 (GBPA Regret). Let ® be the baseline potential function for
an online linear optimization problem. The regret of the GBPA can be
decomposed as follows:

T

Regret = Z ((4(Gi1) — Py—1(Ge1)) + Dg (G, th))
t=1 overestimation penalty diyergen;; penalty
+ @(Gr) — r(Gr) , (8.2)

underestimation penalty
where EDO = .
Proof. We note that since ®(0) = 0,
Or(Gr) = Y1y ©41(Ge) — B4-1(Geo1)
=Y ((@(Gt) — $4(Gr-1)) + (e(Gr1) — ‘5t—1(Gt—1)))
=i ((<V&)t(Gt—1)>gt> + D3 (G, Gi-1)))
+ (;Iv)t(thl) - ;Iv)tfl(thl))),
where the last equality holds because:

(AI;t(Gt) — (AISt(Gt_l) = <V<A13t(Gt_1),gt> + D;I;t (Gt, Gt_1). (83)

8.3 Gradient-Based Prediction Algorithm 239

We now have

Mﬂ

Regret := ®(Gr) — Y (wi, g¢)

t

= &(Gr) = Ly (VO(Gi), 91)
= ®(Gr) — ©1(Gr) + Xi_y Dg,(Gr, Gi1) + @1(Gro1) — @1 (Gr),

“Hﬂ

which completes the proof.]
We point out a couple of important facts about Lemma 8.2:

1L Ifd =- —:f’T, then the overestimation penalty sums up to 51(0) —
®(0) = <I>T(O) ®(0).

2. If @, is B-strongly smooth with respect to || - ||, the divergence penalty at
t is at most gﬂgt|]2.

One source of regret is the Bregman divergence of :I;t; since g; is not known
until playing w;, the GBPA always ascends along the gradient that is one
step behind. The adversary can exploit this and play g to induce a large
gap between <T>t(Gt) and the linear approximation of %t(Gt) around Gy_1.
The learner can reduce this gap by choosing a smooth ®, whose gradient
changes slowly.

The learner, however, cannot achieve low regret by choosing an arbitrarily
smooth @t, because the other source of regret is the difference between <I>t
and ®. In short, the GBPA achieves low regret if the potential function <I>t
gives a favorable tradeoff between the two sources of regret. This tradeoff is
captured by the following definition of smoothing parameters, adapted from
Beck and Teboulle (2012, Definition 2.1).

Definition 8.1. Let f be a closed proper convex function. A collection of
functions {f, : n € Ry} is said to be an n-smoothing of f with smoothing
parameters («, 3, || - ||), if for every n > 0:

1. There exists ay (underestimation bound) and ag (overestimation bound)

such that
sup f(G)— fy(G) < ain and sup f,(G) — f(G) < an(8.4)
Gedom(f) Gedom(f)

with a1 + as = a.

2. fis %-stmngly smooth with respect to || - ||.

We say « is the deviation parameter, and § is the smoothness parameter.

A straightforward application of Lemma 8.2 gives the following statement:

240

Perturbation Techniques in Online Learning and Optimization

Corollary 8.3. Let ® be the baseline potential for an online linear opti-
mization problem. Suppose {&)n} is an n-smoothing of ® with parameters
(a, B, - |I). Then, the GBPA run with ® = --- = &p = ‘in engjoys the
following regret bound,

T
Regret < an + 2ﬁ77 Z llge]| (8.5)
t=1

Choosing n to optimize the bound gives Regret < \/Qaﬁ Zle llge|?-

In OLO, we often consider the settings where the reward vectors g1, ..., g
are constrained in norm, i.e., ||g:|]| < r for all ¢. In such settings, the regret
grows in O(ry/afBT) for the optimal choice of 1. The product af of the
devation and smoothness parameters is, therefore, at the core of the GBPA
regret analysis.

An important smoothing technique for this chapter is stochasting smooth-
ing, which is the convolution of a function with a probability density func-
tion.

Definition 8.2 (Stochastic Smoothing). Let f : RN — R be a function. We
define f(-;Dy) to be the stochastic smoothing of f with distribution D and
scaling parameter n > 0. The function value at G is obtained as:

f(G5Dy) = B [f(G + 2)] = Eenn [(G + 12)), (8.6)
where we adopt the convention that if z has distribution D then the distri-
bution of nz is denoted by D,,.

Notes on estimation penalty If the perturbation used has mean zero, it
follows from Jensen’s inequality that the stochastic smoothing will over-
estimate the convex function ®. Hence, for mean zero perturbations, the
underestimation penalty is always non-positive. When the scaling parame-
ter 7, changes every iteration, the overestimation penalty becomes a sum
of T terms. The following lemma shows that we can collapse them into one
since the baseline potential ® in OLO problems is sub-additive: ®(G+ H) <
O(G)+ P(H).

Lemma 8.4. Let ® : RV — R be a baseline potential function of an OLO
problem. Let D be a continuous distribution with zero mean and support
RYN. Consider the GBPA with ®,(G) = ®(G;D,,) for t = 0,...,T where

(m,...,nr) is a non-decreasing sequence of non-negative numbers. Then

8.3 Gradient-Based Prediction Algorithm 241

the overestimation penalty has the following upper bound,

T
> @(Gi1) = B1(Gio1) < rEuvn [@(w)], (8.7)
and the underestimation penalty is non-positive which gives gives a regret
bound of
T
Regret < nrEy~p[®(u)] + Y Dg (Gi,Gi1). (8.8)
t=1

Proof. By virtue of the fact that ® is a support function, it is also subadditive
and satisfies the triangle inequality. Hence we can see that, for any 0 < r/ <

1,
O(G; Dy) — B(G; Dy) = Eyup [2(G +) — (G + n'u)]
< Eynp[®((n — n')u)] = (n — 0)Eynp[®(u)],

where the final line follows from the positive homogeneity of ®. Since we
implicitly assume that &9 = ® we can set ng = 0. We can then conclude
that

T
Z(i)t(Gt—l — &, 1(Gy1) <Z77t M- 1) Eynp [®(u)] = nrEy~n[®(w)](8.9)
=1

which completes the proof. O

8.3.2 Understanding Follow the Perturbed Leader via Stochastic
Smoothing

The technique of stochastic smoothing has been well-studied in the optimiza-
tion literature for gradient-free optimization algorithms (Glasserman, 1991;
Yousefian et al., 2010) and accelerated gradient methods for non-smooth
optimizations (Duchi et al., 2012).

One very useful property of stochastic smoothing is that as long as D has
a support over R and has a differentiable probability density function s, f
is always differentiable. To see this, we use the change of variable technique:

f(G:0) = [G+ 2tz dz = [1(GuG - 6) dé. (8.10)

242

Perturbation Techniques in Online Learning and Optimization

and it follows that
Vef(G:D) = / H(G)Vau(G - @) da,
VEF(GiD) = [F(G)VEn(G - G) dG (8.11)

This change of variable trick leads to the following useful expressions for
the first and second derivatives of f in case the density u(G) is proportional
to exp(—v(G)) for a sufficiently smooth v.

Lemma 8.5 (Exponential Family Smoothing). Suppose D is a distribu-
tion over RN with a probability density function u of the form u(G) =
exp(—v(QG))/Z for some normalization constant Z. Then, for any twice-
differentiable v, we have

v f(G) E[f(G + 2)V.v(2)], (8.12)
V(@) = E[f(G + 2) (Vv (2)Var(2)" = Viv(2))].

Furthermore, if f is convex, we have
V2f(G) = E[VF(G + 2)V.v(2)T].

Proof. If v is twice-differentiable, Vy = —p - Vv and Vp =
(VvVyT — V20) p. Plugging these in (8.11) and using the substitution
z = G — G immediately gives the first two claims of the lemma. For the last
claim, we first directly differentiate the expression for Vf in (8.12) by swap-
ping the expectation and gradient. This is justified because f is convex (and
is hence differentiable almost everywhere) and p is absolutely continuous
w.r.t. Lebesgue measure everywhere (Bertsekas, 1973, Proposition 2.3). [

Let D be a probability distribution over RY with a well-defined density
everywhere. Consider the GBPA run with a stochastic smoothing of the
baseline potential:

¥, 8(G) = (G D,,) = Eap [mg;c((w, G+ ntz>} . (8.13)

Then, from the convexity of G — maxyecx(w, G + n.z) (for any fixed z), we
can swap the expectation and gradient (Bertsekas, 1973, Proposition 2.2)
and evaluate the gradient at G = G;_1 to obtain

V&Jt(Gt_l) =E,.p [argrr&ax(w, Gi_1 + 77t2>} . (8.14)
we

Taking a single random sample of argmax inside expectation is equivalent
to the decision rule of FTPL (Hannan, 1957; Kalai and Vempala, 2005); the

8.3 Gradient-Based Prediction Algorithm 243

GBPA on a stochastically smoothed potential can thus be seen as playing
the expected action of FTPL. Since the learner gets a linear reward in online
linear optimization, the regret of the GBPA on a stochastically smoothed
potential is equal to the expected regret of FTPL. For this reason, we will
use the terms FTPL and GBPA with stochastic smoothing interchangably.

8.3.3 Connection between FTPL and FTRL via Duality

We have been discussing a method of smoothing out an objective (potential)
function by taking the average value of the objective over a set of nearby
“perturbed” points. Another more direct method of smoothing the objec-
tive function is via a regularization penalty. We can define the regularized
potential as follows:

P(G) =R (G) = glg%ﬂw, G) — R(w)} (8.15)
where R : X — R is some strictly convex function. This technique has
been referred to as “inf-conv” smoothing of ® with R*. The connection be-
tween regularization and smoothing is further developed by Abernethy et al.
(2014), and the terminology draws from the work of Beck and Teboulle
(2012) among others. The class of FTRL algorithms can be viewed pre-
cisely as an instance of GBPA where the potential is chosen according to
Eqn. (8.15). This follows because of the following fact, which is a standard
result of Fenchel duality:

Vi) = arg;nax(:n,@) — f(2), (8.16)

under the condition that f is differentiable and strictly convex (Rockafellar,
1997). In other words, if we consider f(-) to be the regularizer for an FTRL
function, then solution to the FTRL objective corresponds directly with the
gradient of the potential function f*(-).

Now that we have see that FTRL and FTPL can be viewed as a certain
type of smoothing operation, a natural question one might ask is: to what
extent are stochastic smoothing and inf-conv smoothing related? That is,
can we view FTRL and FTPL as really two sides of the same coin? The
answer here is “partially yes” and “partially no”:

1. When X is 1-dimensional then (nearly) every instance of FTRL can be
seen as a special case of FTPL, and vice versa. In other words, stochastic
smoothing and inf-conv smoothing are effectively one and the same, and we
describe this equivalence in detail below.

244

Perturbation Techniques in Online Learning and Optimization

2. For problems of dimension larger than 1, every instance of FTPL can be
described as an instance of FTRL. More precisely, if we have a distribution
D,, which leads to a stochastically smoothed potential () = <T>(.;Dn),
then we can always write the gradient of ®(-) as the solution of an FTRL
optimization. That is,

Vo (G, D,) = argmax(z,0) — R(z) where R(z):= d*(z), (8.17)

zeX

and we recall that ®* denotes the Fenchel Conjugate. In other words, the
perturbation D induces an implicit regularizer defined as the cojugate of
EZW@ [maxgex(g, GH
3. In general, however, stochastic smoothing is not as general as inf-conv
smoothing. FTPL is in some sense less general than FTRL, as there are ex-
amples of regularizers that can not be “induced” via a specific perturbation.
One particular case is given by Hofbauer and Sandholm (2002).

We now given a brief description of the equivalence between stochastic
smoothing and inf-conv smoothing for the 1-dimensional case.

On the near-equivalence between FTRL and FTPL in one dimension.
Consider a one-dimensional online linear optimization prediction problem
where the player chooses an action w; from X = [0,1] and the adversary
chooses a reward g; from Y = [0, 1]. This can be interpreted as a two-expert
setting; the player’s action wy € X is the probability of following the first
expert and g is the net excess reward of the first expert over the second.
The baseline potential for this setting is ®(G) = max,,¢|o,1] WG

Let us consider an instance of FTPL with a continuous distribution D
whose cumulative density function (cdf) is F'p. Let ® be the smoothed

potential function (Equation 8.13) with distribution D. Its derivative is

®' (@) = Elargmax w(G + u)] = Plu > —G] (8.18)
weY
because the maximizer is unique with probability 1. Notice, crucially, that
the derivative @’ (G) is exactly the expected solution of our FTPL instance.
Moreover, by differentiating it again, we see that the second derivative of ®
at G is exactly the pdf of D evaluated at (—G).

We can now precisely define the mapping from FTPL to FTRL. Our
goal is to find a convex regularization function R such that P(u > —G) =
arg maxy,ex (WG — R(w)). Since this is a one-dimensional convex optimiza-
tion problem, we can differentiate for the solution. The characterization of

8.4 Generic Bounds

245

R is:
w
R(w) — R(0) = — Fplt(1—2)dz. (8.19)
0
Note that the cdf Fp(-) is indeed invertible since it is a strictly increasing
function.

The inverse mapping is just as straightforward. Given a regularization
function R well-defined over [0,1], we can always construct its Fenchel
conjugate R*(G) = sup,eyx(w,G) — R(w). The derivative of R* is an
increasing convex function, whose infimum is 0 at G = —oo and supremum
is 1 at G = 4+o00. Hence, R* defines a cdf, and an easy calculation shows
that this perturbation distribution exactly reproduces FTRL corresponding
to R.

8.4 Generic Bounds

In this section, we show how the general result in Corollary 8.3, com-
bined with stochastic smoothing results from the existing literature,
painlessly yield regret bounds for two generic settings: one in which the
learner/adversary sets are bounded in ¢; /¢~ norms and another in which
they are bounded in the standard Euclidean (i.e., £2) norm.

8.4.1 /{/¢y, Geometry

With slight abuse of notation, we will use ||X|| to denote sup,cx ||z| where
|| - || is @ norm and X is a set of vectors.

Theorem 8.6. Consider GBPA run with a potential ®(G) = :I;(G;Dn)

where D is the uniform distribution on the unit o ball. Then we have,

[[Xlloo V
5

Choosing n to optimize the bound gives Regret < ||X||so||Y[[1V NT.

1
Regret < %TIIDCHOOHHH? +7 (8.20)

Proof. The baseline potential function @ is ||X||oo-Lipschitz with respect to
| - 1. Also note that ||g:|l1 < [|Y|li- Now, by Corollary 8.3, it suffices to

prove that the stochastic smoothing of ® with the uniform distribution on
the unit ¢, ball is an n-smoothing with parameters

X||ocoN
(B, ot 1) (8.21)

246

Perturbation Techniques in Online Learning and Optimization

These smoothing parameters have been shown to hold by Duchi et al. (2012,
Lemma E.1). O

FTPL with perturbations drawn from the uniform distribution over the
hypercube was considered by Kalai and Vempala (2005). The above theorem
gives essentially the same result as their Theorem 1.1(a). The proof above
not only uses our general smoothing based analysis but also yields better
constants.

8.4.2 Euclidean Geometry

In this section, we will use a generic property of Gaussian smoothing to
derive a regret bound that holds for any arbitrary online linear optimization
problem.

Theorem 8.7. Consider GBPA run with a potential ®,(G) = ®(G; D)
where D is the uniform distribution on the unit €5 ball. Then we have,

1
Regret < %T\/NHDCIIQH’?JH% + 1l X]l2. (8.22)
If we choose D to be the standard multivariate Gaussian distribution, then
we have,
1
Regret < %THDCHQIIHII% + VN[(8.23)

In either case, optimizing over n we get Regret < ||X||2||Y|2N'/*V2T .

Proof. The baseline potential function ® is ||X||e-Lipschitz with respect to
|| - |l2. Also note that [|g¢||2 < [|Y]|2. Duchi et al. (2012, Lemma E.2) show

that the stochastic smoothing of ® with the uniform distribution on the
Euclidean unit ball is an 7-smoothing with parameters

(RN EITANTE (8:24)

Further, Duchi et al. (2012, Lemma E.3) shows that the stochastic smooth-
ing of ® with the standard Gaussian distribution is an 7-smoothing with
parameters

(12N, 12, - 1) (8.25)
The result now follows from Corollary 8.3. O

We are not aware of a previous result for FTPL of generality comparable
to Theorem 8.7 above. However, Rakhlin et al. (2012) prove a regret bound
for 4+/2v/T when X,Y are unit balls of the 5 norm. Their FTPL algorithm,
however, draws T — t samples from the uniform distribution over the unit

8.5 FEaxperts Setting 247

sphere. In contrast, we will show that, for this special case, a dimension
independent O(v/T) bound can be obtained via an FTPL algorithm using a
single Gaussian perturbation per time step (see Theorem 8.10 below).

8.5 Experts Setting

Now we apply the GBPA analysis framework to the classical online learning
problem of the hedge setting, or often referred to as prediction with expert
advice?. Here we assume a learner is presented with a set of fixed actions, and
on each round must (randomly) select one such action. Upon commiting to
her choice, the learner then receives a vector of gains (or losses), one for each
action, where the ith gain (loss) value is the reward (cost) for selecting action
1. The learner’s objective is to continually update the sampling distribution
over actions in order to accumulate an expected gain (loss) that is not much
worse than the gain (loss) of the optimal fixed action.

The important piece to note about this setting is that it may be cast as
an instance of an OLO problem. To see this, we set X = AN def {we RN :
>, wi = 1,w; > 0 Vi}, the N-dimensional probability simplex, and we set
Y ={gcRY:|glle <1}, aset of bounded gain vectors. We may define
the baseline potential function therefore as

®(G) = max(w, G) =

i=1,...

7Ei)’(N Gz = Gz*(G) (8.26)

where i*(G) := min{i : G; = max; G;} (We need the outer min{-} to define
i* in order to handle possible ties; in such cases we select the lowest index).
In our framework we have used language of maximizing gain, in contrast to
the more common theme of minimizing loss. However, the loss-only setting
can be easily obtained by simply changing the domain Y to contain only
vectors with negative-valued coordinates.

2. The use of the term “expert” is historical and derives from an early version of the
problem where one was given advice (a prediction) from a set of experts (Littlestone and
Warmuth, 1994), and the learner’s goal is to aggregate this advice. In the version we
discuss here, proposed by Freund (1997), a more appropriate intuition is to imagine the
task of choosing among a set of “actions” that each receive a “gain” or “loss” on every
round.

248

Perturbation Techniques in Online Learning and Optimization

8.5.1 The Exponential Weights Algorithm, and the Equivalence of
Entropy Regularization and Gumbel Perturbation

The most well-known and widely used algorithm in the experts setting is
the Exponential Weights Algorithm (EWA), often referred to as the Multi-
plicative Weights Algorithm and strongly related to the classical Weighted
Majority Algorithm (Littlestone and Warmuth, 1994). On round ¢, EWA
specifies a set of unnormalized weights based on the cumulative gains thus
far,

We; = exp(nGi_1,) t1=1,...,N, (8.27)

where n > 0 is a parameter. The learner’s distribution on this round is then
obtained by normalizing w;
'II) .
wyi = = i=1,...,N. (8.28)
Zj:l Wt j
More recent perspectives of EWA have relied on an alternative interpreta-
tion via an optimization problem. Indeed the weights obtained in Eqn. 8.28
can be equivalently obtained as follows,

wy = argmax{ nGi_1,w Zw, log wz} . (8.29)
wEAN

We have cast the exponential weights algorithm as an instance of FTRL
where the regularization function R corresponds to the negative entropy
function, R(w) := Y . w;logw;. Applying Lemma 8.2 one can show that
EWA obtains a regret of order /T log N.

A third interpretation of EWA is obtained via the notion of stochastic
smoothing (perturbations) using the Gumbel distribution:

p(z) = e~ (zre) is the PDF of the standard Gumbel; and
Pr(Z<z)=e ¢ is the CDF of the standard Gumbel.

The Gumbel distribution has several natural properties, including for exam-
ple that it is maz-stable: the maximum value of several Gumbel-distributed
random variables is itself distributed according to a Gumbel distribution?.
But another nice fact is that the distribution of the maximizer of N fixed
values perturbed with Gumbel noise leads to an exponentially-weighted dis-
tribution. Precisely, if we have a values vy, ...,vy, and we draw n IID sam-

3. Above we only defined the standard Gumbel, but in general the Gumbel has both a
scaling and shift parameter.

8.5 FEaxperts Setting

249
ples Z1, ..., Zy from the standard Gumbel, then a straightforward calculus
exercise gives that

exp(v;) .
Pr|v,+ 7, = max {v;+ Z;}| = i1=1,...,N8.30
' ' J':le{ ’ iz > j=1,...n xp(v;) 8.30)

What we have just arrived at is that EWA is indeed an instance of FTPL
with Gumbel-distributed noise. This was described by Adam Kalai in per-
sonal communication, and later Warmuth (2009) expanded it into a short
note available online. However, the result appears to be folklore in the area
of probabilistic choice models, and it is mentioned briefly by Hofbauer and
Sandholm (2002).

8.5.2 Experts Bounds via Laplacian, Gaussian, and Gumbel Smoothing

We will now apply our stochastic smoothing analysis to derive bounds on
a class of algorithms for the Experts Setting using three different perturba-
tions: the Exponential, Gaussian, and Gumbel. The latter noise distribution
generates an algorithm which is equivalent to EWA, as discussed above, but
we prove the same bound using new tools. Note, however that we use a
mean-zero Gumbel whereas the standard Gumbel has mean 1.

The key lemma for the GBPA analysis is Lemma 8.2, which decomposes
the regret into overestimation, underestimation, and divergence penalty. By
Lemma 8.4, the underestimation is less than or equal to 0 and the overesti-
mation penalty is upper-bounded by E_..p [maXi:L..., ~ zi]. This expectation
for commonly used distributions D is well-studied in extreme value theory.

In order to upper bound the divergence penalty, it is convenient to analyze
the Hessian matrix, which has a nice structure in the experts setting. We
will be especially interested in bounding the trace of this Hessian.

Lemma 8.8. Let ® be the baseline potential for the N -experts setting, and D
be a continuous distribution with o differentiable probability density function.
We will consider the potential &)(G) = ZIVD(G; Dyy). If for some constant 5 we
have a bound Tr(V2®(G)) < B/ for every G, then it follows that

D3(G +9,G) < Bllglize/n. (8.31)

Proof. The Hessian exists because p is differentiable (Equation 8.11). Let
H denote the Hessian matrix of the stochastic smoothing of @, i.e., H(-) =
V20 (- D,,). First we claim two properties on H:

1. Diagonal entries are non-negative and off diagonal entries are non-
positive.

2. Each row or column sums up to 0.

250

Perturbation Techniques in Online Learning and Optimization

All diagonal entries of H are non-negative because ® is convex. Note that
V;® is the probability that the i-th coordinate of G + z is the maximum
coordinate, and an increase in the j-th of G where j # i cannot increase
that probability; hence, the off-diagonal entries of H are non-positive. To
prove the second claim, note that the gradient VO is a probability vector,
whose coordinates always sum up to 1. Thus, each row (or each column)
must sum up to 0.

By Taylor’s theorem in the mean-value form, we have Dz(G + ¢,G) =
%gTVQZI;(é)g where G is some convex combination on G and G + ¢g. Now
we have

D3(G + 9,G) < 3[V2®(G)|oc1l9]%, (8.32)

where [|[M |1 = sup,o [|[Mvl|1/[|v]|ec. Finally note that, for any M,
[M|lscs1 < 32, ;[M; 4| We can now conclude the proof by noting that
the sum of absolute values of the entries of VzZI;(CNJ) is upper bounded by
twice its trace given the two properties of the Hessian above. O

The above result will be very convenient in proving bounds on the di-
vergence penalty associated with different noise distributions. In particu-
lar, assume we have a noise distribution with exponential form, then IID
sample z = (21,...,2y,) has density pu(z) o< [[, exp(—v(2;)). Now applying
Lemma 8.5 we have a nice expression for the diagonal Hessian values:

~ 1 Cl
V?z@ G;D = - E [VZ@ G+ nz)—rv(z]
(77) 77 (217---7271)"’/14 ()dZ’L ()
1 .. du(zi)]
= - E 1{i =" (G + nz . 8.33
N (21,00020) gt [{ (G nz)) dz; (8:33)

The above formula now gives us a natural bound on the trace of the Hessian
for the three distributions of interest.

» Laplace: For this distribution we have v(z) = |z|] = dl:liz) = sign(z),

where the sign function returns +1 if the argument is positive, —1 if the
argument is negative, and 0 otherwise. Then we have

~ 1 . % v(zi
Tr(V20(Q)) = - E [Efil 1{i =i*(G +nz) dd(zi)]
77 (217"'7271)Niu
1 L .
— E@ [Zi’il 1{i =" (G + nz)}&gn(zi)}

] A R

8.5 FEaxperts Setting

251
» Gumbel: Here, using zero-mean Gumbel, we have v(z) = z + 1 +
el = d':l—(zz) =1— e *71. Applying the same arguments we obtain
25 1 N . -k —z;—1
TH(V'B(G)) = | B[Sy 1i = i*(G + 7)) (1 - 7))
z
1 1
<-B[SN Wi=i(G+n)}] = -
z
= Gaussian: Here we have v(z) = 5 = dl:l(;) = z. Bounding the sum of

diagonal Hessian terms requires a slightly different trick:

TH(VH(G) = B [T, 1i = (G + n2)}
Ig‘,[mlaxzi] < 217(7)gN.

where the last inequality follows according to moment generating function

=

1
= Elar] <

arguments given below.

To obtain regret bounds, all that remains is a bound on the overestimation
penalty. As we showed in Lemma 8.4, the overestimation penalty is upper
bounded as nE,.p[®(z)] = nE[max; z;]. We can bound this quantity using
moment generating functions. Let s > 0 be some parameter and notice
sE[max z;] < log E[exp(smax z;)] < log ZE[exp(szi)] <log N + log m(£8.34)

? ? .
(2
where m(s) is the moment generating function* (mgf) of the distribution D

(or an upper bound thereof). The statement holds for any positive choice of
s in the domain of m(-), hence we have

log N +1
B, [®(2)] < inf 22N Tlogm(s) (8.35)
5>0 S
s Laplace: The mgf of the standard Laplace is m(s) = ﬁ Choosing s = %
gives us that E[max; z;] < 2log2N.
» Gumbel: The mgf of the mean-zero Gumbel is m(s) = I'(1 — s)e™*.

Choosing s = 1/2 gives that E[max; z;] < 2log2N since m(0.5) < 2
» Gaussian: The mgf of the standard Gaussian is m(s) = exp(2/2).
Choosing s = /2log N gives E[max; z;] < /2log N.

Theorem 8.9. Let ® be the baseline potential for the experts setting.
Suppose we GBPA run with ®,(-) = ®(-;D n) for all t where the mean-zero

4. The mgf of a distribution D is the function m(s) := Ex.o[exp(sX)].

252 Perturbation Techniques in Online Learning and Optimization

distribution D is such that E..p[®(2)] < « and VG, Tr(V2B(G)) < /1.

Then we have
T
Regret < na + 5— (8.36)
n
Choosing n to optimize the bound gives Regret < 2\/afT. In particular, for

Laplace, (mean-zero) Gumbel and Gaussian perturbations, the regret bound
becomes 24/2T 1og 2N, 2/2T log 2N and 2+/2T log N respectively.

Proof. Result follows by plugging in bounds into Lemma 8.2. Mean-zero
perturbations imply that the underestimation penalty is zero. The overes-
timation penalty is bounded by na and the divergence penalty is bounded
by BT/n because of Lemma 8.8 and the assumption that ||g¢|lcc < 1. Our
calculations above showed that for the Laplace, (mean-zero) Gumbel and
Gaussian perturbations, we have a = 2log2N, 2log2N and /2log N re-
spectively. Furthermore, we have 8 = 1, 1 and v/2log N respectively. O

8.6 Euclidean Balls Setting

The Euclidean balls setting is where X = Y = {z € RY : |z|2 < 1}.
The baseline potential function is ®(G) = maxyex(w, G) = ||G||2. We show
that the GBPA with Gaussian smoothing achieves a minimax optimal regret
(Abernethy et al., 2008) up to a constant factor.

Theorem 8.10. Let © be the baseline potential for the Euclidean balls
setting. The GBPA run with ®4(-) = ®(-;N(0,1),,) for all t has regret at

most

Regret < nrv/N + 3= Y, g3 (8:37)

If the algorithm selects n, = \/25:1 lgsl13/(2N) for all t, we have

Regret < /25", [lg:]13- (8.38)

If the algorithm selects n: adaptively according to 1 =
-1
\/(1 + 22:1 ”95”%))/1\7, we have

Regret < 24/1+ 3, [l9:13 (8.39)

Proof. The proof is mostly similar to that of Theorem 8.9. In order to
apply Lemma 8.2, we need to upper bound (i) the overestimation and

underestimation penalty, and (ii) the Bregman divergence.

8.6 Fuclidean Balls Setting 253

The Gaussian smoothing always overestimates a convex function, so it
suffices to bound the overestimation penalty. Furthermore, it suffices to
consider the fixed 7y case due to Lemma 8.1. The overestimation penalty
can be upper-bounded as follows:

O7(0) — (0) = E,uno.nllG + nrull2 — |Gl2

< By oo, lullz < 10y /Eyono,n lull3 = nrV'N.

The first inequality is from the triangle inequality, and the second inequality
is from the concavity of the square root.

For the divergence penalty, note that the wupper bound on
max,:|gfl,=1 gT(V2<f>)g is exactly the maximum eigenvalue of the Hes-
sian, which we bound in Lemma 8.11. The final step is to apply Lemma
8.1.]

Lemma 8.11. Let ® be the baseline potential for the Fuclidean balls setting.
Then, for all G € RN and n > 0, the Hessian matriz of the Gaussian
smoothed potential satisfies

V28 (G5 N(0,1),) = ﬁf. (8.40)

Proof. The Hessian of the Euclidean norm V2®(G) = |G| ;T — ||G|l5*GGT
diverges near G = 0. Expectedly, the maximum curvature is at origin even
after Gaussian smoothing (See Appendix 8.8.1). So, it suffices to prove

V28(0) = Eyano.n [l (wa? — D] <4/ %1, (8.41)

where the Hessian expression is from Lemma 8.5.
By symmetry, all off-diagonal elements of the Hessian are 0. Let Y = ||u]|?,
which is Chi-squared with N degrees of freedom. So,

Tr(E[|[ull2 (wu” — 1)) = E[Tr(|ul2(uu” = 1)] = Ef|Jul3 — Nllull2]
=E[Y:] — NE[Y:]

Using the Chi-squared moment formula (Simon, 2002, p. 13):

2N+ k
E[Y*"] = F((g)) (8.42)
the above becomes:
NG I'(3) I'3)

25/ Perturbation Techniques in Online Learning and Optimization

From the log-convexity of the Gamma function,

logT" (% + %) < % (logT (%) + logI’ (% +1)) =logT (%) \/g (8.44)

Exponentiating both sides, we obtain

r3+3)<r3)ys (8:45)

which we apply to Equation 8.43 and get Tr(VZ;I;(O)) < +v/N. To complete
the proof, note that by symmetry, each entry must have the same expected
value, and hence it is bounded by /1/N. O

8.7 The Multi-Armed Bandit Setting

Let us introduce the adversarial multi-armed bandit (MAB) setting. The
MAB problem is a variation of the loss-only experts setting (Section 8.5)
with X = AN and Y = [~1,0]". The two main differences are that (a) that
learner is required to playing randomly, sampling an action i; € {1,..., N}
according to w; and then suffering loss/gain g;;,, and (b) the learner then
observes only the scalar value gy ;,, she receives no information regarding the
losses/gains for the unplayed actions, i.e. the values g;; for j # i; remain
unobserved. Note that, while g; is assumed to take only negative values, we
will continue to refer to these quantities as gains.

This limited-information feedback makes the bandit problem much more
challenging than the full-information setting we studied in Section 8.5, where
the learner was given the entire g; on each round. In the adversarial MAB
problem the learner is indeed required to play randomly; it can be shown that
a deterministic strategy will lead to linear regret in the worst case. Hence
our focus will be on the expected regret over the learner’s randomization,
and we will assume that the sequence of gains are fixed in advance and
thus non-random. While the present book chapter will explore this area,
other work has considered the problem of obtaining high-probability bounds
(Auer et al., 2003), as well as bounds that are robust to adaptive adversaries
(Abernethy and Rakhlin, 2009).

The MAB framework is not only mathematically elegant, but useful for
a wide range of applications including medical experiment design (Gittins,
1996), automated poker playing strategies (Van den Broeck et al., 2009),
and hyperparameter tuning (Pacula et al., 2012). For the survey of work on
MAB, see Bubeck and Cesa-Bianchi (2012).

8.7 The Multi-Armed Bandit Setting 255

8.7.1 Gradient-Based Prediction Algorithms for the Multi-Armed
Bandit

We give a generic template for constructing MAB strategies in Algorithm 2,
and we emphasize that this template can be viewed as a bandit reduction to
the (full information) GBPA framework. Randomization is used for making
decisions and for estimating the losses via importance sampling.

Algorithm 2: GBPA Template for Multi-Armed Bandits.

Require: fixed convex potential d: RN - R, with Vo C interior(A™N).
Require: Adversary selects (hidden) seq. of loss vectors g1, ...,gr € [—1, O]N
Initialize: Gy = 0
fort=1to T do
Sampling: Learner chooses i; according to dist. p(ét_l) = V%(ét_l)
Cost: Learner “gains” g:;,, and observes this value
Estimation: Learner produces estimate of gain vector, §: :=

Update: G; = Gi—1 + §i

9t iy ‘
A 1
piy (Ge—1) 't

Nearly all proposed methods have relied on this particular algorithmic
blueprint. For example, the EXP3 algorithm of Auer et al. (2003) proposed
a more advanced version of the Exponential Weights Algorithm (discussed
in Section 8.5) to set the sampling distribution p(Gy_1), where the only
real modification is to include a small probability of uniformly sampling the
arms.® But EXP3 more or less fits the template we propose in Algorithm 2
when we select 5() = E, < GumbelP(G+nz). We elaborated on the connection
between EWA and Gumbel perturbations in Section 8.5.

Lemma 8.12. The baseline potential for this setting is ®(G) = max; G; so
that we can write the expected regret of GBPA(®) as

ERegrety = ®(Gr) — B[(V(Gi1), 91)]- (8.46)

5. One of the conclusions we may draw from this section is that the uniform sampling
of EXP3 is not necessary when we are only interested in expected-regret bounds and we
focus on negative gains (that is, where §; € [—1,0]"). It has been suggested that the
uniform sampling may be necessary in the case of positive gains, although this point has
not been resolved to the authors’ knowledge.

256

Perturbation Techniques in Online Learning and Optimization
Then, the expected regret of GBPA(&D) can be written as:

T
ERegrety <Ei,,. i, [O(Gr) — (Gr) + > Ei[Dg(Gr, Gi-1)|Gi1]
t=1

underestimation penalty divergence penalty
+ B(0) — ®(0) (8.47)
N————
overestimation penalty

where the expectations are over the sampling of ix,t =1,...,T.
Proof. Let ® be a valid convex function for GBPA. Consider GBPA(®)
run on the loss sequence g¢i, ..., gr. The algorithm produces a sequence of
estimated losses g1, ..., gr. Now consider GBPA-FI(®), which is GBPA(®)
run with the full information on the deterministic loss sequence gi,...,Jr

(there is no estimation step, and the learner updates Gy directly). The regret
of this run can be written as

®(Gr) — ZtT:1<V€)(Gt—1),§t> (8.48)
and ®(Gr) < E[®(G7)] by the convexity of . O

8.7.2 Implementation of Perturbation Methods

It is clear that V@ is in the probability simplex, and note that

L
ac, = EZl,...,ZN]-{Gi + Z; > Gj + Zj,Vj #* Z}

=Eg . [P21Zi > Gj- — Gi]| =Eg [1 - F(Gj- — Gi)] (8.49)

where C;’j* = max;»; Gj+Z; and F is the cdf of Z;. The unbounded support
condition guarantees that this partial derivative is non-zero for all i given
any G. So, E)(G; D) satisfies the requirements of Algorithm 2.

The sampling step of the bandit GBPA (Framework 2) with a stochas-
tically smoothed function (Equation 8.13) can be implemented efficiently:
we need not evaluate the full expectation (Equation 8.14) and instead rely
on but a single random sample. On the other hand, the estimation step is
challenging since generally there is no closed-form expression® for vVo.

To address this issue, Neu and Barték (2013) proposed Geometric Re-
sampling (GR). GR uses an iterative resampling process to estimate vo.

6. A case where we find a natural closed form solution occurs when the perturbation is
chosen to be Gumbel, as we know this corresponds to the EXP3 algorithm which relies
on exponential weighting of G.

8.7 The Multi-Armed Bandit Setting 257

They showed that if we stop after M iterations, the extra regret due to the
estimation bias is at most ‘27—]3; (additive term). That is, all our GBPA regret
bounds in this section hold for the corresponding FTPL algorithm with an
extra additive i\% term.. This term, however, does not affect the asymptotic
regret rate as long as M = v/NT, because the lower bound for any algorithm
is of the order v NT.

8.7.3 Differential Consistency

Recall that for the full information experts setting, if we have a uniform
bound on the trace of VZCTJ, then we immediately have a finite regret bound.
In the bandit setting, however, the regret (Lemma 8.12) involves terms of
the form Dé(ét_l + ¢, Gt—l); where the incremental quantity gy can scale
as large as the inverse of the smallest probability of p(Gy—1). These inverse
probabilities are essentially unavoidable, because unbiased estimates of a
quantity that is observed with only probability p must necessarily involve
fluctuations that scale as O(1/p).

Therefore, we need a stronger notion of smoothness that counters the 1/p

factor in [|g;|. We propose the following definition which bounds V2@ in
correspondence with V®.

Definition 8.3 (Differential Consistency). For constant C' > 0, we say that
a convex function f(-) is C-differentially-consistent if for all G € (—oo, 0]V,

Vif(G) < CVif(G). (8.50)

In other words, the rate in which we decrease p; should approach 0 as
p; approaches 0. This guarantees that the algorithm reduces the rate of
exploration slowly enough. We later show that smoothings obtaining using
perturbations with bounded hazard rate satisfy the differential consistency
property introduced above (see Lemma 8.15).

We now prove a generic bound that we will use in the following two
sections, in order to derive regret guarantees.

Theorem 8.13. Suppose o is C-differentially-consistent for constant C >
0. Then divergence penalty at time t in Lemma 8.12 can be upper bounded
as:
A oa A NC

E;, [Dg(Gt, Gi-1)|Gi-1] < — (8.51)
Proof. For the sake of clarity, we drop the t subscripts on G and g; we use G
to denote the cumulative estimate G;_1, § to denote the marginal estimate
gt = G+ — Gi_1, and g to denote the true loss g;.

258 Perturbation Techniques in Online Learning and Optimization

Note that by definition of Algorithm 2, § is a sparse vector with one non-
zero (and negative) coordinate with value g;, = ¢14,/Vi, ®(G). Plus, 7 is
conditionally independent given GG. Now we can expand the expectation as

Elt[D(‘I;(G—i_g? ZPZt_Z <G+g7)‘GAaZt:Z]

:ZVZ@ E[Dz(G +4,G)|G iy =i]. (8.52)

For each term in the sum on the right hand side, the conditional expectation
given G is now,

A A A R A gi . A 91'2 230 7
(G +3,0)|Ciy=i] = Dy (G+vi$(é) 1,G> 72(V¢$(@))2v"©u(8'53)

where J; is some vector on the line segment joining G and G + v, q) (G)

Using differential consistency, we have V% @(J) < CV;®(J;). Note that J;
agrees with G in all coordinates except coordinate i where it is at most G;.
Note that this conclusion depends crucially on the loss-only assumption that
gi < 0. Convexity of ® guarantees that V; is a non-decreasing function of
coordinate i. Therefore, V;®(.J;) < V;®(G). This means that

E[Dz(G + §,G)|G,ir = i] < Cgilvici(é) < %, (8.54)
2(Vi®(G))? 2V2(G)
since g? < 1. Plugging this into (8.52), we get
E;,[D3(G+§.G)|G) <Y Vi 0(G) ¢ __NC g4 (8.55)
' , 2V, ®(G) 2

8.7.4 Hazard Rate Analysis

Despite the fact that perturbation-based multi-armed bandit algorithms
provide a natural randomized decision strategy, they have seen little ap-
plications mostly because they are hard to analyze. But one should expect
general results to be within reach: as we mentioned above, the EXP3 al-
gorithm can be viewed through the lens of perturbations, where the noise
is distributed according to the Gumbel distribution. Indeed, an early result
of Kujala and Elomaa (2005) showed that a near-optimal MAB strategy
comes about through the use of exponentially-distributed noise, and the
same perturbation strategy has more recently been utilized in the work of
Neu and Bartdék (2013) and Kocdk et al. (2014). However, a more general
understanding of perturbation methods has remained elusive. For example,
would Gaussian noise be sufficient for a guarantee? What about, say, the
Weibull distribution?

8.7 The Multi-Armed Bandit Setting 259

In this section, we show that the performance of the GBPA(®(G; D)) can
be characterized by the hazard function of the smoothing distribution D. The
hazard rate is a standard tool in survival analysis to describe failures due to
aging; for example, an increasing hazard rate models units that deteriorate
with age while a decreasing hazard rate models units that improve with
age (a counter intuitive but not illogical possibility). To the best of our
knowledge, the connection between hazard rates and design of adversarial
bandit algorithms has not been made before.

Definition 8.4 (Hazard rate function). Assume we are given a distribution
D whose PDF is given by f and whose CDF is given by F'. The hazard rate
function of D is

hp(z) = %

We will write sup hp to mean the supremal value obtained by hp on its

(8.56)

domain; we drop the subscript D when it is clear.

For the rest of the section, we assume that F(z) < 1 for all finite x, so
that hp is well-defined everywhere. This assumption is for the clarity of
presentation but is not strictly necessary.

Theorem 8.14. The regret of the GBPA for multi-armed bandits (Algo-
rithm 2) with ®(G) =Ey, . z.~pmax;{G; +nZ;} is at most:

N sup hDT

nEz,. . .Z,~D [max Zz} - (8.57)
v Ui
———
overestimation penalty divergence penalty

Proof. Due to the convexity of ®, the underestimation penalty is non-
positive. The overestimation penalty is clearly at most Ez, 7z ~p[max; Z;],
and Lemma 8.15 proves the N(suphp) upper bound on the divergence
penalty.

It remains to prove the tuning parameter 7. Suppose we scale the pertur-
bation Z by n > 0, i.e., we add nZ; to each coordinate. It is easy to see that
Elmax;—1,.,1nX;] = nE[max;—1__, X;]. For the divergence penalty, let F},
be the CDF of the scaled random variable. Observe that F,(t) = F'(t/n) and
thus f,(t) = % (t/n). Hence, the hazard rate scales by 1/n, which completes
the proof. O

Lemma 8.15. Consider implementing GBPA with potential function
®(G) =By, ... 7, ~pmax{G; +1nZ;}. (8.58)
7

The divergence penalty on each round is at most N(sup hp).

260 Perturbation Techniques in Online Learning and Optimization

Distribution ‘ sup,, ho (z) ‘ E[maxY , Z;] ‘ Parameters

Gumbel(p=1,6=1) | lasz — 0 log N + 7o N/A

Frechet (a > 1) at most 2a | NY/°T(1 —1/a) a=log N

WeibullA=1,k<1) | katz=0 | O((1)!(log N)*) k=1

Pareto(zm = 1, @) aatz=0 aNYe/(a—1) a=log N

Gamma(a > 1,5) Basz — 00 | logN+(a—1)loglogN— | B=a=1
logT'(a) + 8™ y0

Table 8.1: Distributions that give O(v/TN log N) regret FTPL algorithm. The
parameterization follows Wikipedia pages for easy lookup. We denote the Euler
constant (& 0.58) by ~o. Please see Abernethy et al. (2015) for a full description.

Proof. Recall the gradient expression in Equation 8.49. We upper bound
the i-th diagonal entry of the Hessian, as follows. First, let where G+ =
max;4;{G; + Z;} which is a random variable independent of Z;. Now,

Vie(G) = aaGZEG‘j* [1—F(Gjr — Gi)] = Eq. ;Gi(l — F(Gjr — Gy))
=Eg . f(Gj = Gi)
=Eg . MG — Gi)(1 = F(Gj- - Gy))] (8.59)
< (suph)Eg . [1 — F(Gj- — G)]
= (sup h)VZ@(G).

We have just established that d is differentially consistent with parameter
C = sup h. We apply Theorem 8.13 and the proof is complete. O

Corollary 8.16. Algorithm 2 run with ® that is obtained by smoothing ®
using any of the distributions in Table 8.1 (restricted to a certain range of
parameters), combined with Geometric Resampling with M =/ NT, has an

expected regret of order O(v/TN log N).

Table 8.1 provides the two terms we need to bound. More details on these
distributions and their relation to stochastic smoothing can be found in
Abernethy et al. (2015).

Acknowledgements

We would like to thank Elad Hazan and Gergely Neu for many helpful and
insightful conversations on this work. The research was supported by NSF
CAREER Awards 11S-1453304 and I11S-1452099, as well as NSF grants I1IS-
1421391 and IIS-1319810.

8.7 The Multi-Armed Bandit Setting 261

Appendix: Detailed Proofs
8.8.1 Proof That the Origin Is the Worst Case (Lemma 8.11)

Proof. Let ®(G) = ||G||2 and n be a positive number. By continuity of
eigenvectors, it suffices to show that the maximum eigenvalue of the Hessian
matrix of the Gaussian smoothed potential ®(G;n,N(0, I)) is decreasing in

|G|| for |G| > 0.
By Lemma 8.5, the gradient can be written as follows:
1
V(G;n,N(0,1)) = w0 [ul| G+ ull] (8.60)

Let u; be the i-th coordinate of the vector u. Since the standard normal
distribution is spherically symmetric, we can rotate the random variable u
such that its first coordinate u; is along the direction of G. After rotation,
the gradient can be written as

N

1

5Eu~N(0,I) uy | (|G + nur)? + E n?ug
k=2

which is clearly independent of the coordinates of G. The pdf of standard
Gaussian distribution has the same value at (uq,us,...,u,) and its sign-
flipped pair (uy, —ua, ..., —u,). Hence, in expectation, the two vectors cancel
out every coordinate but the first, which is along the direction of G.
Therefore, there exists a function « such that E, n(o,n[ullG + nul] =

a(|GI)G.

Now, we will show that « is decreasing in ||G||. Due to symmetry, it suffices
to consider G = tey for t € RT, without loss of generality. For any ¢ > 0,

a(t) = Efury/(t 4+ nur)? +u2,)/t

= Ey,._ [Eu, [u1/ (t + nu1)? + b2|urest = b))/t
= Eup [Eacyun [V@) + 5 = /(E = @ + B trest = b/t

Let g(t) = (\/(t +a)2+B—/(t—a)?+ B) /t. Take the first derivative
with respect to t, and we have:

, 1 t(t — a)
t)= = t—a2+b2—— V(t+ a)? +b2+—
g0 =g | V- (t+a) + b2 (t+a)?+ b2
1 P4 —at APtV tat
ViE—a)2+b2 /(t+a)?+b?

262

Perturbation Techniques in Online Learning and Optimization

((a2+b2)—at)2((t+a)2+b2) —((a2+b2)—|—at)2((t—a)2+b2) — a3 < 0

because t,n,u’, B are all positive. So, g(t) < 0, which proves that « is
decreasing in G. N
The final step is to write the gradient as V(®;7,N(0,1))(G) = a(||G|)G
and differentiate it:
_ oGl

V2, (G) = HTHGGT + (|G (8.61)

The Hessian has two distinct eigenvalues o(||G||) and o(||G||)+<'(||G|) |G|,
which correspond to the eigenspace orthogonal to G and parallel to G,
respectively. Since ' is negative, « is always the maximum eigenvalue and
it decreases in ||G]||. O

8.9 References

J. Abernethy and A. Rakhlin. Beating the Adaptive Bandit with High Probability.
In Proceedings of Conference on Learning Theory (COLT), 2009.

J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal Stragies and
Minimax Lower Bounds for Online Convex Games. In Proceedings of Conference
on Learning Theory (COLT), 2008.

J. Abernethy, Y. Chen, and J. W. Vaughan. Efficient Market Making via Convex
Optimization, and a Connection to Online Learning. ACM Transactions on
Economics and Computation, 1(2):12, 2013.

J. Abernethy, C. Lee, A. Sinha, and A. Tewari. Online Linear Optimization via
Smoothing. In Proceedings of Conference on Learning Theory (COLT), 2014.

J. Abernethy, C. Lee, and A. Tewari. Fighting bandits with a new kind of
smoothness. In Advances in Neural Information Processing Systems 28, 2015.
to appear.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The Nonstochastic
Multiarmed Bandit Problem. SIAM Journal of Computuataion, 32(1):48-77,
2003. ISSN 0097-5397.

A. Beck and M. Teboulle. Smoothing and First Order Methods: A Unified Frame-
work. STAM Journal on Optimization, 22(2):557-580, 2012.

D. P. Bertsekas. Stochastic optimization problems with nondifferentiable cost
functionals. Journal of Optimization Theory and Applications, 12(2):218-231,
1973. ISSN 0022-3239.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006. ISBN 978-0-521-84108-5.

L. Devroye, G. Lugosi, and G. Neu. Prediction by Random-Walk Perturbation. In
Proceedings of Conference on Learning Theory (COLT), 2013.

8.9 References

263

J. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized Smoothing for
Stochastic Optimization. STAM Journal on Optimization, 22(2):674-701, 2012.
doi: 10.1137,/110831659.

Y. Freund. A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting. Journal of Computer and System Sciences, 55(1):119 —
139, 1997. ISSN 0022-0000. doi: http://dx.doi.org/10.1006/jcss.1997.1504.

J. Gittins. Quantitative methods in the planning of pharmaceutical research. Drug
Information Journal, 30(2):479-487, 1996.

P. Glasserman. Gradient Estimation Via Perturbation Analysis. Kluwer interna-
tional series in engineering and computer science: Discrete event dynamic sys-
tems. Springer, 1991. ISBN 9780792390954.

J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the
Theory of Games, 3:97-139, 1957.

J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious
play. Econometrica, 70(6):2265-2294, 2002.

A. T. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291-307, 2005.

T. Kocdk, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Proceedings of Neural
Information Processing Systems (NIPS), pages 613-621. Curran Associates, Inc.,
2014.

J. Kujala and T. Elomaa. On following the perturbed leader in the bandit setting.
In Algorithmic Learning Theory, pages 371-385. Springer, 2005.

N. Littlestone and M. K. Warmuth. The Weighted Majority Algorithm. Information
and Computation, 108(2):212-261, 1994.

H. B. McMahan. Follow-the-Regularized-Leader and Mirror Descent: Equivalence
Theorems and L1 Regularization. In AISTATS, pages 525-533, 2011.

1. S. Molchanov. Theory of random sets. Probability and its applications. Springer,
New York, 2005. ISBN 1-85233-892-X.

Y. Nesterov. Random Gradient-Free Minimization of Convex Functions. ECORFE
Discusston Paper, 2011.

G. Neu and G. Barték. An efficient algorithm for learning with semi-bandit
feedback. In Algorithmic Learning Theory, pages 234-248. Springer, 2013.

M. Pacula, J. Ansel, S. Amarasinghe, and U.-M. OReilly. Hyperparameter tuning
in bandit-based adaptive operator selection. In Applications of Evolutionary
Computation, pages 73-82. Springer, 2012.

S. Rakhlin, O. Shamir, and K. Sridharan. Relax and randomize: From value to

algorithms. In Advances in Neural Information Processing Systems, pages 2141
2149, 2012.

R. Rockafellar. Convex Analysis. Convex Analysis. Princeton University Press,
1997. ISBN 9780691015866.

S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations
and Trends in Machine Learning, 4(2):107-194, feb 2012. ISSN 1935-8237.

M. K. Simon. Probability distributions involving Gaussian random variables: A
handbook for engineers and scientists. Springer Science & Business Media, 2002.

264

Perturbation Techniques in Online Learning and Optimization

N. Srebro, K. Sridharan, and A. Tewari. On the Universality of Online Mirror
Descent. In Proceedings of Neural Information Processing Systems (NIPS), pages
2645-2653, 2011.

G. Van den Broeck, K. Driessens, and J. Ramon. Monte-Carlo tree search in poker
using expected reward distributions. In Advances in Machine Learning, pages
367-381. Springer, 2009.

T. van Erven, W. Kotlowski, and M. K. Warmuth. Follow the Leader with Dropout
Perturbations. 2014.

M. Warmuth. A perturbation that makes “Follow the leader” equivalent to
“Randomized Weighted Majority”. http://classes.soe.ucsc.edu/cmps290c/
Spring09/lect/10/wmkalai-rewrite.pdf, 2009. Accessed: March 19, 2016.

F. Yousefian, A. Nedi¢, and U. V. Shanbhag. Convex nondifferentiable stochas-

tic optimization: A local randomized smoothing technique. In Proceedings of
American Control Conference (ACC), 2010, pages 4875-4880, June 2010.

9 Probabilistic Inference by Hashing and
Optimization

Stefano Ermon ermon@cs.stanford.edu
Stanford University
Stanford, CA, USA

Probabilistic inference is one of the central problems of statistical machine
learning. To date, only a handful of distinct methods have been developed,
most notably Monte Carlo sampling, decomposition, and variational meth-
ods. In this chapter, a different approach based on random projections and
optimization is introduced. This new approach provides provable guarantees
on the accuracy, can leverage modern optimization technology and outper-
forms traditional methods in a range of domains, in particular those involv-
ing combinations of probabilistic and deterministic dependencies among the
variables.

Keywords: probabilistic inference; universal hashing; optimization

9.1 Introduction

Many problems in machine learning and statistics involve the computation
of high-dimensional integrals, where one has to consider a large number
of possible scenarios (or states of the world), and weight them by their
probability. For example, this computation is needed to evaluate (posterior)
probabilities, average over ensembles of models, and more generally to com-
pute expectations. Computing expectations with respect to high dimensional
probability distributions is known to be intractable in the worst-case (Roth,
1996), and is a key computational challenge in computer science (Dyer et al.,
1991; Simonovits, 2003; Cai and Chen, 2010). Intuitively, the difficulty arises

266

Probabilistic Inference by Hashing and Optimization

because the number of possible states scales exponentially with the number
of variables, a phenomenon traditionally known as the curse of dimension-
ality (Bellman, 1961).

In this chapter, we focus on discrete probability distributions and revisit
the problem of approximately computing expectations. This problem en-
compasses several important probabilistic inference tasks, such as comput-
ing marginal probabilities or normalization constants in undirected graph-
ical models, which are in turn cornerstones for parameter and structure
learning (Wainwright and Jordan, 2008; Koller and Friedman, 2009). Stan-
dard approaches in this context are Monte Carlo sampling methods (An-
drieu et al., 2003; Jerrum and Sinclair, 1997; Madras, 2002) and variational
techniques (Wainwright and Jordan, 2008). Sampling techniques approxi-
mate complex distributions using a small number of representative states,
while variational methods approximate complex models using families of
tractable distributions (Jordan et al., 1999; Wainwright and Jordan, 2008).
Monte Carlo techniques, invented many decades ago (1950s), are still the
most widely used, and are the workhorse of statistical inference. While these
techniques have been successfully applied to a wide range of domains, they
typically do not provide tight guarantees on the accuracy of the results.

The key idea behind Markov Chain Monte Carlo (MCMC) is that one can
answer queries about complex statistical models by drawing a relatively
small set of samples (typical scenarios) from the underlying probability
distribution and calculate statistics of interest by averaging over the samples.
The key difficulty is that to draw proper samples, one needs to set up a
Markov Chain over the entire state space which has to reach an equilibrium
distribution. For many statistical models of interest, reaching the equilibrium
distribution will require exponential time Madras (2002). In practice, the
approach will therefore only give approximate answers. Unfortunately, there
is generally little or no information on the quality of the approximation. In
fact, the Markov Chain may completely miss important parts of the state
space because the chain gets trapped in less relevant areas of the state space.

In this chapter, we review a new family of approximate inference al-
gorithms based on randomized hashing and modern optimization tech-
niques (Gomes et al., 2006a; Chakraborty et al., 2013b; Ermon et al., 2013c;
Achlioptas and Jiang, 2015). These algorithms are a promising alternative to
variational and sampling methods and yield with high probability provably
accurate results assuming access to an optimization oracle. Specifically, these
randomized schemes can compute partition functions or marginal probabil-
ities providing an approximately correct answer (within a factor of 1 + € of
the true value for any desired € > 0) with high probability (at least 1 — ¢ for
any desired 6 > 0).

9.1 Introduction

267

With this new approach, statistics of interest are also computed by con-
sidering only a small set of representative states (samples) from the model.
However, these samples are not drawn at random from the underlying prob-
ability distribution using a Markov Chain, rather they are very particular
states that can be discovered solving a constrained optimization problem.
More specifically, these special states are obtained by randomly project-
ing the original high-dimensional space to a lower-dimensional one (using
universal hash functions) and then using optimization to look for extreme,
high-weight states (configurations or states that are the most likely) in the
projected subspace. Quite surprisingly, it is possible to show that a small
collection of such extreme states is representative of the overall probabil-
ity distribution and can be used to estimate normalization constants and
marginal probabilities for the original statistical model with provable accu-
racy guarantees. Because current optimization tools can handle large prob-
lems, often with a million or more variables, it is possible to quickly “hunt
down” these special states and answer queries much more accurately than
with other methods (Ermon et al., 2013c).

From a computational complexity perspective, the inference problems we
consider are complete for the #P complexity class (Valiant, 1979), a set of
problems encapsulating the entire Polynomial Hierarchy and believed to be
significantly harder than NP. The key idea behind the techniques we will
describe is to reduce a #P inference problem to a small number (quasi-
polynomial in the number of variables) of instances of a NP-equivalent!
combinatorial optimization problem defined on the same space and sub-
ject to randomly generated parity constraints. The rationale behind this
approach is that although combinatorial optimization is intractable in the
worst case, it has witnessed great success in the past 50 years in fields such as
Mixed Integer Programming (MIP) and propositional Satisfiability Testing
(SAT). Problems such as computing a Maximum a Posteriori (MAP) assign-
ment, although NP-hard, can in practice often be approximated or solved
exactly fairly efficiently (Park, 2002; Ravikumar and Lafferty, 2006; Riedel,
2008; Sontag et al., 2008). In fact, modern solvers can exploit structure in
real-world problems and prune large portions of the search space, often dra-
matically reducing the runtime. In contrast, in a #P counting problem such
as computing a marginal probability, one may need to consider contributions
of an exponentially large number of items.

We begin with a general formulation of the inference problems we con-
sider, and discuss two important special cases, namely model counting and

1. As hard as the hardest problem in NP, but not harder.

268 Probabilistic Inference by Hashing and Optimization

the computation of the partition function of undirected graphical models.
We introduce a new class of probabilistic inference methods based on uni-
versal hashing and optimization, and discuss their formal properties. We
then highlight some interesting connections with error correcting codes and
decoding problems from information theory, and finally we conclude with
some open research questions. This chapter is based on and reviews work
that previously appeared in (Ermon et al., 2013c,b, 2014; Zhao et al., 2016).

9.2 Problem Statement and Assumptions

We follow the setup of (Ermon et al., 2013c). Let X be a (large) but finite
set, e.g., the set of all possible assignments to the variables in a model.
Let w : ¥ — RT be a non-negative function that assigns a weight to each
element of . We wish to (approximately) compute the total weight of the
set, defined as the following discrete integral or “partition function”

W = Z w(o) (9.1)
oeEY
We assume w is given as input and that it can be compactly represented
and stored, for instance in a factored form as the product of conditional
probabilities tables.
Assumption: We assume that we have access to an optimization oracle

that can solve the following constrained optimization problem

max w(0)1{e}(o) (9:2)
where 17y : X — {0,1} is an indicator function for a compactly represented
subset € C 3, i.e., 1yey(0) = 1 if o € € and 0 otherwise. € might be com-
pactly specified using a small number of constraints. For concreteness, we
discuss our setup and assumptions in the context of constraint satisfaction
problems and probabilistic graphical models. We shall discuss the applica-
tion of our method in two specific contexts:

9.2.1 Counting Satisfying Assignments

Let V be a set of 0/1 (Boolean) variables, where |V| = n, and let ¥ = {0, 1}"
be the set of all possible assignments to these variables. The weight function
w is defined using a logical formula F' in clausal normal form. A formula F
is said to be in clausal normal form (CNF) form if it is a logical conjunction
of a set of clauses C1, -+ ,Cpy. A clause C is a logical disjunction of a set of
(possibly negated) variables, such as for example (z1V —x2V x3). A variable

9.2 Problem Statement and Assumptions 269

assignment o € ¥ can be seen as a mapping that assigns a value in {0,1}
to each variable in V' . We say that o satises a clause C; if at least one
literal (a variable, possibly negated) of clause C; takes value 1. For example,
(r1 = 0,29 = 0,23 = 0) satisfies (x1 V —x2 V x3). We define the weight w(o)
to be 1 if all the clauses C1,--- ,C,, are satisfied by o, and 0 otherwise.

Satisfiability Testing (SAT) is the problem of deciding if there exists a
variable assignment that satisfies all the clauses C1,--- , C;,. Equivalently,
it is the problem of deciding if there exists at least one variable assignment
o with weight 1, i.e., such that F' evaluates to TRUE. This is the canonical
NP-complete problem (Garey and Johnson, 2002). While SAT is believed
to be intractable in the worst-case, SAT solvers have shown great success in
the past 20 years, and can routinely handle large problems with hundreds of
thousands of variables arising in a wide range of application domains (Biere
et al., 2009; Vardi, 2014).

Computing the total weight W as in (9.1), which is the total number
of satisfying assignments, is known as #-SAT and is the canonical #-P
complete problem (Valiant, 1979). The problem of counting the number of
solutions of a constraint satisfaction problem is clearly more general and
believed to be harder than the problem of deciding if at least one solution
exists.

In the context of constraint satisfaction problems, our main assumption
is that we can check if there exists a satisfying assignment in a compactly
represented subset C C X. Note that if € can be represented compactly using
a set of constraints (clauses), then queries like (9.2) are in NP and can be
answered by invoking a SAT solver. In particular, it is sufficient to consider
the conjunction of the original formula F' and the constraints defining C as
input for the SAT solver.

9.2.2 Inference in Graphical Models

We now consider the strictly more general case of discrete probabilistic
graphical models. Given a graphical model, we let ¥ = X be the set of
all possible configurations (variable assignments). Define a weight function
w : X — RT that assigns to each configuration a score proportional to its
probability: w(z) = [[,cg Ya({T}a). Z may then be rewritten as

7= w() =3] val{z}a) (93)
zeX zeX acd

Computing Z is typically intractable because it involves a sum over an
exponential number of configurations, and is often the most challenging
inference task for many families of graphical models. Computing Z is needed

270

Probabilistic Inference by Hashing and Optimization

for many inference and learning tasks, such as evaluating the likelihood of
data for a given model, computing marginal probabilities, and parameter
estimation (Wainwright and Jordan, 2008).

In the context of graphical models inference, we assume access to an
optimization oracle that can answer Maximum a Posteriori (MAP) queries,
namely, solve the following constrained optimization problem

arg max p(z |z €C) (9.4)

that is, we can find the most likely state (and its weight) given some evidence

C.

9.3 Approximate Model Counting via Randomized Hashing

The problem of counting the number of solutions of a constraint satisfaction
problem (e.g., #-SAT defined in section 9.2.1) is clearly more general and
believed to be harder than the problem of deciding if at least one solution
exists. What about the problem of approximately counting the number of
solutions? Surprisingly, approzimate model counting can be formally reduced
(in a probabilistic sense) to the problem of deciding if a solution exists or
not, i.e., to SAT.

The problem of approximately computing the number of solutions of
a formula, assuming access to an oracle that can answer queries in NP
(such as a SAT solver), was originally considered by Stockmeyer (1985).
This landmark paper introduced a randomized scheme that can estimate
the number of solutions of a formula F' within a factor of (1 + €) of the
true value for any desired ¢ > 0, and succeeds with probability at least
(1 — ¢) for any desired § > 0. This algorithm runs in polynomial time
and invokes the NP-oracle a number of times that is at most polynomial
in the number of variables of the formula. Stockmeyer’s work therefore
established an important result in computational complexity theory, namely
that #P can be approximated in BPPNP. BPPNP refers to algorithms
that have bounded-error probabilistic polynomial time and access to an NP-
oracle (Sipser, 2006). Informally, this results states that approzimate model
counting is not harder than deciding if a solution exists or not.

The intuition behind the algorithm is as follows. Let S C ¥ be the set of
solutions to a Boolean formula F. Stockmeyer (1985) showed that one can
reliably estimate |S| by repeating the following simple process: randomly
partition > into 2™ cells, select one of these cells, and compute whether S
has at least one element in this cell (this can be accomplished with a query

9.3 Approximate Model Counting via Randomized Hashing 271

0001 | 0100 | 0101

0 0011 | 0110 | 0111

1000 | 1001

1011 | 1110 | 1111

Figure 9.1: Pictorial representation, for ¥ = {0,1}* and variables 1, z, 73, 74.
Solutions S = {(0,0,0,0),(0,0,1,0),(1,1,0,0),(1,0,1,0)} shown in green. Middle
panel: the space is partitioned into 2 cells, based on the parity of x3 ® z4. Two
solutions are left in the chosen cell, corresponding to the assignments satisfying
x3 @ x4 = 0. Right panel: after partitioning again based on the parity of xo & x3,
only solution (0,0,0,0) is left.

to an NP oracle, e.g., invoking a SAT solver). The idea to estimate |S| is
to define progressively smaller cells, until the cells become so small that no
element of S can be found inside a (randomly) chosen cell. The intuition is
that the larger |S| is, the smaller the cells will have to be, and we can use
this information to estimate |S| reliably.

Based on this intuition, we give a hashing-based approximate counting
procedure (Algorithm 9.1, ApproxModelCount), which relies on an NP
oracle Og to check whether S has an element in the cell. It is adapted from
the SPARSE-WISH algorithm of Ermon et al. (2014). The correctness of the
approach relies crucially on how the space is randomly partitioned into cells.
To achieve strong worst-case (probabilistic) guarantees, the algorithm relies
on universal hash functions, a powerful concept from theoretical computer

science (Vadhan, 2011; Goldreich, 2011).

Definition 9.1. A family of functions H = {h : {0,1}" — {0,1}™} is
strongly universal (pairwise independent) if the following two conditions hold
when h is chosen uniformly at random from H. 1)V € {0,1}", the random
variable H(z) is uniformly distributed in {0,1}™. 2) Vzi,z90 € {0,1}"
x1 # x9, the random variables H(x1) and H(x2) are independent.

Statistically optimal functions can be constructed by considering the
family H/“" of all possible functions from {0,1}" to {0,1}™. It is easy to
verify that this is a family of fully independent functions. However, functions
from this family require m2" bits to be specified, making this construction
not very useful for large n. On the other hand, pairwise independent hash
functions can be specified compactly, using a number of bits linear in n.
They are generally based on modular arithmetic constraints of the form
Ax = b mod 2, referred to as parity or XOR constraints. Note that by the
properties of modular arithmetic, Az = b mod 2 is equivalent to Az+b =10

272

Probabilistic Inference by Hashing and Optimization

Algorithm 9.1 ApproxModelCount (F,Og, A)

1: Let S denote the set of solutions to the input formula F'
2: T+ [% log n—‘

3 1=0

4: while i <n do

5: fort=1,---,T do

6: Sample hash function h’y ;, : & — {0,1}", i.e.

7 sample uniformly A € {0,1}"*", b € {0, 1}’

8: Let S(hy,) =|{z € S| Az = b (mod 2)}|

9: w + I[S(h'y;) > 1], using Os to check if {z € S | Az =b (mod 2)} is empty
10: end for

11: if Median(w;,--- ,w;) < 1 then

12: break

13: end if

14: t=1+1

15: end while
16: Return |27

mod 2, and simply means that Ax is congruent to b modulo 2. This is also
written as Az = b (mod 2).

Proposition 9.1. Let A € {0,1}"*", b € {0,1}"™. The family H =
{hap(x):{0,1}" = {0,1}"} where hap(z) = Az +b mod 2 is a family of

pasrwise independent hash functions.

Relying on pairwise independence, it is possible to show that Approx-
ModelCount provides with high probability an accurate estimate of the true
model count, as summarized by the following property:

Theorem 9.2. For any A > 0, positive constant o < 0.0042, Approx-
ModelCount makes ©(nlnnlnl/d) queries to the NP oracle Og and, with
probability at least (1 — A), outputs a 16-approzimation of |S|, the number
of solutions of a formula F'.

Proof. Sketch: Given any solution x € §, it is easy to see that at iteration i,
P[Az =b (mod 2)] = (%)Z because of the uniformity property of Definition
9.1. By linearity of expectation, E[S(fA’b)] = |2i| In expectation, the While
loop should therefore break for i ~ log|S|, i.e., when the corresponding
expected number of “surviving” solutions is less than 1. When this happens,
the algorithm provides an accurate estimate for |\S|. The challenge is to show
that the expected behavior is actually the typical behavior. This follows from
pairwise independence. In fact, because the hash function family is pairwise
independent, S (hf47b) is the sum of pairwise independent random variables
(one for each element of S, corresponding to whether that solution satisfies
the random constraints or not). Therefore, the variance of S(f47b) is just the

9.3 Approximate Model Counting via Randomized Hashing 273

sum of the individual variances, and can be shown to be “small” compared
to the mean. By standard concentration inequalities, S(h% ,) will take a
value close to its mean reasonably often. Taking the median over T' runs
guarantees an accurate estimate with high probability. O

The proof follows from the analysis in the original paper (Stockmeyer,
1985); similar analysis and derivations can be found in Achlioptas and
Jiang (2015); Ermon et al. (2013c); Chakraborty et al. (2013b); Gomes et al.
(2006a).

9.3.1 Improving the Approximation Factor

Given a k-approximation algorithm such as Algorithm 9.1 and any ¢ >
0, it is possible to design a (1 + ¢)-approximation algorithm with the
following construction. Let ¢ = log; . . Define a new set of configurations
¥ = ¥ x ¥ x---x X, and a new weight function v’ : ¢ — R as

w' (o1, ,00) = w(o)w(oz) - - w(oy).

Proposition 9.3. Let W be a k-approzimation of Y s w'(0’). Then
W/t is o kM -approzimation of Y e (o).

To see why this holds, observe that W' = 3% o w'(0f) =
(Ppes w(a))e = W*. Since 2W’ < W < kW', we obtain that W/¢ must
be a k'/¢ = 1 + € approximation of W.

Note that this construction requires running Algorithm 9.1 on an enlarged
problem with ¢ times more variables. Although the number of optimization
queries grows polynomially with ¢, increasing the number of variables might
significantly increase the runtime. Other techniques to improve the approx-
imation factor of the basic algorithm can be found in (Chakraborty et al.,
2013b). The idea is to estimate the size of S(h'; ;) in line 9 of Algorithm 9.1
using multiple calls to the NP-oracle, rather than just checking if the set is
empty or not. For example, one could check if S(h?, ;) contains at least k
elements. The threshold k is referred to as a pivot. This reduces the variance
and can be used to improve the accuracy (but requires more invocations of
the NP-oracle).

9.3.2 Practical Implementations and Extensions

In practice, line 9 in Algorithm 9.1 is implemented using a SAT solver
as an NP-oracle. In a model counting application, this is accomplished
by adding to the original formula ¢ parity constraints, and checking the
satisfiability of the augmented formula. Note that a naive encoding of a
parity constraint over p variables would require 2P~! clauses of length p,

274 Probabilistic Inference by Hashing and Optimization

ruling out half of the 2P possible assignments (the ones with the wrong
parity). Each constraint can however be represented compactly introducing
O(p) extra variables with a standard Tseitin transformation (Tseitin, 1983).
For example x1 ® zo ® x5 ® x4 = 0 can be written as {z1 Dy = 21, 20D x3 =
29,21 ® 22 = 0}. See also (Feldman et al., 2005) for compact encodings of
the so-called parity polytope using linear inequalities.

The first practical implementation of these ideas is from Gomes et al.
(2006b,a), who used a SAT solver as an NP-oracle and demonstrated the
practical feasibility of an approach similar to Algorithm 9.1. Their algorithm
was able to leverage decades of research and engineering in SAT solving tech-
nology for approximate model counting, and resulted in huge improvements
over competing techniques (Sang et al., 2004). More recently, Chakraborty
et al. (2013a); Ivrii et al. (2015) also studied the problem and provided sev-
eral practical improvements. Chakraborty et al. (2013a) introduced the use
of pivots, where an NP oracle is used in line 9 of Algorithm 9.1 to check the
existence of at least k > 1 solutions (k = 1 corresponds to Algorithm 9.1),
to improve the accuracy of the estimated model count.

Note that although we only discussed the problem of counting the number
of solutions, similar ideas can also be used to construct approximate solu-
tion sampling schemes, with provable guarantees on the quality of the sam-
ples (Gomes et al., 2006a; Chakraborty et al., 2013a; Ermon et al., 2013a).
This is to be expected, as counting and sampling are known to be self-
reducible (Jerrum and Sinclair, 1997). More surprising is the fact that, given
access to an NP-oracle, it is possible to construct exact sampling schemes;
in contrast, it is believed that exact counting cannot be done in polynomial
time, even with access to an NP-oracle. This is consistent with the fact a
Monte Carlo estimate based on ezact samples would only provide an approx-
imation for the corresponding counting problem, not an exact solution. The
first exact sampling scheme based on an NP-oracle was introduced by Bel-
lare et al. (2000). The algorithm uses hash functions to partition the space
into cells, as the algorithms described in this Chapter, in conjunction with
rejection sampling. However, it requires k-wise independent hash functions
for k > 2 (as opposed to pairwise independence, as in Proposition 9.1), and
as far as we know, has never been used in practice.

9.4 Probabilistic Models and Approximate Inference: The WISH Algorithm

The approximate model counter presented in the previous section is not ap-
plicable to counting problems involving general weight functions, such as the
one arising in discrete graphical models for computing the partition function

9.4 Probabilistic Models and Approzimate Inference: The WISH Algorithm 275

(cf. section 9.2.2). If the weight function w(c) is such that — 22Xz @@ __
MiNg . (0)s20 W(0)

small, then the hashing-based algorithm of Chakraborty et al. (2014) can be
applied. Intuitively, these weight functions are “close” to being constant on
a subset of the states, and zero elsewhere. This is close to the unweighted
model counting problem described in Section 9.3, where the weight func-
tion is 1 on a subset of the states (the set of solutions), and zero elsewhere.
Typical models in machine learning, however, are unlikely to satisfy this re-
striction. For example, if the weight function is log-linear the weight function
can have huge variability.

An alternative algorithm, which can handle general weight functions and is
based on universal hashing and combinatorial optimization, was introduced
by Ermon et al. (2013c). We start with the intuition behind the algorithm,
which is called Weighted-Integrals-And-Sums-By-Hashing (WISH).

Computing W as defined in Equation (9.1) is challenging because the
sum has an exponentially large number of terms, i.e., |[X| = 2" when there
are n binary variables. Let us define the tail distribution of weights as
G(u) 2 |{o | w(o) > u}|. Note that G is a non-increasing step function,
changing values at no more than 2" points. Then W may be rewritten as
Jz+ G(u)du, i.e., the total area A under the G(u) vs. u curve:

| Glupdu= /R) /u ~ g(t)dtdu = /R) /0 t g(t)dudt = /R tg(t)dt = 9.5)

This is a well known relationship between the mean of a random variable
taking only non-negative values and its cumulative distribution function.
One way to approximate W is to (implicitly) divide this area A into
either horizontal or wertical slices (see Figure 9.2), approximate the area
in each slice, and sum up. Note that a similar approach based on estimating
“quantiles” is also used in nested sampling (Skilling et al., 2006).

Suppose we had an efficient procedure to estimate G(u) given any wu.
This could in principle be done using Algorithm 9.1, ApproxModelCount, as
estimating G'(u) is an unweighted counting problem.2 Then it is not hard to
see that one could create enough slices by dividing up the x-axis, estimate
G(u) at these points, and estimate the area A using quadrature. However,
the natural way of doing this to any degree of accuracy would require a
number of slices that grows at least logarithmically with the weight range
on the x-axis, which is undesirable, and estimating the weight range itself
would require access to an optimization oracle.

2. Note however that representing {o | w(c) > u} in a compact form using a clausal nor-
mal form is non-trivial. A more expressive language such as Integer Linear Programming
would be more practical.

276

Probabilistic Inference by Hashing and Optimization

horizontal slices vertical slices

1] (2]
5 i+3 S i+3
T2 2
= >
E k=
8 9it2 38 9i*2
* i+l L * gi+1

o gi

bivsbiio bis1b; bivsbire bis1b;
Weights Weights

Figure 9.2: Horizontal vs. vertical slices for integration. Riemann vs. Lebesgue
integrals of a function. The area under the curve between b; 3 and b; 9 is no larger
than the area marked with a diagonal pattern, and at least as large as the area
marked with a grid pattern. The area marked with a diagonal pattern is exactly
twice as large as the area marked with a grid pattern because of the geometric
binning of the y axis.

Alternatively, one could split the y-axis, i.e., the G(u) value range
[0,2"], at geometrically growing values 1,2,4,--- 2" i.e., into bins of sizes
1,1,2,4,---,2" 7! Let bg > by > --- > b, be the weights of the configu-
rations at the split points. In other words, b; is the 2’-th quantile of the
weight distribution. Unfortunately, despite the monotonicity of G(u), the
area in the horizontal slice defined by each bin is difficult to bound, as b;
and b;41 could be arbitrarily far from each other. However, the area in the
vertical slice defined by b; and b; ;1 must be bounded between 2¢(b; — b; 1)
and 271 (b; — b;y 1), i.e., within a factor of 2. Thus, summing over the lower
bound for all such slices and the left-most slice, the total area A must be
within a factor of 2 of Z:-L:_Ol 20 (bi—bit1)+2"b, = bo+> i 27 1b;. Of course,
we don’t know b;. But if we could approximate each b; within a factor of p,
we would get a 2p-approximation to the area A, i.e., to W.

WISH provides an efficient way to realize this strategy, using a combination
of randomized hash functions and an optimization oracle to approximate the
b; values with high probability. Note that this method allows us to compute
the partition function W (or the area A) by estimating weights b; at n + 1
carefully chosen points, which is “only” an optimization problem.

The key insight to compute the b; values is as follows. Suppose we apply to
configurations in > a randomly sampled pairwise independent hash function
with 2™ buckets and use an optimization oracle to compute the weight w,,
of a heaviest configuration in a fixed (arbitrary) bucket. If we repeat this
process T times and consistently find that w,, > w*, then we can infer by
the properties of hashing that at least 2" configurations (globally) are likely
to have weight at least w*. By the same token, if there were in fact at least
2m+¢ configurations of a heavier weight w > w* for some ¢ > 0, there is a

9.4 Probabilistic Models and Approzimate Inference: The WISH Algorithm 277

2 2 2
1.5 1.5 1.5
1 1 1
Af: 1“ Ik N k N X HN N N H
0] 0 i Oﬂ [, 1 o [m |1
50 100 0 50 100 0 50 100 50 100
Items (configurations) Items (configurations) Items (configurations) Items (configurations)

Figure 9.3: Visualization of the “thinning” effect of random parity constraints,
after adding 0, 1, 2, and 3 parity constraints. Leftmost plot shows the original
function to integrate. The optimal solution (subject to constraints) is shown in red.

good chance that the optimization oracle will find w,, > @ and we would
not underestimate the weight of the 2"-th heaviest configuration. As we
will see shortly, this process, using pairwise independent hash functions to
keep variance low, allows us to estimate b; accurately with only 7= O(lnn)
samples.

Algorithm 9.2 WISH (w : ¥ — R, n = log, |X|, A, a)

L 7o [
2: fori=0,---,ndo

3: fort=1,---,7T do

4: Sample hash function A’y , : & — {0,1}, i.e.
5: sample uniformly A € {0,1}"*", b e {0,1}
6: w! < max, w(o) subject to Ao = b (mod 2)
T end for

8: M; <+ Median(w}, - - - ,w})

9: end for

10: Return My + Z;:OI M 128

The pseudocode of WISH is shown as Algorithm 9.2. It is parameterized
by the weight function w, the dimensionality n, a correctness parameter
A > 0, and a constant @ > 0. Notice that the algorithm requires solving
only ©(nlnn/A) optimization instances (MAP inference) to compute a sum
defined over 2" items. In the following section, we formally prove that the
output is a constant factor approximation of W with probability at least
1 — ¢ (probability over the choice of hash functions). Figure 9.3 shows the
working of the algorithm. As more and more random parity constraints are
added in the outer loop of the algorithm (“levels” increasing from 1 to n), the
configuration space is (pairwise-uniformly) thinned out and the optimization
oracle selects the heaviest (in red) of the surviving configurations. The final
output is a weighted sum over the median of T" such modes obtained at each
level. Note that if the weight function w takes values in {0,1}, then WISH
essentially becomes ApproxModelCount.

278

Probabilistic Inference by Hashing and Optimization

In analogy with Theorem 9.2, it is possible to show that Algorithm 9.2
provides a constant factor approximation to the partition function. The
complete proof can be found in Ermon et al. (2013c).

Theorem 9.4. For any § > 0 and positive constant o < 0.0042, Algorithm
9.2 makes O(nlnn/d) MAP queries and, with probability at least (1 — ¢),
outputs a 16-approxzimation of W =3 s w(0o).

Proof. Sketch: The challenge is to show that w! on Line 6 is “close” to b,
the 2°-th quantile of the weight distribution. Because of the earlier discussion
and the geometric intuition in Figure 9.2, this implies the estimate of Z is
accurate (within a constant factor). To show that w! on Line 6 is “close” to
b;, we need to show that w! is neither too large (w! < b;_2), nor too small
(wf > biya).

Let’s first consider the set S of the 2/=2 assignments with largest weight.
The intuition is the same as in the proof sketch of Theorem 9.2. Given

a configuration x € S, it is easy to see that at iteration i, P[Ax = b
(mod 2)] = (%)l because of the uniformity property from Definition 9.1. By
_ sl

linearity of expectation, E[S(%7b)] = = %. In expectation, no element

of § “survives” at iteration ¢. Because ?)f the constraints Ao = b (mod 2),
it follows that wf < b;_9, that is, the optimal value cannot be too large
because all the “heavy” configurations (i.e., the set S) have been ruled out
by the constraints.

Let’s now consider the set S of the 2i72 assignments with largest weight.
As before, by linearity of expectation, E[S(h% ,)] = I2ﬂ

a few elements of S “survive” at iteration 7. It follows that wf > biqo, that

= 4. In expectation,

is, the optimal value cannot be too small.

Leveraging pairwise independence to control the variance, as in the proof
sketch of Theorem 9.2, it is possible to show that this is the typical behavior,
and taking a Median on Line 8 guarantees that the estimate is accurate with
high probability. O

As in the model counting case, Proposition 9.3 can be used to boost the
accuracy to a (1 + €) approximation.

9.4.1 Further Approximations

While in practical applications MAP inference problems can often be solved
quickly (Weiss et al., 2007), there are cases where solving to optimality is
beyond reach. When the instances defined in the inner loop are not solved to
optimality, Algorithm 9.2 still provides approximate lower bounds on W with
high probability. Similarly, if one has access to upper bounds to the values

9.5 Optimization Subject to Parity Constraints 279

of the optimization instances, e.g., from linear programming relaxations, the
output of the algorithm using these upper bounds is an approrimate upper
bound with high probability.

Theorem 9.5. Let w! be suboptimal solutions for the optimization problems
in Algorithm 9.1, i.e., wi < w!. Let W be the output of Algorithm 9.1 with
these suboptimal solutions. Then, for any d > 0, with probability at least 1-9,
% < W. Similarly, let @} be upper/b\ounds for the optimization problems in
Algorithm 9.1, i.e., W} > w. Let W be the output of Algorithm 9.1 using
these upper bounds. Then, for any § > 0, with probability at least 1 — 9,
W > %\, Further, if wt > %wf for some L > 0, then with probability at least
1—-9, W is a 16 L-approximation to W.

The output is always an approximate lower bound, even if the optimization
is stopped early. The lower bound is monotonically non-decreasing over time,
and is guaranteed to eventually reach within a constant factor of W. We thus
have an anytime algorithm. Furthermore, each of the optimization instances
can be solved independently, allowing natural massive parallelization.

9.5 Optimization Subject to Parity Constraints

The parity constraints used to implement universal hash functions (as in
Proposition 9.1) are simple linear equations over a finite field. The space
C={zr:Ar = bmod 2} = {x : Az = b (mod 2)} has a nice geometric
interpretation as the translated nullspace of the random matrix A, which
is a finite dimensional vector space, with operations defined on the field
F(2) (arithmetic modulo 2). Despite this apparent simplicity, optimizing (or
searching) over € C ¥ can be harder in practice than optimizing over the
entire domain .

Although from a worst-case perspective checking satisfiability of a formula
augmented with parity constraints remains in NP (i.e., it does not become
harder), a key question is whether the augmented formula is easier or harder
to solve than the original one in practice. Similarly, a key question in the
weighted case if how much harder an optimization problem of the form
max, w(o) becomes after adding parity constraints of the form Az = b
(mod 2).

Empirically, the number and the length of the parity constraints added
appear to have a significant effect on the runtime of modern combinatorial
search and optimization solvers (Gomes et al., 2007; Ermon et al., 2013b;
Soos et al., 2009). The construction in Proposition 9.1 involves parity con-
straints of average length n/2 where n is the number of variables. This is

280

Probabilistic Inference by Hashing and Optimization

because each row of the matrix A from Proposition 9.1 is generated by sam-
pling i.i.d. n Bernoulli random variables with parameter 1/2. Short parity
constraints, involving a smaller number of variables, appear to be much
easier to handle in practice (Gomes et al., 2007; Ermon et al., 2014; Ivrii
et al., 2015; Achlioptas and Jiang, 2015). For example, a parity constraint
of length one (involving a single variable) simply clamps that variable to a
particular value. In many cases, fixing a variable to a particular value sim-
plifies a (combinatorial) optimization problem. A parity constraint of length
k (involving k variables), on the other hand, is more difficult to deal with.
In particular, we can only propagate such a constraint (inferring something
about the variables involved) after k — 1 variables have been set. For exam-
ple, given a parity constraint x & y & z = 0, knowing that x = 0 does not
tell us anything about the possible values y or z can take (both y = 0,2 =10
and y = 1,z = 1 are valid assignments). Only knowing the value of x and
y can we determine z. Furthermore, from a theoretical perspective, parity
constraints are known to be fundamentally difficult for the resolution proof
system underlying SAT solvers (cf. exponential scaling of Tseitin tautolo-
gies (Tseitin, 1968)). A natural question, therefore, is whether short parity
constraints (involving a small number of variables, less than n/2 as the
construction from Proposition 9.1) can be used and still provide rigorous
guarantees on the accuracy.

A natural way to construct hash functions based on short parity con-
straints is similar to the one from Proposition 9.1, except that each variable
is added to each constraint with probability p < 1/2. This results in parity
constraints of average length np. When p <« 1/2, the statistical guarantees
of these hash functions are much weaker than those from Proposition 9.1.
For example, they are clearly not pairwise independent. Although they still
divide the space “uniformly” into cells, the resulting variance can be too
high to be useful for counting. To see this, consider partitioning the space
(as in Figure 9.1) using a parity constraint of length 1, i.e., based on the
value of a single variable. Clearly, this divides the space evenly, however, the
two halves might behave very differently. For example, one half might con-
tain a lot of solutions, while the other one very few. These weak statistical
properties can lead to extremely inaccurate counts.

Ermon et al. (2014) proposed a new family of hash functions that are
weaker than pairwise independent, but have good enough statistical prop-
erties to be used for approximate counting (preserving the formal accuracy
guarantees of Algorithms 9.1 and 9.2). Crucially, these hash functions can
be implemented using sparser (and empirically easier to solve) parity con-
straints. Zhao et al. (2016) provide an analysis of the optimal asymptotic
constraint length required for obtaining high-confidence approximations to

9.6 Applications 281

model counts and partition functions. Surprisingly, for formulas with n vari-
ables, when i = ©(n) parity constraints are added, a constraint length of
O©(logn) is both necessary and sufficient. This is a significant improvement
over standard long XORs, which have length ©(n). Constraints of loga-
rithmic length can, for instance, be encoded efficiently with a polynomial
number of clauses. The proofs leverage ideas and results from the theory of
error correcting codes. In fact, there is an intimate connection and a corre-
spondence between universal hash functions and (binary) codes, where one
can construct hash functions from binary codes and vice versa. We refer
the reader to (Stinson, 1996) for an in depth discussion of the relationships
between hash functions, error correcting codes and combinatorial designs.
An alternative approach towards using short parity constraints is taken
in (Ivrii et al., 2015), where it is shown that under certain conditions
we only need to add constraints over a subset of the original variables
(the so called independent set variables). This approach often results in
much shorter XORs, and can potentially be combined with the techniques
proposed in (Ermon et al., 2014). Another very insightful perspective on
the use of short parity constraints for probabilistic inference and discrete
integration can be found in (Achlioptas and Jiang, 2015). In particular,
Achlioptas and Jiang (2015) show how to develop local search techniques
that explore C leveraging its algebraic structure, i.e., the fact that it is a
(translated) linear subspace for which one can easily construct a basis.

9.6 Applications

The approximate inference and counting techniques described in this chapter
are a generic alternative to MCMC and variational techniques, and can be
applied to any discrete probabilistic or constraint-based model. Whenever
the problems are within reach of existing optimization/search techniques,
these approaches provide strong accuracy guarantees and tend to outperform
traditional approximate inference methods (variational and sampling based).
A detailed comparison of the various techniques is beyond the scope of this
Chapter. Experimental results comparing hashing-based techniques to varia-
tional methods such as mean field, belief propagation, tree-reweighted belief
propagation, and sampling techniques such as Gibbs sampling and annealed
importance sampling (Neal, 2001) can be found in (Ermon et al., 2013¢,b,a,
2014; Hadjis and Ermon, 2015; Zhao et al., 2016). For example, on clique
structured Ising models the WISH algorithm provides partition function es-
timates that are between 20 and 100 orders of magnitude more accurate than
mean field, belief propagation, and tree-reweighted belief propagation (Er-

282

Probabilistic Inference by Hashing and Optimization

mon et al., 2013c). The benchmarks considered range from Ising models and
restricted Boltzmann machines to constraint satisfaction problems arising in
hardware and software verification. The improvements are particularly evi-
dent on domains with a combination of soft probabilistic dependencies and
hard deterministic constraints, as these tend to be difficult? for traditional
inference methods (Ermon et al., 2013c). Clearly, however, there is also a
wide range of domains where traditional techniques, even though without
formal worst-case guarantees, do provide accurate answers. Sampling and
variational approximations are often much faster in these cases. Further,
there exist instances that are too difficult for existing optimization tech-
niques (consistently with worst-case hardness results). In these cases, one
can only obtain bounds on the quantities of interest (such as the one from
Proposition 9.5), that can however be very loose.

Random testing is an important tool in simulation-based verification,
where a model of the system is simulated using random test stimuli in
order to uncover bugs or undesired behavior (Naveh et al., 2007). These
stimuli need to be sampled uniformly or near-uniformly from the space of
all valid stimuli, which is often specified using a set of constraints. The
hashing-based techniques described in this chapter have been shown to be
very effective for this problem in (Chakraborty et al., 2013a; Ermon et al.,
2013a). Hashing-based techniques have also been shown to be effective at
analyzing contingency tables in statistics, i.e., tables that capture the (mul-
tivariate) frequency distribution of several random variables. Several statis-
tical tests, such as Fisher’s exact test (Fisher, 1954) which tests contingency
tables for homogeneity of proportion, involve counting problems that can be
solved using the techniques discussed in this chapter (Zhao et al., 2016). Fi-
nally, similar techniques have also been applied to challenging probabilistic
reasoning problems involving routing and planning decisions on road net-
works (Belle et al., 2015). For example, they have been used to estimate the
probability distribution of travel time over all possible routes that satisfy
some given constraints, e.g., of the “traveling salesman” type.

9.7 Open Problems and Research Challenges

The new paradigm for inference and counting presented in this chapter is
a rich research area with a number of exciting directions that remain to

3. For example, deterministic constraints create regions of probability zero that break the
ergodicity assumptions of Markov Chain Monte Carlo methods.

9.7 Open Problems and Research Challenges 283

be explored. This is not unlike traditional MCMC and variational methods,
for which countless extensions and variations tailored to specific applications
have been developed in the past decades. A few examples are provided below.

The main open challenge is how to further improve scalability. On the
optimization side, the techniques described in this chapter will certainly
benefit from future advances in optimization and search technology, a field
that is progressing rapidly (researchers jokingly call this the “Moore’s Law
for SAT” (Vardi, 2014)). On the hashing side, there is great potential for
developing new families of hash functions that are more “friendly” to the
optimizers. While sparse parity constraints and related ensembles show
significant promise, it is likely that there exist other, completely different,
classes of hash functions that might be much more efficient in practice.

Perhaps the most interesting counting problems are those where the corre-
sponding decision problem is in NP, e.g., problems involving the permanent
of a matrix or matchings in graphs. For example, counting the number of
possible perfect matchings in a graph is known to be #-P complete, even
though (maximum) matchings can be found in polynomial time (Jerrum
and Sinclair, 1997). It is an open problem whether there exist interesting
counting problems where the corresponding “projected” optimization prob-
lem (subject to parity constraints) remains in NP. If such problems exist,
then these counting strategies would lead to new, potentially more efficient
classes of FPRAS algorithms.

Traditional approximate inference methods, namely variational and sam-
pling techniques, can be applied both to discrete and continuous models. It
is not clear how hashing-based techniques can be extended to continuous
random variables (without essentially discretizing the space). In particular,
an extension would likely leverage continuous (non-convex) optimization to
solve MAP inferece problems, however, it is not obvious what is the right
notion of a random projection for a continuous space. Some interesting first
steps in this direction are presented in (Belle et al., 2015). Some of the ideas
and methods based on Gumbel perturbations and A* sampling (Hazan and
Jaakkola, 2012; Maddison et al., 2014) might also be useful. The randomized
hash functions used in this Chapter can be seen as a type of discrete random
perturbation that can only take two values (leaving the weight unchanged,
or setting it to zero respectively). It would be interesting to know if other
types of perturbations besides universal hash functions and Gumbels are pos-
sible. Furthermore, approaches based on Gumbel perturbations (Hazan and
Jaakkola, 2012; Maddison et al., 2014) typically require fully i.i.d. pertur-
bations, just like the fully independent hash family H/“ defined in Section
9.3. It would be interesting to know if weaker independence assumptions
(e.g., pairwise independence) can be made on the Gumbel perturbations.

284

Probabilistic Inference by Hashing and Optimization

An interesting question is whether hashing-based techniques can be com-
bined with traditional inference methods to yield stronger accuracy guar-
antees, or can be used to “verify” the results provided by other methods,
providing certificates of accuracy. Some preliminary results in this direction
can be found in (Zhu and Ermon, 2015; Hsu et al., 2016), where it is shown
that mean field methods combined with random projections (implemented
with universal hash functions) provide tight approximations with high prob-
ability. It is likely that similar ideas might be applicable to MCMC methods
as well.

9.8 Conclusion

Making inferences about complex, high-dimensional statistical models is a
fundamental reasoning problem in AI and machine learning. This chapter
discussed a new approach to tackle these problems based on randomized
hashing, which can be though of as a type of random perturbation, and
optimization. These recently developed techniques provide strong accuracy
guarantees on the quality of the results and complement previous approaches
such as MCMC and variational techniques.

We introduced a randomized algorithm that, with high probability, gives
a constant-factor approximation of a general discrete integral defined over
an exponentially large set. The counting or integration problem is reduced
to a small number of instances of a combinatorial optimization problem
subject to parity constraints used to implement a hash function. In the
context of graphical models, we showed how to approximately compute the
normalization constant, or partition function, using a small number of MAP
queries. The algorithm can leverage directly fast, off-the-shelf combinatorial
optimization techniques in a black-box fashion. Further, it is massively
parallelizable, allowing it to directly leverage the increasing availability of
large compute clusters, and can be used in an anytime fashion trading off
runtime for accuracy.

The combinatorial optimization problems that arise in this scheme have
been investigated both from a theoretical and empirical perspective. In par-
ticular, they have deep connections with the max-likelihood decoding prob-
lem in information theory, and some techniques and ideas originally devel-
oped in that context can be used to make the optimization problems more
tractable in practice. The new method works well on a variety of challeng-
ing application domains, and is particularly well suited to deal with models
that incorporate complex, deterministic dependencies or constraints among
the variables. These constraints assign zero probability to assignments that

9.9 References

285

violate them, and can be challenging for traditional sampling schemes, as
they can lead to very inefficient importance sampling schemes and break
the ergodicity of MCMC methods. In the presence of hard deterministic
constraints, even finding a single assignment with non-zero probability can
be difficult. The techniques presented in this chapter, however, can leverage
the reasoning power of state-of-the-art constraint optimization technology
such as SAT solvers and handle a combination of deterministic and proba-
bilistic constraints.

The approaches presented in this chapter are relatively new, and a number
of extensions are possible. These include new methods to quickly approxi-
mate or bound the solution to optimization problems subject to parity con-
straints, the use of different classes of hash functions that are more amenable
to optimization, and extensions to models with continuous random variables.

9.9 References

D. Achlioptas and P. Jiang. Stochastic integration via error-correcting codes. In
Proc. Uncertainty in Artificial Intelligence, 2015.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC
for machine learning. Machine learning, 50(1-2):5-43, 2003.

M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses
using an NP-oracle. Information and Computation, 163(2):510-526, 2000.

V. Belle, G. Van den Broeck, and A. Passerini. Hashing-based approximate
probabilistic inference in hybrid domains. In Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence (UAI), 2015.

R. Bellman. Adaptive control processes: A guided tour. Princeton University Press,
Princeton, NJ, 1961.

A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of satisfiability.
frontiers in artificial intelligence and applications, vol. 185, 2009.

J. Cai and X. Chen. A decidable dichotomy theorem on directed graph homomor-
phisms with non-negative weights. In Proc. of the 51st Symposium on Founda-
tions of Computer Science (FOCS), 2010.

S. Chakraborty, K. Meel, and M. Vardi. A scalable and nearly uniform generator
of SAT witnesses. In Proc. of the 25th International Conference on Computer
Aided Verification (CAV), 2013a.

S. Chakraborty, K. Meel, and M. Vardi. A scalable approximate model counter.
In Proc. of the 19th International Conference on Principles and Practice of
Constraint Programming (CP), pages 200-216, 2013b.

S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi.
Distribution-aware sampling and weighted model counting for sat. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. Journal of the ACM, 38(1):1-17,
1991.

286

Probabilistic Inference by Hashing and Optimization

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Embed and project: Discrete
sampling with universal hashing. In Advances in Neural Information Processing
Systems (NIPS), pages 2085-2093, 2013a.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Optimization with parity
constraints: From binary codes to discrete integration. In Proc. of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI), 2013b.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of
dimensionality: Discrete integration by hashing and optimization. In Proc. of
the 30th International Conference on Machine Learning (ICML), 2013c.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Low-density parity con-
straints for hashing-based discrete integration. In Proc. of the 31st International
Conference on Machine Learning (ICML), pages 271-279, 2014.

J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear programming to
decode binary linear codes. Information Theory, IEEE Transactions on, 51(3):
954-972, 2005.

R. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, 1954.

M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. WH
freeman New York, 2002.

O. Goldreich. Randomized methods in computation. Lecture Notes, 2011.

C. P. Gomes, A. Sabharwal, and B. Selman. Near-uniform sampling of combinatorial
spaces using XOR constraints. In Advances in Neural Information Processing
Systems (NIPS), 2006a.

C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of the 21st National Conference on Artificial
Intelligence (AAAI), pages 54—61, 2006b.

C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. Short XORs for model
counting: From theory to practice. In Theory and Applications of Satisfiability
Testing (SAT), pages 100-106, 2007.

S. Hadjis and S. Ermon. Importance sampling over sets: A new probabilistic
inference scheme. In UAI 2015.

T. Hazan and T. Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In Proc. of the 29th International Conference on
Machine Learning (ICML), 2012.

L.-K. Hsu, T. Achim, and S. Ermon. Tight variational bounds via random pro-
jections and I-projections. Conference on Artificial Intelligence and Statistics,
2016.

A. Tvrii, S. Malik, K. S. Meel, and M. Y. Vardi. On computing minimal independent
support and its applications to sampling and counting. Constraints, pages 1-18,
2015.

M. Jerrum and A. Sinclair. The Markov chain monte carlo method: An approach to
approximate counting and integration. In Approzimation Algorithms for NP-hard
Problems, pages 482-520. PWS Publishing, Boston, MA, 1997.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183-233, 1999.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT Press, 2009.

9.9 References

287

C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In Advances in Neural
Information Processing Systems, pages 3086-3094, 2014.

N. Madras. Lectures on Monte Carlo Methods. American Mathematical Society,
2002.

Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcu, and G. Shurek.
Constraint-based random stimuli generation for hardware verification. AI Mag-
azine, 28(3):13, 2007.

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-
139, 2001.

J. Park. Using weighted MAX-SAT engines to solve MPE. In Proc. of the 18th
National Conference on Artificial Intelligence (AAAI), pages 682-687, 2002.

P. Ravikumar and J. Lafferty. Quadratic programming relaxations for metric label-
ing and Markov random field MAP estimation. In Proc. of the 23rd International
Conference on Machine Learning (ICML), pages 737-744, 2006.

S. Riedel. Improving the accuracy and efficiency of MAP inference for Markov
Logic. In Proc. of the 24th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 468-475, 2008.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):
273-302, 1996.

T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi. Combining component
caching and clause learning for effective model counting. In Theory and Applica-
tions of Satisfiability Testing (SAT), 2004.

M. Simonovits. How to compute the volume in high dimension? Mathematical
programming, 97(1):337-374, 2003.

M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

J. Skilling et al. Nested sampling for general bayesian computation. Bayesian
analysis, 1(4):833-859, 2006.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proc. of the 24th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 503-510, 2008.

M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic
problems. In Theory and Applications of Satisfiability Testing (SAT), 2009.

D. R. Stinson. On the connections between universal hashing, combinatorial designs
and error-correcting codes. In Congressus Numerantium, pages 7—28, 1996.

L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849-861, 1985.
G. S. Tseitin. On the complexity of derivation in the propositional calculus. In

A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logic, Part II. 1968.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466-483. Springer, 1983.

S. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 2011.

L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410-421, 1979.

288

Probabilistic Inference by Hashing and Optimization

M. Y. Vardi. Boolean satisfiability: theory and engineering. Communications of
the ACM, 57(3):5, 2014.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-
305, 2008.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and
belief propagation with convex free energies. In Proc. of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), 2007.

S. Zhao, S. Chaturapruek, A. Sabharwal, and S. Ermon. Closing the gap between
short and long XORs for model counting. In Proc. 30th AAAI Conference on
Artificial Intelligence (AAAI-16), 2016.

M. Zhu and S. Ermon. A hybrid approach for probabilistic inference using random
projections. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pages 2039-2047, 2015.

10

Perturbation Models and PAC-Bayesian
Generalization Bounds

Joseph Keshet joseph.keshet@biu.ac.il
Bar-Ilan University
Ramat-Gan, Israel

Subhransu Maji smaji@cs.umass.edu
University of Massachusetts Amherst

Ambherst, MA

Tamir Hazan tamir.hazan@technion.ac.il
Technion

Haifa, Israel

Tommi Jaakkola tommi@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, MA

In this chapter we explore the generalization power of perturbation models.
Learning parameters that minimize the expected task loss of perturbation
models amounts to minimizing PAC-Bayesian generalization bounds. We
provide an elementary derivation of PAC-Bayesian generalization bounds,
while focusing on their Bayesian components, namely their predictive proba-
bilities and their posterior distributions. We connect their predictive proba-
bilities to perturbation models and their posterior distributions to the smooth-
ness of the PAC-Bayesian bound. Consequently, we derive algorithms that
minimize PAC-Bayesian generalization bounds using stochastic gradient de-
scent and explore their effectiveness on speech and visual recognition tasks.

290

Perturbation Models and PAC-Bayesian Generalization Bounds

10.1 Introduction

Learning and inference in complex models drives much of the research
in machine learning applications ranging from computer vision to natural
language processing to computational biology (Blake et al., 2004; Rush
and Collins; Sontag et al., 2008). Each such task has its own measure
of performance, such as the intersection-over-union score in visual object
segmentation, the BLEU score in machine translation, the word error rate
in speech recognition, the NDCG score in information retrieval, and so on.
The inference problem in such cases involves assessing the likelihood of
possible structured-labels, whether they be objects, parsers, or molecular
structures. Given a training dataset of instances and labels, the learning
problem amounts to estimation of the parameters of the inference engine,
so as to minimize the desired measure of performance, or task loss.

The structures of labels are specified by assignments of random variables,
and the likelihood of the assignments are described by a potential function.
Usually it is only feasible to infer the most likely or maximum a-posteriori
(MAP) assignment, rather than sampling according to their likelihood.
Indeed, substantial effort has gone into developing inference algorithms
for predicting MAP assignments, either based on specific parametrized
restrictions such as super-modularity (e.g., Boykov et al., 2001) or by
devising approximate methods based on linear programming relaxations
(e.g., Sontag et al., 2008).

Learning the parameters of the potential function greatly influences the
prediction accuracy. In supervised settings, the learning algorithm is pro-
vided with training data which is composed of pairs of data instances and
their labels. For example, data instances can be images or sentences and
their labels may be the foreground-background segmentation of these im-
ages or the correct translations of these sentences. The goal of the learning
procedure is to find the potential function for which its MAP prediction
for a training data instance is the same as its paired training label. The
goodness of fit between the MAP predicted label and the training label is
measured by a loss function. Unfortunately, the prediction function is non-
smooth as well as non-convex and direct task loss minimization is hard in
practice (McAllester et al., 2010).

To overcome the shortcomings of direct task loss minimization, the task
loss function is replaced with a surrogate loss function. There are various
surrogate loss functions, some of them are convex (and non-smooth), while
others are smooth (and non-convex). The structured hinge loss, a convex
upper bound to the task loss, is the surrogate loss function used both in

10.1 Introduction

291

max-margin Markov models (Taskar et al., 2004) and in structural SVMs
(Tsochantaridis et al., 2006). Unfortunately, the error rate of the structured
hinge loss minimizer does not converge to the error rate of the Bayesian
optimal linear predictor in the limit of infinite training data, even when the
task loss is the 0-1 loss (McAllester, 2006; Tewari and Bartlett, 2007). The
structured ramp loss (Do et al., 2008) is another surrogate loss function
that proposes a tighter bound to the task loss than the structured hinge
loss. In contrast to the hinge loss, the structured ramp loss was shown to be
strongly consistent (McAllester and Keshet, 2011). In general both the hinge
loss and the structured ramp loss functions require the task loss function
to be decomposable in the size of the output label. Decomposable task
loss functions are required in order to solve the loss-augmented inference
that is used within the training procedure (Ranjbar et al., 2013), and
evaluation metrics like intersection-over-union or word error rate, which are
not decomposable, need to be approximated when utilized in these training
methods.

Conditional random fields (Lafferty et al., 2001) utilize the negative log-
likelihood as a surrogate loss function. Minimizing this loss amounts to maxi-
mizing the log-likelihood of the conditional Gibbs distribution of the training
data. While this is a convex function with a nice probabilistic properties, it
is unrelated to the task loss, and hence not expected to optimize the risk.
Alternatively, one may integrate the task loss function by minimizing the
expected loss, while averaging with respect to the Gibbs distribution (Gim-
pel and Smith, 2010). This approach is computationally appealing since it
effortlessly deals with non-decomposable loss functions, while shifting the
computational burden to sampling from the Gibbs distribution. Unfortu-
nately, sampling from the Gibbs distribution is provably hard (Jerrum and
Sinclair, 1993; Goldberg and Jerrum, 2007)

Recently, several works (Keshet et al., 2011; Papandreou and Yuille, 2011;
Tarlow et al., 2012) have constructed probability models through MAP
predictions. These “perturb-max” models describe the robustness of the
MAP prediction to random changes of its parameters. Therefore, one can
draw unbiased samples from these distributions using MAP predictions.
Interestingly, when using perturbation models to compute the expected loss
minimization one would ultimately minimize PAC-Bayesian generalization
bounds (McAllester, 2003; Langford and Shawe-Taylor, 2002; Seeger, 2003;
Catoni, 2007; Germain et al., 2009; Keshet et al., 2011; Seldin et al., 2012).

This chapter explores the Bayesian aspects that emerge from PAC-
Bayesian generalization bounds. We focus on their predictive probability
models, which turn to be perturbation models as well as on PAC-Bayesian
posterior distributions. We also focus on its algorithmic aspects, both of the

292

Perturbation Models and PAC-Bayesian Generalization Bounds

predictive probability and the posterior distribution, so that they could be
used to minimize the risk bound efficiently. We demonstrate the effectiveness
of minimizing these bounds on visual and speech recognition problems.

10.2 Background

Learning complex models typically involves reasoning about the states of
discrete variables whose labels (assignments of values) specify the discrete
structures of interest. The learning task which we consider in this work is
to fit parameters w that produce the most accurate prediction y € Y for a
given object x. Structures of labels are conveniently described by a discrete
product space Y = Y1 x---xY,,. We describe the potential of relating a label
y to an object x with respect to the parameters w by real valued functions
0(y; x,w). Maximum a-posteriori prediction amounts to compute the best
scoring label:

(MAP predictor) Ju(x) = argmax 0(y;z, w), (10.1)
y

where Yy = (ylv "'7yn)’
We measure the goodness of fit by a loss function L : Y x Y — [0,1]. The

loss of the MAP predictor for an object-label pair is L(g,(x),y). We assume
that the object-label pairs in the world are distributed according to an
unknown distribution D. The risk of the MAP predictor that is parametrized
by w, denoted by R(w) is the expected loss

R(w) = By) | L(u(), 9)] (10.2)

Our goal is to learn the parameters w and consequently their predictor g, (x)
which minimizes the risk, that is,

w' = argmin By p [L),)] (10.3)

Since the distribution D is unknown, we use a training dataset S of inde-
pendent and identically distributed (i.i.d.) samples of pairs (z,y) from D.
We then define the empirical risk to be

R () = Eypos [E(Gu(@).)] = 750 3 Llo(e).v) (10.4)
(z,y)eS

A direct minimization of the empirical risk is computationally unappealing
as it is a non-smooth and non-convex function of w. Alternatively, the loss
function in the empirical risk is replaced with a surrogate loss, and an
additional regularization term is added to avoid overfitting of the parameters

10.2 Background

293

and add stability. The objective of the learning procedure is therefore
w* = argmin B(, ;)5 [L(gw(g:), y)} FAQ(w), (10.5)

where Q(w) is a regularization function and A is a trade-off parameter.

It is possible to decrease the empirical risk by upper bounding the task
loss function with a convex surrogate, as applied in structured-SVM that is
governed by the hinge-loss:

Lpinge(z,y, w) = max {L(g,y) + 0(; z,w) — O(y; z,w)} (10.6)

It is straightforward to verify that the hinge-loss Lpinge(,y, w) upper
bounds the task loss L(§,(z),y) since

L(guw(),y) < L(Gw(z),y) + 0(Guw(z); 2, w) — 0(y; 2, w) < Lpinge(w, y, w).

Moreover, the hinge-loss is a convex function of w as it is a maximum
of linear functions of w. The hinge-loss leads to “loss adjusted inference”
since computing its value requires more than just MAP inference ¢, (z). In
particular, when the loss function is more involved than the MAP prediction,
as happens in computer vision problems (e.g., PASCAL VOC loss) or
language processing tasks (e.g., BLEU loss), learning with structured-SVMs
is computationally hard.

The prediction g,(x) as well as “loss adjusted inference” rely on the
potential structure to compute the MAP assignment. Potential functions are
conveniently described by a family R of subsets of variables r C {1,...,n},
called cliques. We denote by ¥, the set of labels that correspond to the clique
r, namely (y;)ie,r and consider the following potential functions 0(y; z,w) =
> rer Or(yr; 2, w). Thus, MAP prediction can be formulated as an integer
linear program:

b* carg gn(ax) Z br (yr) 0y (yr; , w) (10.7)
r(Yr
™Yr
s.t. by(yy) € {0,1}, Zbr(yr) =1, Z bs(ys) = br(yr) VrCs
Yr Ys\yr

The correspondence between MAP prediction and integer linear program
solutions is (9w (7)); = argmaxy, b (y;). Although integer linear program
solvers provide an alternative to MAP prediction, they may be restricted to
problems of small size. This restriction can be relaxed when one replaces the
integral constraints b, (y,) € {0,1} with nonnegative constraints b,(y,) > 0.
These linear program relaxations can be solved efficiently using different
convex max-product solvers, and whenever these solvers produce an integral
solution it is guaranteed to be the MAP prediction (Sontag et al., 2008).

294

Perturbation Models and PAC-Bayesian Generalization Bounds

A substantial effort has been invested to solve this integer linear program
in some special cases, particularly when |r| < 2. In this case, the potential
function corresponds to a standard graph: 0(y;z,w) = >,y 0:(yi; ¢, w) +
Z@jeE 0; ;(yi, yj; ¢, w). If the graph has no cycles, MAP prediction can be
computed efficiently using the belief propagation algorithm (Pearl, 1988).
There are cases where MAP prediction can be computed efficiently for graph
with cycles.

10.3 PAC-Bayesian Generalization Bounds

The PAC-Bayesian generalization bound asserts that the overall risk of
predicting w can be estimated by the empirical risk over a finite training
set. This is essentially a measure concentration theorem: the expected value
(risk) can be estimated by its (empirical) sampled mean. Given an object-
label sample (z,y) ~ D, the loss function L(7,(z),y) turns out to be a
bounded random variable in the interval [0, 1]. In the following we assume
that the training data S = {(x1,91), ..., (Tm, Ym)} is sampled i.i.d. from the
distribution D, and is denoted by S ~ D". The measure concentration of a
sampled average is then described by the moment generating function, also
known as the Hoeffding lemma;:

Egmm [exp (0 (R(w) — Rs(w)))} < exp(0?/8m), (10.8)

for all o € R.
We average over all possible parameters and therefore take into account
all possible predictions g, (x):

Lemma 10.1. Let L(g,y) € [0,1] be a bounded loss function. Let p(w) be
any probability density function over the space of parameters. Then, for any
positive number o > 0 holds

EspEump [exp <J(R(w) - Rs(w)))} < exp(0?/8m) (10.9)

The above bound measures the expected (exponentiated) risk of Gibbs
predictors. Gibbs predictors 4, (z) are randomized predictors, determined
by w ~ p. The probability distribution p(w) is determined before seeing
the training data and is therefore considered to be a prior distribution over
the parameters. p(w) may be any probability distribution over the space of
parameters and it determines the amount of influence of any parameter w to
the overall expected risk. Therefore when computing the expected risk it also
takes into account the desired parameters w*, which are intuitively the risk
minimizer. For example, the prior distribution may be the centered normal

10.8 PAC-Bayesian Generalization Bounds 295

distribution p(w) o exp(||w]|?/2). Since a centered normal distribution is
defined for every w, it also assigns a weight to w*. However, the centered
normal distribution rapidly decays outside of a small radius around the
center, and if the desired parameters w* are far from the center, the above
expected risk bound only consider a negligible part of it.

The core idea of PAC-Bayesian theory is to shift the Gibbs classifier to
be centered around the desired parameters w*. Since these parameters are
unknown, the PAC-Bayesian theory applies to all possible parameters u.
Such bounds are called uniform.

Lemma 10.2. Consider the setting of Lemma 10.1. Let q,(w) be any
probability density function over the space of parameters with expectation u.
Let Dxi,(qullq) = [qu(w) log(gu(w)/p(w))dw be the KL-divergence between
two distributions. Then, for any set S = {(x1,y1), .., (Tm, ym)} the following
holds simultaneously for all u:

Eunp| oxp (R(w) = Rs(w))] = exp (Eung, [R(w) = Rs(w)] - Diw(aullp))
(10.10)

Proof. The proof includes two steps. The first step transfers the prior p(w)
to the posterior g, (w). To simplify the notation we omit the subscript of the
posterior distribution, writing it as q(w).

p(w)

Ey~p [exp (R(w) N RS(w))] = Bung [Q(w)

We move the ratio p(w)/q(w) to the exponent, thus the right hand-side
equals

Ewyng [exp (R(w) — Rg(w) — log ZEZ%)] (10.12)

The second step of the proof uses the convexity of the exponent function to

exp (R(w) — Rs(w))@o.n)

derive a lower bound to this quantity with

exp (Eung R(w) — Ry (w)] ~ Euyglog(a(w) /p(w))]). (10.13)
The proof then follows from the definition of the KL-divergence as the
expectation of log(g(w)/p(w)). O

We omit o from Lemma 10.2 to simplify the notation. The same proof
holds for o(R(w) — Rs(w)), for any positive o. The lemma holds for any S,
thus also holds in expectation, i.e., when taking expectations on both sides

296

Perturbation Models and PAC-Bayesian Generalization Bounds

of the inequality. Combining both lemmas above we get

Es~pn | exp (Eung,[o(R(w) = Rs(w))] = Dxi(alIp)]) |
< exp(c?/8m) (10.14)

This bound holds uniformly (simultaneously) for all v and particularly to
the (empirical) risk minimizer w*. This bound holds in expectation over
the samples of training sets. It implies a similar bound that holds in high
probability via Markov inequality:

Theorem 10.3. Consider the setting of the above Lemmas. Then, for any
0 € (0,1] and for any real number \ > 0, with a probability of at least 1 — ¢
over the draw of the training set, the following holds simultaneously for all
U

Eung, [R()] £ Eumg,[Rs(w)] + ADice(gullp)
1
—_— log - (10.1
—I—)\.8m+/\og5 (10.15)
Proof. Markov inequality asserts that Pr[Z < EZ/§] > 1 —§. The theorem
follows by setting Z = exp (Ewwqu ANR(w) — Rg(w))] — DKL(qqu)]) and
using Equation (10.14). O

The above bound is a standard PAC-Bayesian bound that appears in
various versions in the literature (McAllester, 2003; Langford and Shawe-
Taylor, 2002; Seeger, 2003; Catoni, 2007; Seldin, 2009; Germain et al., 2009;
Keshet et al., 2011; Seldin et al., 2012).

10.4 Algorithms

Recall that our goal is to find the parameters that minimize the risk as in
Equation (10.3). As we stated in (10.5), the empirical risk can be replaced by
a surrogate loss function and a regularization term. In our case, the training
objective is defined as follows

w* = argm&n Ew~g, [Rg(w)] + ADkr(qullp), (10.16)

where Dkr,(qy||p) is the regularization term, A is the regularization param-
eter, and the surrogate loss is the generalized probit loss defined as

Eurg, | L), 9)] (10.17)

10.4 Algorithms

297

and can be derived from the linearity of the expectation and Equation (10.4).
Note that the minimizer of the objective in Equation (10.16) is also the
minimizer of the right-hand side of the bound in Equation (10.15).

We now turn to show that whenever the posterior distributions have
smooth probability density functions g,(w), the perturbation probability
model is a smooth function of u. Thus the randomized risk bound can be
minimized with gradient methods to approach the desired wu.

Theorem 10.4. Assume q,(w) is a smooth function of its parameters, then
the PAC-Bayesian bound is a smooth function of u:

S oy | Vallog au(w)]L(yu(@).y)]

(z,y)eS

1

ViBura, [Rs(w)| = —

ullwn~q, S(w) m

Moreover, the KL-divergence is a smooth function of w and its gradient takes
the form:

VD1 (0ul[p) = Eung, | Villog u (1)) (og(gu (1) /p(w) + 1)

Proof. Buy~g,Rs(w) = L3 [qu(w)L(juw(x;),yi)dw. Since gu(w) is a
probability density function and L(y,y) € [0,1] we can differentiate under
the integral (cf. Folland, 1999, Theorem 2.27). The gradient is

Vi Eung, [Rs(w)] = %Z / Vugu () LG (x), y)dw. (10.18)
=1

Using the identity Vyqu(w) = gu(w)Vylog(gu(w)) the first part of the
proof follows. The second part of the proof follows in the same manner,
while noting that V, (g, (w)log ¢, (w)) = (Vugu(w))(log gu(w) + 1). O

The gradient of the randomized empirical risk is governed by the gradient
of the log-probability density function of its corresponding posterior model.
For example, Gaussian model with mean w and identity covariance matrix
has the probability density function q,(w) oc exp(—|w — u||?/2), thus the
gradient of its log-density is the linear moment of w, i.e., V,[log ¢,] = w—wu.

Taking any smooth distribution ¢, (w), we can find the parameters u by
descending along the stochastic gradient of the PAC-Bayesian generaliza-
tion bound. The gradient of the randomized empirical risk is formed by
two expectations, over the sample points and over the posterior distribu-
tion. Computing these expectations is time consuming, thus we use a single
sample V,[log ¢, (w)]L(yw(z),y) as an unbiased estimator for the gradient.
Similarly we estimate the gradient of the KL-divergence with an unbiased es-
timator which requires a single sample of V,,[log ¢, (w)](log(qu(w)/p(w))+1).
This approach, called stochastic approximation or online gradient descent,

298

Perturbation Models and PAC-Bayesian Generalization Bounds

amounts to use of the stochastic gradient update rule, where 7 is the learning
rate. Next, we explore different posterior distributions from computational
perspectives. Specifically, we show how to learn the posterior model so as to
ensure the computational efficiency of its MAP predictor.

10.5 The Bayesian Perspective

PAC-Bayesian theory has a strong Bayesian ingredient. It integrates over un-
certainty of its parameters using the posterior distribution. This important
aspect guarantees a uniform generalization bound, over all possible posterior
parameters. As a consequence of this theory, a new predictive distribution
emerges, the perturbation model, that connects the posterior distribution to
the task loss.

10.5.1 Predictive Distribution

The PAC-Bayesian risk give rise to novel distribution models that in-
volve optimization and perturbation. The risk averages over all parameters.
Ew~g, [R(w)] = Eyn~g, [L(Gw (), y)]. To reveal the underlying Bayesian model
we aggregate all parameters w that result in the same prediction

Pyl u) = Puymg, [y = Juw(z)] (10.19)

This novel probability distribution measures how much stable a prediction
is under random perturbation of the parameters. The appealing property
of this distribution is that unlike the Gibbs distribution, it is easy to draw
unbiased samples for as long as optimizing is easy. Since this perturbation
model is defined by perturbation and optimization it is also called perturb-
max or perturb-and-map model.

10.5.2 Posterior Distribution

The posterior distribution accounts for the space of parameters that can be
learned. The ability to efficiently apply MAP predictors is key to the success
of the learning process. Although MAP predictions are NP-hard in general,
there are posterior models for which they can be computed efficiently. For
example, whenever the potential function corresponds to a graphical model
with no cycles, MAP prediction can be efficiently computed for any learned
parameters w.

Learning unconstrained parameters with random MAP predictors provides
some freedom in choosing the posterior distribution. In fact, Theorem 10.4

10.5 The Bayesian Perspective 299

suggests that one can learn any posterior distribution by performing gradient
descent on its risk bound, as long as its probability density function is
smooth. We show that for unconstrained parameters, additive posterior
distributions simplify the learning problem, and the complexity of the bound
(i.e., its KL-divergence) mostly depends on its prior distribution.

Corollary 10.5. Let qo(w) be a smooth probability density function with
zero mean and set the posterior distribution using additive shifts q,(w) =
go(w —u). Let H(q) = —Ey~q[log g(w)] be the entropy function. Then

DKL(Qqu) = _H(QO) — Ewngo [logp(w + u)]
In particular, if p(w) o< exp(—||wl|?) is Gaussian then V, Dk (qu||p) = u

Proof: Dxr,(qullp) = —H(qu) — Ey~g, [logp(w)]. By a linear change of
variable & = w — w it follows that H(q,) = H(qo) thus V,H(q,) = 0.
Similarly Eq~q, [log p(w)] = Ey~g, [log p(w+w)]. Finally, if p(w) is Gaussian
then Ey,q, [log p(w + u)] = —u? — By, [w?]. O

This result implies that every additively-shifted smooth posterior distri-
bution may consider the KL-divergence penalty as the square regularization
when using a Gaussian prior p(w) x exp(—||w|?). This generalizes the stan-
dard claim on Gaussian posterior distributions (Langford and Shawe-Taylor,
2002), for which go(w) are Gaussians. Thus one can use different posterior
distributions to better fit the randomized empirical risk without increasing
the computational complexity over Gaussian processes.

Learning unconstrained parameters can be efficiently applied to tree struc-
tured graphical models. This, however, is restrictive. Many practical prob-
lems require more complex models, with many cycles. For some of these
models linear program solvers give efficient, although sometimes approxi-
mate, MAP predictions. For supermodular models there are specific solvers,
such as graph-cuts, that produce fast and accurate MAP predictions. In
the following we show how to define posterior distributions that guarantee
efficient predictions, thus allowing efficient sampling and learning.

MAP predictions can be computed efficiently in important practical
cases, e.g., supermodular potential functions satisfying 6; ;(—1, —1; 2, w) +
0;;(1,1;2,w) > 0; j(—1,1;2,w)+6; ;(1, —1; 2, w). Whenever we restrict our-
selves to symmetric potential function 6; ;(ys,y;;z,w) = w;;y;y;, super-
modularity translates to nonnegative constraint on the parameters w; ; > 0.
In order to model posterior distributions that allow efficient sampling we
define models over the constrained parameter space. Unfortunately, the ad-
ditive posterior models ¢, (w) = go(w —u) are inappropriate for this purpose,

300

Perturbation Models and PAC-Bayesian Generalization Bounds

as they have a positive probability for negative w values and would generate
non-supermodular models.

To learn constrained parameters one requires posterior distributions that
respect these constraints. For nonnegative parameters we apply posterior
distributions that are defined on the nonnegative real numbers. We suggest
the incorporation of the parameters of the posterior distribution in a multi-
plicative manner into a distribution over the nonnegative real numbers. For
any distribution g, (w) we determine a posterior distribution with parame-
ters u as qu(w) = go(w/u)/u. We show that multiplicative posterior models
naturally provide log-barrier functions over the constrained set of nonnega-
tive numbers. This property is important to the computational efficiency of
the bound minimization algorithm.

Corollary 10.6. For any probability distribution qo(w), let qou(w) =
do(w/u)/u be the parametrized posterior distribution. Then

DxL(qaullp) = —H(qa) — logu — Eyng, [log p(uw)]

Define the Gamma function w(a) = [w* ! exp(—w). If p(w) = go(w) =
w L exp(—w)/w(a) have the Gamma distribution with parameter o, then
Ewng, [log p(uw)] = (o — 1) logu — au. Alternatively, if p(w) are truncated

Gaussians then Eyq, [log p(uw)] = —$u? + log \/7/2.

Proof: The entropy of multiplicative posterior models naturally implies
the log-barrier function:

w=w/u

—H(qau) = /qa(w)(logqa(ﬁ}) —logU)dw = —H(ga) — logu.

Similarly, Eynqg, . [logp(w)] = Ey~g, [log p(uw)]. The special cases for the
Gamma and the truncated normal distribution follow by a direct computa-
tion. [

The multiplicative posterior distribution would provide the barrier func-
tion —logu as part of its KL-divergence. Thus the multiplicative posterior
effortlessly enforces the constraints of its parameters. This property suggests
that using multiplicative rules is computationally favorable. Interestingly,
using a prior model with Gamma distribution adds to the barrier function a
linear regularization term ||u||; that encourages sparsity. On the other hand,
a prior model with a truncated Gaussian adds a square regularization term
which drifts the nonnegative parameters away from zero. A computational
disadvantage of the Gaussian prior is that its barrier function cannot be
controlled by a parameter a.

10.6 Approzimate Inference 301

10.6 Approximate Inference

We may use the flexibility of Bayesian models to extend perturbation models
beyond MAP prediction, as in the case of approximate inference. MAP
prediction can be phrased as an integer linear program, stated in Equation
(10.7). The computational burden of integer linear programs can be relaxed
when one replaces the integral constraints with nonnegative constraints. This
approach produces approximate MAP predictions. An important learning
challenge is to extend the predictive distribution of perturbation models to
incorporate approximate MAP solutions. Approximate MAP predictions are
are described by the feasible set of their linear program relaxations which is
usually called the local polytope:

L(R) = {br(y) : br(y) = 0, 3 bolyr) =1, ¥r C s 3 bylys) = bely) |
Yr Ya\Yr

Linear program solutions are usually the extreme points of their feasible
polytope. The local polytope is defined by a finite set of equalities and in-
equalities, thus it has a finite number of extreme points. The predictive
distribution that is defined in Equation (10.19) can be effortlessly extended
to the finite set of the local polytope’s extreme points. This approach has
two flaws. First, linear program solutions might not be extreme points, and
decoding such a point usually requires additional computational effort. Sec-
ond, without describing the linear program solutions one cannot incorporate
loss functions that take the structural properties of approximate MAP pre-
dictions into account when computing the randomized risk.

Theorem 10.7. Consider approximate MAP predictions that arise from
relaxzation of the MAP prediction problem in Equation (10.7).

arg max ZbT(yT)HT(yr;w,w) s.t. be L(R)

br (yr) —

Then any optimal solution b* is described by a vector g, (x) in the finite
power sets over the cliques Y C x,29:

Guw(2) = (Guw,r(T))rer where Gw,r(x) = {yr by (yr) > 0}
Moreover, if there is a unique optimal solution b* then it corresponds to an
extreme point in the local polytope.

Proof: The program is convex over a compact set, thus strong duality
holds. Fixing the Lagrange multipliers A\, s(y,) that correspond to the

marginal constraints 3, \, bs(ys) = br(yr), and considering the probability

302

Perturbation Models and PAC-Bayesian Generalization Bounds

constraints as the domain of the primal program, we derive the dual program

S max {0 (i 0) + 3 () = 30 Al

c:cCr p:pOT

Lagrange optimality constraints (or equivalently, Danskin Theorem) deter-
mine the primal optimal solutions b} (y;) to be probability distributions over
the set arg maXyT{QT (yT; T, w)+Zc:cCr)‘:Hr (yC) _Zp:pjr)‘;Hp(yT)} that sat-
isfy the marginalization constraints. Thus g, ,(x) is the information that
identifies the primal optimal solutions, i.e., any other primal feasible solu-
tion that has the same g, () is also a primal optimal solution. (J

This theorem extends Proposition 3 in Globerson and Jaakkola (2007)
to non-binary and non-pairwise graphical models. The theorem describes
the discrete structures of approximate MAP predictions. Thus we are able
to define posterior distributions that use efficient, although approximate,
predictions while taking into account their structures. To integrate these
posterior distributions to randomized risk we extend the loss function to
L(9w(z),y). One can verify that the results in Section 10.3 follow through,
e.g., by considering loss functions L : Y x Y — [0,1] while the training
examples labels belong to the subset Y C Y.

10.7 Empirical Evaluation

We presents two sets of experiments. The first set is a phoneme recognizer
when the loss is frame error rate (Hamming distance) and phoneme error rate
(normalized edit distance). The second set of experiments is an interactive
image segmentation.

10.7.1 Phonetic Recognition

We evaluated the proposed method on the TIMIT acoustic-phonetic con-
tinuous speech corpus (Lamel et al., 1986). The training set contains 462
speakers and 3696 utterances. We used the core test set of 24 speakers and
192 utterances and a development set of 50 speakers and 400 utterances
as defined in (Sha and Saul, 2007) to tune the parameters. Following the
common practice (Lee and Hon, 1989), we mapped the 61 TIMIT phonemes
into 48 phonemes for training, and further collapsed from 48 phonemes to
39 phonemes for evaluation. We extracted 12 MFCC features and log energy
with their deltas and double deltas to form 39-dimensional acoustic feature
vectors. The window size and the frame size were 25 msec and 10 msec,
respectively.

10.7 Empirical Evaluation 303

Method Frame Phoneme
error rate | error rate
HMM (Cheng et al., 2009) 39.3% 42.0%
HMM (Keshet et al., 2006) 35.1% 40.9%
KSBSC (Keshet et al., 2006) - 45.1%
PA (Crammer, 2010) 30.0% 33.4%
DROP (Crammer, 2010) 29.2% 31.1%
PAC-Bayes 1-frame 27.7% 30.2%
Online LM-HMM (Cheng et al., 2009) 25.0% 30.2%
Batch LM-HMM (Sha and Saul, 2007) - 28.2%
CRF, 9-frames, MLP (Morris and Fosler-Lussier, 2008) - 29.3%
PAC-Bayes 9-frames 26.5% 28.6%

Table 10.1: Reported results on TIMIT core test set.

Similar to the output and transition probabilities in HMMs, our imple-
mentation has two sets of potentials. The first set of potential captures the
confidence of a phoneme based on the acoustic. For each phoneme we define
a potential function that is a sum over all acoustic features corresponding
to that phoneme. Rather than sum the acoustic features directly, we sum
them mapped through an RBF kernel. The kernel is approximated using the
Taylor expansion of order 3. Below we report results with a context window
of 1 frame and a context window of 9 frames.

The second set of potentials captures the duration of each phoneme and
the transition between phonemes. For each pair of phonemes p,q € P we
define the potential as a sum over all transitions between phoneme p and gq.

We applied the algorithm as discussed in Section 10.4 where we set the
parameters over a development set. The probit expectation was approxi-
mated by a mean over 1000 samples. The initial weight vector was set to
averaged weight vector of the Passive-Aggressive (PA) algorithm Crammer
et al. (2006), which was trained with the same set of parameters and with
100 epochs as described in Crammer (2010).

Table 10.1 summarizes the results and compare the performance of the
proposed algorithm to other algorithms for phoneme recognition. Although
the algorithm aims at minimizing the phoneme error rate, we also report the
frame error rate, which is the fraction of misclassified frames. A common
practice is to split each phoneme segment into three (or more) states. Using
such a technique usually improves performance (see for example Mohamed
and Hinton (2010); Sung and Jurafsky (2010); Schwartz et al. (2006)). Here
we report results on approaches which treat the phoneme as a whole, and
defer the issues of splitting into states in our algorithm for future work. In

304

Perturbation Models and PAC-Bayesian Generalization Bounds

Method Grabcut loss | PASCAL loss
Our method 7.77% 5.29%
Structured SVM (Hamming loss) 9.74% 6.66%
Structured SVM (all-zero loss) 7.87% 5.63%
GMMREF (Blake et al., 2004) 7.88% 5.85%
Perturb-and-MAP (Papandreou and Yuille, 2011) 8.19% 5.76%

Table 10.2: Learning the Grabcut segmentations using two different loss functions.
Our learned parameters outperform structured SVM approaches and Perturb-and-
MAP moment matching

the upper part of the table (above the line), we report results on approaches
which make use of context window of 1 frame. The first two rows are two
HMM systems taken from Keshet et al. (2006) and Cheng et al. (2009) with
a single state corresponding to our setting. KSBSC Keshet et al. (2006)
is a kernel-based recognizer trained with the PA algorithm. PA and DROP
Crammer (2010) are online algorithms which use the same setup and feature
functions described here. Online LM-HMM Cheng et al. (2009) and Batch
LM-HMM Sha and Saul (2007) are algorithms for large margin training
of continuous density HMMs. Below the line, at the bottom part of the
table, we report the results with a context of 9 frames. CRF Morris and
Fosler-Lussier (2008) is based on the computation of local posteriors with
MLPs, which was trained on a context of 9 frames. We can see that our
algorithm outperforms all algorithms except for the large margin HMMs.
The difference between our algorithm and the LM-HMM algorithm might
be in the richer expressive power of the latter. Using a context of 9 frames
the results of our algorithm are comparable to LM-HMM.

10.7.2 Image Segmentation

We perform experiments on an interactive image segmentation. We use
the Grabcut dataset proposed by Blake et al. (2004) which consists of 50
images of objects on cluttered backgrounds and the goal is to obtain the
pixel-accurate segmentations of the object given an initial “trimap” (see
Figure 10.1). A trimap is an approximate segmentation of the image into
regions that are well inside, well outside and the boundary of the object,
something a user can easily specify in an interactive application.

A popular approach for segmentation is the GrabCut approach (Boykov
et al., 2001; Blake et al., 2004). We learn parameters for the “Gaussian
Mixture Markov Random Field” (GMMRF) formulation of Blake et al.
(2004) using a potential function over foreground /background segmentations

Y = {-1L1}" 0(y;z,w) = > ey 0i(yis 2, 0) + 32, jep 05,5 (i, yj3 @, w). The

10.7 Empirical Evaluation 305

Figure 10.1: Two examples of image (left), input “trimap” (middle) and the final
segmentation (right) produced using our learned parameters.

local potentials are 6;(y;; z,w) = wy, log P(y;|x), where w,, are parameters
to be learned while P(y;|x) are obtained from a Gaussian mixture model
learned on the background and foreground pixels for an image x in the
initial trimap. The pairwise potentials are 6; ;(v;, y;; ¢, w) = w, exp(—(x; —
7;)?)y;y;, where z; denotes the intensity of image x at pixel i, and w, are
the parameters to be learned for the angles a € {0,90,45, —45}°. These
potential functions are supermodular as long as the parameters w, are
nonnegative, thus MAP prediction can be computed efficiently with the
graph-cuts algorithm. For these parameters we use multiplicative posterior
model with the Gamma distribution. The dataset does not come with a
standard training/test split so we use the odd set of images for training and
even set of images for testing. We use stochastic gradient descent with the
step parameter decaying as 7, = # for 250 iterations.

We use two different loss functions for training/testing our approach to il-
lustrate the flexibility of our approach for learning using various task specific
loss functions. The “GrabCut loss” measures the fraction of incorrect pixel
labels in the region specified as the boundary in the trimap. The “PASCAL
loss”, which is commonly used in several image segmentation benchmarks,
measures the ratio of the intersection and union of the foregrounds of ground
truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of
MAP perturbations (Papandreou and Yuille, 2011) and structured SVM.
We use a stochastic gradient approach with a decaying step size for
1000 iterations. Using structured SVM, solving loss-augmented inference
maxgey {L(y,9) +0(y; x,w)} with the Hamming loss can be efficiently done
using graph-cuts. We also consider learning parameters with all-zero loss
function, i.e., L(y,3) = 0. To ensure that the weights remain non-negative
we project the weights into the non-negative side after each iteration.

306

Perturbation Models and PAC-Bayesian Generalization Bounds

Table 10.2 shows the results of learning using various methods. For the
GrabCut loss, our method obtains comparable results to the GMMRF
framework of Blake et al. (2004), which used hand-tuned parameters. Our
results are significantly better when PASCAL loss is used. Our method also
outperforms the parameters learned using structured SVM and Perturb-
and-MAP approaches. In our experiments the structured SVM with the
Hamming loss did not perform well — the loss augmented inference tended
to focus on maximum violations instead of good solutions which causes
the parameters to change even though the MAP solution has a low loss
(a similar phenomenon was observed in Szummer et al. (2008). Using
the all-zero loss tends to produce better results in practice as seen in
Table 10.2. Figure 10.1 shows some sample images, the input trimap, and
the segmentations obtained using our approach.

10.8 Discussion

Learning complex models requires one to consider non-decomposable loss
functions that take into account the desirable structures. We suggest the
use of the Bayesian perspectives to efficiently sample and learn such models
using random MAP predictions. We show that any smooth posterior dis-
tribution would suffice to define a smooth PAC-Bayesian risk bound which
can be minimized using gradient decent. In addition, we relate the poste-
rior distributions to the computational properties of the MAP predictors.
We suggest multiplicative posterior models to learn supermodular potential
functions that come with specialized MAP predictors such as the graph-cut
algorithm. We also describe label-augmented posterior models that can use
efficient MAP approximations, such as those arising from linear program
relaxations. We did not evaluate the performance of these posterior models,
and further exploration of such models is required.

The results here focus on posterior models that would allow for efficient
sampling using MAP predictions. There are other cases for which specific
posterior distributions might be handy, e.g., learning posterior distributions
of Gaussian mixture models. In these cases, the parameters include the
covariance matrix, thus would require to sample over the family of positive
definite matrices.

Acknowledgements

TJ was partially supported by NSF grant #1524427

10.9 References 307

10.9 References

A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmen-
tation using an adaptive gmmrf model. In ECCV 2004, pages 428-441. 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. PAMI, 2001.

O. Catoni. PAC-Bayesian supervised classification: the thermodynamics of statis-
tical learning. arXiv preprint arXiv:0712.0248, 2007.

C.-C. Cheng, F. Sha, and L. K. Saul. A fast online algorithm for large margin
training of continuous-density hidden Markov models. In Interspeech, 2009.

K. Crammer. Efficient online learning with individual learning-rates for phoneme
sequence recognition. In Proc. ICASSP, 2010.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Journal of Machine Learning Research, 7, 2006.

C. Do, Q. Le, C.-H. Teo, O. Chapelle, and A. Smola. Tighter bounds for structured
estimation. In Proceedings of NIPS (22), 2008.

G. Folland. Real analysis: Modern techniques and their applications, john wiley &
sons. New York, 1999.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning
of linear classifiers. In ICML, pages 353-360. ACM, 2009.

K. Gimpel and N. Smith. Softmax-margin crfs: Training log-linear models with
cost functions. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pages 733-736. Association for Computational Linguistics, 2010.

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. Advances in Neural Information Processing
Systems, 21, 2007.

L. Goldberg and M. Jerrum. The complexity of ferromagnetic ising with local fields.
Combinatorics Probability and Computing, 16(1):43, 2007.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising
model. SIAM Journal on computing, 22(5):1087-1116, 1993.

J. Keshet, S. Shalev-Shwartz, S. Bengio, Y. Singer, and D. Chazan. Discriminative
kernel-based phoneme sequence recognition. In Interspeech, 2006.

J. Keshet, D. McAllester, and T. Hazan. PAC-Bayesian approach for minimization
of phoneme error rate. In ICASSP, 2011.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference
of Machine Learning, pages 282-289, 2001.

L. Lamel, R. Kassel, and S. Seneff. Speech database development: Design an analysis
of the acoustic-phonetic corpus. In DARPA Speech Recognition Workshop, 1986.

J. Langford and J. Shawe-Taylor. PAC-Bayes & margins. Advances in neural
information processing systems, 15:423-430, 2002.

K.-F. Lee and H.-W. Hon. Speaker independent phone recognition using hidden

markov models. IEEFE Trans. Acoustic, Speech and Signal Proc., 37(2):1641-1648,
1989.

308

Perturbation Models and PAC-Bayesian Generalization Bounds

D. McAllester. Simplified PAC-Bayesian margin bounds. Learning Theory and
Kernel Machines, pages 203-215, 2003.

D. McAllester. Generalization bounds and consistency for structured labeling. In
B. Scholkopf, A. J. Smola, B. Taskar, and S. Vishwanathan, editors, Predicting
Structured Data, pages 247-262. MIT Press, 2006.

D. McAllester and J. Keshet. Generalization bounds and consistency for latent
structural probit and ramp loss. In Proceeding of NIPS, 2011.

D. McAllester, T. Hazan, and J. Keshet. Direct loss minimization for structured
prediction. Advances in Neural Information Processing Systems, 23:1594-1602,
2010.

A. Mohamed and G. Hinton. Phone recognition using restricted boltzmann ma-
chines. In Proc. ICASSP, 2010.

J. Morris and E. Fosler-Lussier. Conditional random fields for integrating local
discriminative classifiers. [IEEE Trans. on Acoustics, Speech, and Language
Processing, 16(3):617-628, 2008.

G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCYV, Barcelona,
Spain, Nov. 2011. doi: 10.1109/ICCV.2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, 1988.

M. Ranjbar, T. Lan, Y. Wang, S. Robinovitch, Z.-N. Li, and G. Mori. Optimizing
nondecomposable loss functions in structured prediction. IEEE Trans. Pattern
Analysis and Machine Intelligence, 35(4):911-924, 2013.

A. Rush and M. Collins. A tutorial on dual decomposition and lagrangian relaxation
for inference in natural language processing.

P. Schwartz, P. Matejka, and J. Cernocky. Hierarchical structures of neural networks
for phoneme recognition. In Proc. ICASSP, 2006.

M. Seeger. Pac-bayesian generalisation error bounds for gaussian process classifi-
cation. The Journal of Machine Learning Research, 3:233-269, 2003.

Y. Seldin. A PAC-Bayesian Approach to Structure Learning. PhD thesis, 2009.

Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer. Pac-

bayesian inequalities for martingales. Information Theory, IEEE Transactions
on, 58(12):7086-7093, 2012.

F. Sha and L. K. Saul. Comparison of large margin training to other discriminative
methods for phonetic recognition by hidden Markov models. In Proc. ICASSP,
2007.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Conf. Uncertainty in Artificial
Intelligence (UAI), 2008.

Y.-H. Sung and D. Jurafsky. Hidden conditional random fields for phone recogni-
tion. In Proc. ASRU, 2010.

M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts. In Computer
Vision—-ECCV 2008, pages 582—-595. Springer, 2008.

D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured
prediction. In AISTATS, pages 21-23, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. Advances in
neural information processing systems, 16:51, 2004.

10.9 References 309

A. Tewari and P. Bartlett. On the consistency of multiclass classification methods.
Journal of Machine Learning Research, 8:1007-1025, 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6(2):1453, 2006.

11

Adversarial Perturbations of Deep Neural
Networks

David Warde-Farley wardefar@iro.umontreal.ca

Montreal Institute for Learning Algorithms, Université de Montréal
Montreal, QC, Canada

Ian Goodfellow goodfellow@google.com
Google, Inc.
Mountain View, CA, USA

This chapter provides a review of a body of recent work on the topic of adver-
sarial examples and generative adversarial networks. Adversarial examples
are examples created via worst-case perturbation of the input to a machine
learning model. Adversarial examples have become a useful tool for the anal-
ysis and reqularization of deep neural networks for classification. In the gen-
erative adversarial networks framework, the task of probabilistic modeling is
reduced to the task of predicting worst-case perturbations of the input to a
deep neural network. A discriminator network learns to recognize real data
and reject fake samples, while a generator network learns to emit samples
that deceive the discriminator. The GAN framework provides an alternative
to maximum likelihood. The new framework has many advantageous com-
putational properties, and is better suited than maximum likelihood to the
task of generating realistic samples. More generally, games may be designed
to have equilibria that direct learning algorithms to accomplish other goals,
such as domain adaptation or preservation of privacy.

312

Adversarial Perturbations of Deep Neural Networks

11.1 Introduction

The past several years have given rise to two related lines of inquiry in deep
learning research that view the training of neural networks through the lens
of an adversarial game. The first body of work centers on the surprising
result that discriminative classifiers are often highly sensitive to very small
perturbations in the input space. This finding has led to algorithms designed
to increase classifier robustness, to these perturbations and more generally,
by exploiting these “adversarial examples”. The second body of work frames
generative model training as an adversarial game, pitting a sample genera-
tion process against a classifier trained to discriminate synthesized examples
from training data.

This chapter describes how to construct adversarial perturbations in
Section 11.2, then describes how to use the resulting adversarial examples
to improve the robustness of a classifier in Section 11.3. Finally, Section 11.4
describes more sophisticated games in which one network is trained to
generate inputs that deceive another network. These games between two
machine learning models can be used for generative modeling, privatization
of data, domain adaptation, and other applications.

11.2 Adversarial Examples

Neural networks have enjoyed much recent success in various application do-
mains, owing to their ability to learn rich, non-linear parametric mappings
from large amounts of data. While the general principles of training such
networks via gradient descent are now well understood, a fully principled ac-
count of the internal representations they learn to compute remains elusive.
As the commercial and industrial adoption of neural network technology
hastens, the search for these insights becomes ever more important. Efforts
to better understand how neural networks parameterize the input-output
mappings they learn have yielded surprising results.

Szegedy et al. (2014b) discovered that small changes to the input of a
neural network can have large, surprising effects on its output. For example,
a well-chosen perturbation of pixels in the input to an image classifier can
completely alter the class predicted by the network; in extreme cases, such
as the one illustrated in Figure 11.1, the difference between the original and
perturbed examples is imperceptible to a human observer. This surprising
sensitivity to small perturbations has been found to exist not only in neural
networks but also in more traditional machine learning methods, such as

11.2 Adversarial Examples 313

+ .007 x : s =
x sign(VgJ(0,x,y)) x +e-sign(VeJ(0,z,y))
y =“panda” “nematode” “gibbon”
w/ 57.7% confidence w/ 8.2% confidence w/ 99.3 % confidence

Figure 11.1: An example of an adversarial perturbation of an ImageNet example,
where the perturbation is so small that it is imperceptible to a human observer
despite changing the model’s classification of the input. The model assigns higher
confidence to the incorrect classification of the adversarial example that it assigned
to the correct classification of the original image. The model in this example
is GoogLeNet (Szegedy et al., 2014a). Figure reproduced with permission from
Goodfellow et al. (2014b).

linear and nearest neighbor classifiers. In-domain examples that have been
altered in this fashion are known as adversarial examples.

Adversarial examples are interesting from many different perspectives.
First, they demonstrate that machine learning methods do not yet truly
understand the tasks they are asked to perform, even though these methods
often achieve human level performance (or better) on a test set consisting
of naturally occurring inputs. Improving performance on adversarial exam-
ples therefore naturally implies achieving a deeper understanding of the
underlying task. To this end, improvements in classification of adversarial
examples can indeed lead to improvements on the original, non-adversarial
classification task, as described in Section 11.3. Second, adversarial examples
also have important implications for computer security, discussed in Sec-
tion 11.2.1. Adversarial examples suggest that contemporary machine learn-
ing algorithms deployed against artificial perception tasks are performing
fundamentally different computations than the human perceptual system,
as discussed in Section 11.2.2. Finally, adversarial examples are interesting
because they present a major difficulty for certain forms of model-based opti-
mization. In scenarios where automated classification is useful but the major
task of interest is a search for examples with desirable properties (e.g. drug
design), one might be tempted to employ a well-performing differentiable
classifier and perform gradient ascent with respect to the input. However,
the existence and relative abundance of adversarial examples suggests this
approach will most often be fruitless.

314

Adversarial Perturbations of Deep Neural Networks

11.2.1 Cross-Model, Cross-Dataset Generalization and Security

A shocking property of adversarial examples, discovered by Szegedy et al.
(2014b), is that a specific input point & that was designed to deceive
one model (model A) will often also deceive another model, model B.
When model B has a different architecture than model A, this is called
cross-model generalization of adversarial examples. When model B was
trained on a different training set than model A, this is called cross-
dataset gemeralization. It is not fully understood why this happens, but
Section 11.2.3 offers some intuitive justification.

Both Szegedy et al. (2014b) and Goodfellow et al. (2014b) present several
experiments demonstrating the transfer rate between various model families
and subsets of the training set. Additional experimental results unique
to this chapter are presented in Table 11.1, using the same adversarial
example generation procedure as Goodfellow et al. (2014b). The crafting
model for the majority of these experiments was a maxout neural network of
the same architecture employed for the permutation-invariant MNIST task
in Goodfellow et al. (2013a). Additionally, transfer between a smoothed,
differentiable version of nearest neighbor classification and conventional
nearest neighbor is examined, where the prediction of the smoothed nearest
neighbor classifier predicts a probability for class ¢ via the formula

N
1
yil@) = & Y way("” (11.1)
n=1
where yi(n) is equal to 1 if training example n has class 7 and 0 otherwise,

and wy, is the softmax-normalized squared Euclidean distance from the test
example x to training example (),

exp (—[lz — =™)
> exp (=[x — x(™)||2)

These results show that there is a non-trivial error rate even when the ad-

w, = (11.2)

versarial examples are crafted to fool a neural network, then deployed against
an extremely different machine learning model such as nearest neighbor clas-
sification. Because these models are so different from each other, nearest
neighbor has a lower error rate on the transferred adversarial examples than
has usually been reported previously, but the error rate remains significant.
These results also show that models that are not differentiable (such as
nearest neighbor) can easily be attacked using cross model transfer from a
differentiable model (maxout networks or smoothed nearest neighbor).

11.2 Adversarial Examples 315

Crafting model Target model Error rate
Maxout network Nearest neighbor 25.3%
Smoothed nearest neighbor | Nearest neighbor 47.2%
Maxout network ReLU network 47.2%
Maxout network Tanh network 99.3%
Maxout network Softmax regression 88.9%

Table 11.1: Results of additional cross-model adversarial transfer experiments.
The maxout crafting model is identical in architecture to that employed for the
permutation-invariant MNIST task by Goodfellow et al. (2013a). The ReLU and
Tanh neural networks each contained two layers of 1,200 hidden units each. All
nerual networks were trained with dropout (Srivastava et al., 2014).

Cross-model, cross-dataset generalization of adversarial examples implies
that adversarial examples pose a security risk even under a threat model
where the attacker does not have access to the target’s model definition,
model parameters, or training set. The attacker can prepare a training set
(for the same task), train a model on their own training set, craft adversarial
examples that deceive their own model, and then deploy these adversarial
examples against the target system.

Attacks that leverage cross-model and cross-dataset generalization of
adversarial examples have been acknowledged as a theoretical possibility
since the work of Szegedy et al. (2014b) introduced these effects. Papernot
et al. (2016a) provided the first practical demonstration of attacks based on
adversarial examples in a realistic scenario: they trained a classifier for the
MNIST dataset using the MetaMind API, wherein the model parameters
reside on MetaMind’s servers and its definition is not disclosed to the user.
By training another model locally and crafting adversarial examples that
fooled it, the authors were able to successfully fool the model they had
trained via the MetaMind API. This suggests that modern machine learning
methods require new defenses before they can be safely used in situations
where they might face an actual adversary.

11.2.2 Adversarial Examples and the Human Brain

It is natural to wonder whether the human brain is vulnerable to adversarial
examples. At first glance, it seems difficult to test, because there is no known
method for obtaining a description of the brain as a differentiable model in
the form used by adversarial example construction algorithms. However, the
cross-model, cross-dataset generalization property of adversarial examples
suggests that if the brain were even remotely similar to modern machine

316

Adversarial Perturbations of Deep Neural Networks

learning algorithms, it should be fooled by the same images that fool machine
learning models. So far this seems not to be the case.

However, the brain can be easily fooled by many illusions; see Robinson
(2013) for a review. For example, optical illusions in which one line appears
to be longer than another despite both lines being the same length can be
interpreted as adversarial examples for the line length regression task.

Audible and visible stimuli can also cause a range of beneficial or detri-
mental involuntary side effects in human observers, ranging from pain relief
to seizures. Many of these effects rely on synchronizing the temporal fre-
quency of a visual stimulus to the temporal frequency of changes in brain
activity measured by EEG. This might be analogous to adversarial example
construction techniques that match a spatial pattern of inputs to the spa-
tial distribution of neural network weights. See Frederick et al. (2005) for a
useful review of the effects of audible and visible stimuli constructed using
information from EEG.

11.2.3 The Linearity Hypothesis

When Szegedy et al. (2014b) discovered the existence of adversarial exam-
ples, their cause was unknown. Initially, they were suspected to be caused
by neural networks being highly complex, non-linear models that can assign
very random classifications to test set inputs.

Goodfellow et al. (2014b) argued that these explanations failed to explain
two important experimental observations. First, adversarial examples affect
some very simple models, such as shallow linear classifiers, just as much as
they affect deep models. Model complexity and overfitting would therefore
not seem to be the primary problem. Second, adversarial examples can
consistently fool models other than the one from which they are initially
derived, as described in Section 11.2.1. If adversarial examples were just a
manifestation of overfitting, then different models should respond to each
adversarial example differently. Goodfellow et al. (2014b) demonstrated, to
the contrary, that distinct models not only mislabel the same adversarial
examples, but also mislabel them with the same class.

Goodfellow et al. (2014b) introduced the linearity hypothesis, which pre-
dicts that most adversarial examples affecting current machine learning
models arise due to the model behaving extremely linearly as a function of its
inputs. To confirm this hypothesis, Goodfellow et al. (2014b) demonstrated
that adversarial attacks against linear approximations of deep models are
highly successful, and introduced visualizations showing that the logits (i.e.
the inputs to a final softmax output layer) of a deep neural network classifier
are piecewise linear with large pieces as a function of the input to the model.

11.2 Adversarial Examples 317

This hypothesis is based on the observation that modern deep networks are
based on components that have been designed to be extremely linear, such
as rectified linear units (Jarrett et al., 2009; Glorot et al., 2011). Though
deep neural networks are very nonlinear as a function of their parameters,
they can nonetheless be very linear as a function of their inputs. Deep rec-
tifier networks divide input space into several regions, with the output of
the rectified linear layers being linear within each region. These regions are
often extremely large, especially compared to the size of perturbations used
to construct adversarial examples.

To understand why linear functions are highly vulnerable to adversarial
examples, consider the output of a regression model f(z) = w'z. If the
input is perturbed by e-sign(w), then the output increases by ¢||w||;. When
w is high dimensional, the increase in the output can be extremely large. In
other words, linear functions can add up very many tiny pieces of evidence
to reach an extreme conclusion. If & has large feature values that are not
closely aligned with w, it will have less of an effect on the output than a
perturbation consisting of many small values that are all closely aligned to
w.

Even in low dimensional spaces, linear functions behave in ways that seem
disadvantageous for machine learning. A logistic regression model applied to
a one-dimensional input space that classifies an input of z = —1 as belonging
to the negative class and an input of z = 1 as belonging to the positive class
must classify an input of x = 2 as belonging to the positive class with
extremely high confidence, even if no value as large as 2 occurred in the
training set. Larger values of x result in more confidence, even if they are
even farther from examples that were seen at training time.

Because neural networks are parameterized in terms of linear components,
they are biased toward learning functions that make wild predictions when
extrapolating far from previously seen inputs. In high-dimensional spaces,
even small perturbations of each input can take the input vector very far
in Euclidean distance from the starting point. This explains the majority of
adversarial examples affecting modern neural networks.

It is natural to wonder how adversarial examples are distributed through-
out space. For example, one could imagine that they are rare and occur
in small, fine pockets that must be found with careful search procedures.
The linearity hypothesis predicts instead that adversarial examples occupy
large volumes of space. If the cost function J(x,y) increases in a roughly
linear fashion in direction d, then an adversarial example £ = x + 1 will be
misclassified so long as 1" d is large. The linearity hypothesis thus predicts
that a hyperplane where ' d = C for some constant C' divides the space R™
into two half-spaces. The original input @ is correctly classified, and a large

318

Adversarial Perturbations of Deep Neural Networks

region of points on the same side of the hyperplane as are also classified
the same as . On the opposite side of the hyperplane, nearly all points have
a different classification.

Goodfellow et al. (2014b) provided a variety of sources of indirect evidence
for the linearity hypothesis. This chapter introduces some visualizations that
show the resulting half-spaces of adversarial examples more directly. These
visualizations are called church window plots due to their resemblance to
stained glass windows. These plots show two-dimensional cross sections of
the classification function, exploring input space near test set examples.
Figure 11.2 shows cross sections exploring the adversarial direction defined
by the fast gradient sign method and a random direction. Figure 11.3 shows
cross sections exploring two random orthogonal directions. Figure 11.4 shows
cross sections exploring two adversarial directions, with the first defined by
the fast gradient sign method and the second defined by the component of
the gradient that is orthogonal to the first direction.

11.2.4 Crafting Adversarial Examples

Several different methods of crafting adversarial examples are available.
When adversarial examples were first discovered, they were generated with
general purpose methods that make no assumption about the underlying
cause of adversarial examples, but that are expensive and require multiple
iterations. Later, inexpensive methods based on linearity assumptions were
developed. Most adversarial example crafting techniques require training set
labels, but virtual adversarial examples remove this requirement. Specialized
methods provide fast methods of attacking classifiers specifically or crafting
perturbations that change as few input dimensions as possible.

Let & € R™ be a vector of input features (usually the pixels of an image)
and y be an integer specifying the desired output class of the model. Let
f be the classification function learned by the model, so that f(x) is an
integer giving the model’s prediction. Let J(x,y) be the cost used to train
the model.

The goal of adversarial example crafting is to find an input point & = x+n
that causes the model to perform poorly. Different methods of crafting
adversarial examples use different criteria to determine how poorly the
model behaves, different approaches to limit the size of 7, and different
approximations to optimize the chosen criterion. In all cases, the goal
is to find a perturbation 1 to be small enough that an ideal classifier
(usually approximated by human judgment) would still assign class y to
x. Guaranteeing that x truly belongs to the same class as x is a subtle
point, discussed further in Section 11.2.5.

11.2 Adwversarial Examples 319

Figure 11.2: Church window plots applied to a convolutional network trained on
CIFAR-10. The convolutional network is that of Goodfellow et al. (2013b). Each cell
in the 10 x 10 grid in the figure is a different church window plot corresponding
to a different CIFAR-10 test example. Here the model is viewed as a function
f:R™— {1,...,10}. At coordinate (h,v) within the plot, the pixel is drawn with
a unique shade (in the book, the pixel is printed with a unique grayscale shade
indicating the class, while on a computer monitor, each pixel may be displayed
with a unique color indicating the class) for each class, indicating the class output
by f(x + hu® + vu(2)), where u(®) and u® are orthogonal unit vectors that
span a 2-D subspace of R™. The correct class for each example, given by the test
set label, is always plotted as white. To aid visibility, a black contour is drawn
around the boundary of each class region. The horizontal coordinate h within the
plot begins at —e on the left side of the plot and increases to € on the right side
of the plot. The vertical coordinate v spans the same range, beginning at —e at
the top of the plot. The center of the plot thus corresponds to the classification
of the unperturbed input @. In all cases these visualizations use .25 for e, which
corresponds to large perturbations on our preprocessing of CIFAR-10. Such large
perturbations seriously degrade the quality of the imag)e but do not prevent a human
observer from recognizing the class. In this figure, u(!) is the direction defined by a
fast technique for finding adversarial examples discussed later in this section, while
u(® is a direction chosen uniformly at random among those orthogonal to u(!).
From this figure, one can see that the adversarial direction usually roughly divides
space into a half-space of correct classification and incorrect classification, with
the test example usually lying on the correct side but somewhat near the decision
boundary. One can also see that in these cross-sections, the decision boundaries
have simple, roughly linear, shapes.

320

Adversarial Perturbations of Deep Neural Networks

h_d

1 -

Figure 11.3: Church window plots with both basis directions chosen randomly. See
Figure 11.2 for a description of church window plots. In this plot, one can see that
random directions rarely cause the class to change. Many authors mistakenly speak
of “adversarial noise.” This figure illustrates that noise actually does not change
the classification very often compared to adversarial directions of perturbation.
The empirical observation that noise is less harmful than adversarial directions
dates back to Szegedy et al. (2014b), but the church window plots make the
mechanism clear. The classification decision is sensitive mostly to a small subspace
of adversarial directions that are unlikely to be chosen randomly.

11.2 Adwversarial Examples 321

Figure 11.4: Church window plots with both basis directions chosen adversarially.
See Figure 11.2 for a description of church window plots. In this plot, the first
direction is the one given by the fast gradient sign method (Equation 11.6) and the
second direction is the component of the gradient that is orthogonal to the first
direction. One can still see linear decision boundaries within this subspace. From
this one can see that adversarial examples do not lie in small pockets whose exact
coordinates are difficult to find. Instead, adversarial examples may be found by
moving in any direction that has large dot product with the gradient.

322

Adversarial Perturbations of Deep Neural Networks

Different methods of crafting adversarial examples quantify poor model
performance in different ways. Some methods are explicitly designed to cause
the model to label & as belonging to class 3, where § # y. Other methods
make use of the cost function J(x,y) used to train the model, and seek a
perturbation that results in a large (ideally, maximal) value of J(Z,y).

Szegedy et al. (2014b) introduced the first method for crafting adversarial
examples. This method was based on solving the optimization problem

n = argmin A||n||3 + J(z +n,9) subject to (z +mn) € [0,1]", (11.3)
n

where § is an incorrect class of the attacker’s choice. The initial experiments
on adversarial examples used box-constrained L-BFGS to accomplish the
minimization, but in principle any gradient-based optimization algorithm
would suffice. The minimization was repeated multiple times with different
values of A in order to find the smallest 77 that resulted in successfully
causing f(x + n) = g. This method is extremely effective, finds very
small perturbations, and can cause the model to output specific, desired
classes, and makes no assumptions about the structure of the model, but is
also highly expensive, requiring multiple calls to an iterative optimization
procedure for each example.

Szegedy et al. (2014b) included a constraint that (x + n) € [0,1]™. This
constraint ensures that the adversarial example has the same range of pixel
values as the original data, and that it lies within the domain of the original
function. Later authors frequently omitted this constraint for simplicity,
because the perturbations 7 are typically small and thus do not move the
input significantly far outside the original domain.

For the cost functions that are used to train neural network classifiers,
such as J(x,y) = —log P(y | «), a model that is linear over wide regions
of its input domain also yields a cost that is approximately linear over
wide regions of the input domain. This motivated the development of a
fast adversarial example generation scheme based on a linear approximation
of the cost function. The method of Szegedy et al. (2014b) fixes a desired
target class and minimizes the size of n. The method of Goodfellow et al.
(2014b) simplifies the problem by fixing the allowed size of n and maximizing
the cost incurred by the perturbation:

n = argmax J(x + n,y) subject to ||N||c <€, (11.4)
n

where € is a hyperparameter chosen by the attacker, specifying the maximum
desired pertubation size. The use of the max norm [[n||o is motivated
in Section 11.2.5, but this method could also work with other norms,
including the L? norm. Solving Equation 11.4 requires iterative optimization

11.2 Adversarial Examples 323

in general. To obtain a fast, closed-form solution, Goodfellow et al. (2014b)
replaced J with a first-order Taylor series approximation:

n = argmax.J(z,y) + n' g subject to ||n||e < €. (11.5)
n

where g = Vg J(x,y). The solution to Equation 11.5 is given by

n = € - sign(g) (11.6)

This is called the fast gradient sign method of generating adversarial exam-
ples. The method has the advantage of being extremely fast compared to
the L-BFGS method (computing the gradient once instead of hundreds of
times), making adversarial example generation feasible for use within the
inner loop of a learning algorithm, as described in Section 11.3. The method
has some disadvantages, namely that its justification rests on the linearity
hypothesis. In some cases, when the linear approximation poorly represents
the function, this method requires larger perturbations than other methods.
In extreme cases, such as when a model has been explicitly trained to resist
the fast gradient sign method, the fast gradient sign method might cease
to find adversarial examples while the L-BFGS method continues to do so.
The L-BFGS method was also designed to cause the model to predict a spe-
cific class ¢ chosen by the attacker. While the fast gradient sign method as
outlined above does not allow for the specification of a target class, it can
be trivially extended to this setting by following the gradient of log P(g | «)
rather than J(x,y). Finally, the fast gradient sign method is highly general
because it is based on maximizing J. This allows it to be applied to mod-
els other than classifiers. For example, it can be used to find inputs to an
autoencoder that incur high reconstruction error.

Both the L-BFGS method and the fast gradient sign method rely on access
to the true class label y. Miyato et al. (2015) devised a way to remove this
requirement. After a model has been at least partially trained, it is usually
able to provide mostly accurate labels. Therefore, rather than making a
perturbation intended to reduce the probability of the label provided in the
training set, the attacker can make a perturbation intended to make the
model change its prediction. Virtual adversarial examples are thus designed
to approximately maximize

Dxr (p(y | 2)[lp(y | = +m)) (11.7)

with respect to m, under appropriate constraints on 7. The ability to
construct adversarial examples without access to ground truth labels enables
the use of adversarial examples for semi-supervised learning, described in
Section 11.3.1.

324

Adversarial Perturbations of Deep Neural Networks

Other specialized methods of crafting adversarial examples provide differ-
ent benefits. Huang et al. (2015) introduced an attack specialized for clas-
sifiers. While the fast gradient sign method linearizes the cost function,
the attack of Huang et al. (2015) linearizes the model. Under the linear
approximation of the model, it is possible to solve for the smallest perturba-
tion that yields a change in the output class in closed form. By more tightly
modeling the problem of changing the output class, this method is able to
achieve class changes with smaller perturbation sizes than the fast gradient
sign method.

Most methods of crafting adversarial examples change many input dimen-
sions, each by a small amount. Papernot et al. (2016b) introduced a different
approach, that changes few input dimensions, but may change each one by
a large amount.

Finally, Sabour et al. (2015) showed that it is possible to construct
adversarial examples that cause the model to assign a hidden representation
to @ that closely resembles the hidden representation of a different example
x’. For example, an image of farm equipment may be perturbed so that it has
approximately the same hidden representation as an image of a bird. This is
a stronger condition than perturbing the image to take on a specific class. For
example, when the image of farm equipment is perturbed to have the same
hidden representation as the image of a bird, the hidden representation may
be decoded to obtain the same color of bird standing in the same location
with the same pose—it is not just the concept of the output class “bird”
that is imposed on the adversarial example.

11.2.5 Ensuring That Class Changes Are Mistakes

One subtle point when constructing adversarial examples is that the pertur-
bation 77 must not change the true class of the input — that is, the adversarial
example should be such that for the task at hand, it would still be desir-
able that a classifier assign it the same class as it would the original. If
7 is “too large”, an adversarial perturbation could subtract the true iden-
tifying characteristics of the original class identity and replace them with
the true identifying characteristics of another class, yielding an adversarial
example & that truly does belong to a different class y. In other words, it
is sometimes correct for the classifier to change its class output when the
input changes. Adversarial examples must be crafted in such a way that it
remains a mistake for the class output to change.

So far there is no general principle determining how to tell whether the
class should change for an arbitrary new input, and it seems that if such a
principle were known there would no longer be a need for machine learning

11.2 Adversarial Examples 325

classifiers. Instead, Goodfellow et al. (2014b) advocate devising a set of
sufficient conditions that guarantee that a perturbation 7 will not change the
class for a particular application area. For the specific application of object
recognition in images, Goodfellow et al. (2014b) suggests that a perturbation
7 that does not change any specific pixel by more than some amount €
cannot change the output class. The value of ¢ should be chosen based
on knowledge of the task. For example, on the MNIST dataset, the input
values are typically normalized to lie in the range [0, 1]. The images are of
written digits, typically displayed as white digits on a black background.
The information content of each pixel is thus roughly binary. Consequently,
€ may be chosen to be quite large for this task. An € of .25 turns a white pixel
with value 1.0 into a bright gray pixel with value .75, which may still easily
be recognized as carrying the same semantics as a white pixel. Because
some pixels in the original data are gray, perturbations larger than .25
become difficult for human observers to classify. For other object recognition
datasets, one might choose € to be small enough that the change to a pixel
is imperceptible to a human observer, or to be small enough that a change
to the 32 bit floating point encoding of the input does not change the 8 bit
representation used to store the images on disk. This principle of ensuring
that no pixel changes by more than some negligible amount motivates the
use of the max norm to constrain the size of in Equation 11.4. Figure 11.5
provides some illustrations showing how the max norm can be superior to
the L? norm for ensuring that perturbations do not alter the true class.

The use of the max norm to constrain 7 is of course a sufficient condition
for preventing a class change when the task is object recognition. One could
imagine other tasks where no norm of n provides a useful restriction on the
perturbation. For example, consider a regression task where the true output
should be dx. Then any perturbation that has non-zero dot product with
d will change the true output that the regression model should return. The
norm of the perturbation is not relevant for this hypothetical task, but rather
the direction.

11.2.6 Rubbish Class Examples

Adversarial examples are closely related to the idea of rubbish class examples
(LeCun et al., 1998). Rubbish class examples are pathological inputs that do
not belong to any class encountered during training. For example, an image
where the pixels are drawn from a uniform distribution usually does not
belong to any class of images of objects. Ideally, one would like a classifier
that assigns normalized probabilities to various output classes to report a
uniform distribution over output classes when presented with such an input.

326

Adversarial Perturbations of Deep Neural Networks

Figure 11.5: Examples of perturbations, illustrating that an L? perturbation can
behave unpredictable, while a perturbation subject to a max norm constraint can
be guaranteed to preserve the object class. The grid on the left shows the result
of L?-constrained perturbation while the grid on the right shows the result of max
norm-constrained perturbation. Within each grid, each row shows a the results of
a single perturbation. Each row of three images consists of (left to right) an image
of input @, an image of a perturbation 7, and an image of a resulting perturbed
input, £ = x + 7.

In the grid on the left, three different perturbations are shown. From top
to bottom, the first perturbation causes the true class to change from 3 to 7
(the pertubation is just the difference between an example 7 and an example
3 from the dataset), the second perturbation causes no change, and the final
perturbation causes the class to change from 3 to the rubbish class. All three of
these perturbations have the same L? norm.

In the grid on the right, see three new perturbations that still have the same L?
norm as the first three, but that have been modified to obey a max norm constraint.
These perturbations were constructed by taking the sign of the corresponding
perturbation on the left, assigning zero entries to be —1 or 1 randomly, and
multiplying by a scaling factor. Randomly replacing zero entries with —1 or 1 is
necessary to increase the perturbation size enough to maintain the same L? norm
as the perturbation on the left. None of the max norm constrained perturbations
change the class.

All six perturbations shown have the same L? norm but yield different outcomes.
This suggests that the L? norm is not a useful way of constraining 7 while
constructing adversarial examples for object recognition. The max norm provides
a sufficient (but not necessary) condition that guarantees an adversarial example
will not change the true underlying class.

The perturbations used in this visualization are relatively small, with an L? norm
of roughly 4 for all six perturbations and a max norm of roughly 0.14 for the
perturbations on the right. When using the max norm constraint, it is possible to
construct adversarial examples with max norm .25. Such perturbations have a L?
norm of 7.

11.2 Adversarial Examples 327

Similarly, a model that reports an independent probability estimate for the
detection of each class should preferably indicate that no classes are present.
However, both formulations are easily fooled into reporting that a specific
class is present with high probability simply by using Gaussian noise as input
to the model (Goodfellow et al., 2014b). Nguyen et al. (2014) demonstrated
that large, state of the art convolutional networks can also be fooled using
rich, structured images generated by genetic algorithms. Because rubbish
class examples do not correspond to small perturbations of a realistic input
example, they are beyond the scope of this chapter.

11.2.7 Defenses

To date, the most effective strategy for defending against adversarial exam-
ples is to explicitly train the model on them, as described in Section 11.3.

Many traditional regularization strategies such as weight decay, ensemble
methods, and so on, are not viable defenses. Regularization strategies can
fail in two different ways. Some of them reduce the error rate of the
model on the test set, but do not reduce the error rate of the model
on adversarial examples. Others reduce the sensitivity of the model to
adversarial perturbation, but only have a significant effect if they are applied
so powerfully (e.g., with such a large weight decay coefficient) that they
cause the performance of the model to seriously degrade on the validation
set. The failure of some traditional regularization strategies to provide a
defense against adversarial examples is discussed by Szegedy et al. (2014b)
and the failure of many more traditional regularization strategies is discussed
by Goodfellow et al. (2014b). In summary, most traditional neural network
regularization techniques have been tested and do not provide a viable
defense.

In addition to these traditional methods, some new methods have been
devised to defend against adversarial examples. However, none of these
methods are yet very effective. For even the best methods, the error rate
on adversarial examples remains noticeably higher than on unperturbed
examples.

Gu and Rigazio (2014) trained a denoising autoencoder, where the noise
corruption process was the adversarial example generation process. In other
words, the autoencoder is trained with adversarial example to predict the
corresponding unperturbed example as output. The goal was to use the
autoencoder as a preprocessing step before applying a classifier, in order
to make the classifier resistant to adversarial examples. Unfortunately, the
combination of the autoencoder and the classifier then becomes vulnerable
to a different class of adversarial examples that the autoencoder has not

328

Adversarial Perturbations of Deep Neural Networks

been trained to resist. Gu and Rigazio (2014) reported that the combined
system was vulnerable to adversarial examples with smaller perturbation
size than the original classifier. The authors of this chapter speculate that
this can be explained by the linearity hypothesis; the autoencoder is still
built mostly out of linear components. If one views the classifier as being
roughly a product of matrices, then the autoencoder simply introduces two
more matrix factors into this product. If these matrices have any singular
values that are larger than one, then they amplify adversarial perturbations
in the corresponding directions.

Papernot et al. (2015) introduced an approach called defensive distillation.
First, a teacher model is trained to maximize the likelihood of the training
set labels:

m
oW+ = argmaXZlogp(t) (y(i) | z: O(t)) . (11.8)
i=1
The teacher model is then used to provide soft targets for a second network,
called the student network. The student network is trained not just to predict
the same class as the teacher network, but to predict the same probability
distribution over classes:

95 _ ar%}fiing DiL (p(t) (yu‘) | 2, 9<t)) Ip(® <y<i> | @, 0<S>))(11.9)

This technique noticeably reduces the vulnerability of a model to adversarial
examples but does not completely resolve the problem.

As an original contribution of this chapter, an experimental observation
shows that a simpler method than defensive distillation also has a beneficial
effect. Rather than training a teacher network to provide soft targets, it is
possible to simply modify the targets from the training set to be soft, e.g.,
for a k class problem, replace a target value of 1 for the correct class with a

target value of .9, and for the incorrect classes replace the target of 0 with a
1
m.
some state of the art object recognition systems (Szegedy et al., 2015). The

target of This technique is called label smoothing and is a component of
label smoothing experiment was based on a near-replication of the MNIST
classifier of Goodfellow et al. (2013a). This classifier is a feedforward network
with two hidden layers consisting of maxout units, trained with dropout
(Srivastava et al., 2014). The model was trained on only on the first 50,000
examples and was not re-trained on the validation set, so the test error rate
was higher than in the original investigation of Goodfellow et al. (2013a).
The model obtained an error rate of 1.28% on the MNIST test set. The error
rate of the model on adversarial examples on the MNIST test set using
the fast gradient sign method (Equation 11.6) with ¢ = .25 was 99.97%.

11.8 Adwversarial Training 329

A second instantiation of exactly the same model was trained using label
smoothing. The error on the test set dropped to 1.17%, and the error rate
on the adversarially perturbed test set dropped to 33.0%. This error rate
indicates a significant remaining vulnerability but it is a vast improvement
over the pre-smoothing adversarial example error rate.

The linearity hypothesis can explain the effectiveness of label smoothing.
Without label smoothing, a softmax classifier is trained to make infinitely
confident predictions on the training set. This encourages the model to
learn large weights and strong responses. When values are pushed outside
the areas where training data concentrates, the model makes even more
extreme predictions when extrapolating linearly. Label smoothing penalizes
the model for making overly confident predictions on the training set, forcing
it to learn either a more non-linear function or a linear function with smaller
slope. Extrapolations by the label-smoothed model are consequently less
extreme.

11.3 Adversarial Training

Adversarial training corresponds to the process of explicitly training a model
to correctly label adversarial examples. In other words, given a training ex-
ample x with label y, the training set may be augmented with an adversarial
example & that is still associated with training label y. Szegedy et al. (2014b)
proposed this method, but were unable to generate large amounts of adver-
sarial examples due to reliance on the expensive L-BFGS method of crafting
adversarial examples. Goodfellow et al. (2014b) introduced the fast gradient
sign method and showed that it enabled practical adversarial training. In
their approach, the model is trained on a minibatch consisting of both un-
modified examples from the training set and adversarially perturbed versions
of the same examples. Crucially, the adversarial perturbation is recomputed
using the latest version of the model parameters every time a minibatch is
presented. Adversarial training can be interpreted as a minimax game,

0" = argmin B, , max [J(x,y,0) + J(x +n,v)], (11.10)
0 n

with the learning algorithm as the minimizing player and a fixed procedure
(such as L-BFGS or the fast gradient sign method) as the maximizing player.

Goodfellow et al. (2014b) found that adversarial training on MNIST
reduced both the test set error rate and the adversarially perturbed test
set error rate of a maxout network. The reduction in error rate on the
unperturbed test set is presumably due to adversarial training forcing the

330

Adversarial Perturbations of Deep Neural Networks

model to learn a more parsimonious function that can explain a wide variety
of adversarial examples with a small number of parameters.

Training with the fast gradient sign method means that the model is
selectively resistant to adversarial examples that were constructed with this
method. However, some resistance to other forms of adversarial examples
is achieved. Goodfellow et al. (2014b) reported that their maxout network
had an error rate of 18% on the MNIST test set when perturbed by the fast
gradient sign method with e = .25. This chapter introduces the observation
that using gradient descent on the true model to find the best perturbation
with max norm less than .25 increases the error rate to 97%. However, this
does not mean that adversarial training with the fast gradient sign method
was ineffective. If the max norm constraint is tightened to ¢ = .1, then
the error rate of the adversarially trained maxout network falls to 22%.
Without adversarial training, the error rate at this perturbation magnitude
is 79%. Adversarial training with the fast gradient sign method thus confers
robustness to other types of perturbation, but with a smaller perturbation
size than was used for training.

11.3.1 Virtual Adversarial Training

Miyato et al. (2015) extended adversarial training to the semi-supervised set-
ting by introducing the virtual adversarial example construction technique,
which allows the construction of adversarial examples when no class label
is available. This approach allows the model to be trained to have a highly
robust classification function in the neighborhood of unlabeled examples.
This technique improved the state of the art on semi-supervised learning on
the MNIST dataset, outperforming much more complicated methods based
on training generative models of unlabeled examples.

11.4 Generative Adversarial Networks

The generative adversarial network (GAN) framework introduced in Good-
fellow et al. (2014a) phrases the problem of estimating a generative model
in terms of a sample generation process G : R? — R”, which takes as its
argument a random variate z ~ p(z); p(z) is often chosen from some simple
family such as an isotropic Gaussian distribution, or a uniform distribution
on [-1,1]%. G(-) is a machine parameterized by ©¢ which learns to map a
sample from the base distribution p(z) to a corresponding sample from an
implicitly defined distribution py(«). The combined procedure of drawing a
sample z from p(z) and applying G to z is referred to as the generator.

11./ Generative Adversarial Networks 331

In contrast with many existing generative modeling frameworks, GANs
may be trained without an explicit algebraic representation of ppoqel(),
tractable or otherwise. The GAN framework is compatible with some mod-
els that explicitly define a probability distribution—any directed graph-
ical model whose sampling process is compatible with stochastic back-
propagation (Williams, 1992; Kingma and Welling, 2014; Rezende et al.,
2014) may be used as a GAN generator—but the framework does not re-
quire explicit specification of any conditional or marginal distributions, only
the sample generation process. In frameworks based on explicit specifica-
tion of probabilities it is typical to maximize the empirical expectation of
log Pmodel (), applying Monte Carlo or variational approximations if faced
with intractable terms (often in the form of a normalizing constant). Instead,
GANSs are trained to match the data distribution indirectly with the help
of a discriminator, i.e. a binary classifier D : R" — [0, 1], parameterized
by ©p, whose output represents a calibrated probability estimate that a
given example was sampled from pqata (). The conditional log likelihood of
the discriminator, on a balanced dataset of real and synthetic examples, is
(in the usual fashion) mazimized with respect to the parameters of D, but
simultaneously minimized with respect to the parameters of G.

11.4.1 Adversarial Networks in Theory and Practice

The joint training procedure for the generator G and the discriminator D
can be viewed as a two-player, continuous minimax game with a certain
value function. In their introduction of the GAN framework, Goodfellow
et al. (2014a) proved that the GAN training criterion has a unique global
optimum in the space of distributions represented by G and D, wherein
the distribution sampled by the generator exactly matches that of the
data generating process, and the discriminator D is completely unable to
distinguish real data from synthetic. It can also be proved, under certain
assumptions, that the game converges to this optimum if G is improved at
every round and D is chosen to be the ideal discriminator between p,(x)
and paata (), i.e. D*(x) = paata(®)/(Pdata(T) +pg(’$€))-

Goodfellow (2014) advanced the theoretical understanding of the GAN
training criterion and its relationship to other distinguishability-based learn-
ing criteria. In particular, noise-contrastive estimation (NCE) (Gutmann
and Hyvarinen, 2010) can be viewed as a variant of the GAN criterion
wherein the generator is fixed, and the discriminator is a generatively pa-
rameterized classifier that learns an explicit model of p(x) as a side effect of
discriminative training, while a variant of noise contrastive estimation em-
ploying (a copy of) the learned generative model is shown to be equivalent,

332

Adversarial Perturbations of Deep Neural Networks

in expectation, to maximum likelihood. Perhaps most importantly, Good-
fellow (2014) noted a subtlety of theoretical results outlined above, pointing
out that they are significantly weakened by the setting in which GANs are
typically optimized in practice.

Optimization of the generator and discriminator necessarily takes place in
the space of parameterized families of functions, and the cost surface in the
space of these parameters may have symmetries and other pathologies that
imply non-uniqueness of the optima as well as practical difficulties locating
them. One does not typically have analytical access to p,(x) and certainly
not to pgata(x), and must attempt to infer the optimal discriminator from
data and samples. It is often prohibitively expensive to fully optimize the
parameters of D after every change in the parameters of G — therefore, in
practice, one settles for a parameter update aimed at improving D, such as
one or more stochastic gradient steps. This means that the generator’s role
in the minimax game of minimizing with respect to p,(x) given a mazimum
of the value function with respect to D, is instead minimizing a lower bound
on the correct objective. It is not at all clear whether the minimization of
this lower bound improves the quantity of interest or simply loosens the
bound.

Note that Goodfellow et al. (2014a) optimize a slightly different but
equivalent criterion than described above. Let D(z) = p (@ is data | x), the
discriminator’s estimate that a given sample @ comes from the data. Rather
than minimize

E.op(z log (1 — D(G(2))) (11.11)

(a term that already appears in the training criterion for the discrimi-
nator) with respect to the parameters of G, one can instead maximize
E.p(z) log (D(G(2))); this criterion was found to work better in practice.
The motivation for this lies in the fact that early in training, when G is pro-
ducing samples that look nothing at all like data, the discriminator D can
quickly learn to distinguish the two, and log (1 — D(G(z)) can quickly satu-
rate to zero. The derivative of the per-sample objective contains a factor of
(1 — D(G(2)))"", thus scaling the gradients which G receives via backpropa-
gation to have very small magnitude. Pushing upward on log(D(G(z)) yields
a multiplicative factor of D(G(2z))™! instead, resulting in gradients with a
more favourably scaled magnitude if D(G(z)) is small.

As G and D are both parameterized learners, the balance between the
respective modeling capacities (and effective capacities during learning) can
have a profound effect on the learning dynamics and the success of generative
learning. In particular, the discriminator must be sufficiently flexible to
reliably model the difference between the data distribution and the generated

11./ Generative Adversarial Networks 333

distribution, as the latter gradually tends towards reproducing the statistical
structure of the former. At the same time, the discriminator must not become
too effective too quickly, or else the gradients it provides the generator will
be uninformative: no small change in the generated sample will move it
significantly closer to the discriminator’s decision boundary.

11.4.2 Generator Collapses

Note that in theory, a perfectly optimal discriminator could exploit any sub-
tle mismatch between pqata(x) and pg(x) to give itself a better-than-chance
ability to correctly distinguish real and synthetic examples; the generator
could then use the gradients obtained from this optimal discriminator to
correct its misallocations of probability mass. In practice, when using richly
parameterized neural networks for generation and discrimination, the ob-
jective functions used to train the generator are non-convex and (due to
the dependence between the learning tasks for the generator and the dis-
criminator) highly nonstationary; it is impractical and even theoretically
intractable to globally optimize the discriminator prior to each change in
the generator. A failure mode for the training criterion therefore manifests
when the generator learns to place too much probability mass on a subre-
gion of the data distribution. In the most extreme cases, a generator could
elect to place all of its mass on a single point, perfectly reproducing a single
training example. A well-trained discriminator can quickly learn to exploit
this and confidently classify every other point in the training set correctly.
This presents a problem for generator learning, in that the gradients the
generator receives are entirely with respect to a single synthetic example,
most local perturbations of which will result in gradients that point back
towards the singularity. To date, strategies to mitigate this type of failure
are an active area of research. Radford et al. (2015) noted that the judicious
use of batch normalization (Ioffe and Szegedy, 2015) appears, empirically,
to prevent these kinds of collapses to a large degree.

11.4.3 Sample Fidelity and Learning the Objective Function

Machine learning problems are classically posed in terms of an objective
function that is a fixed function of the parameters given a training set, often
the log likelihood of training data under some parametric model. Viewed
from the perspective of the generator GG, the GAN training procedure does
not involve a single, fixed objective function: G’s objective is defined at
any moment by the discriminator D, the parameters of which are being
continually adapted to both the data and to the current state of G. This can

334

Adversarial Perturbations of Deep Neural Networks

be considered a learned objective function, whereby the objective function
for G is automatically adapted to the data distribution being estimated.
The inductive bias for G is characterized by the family of functions from
which D is chosen: G is optimized so as to elude detection via any statistical
difference between p, and pgata that D can learn to detect.

It is this property that is arguably responsible for the perceived visual
quality of generated samples of GANs trained on natural images. Models
trained via objective functions involving reconstruction terms, such as the
variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014),
implicitly commit to a static definition of sample plausibility. In the case
of conditionally Gaussian likelihood, this takes the form of mean squared
error, which is a particularly poor perceptual metric for natural image pixel
intensities: it considers all perturbations of a given magnitude equivalent,
without regard for the fact that changes in luminance which blur out sharp
edges decrease the plausibility of the sample as a natural image much more
than minor shifts in chroma across the entire image. While one popular
approach in the case of models of natural images, and in many other
domains, is to design the static objective so as to mitigate the mismatch
between training criterion and the statistical properties of the domain, the
solution offered by GANSs is in some sense more universal: train D to detect
and exploit any difference it can between the distributions of samples and
real data, train G to outwit this new discriminator, and repeat. This often
results in generated samples that more closely match human conceptions
of saliency, illustrated in Figure 11.6 in an application to parameterized
image generation, where an adversarial loss allows the model to accurately
extrapolate the presence of ears, a visually salient feature which a model
trained with mean squared error sees fit to discard.

11.4.4 Extensions and Refinements

Since the initial introduction of generative adversarial networks, the frame-
work has been extended in several notable directions. Many of these rely
on a straightforward extension to the conditional setting, where the gener-
ator and discriminator receive additional contextual inputs, first explored
by Mirza and Osindero (2014). For example, in the aforementioned work,
the authors train a class-conditional generator on the MNIST handwritten
digits by feeding the network an additional input consisting of a “one-hot”
vector indicating the desired class. The discriminator is fed the generated or
real image as well as the class label (the assigned label if the image is real,
the desired label if the image is generated). Through training, the discrim-
inator learns that in the presence of a given class label, the image should

11./ Generative Adversarial Networks 335

Ground Truth MSE Adversarial

Figure 11.6: Predictive generative networks provide an example of how a learned
cost function can correspond more closely to human intuition for which aspects
of the data are salient and important to model than a fixed, hand-designed cost
function such as mean squared error. These images show the results when predictive
generative networks are trained to generate images of 3-D models of human heads
at specified viewing angles. (Left) An example output frame from the test set.
This is the target image that the model is expected to predict. (Center) When
trained using mean squared error, the model fails to predict the presence of ears.
Ears are not salient under the mean squared error loss because they do not cause
a major change in brightness for a large enough number of pixels. (Right) When
trained using a combination of mean squared error and adversarial loss, the model
successfully predicts the presence of ears. Because ears have a repeated, predictable
structure, they are highly salient to the discriminator network. Future research
work may discover better ways of determining which aspects of the input should be
considered salient. Figures reproduced with permission from Lotter et al. (2015).

336

Adversarial Perturbations of Deep Neural Networks

resemble instances of that class from the training data. Likewise, in order
to succeed at fooling the discriminator, the generator must learn to use the
class label input to inform the characteristics of its generated sample.

In pursuit of more realistic models of natural images, Denton et al.
(2015) introduced a hierarchical model, dubbed LAPGAN, which interleaved
conditional GAN generators with spatial upsampling in a Laplacian pyramid
(Burt et al., 1983). The first generator, either class-conditional or traditional,
is trained to generate a small thumbnail image. A fixed upsampling and
blurring is performed and a second conditional generator, conditioned on the
newly upsampled image, is trained to reproduce the difference between the
image at the current resolution and the upsampled thumbnail. This process
is iterated, with subsequent conditional generators predicting residuals at
ever higher resolutions.

Also in the space of natural image generation, Radford et al. (2015) lever-
aged recent advances in the design and training of discriminative convolu-
tional networks to successfully train a single adversarial pair to generated re-
alistic images of relatively high resolution. These generator networks employ
“fractionally strided convolutions”, otherwise recognizable as the transpose
operation of “valid”-mode strided convolution commonly used when back-
propagating gradients through a strided convolutional layer, to learn their
own upsampling operations. The authors identify a set of architectural con-
straints on the generator and discriminator which allow for relatively stable
training, including the elimination of downsampling in favour of strided con-
volution in the discriminator, the use of the bounded tanh() function at the
generator output layer, careful application of batch normalization (Ioffe and
Szegedy, 2015) and the use of rectified linear units (Jarrett et al., 2009; Glo-
rot et al., 2011) and leaky rectified linear units (Maas et al., 2013) through-
out the generator and discriminator, respectively. Inspired by recent work on
word embeddings (e.g. Mikolov et al. (2013)), the authors also interrogate
the latent representations, i.e. samples from p(z), and find that they obey
surprising arithmetic properties when trained on a dataset of faces as shown
in Figure 11.7.

11.4.5 Hybrid Models

A recent body of work has examined the combination of the adversarial net-
work training criterion with other formalisms, notably autoencoders. Larsen
et al. (2015) combine a GAN with a variational autoencoder (VAE) (Kingma
and Welling, 2014; Rezende et al., 2014), dispensing with the VAE’s recon-
struction error term in favor of an squared error expressed in the space
of the discriminator’s hidden layers, combining the resulting modified VAE

11./ Generative Adversarial Networks 337

Figure 11.7: Deep Convolutional Generative Adversarial Networks (DCGANSs)
learn distributed representations that can separate semantically distinct concepts
from each other. In this example, a DCGAN has learned one direction in represen-
tation space that corresponds to gender and another direction that corresponds to
the presence or absence of glasses. Arithmetic can also be performed in this vector
space. From left to right, let a be the representation of an image of a man with
glasses, b the representation of a man without glasses, and ¢ the representation of
a woman without glasses. The vector d = a — b+ ¢ now represents the concept of a
woman with glasses. The generator maps d to rich images from this class. Images
reproduced with permission from Radford et al. (2015).

objective with the usual GAN objective. Makhzani et al. (2015) employs
an adversarial cost as a regularizer on the hidden layer representation of
a conventional autoencoder, forcing the aggregate posterior distribution of
the hidden layer to match a particular synthetic distribution. This formula-
tion closely resembles the VAE. The VAE maximizes a lower bound on the
log-likelihood that includes both a reconstruction term and terms regulariz-
ing the variational posterior to resemble the model’s prior distribution over
the latent variables. The adversarial autoencoder removes the regularization
term and uses the adversarial game to enforce the desired conditions.

The adversarial network paradigm has also been extended in the direction
of supervised and semi-supervised learning. Springenberg (2016) generalizes
the convention adversarial network setting to employ a categorical (softmax)
output layer in the discriminator. The discriminator and generator compete
to shape the entropy of this distribution while respecting constraints on its
marginal distribution, and an optional likelihood term can add semantics
to this output layer if class labels are available. Sutskever et al. (2015)
propose an unsupervised criterion designed expressly with the intent of
improving performance on downstream supervised tasks in settings where
the space of possible outputs is large, and it is easy to obtain independent
examples from both the input and output domains. The proposed supervised

338

Adversarial Perturbations of Deep Neural Networks

mapping is adversarially trained to have an output distribution resembling
the distribution of independent output domain examples.

11.4.6 Beyond Generative Modeling

Generative adversarial networks were originally introduced in order to pro-
vide a means of performing generative modeling. The idea has since proven
to be more general. Adversarial pairs of networks may in fact be used for a
broad range of tasks.

Two recent methods have shown that the adversarial framework can be
used to impose desired properties on the features extracted by a neural
network. The feature extractor can be thought of as analogous to the
generator in the GAN framework. A second network, analogous to the
discriminator, then tries to obtain some forbidden information from the
extracted features. The feature extractor is then trained to learn features
that are both useful for some original task, such as classification, and that
yield little information to the second network. Ganin and Lempitsky (2015)
use this approach for domain adaptation. The second network attempts to
predict which domain the input was drawn from. When the feature extractor
is trained to fool this network, it is forced to learn features that are invariant
to the choice of input domain. Edwards and Storkey (2015) use a similar
technique to learn representations that do not contain private information.
In this case, the second network attempts to recover the private information
from the representation. This approach could be used to remove prejudice
from a decision making process. For example, if a machine learning model
is used to make hiring decisions, it should not use protected information
such as the race or gender of applicants. If the machine learning model
is trained on the decisions made by human hiring managers, and if the
previous hiring managers made biased decisions, the machine learning model
could discover other features of the candidates that are correlated with their
race or gender. By applying the method of Edwards and Storkey (2015),
the machine learning model is encouraged to remove features that have a
statistical relationship with the protected information, ideally leading to
more fair decisions.

11.5 Discussion

The staggering gains in many application areas brought by the introduction
of deep neural networks have inspired much excitement and widespread
adoption. In addition to remarkable success tackling difficult supervised

11.6 References 339

classification tasks, it is often the case that even misclassifications the errors
made by state-of-the-art neural networks appear to be quite reasonable
(as remarked, for example, by Krizhevsky et al. (2012)). The existence
of adversarial examples as a problem plaguing a wide variety of model
families suggests surprising deficits both in the degree to which these models
understand their tasks, and to which human practitioners truly understand
their models. Research into such phenomena can yield immediate gains
in robustness and resistance to attack for neural networks deployed in
commercial and industrial systems, as well as guide research into new
model classes which naturally resist such perturbation through a deeper
comprehension of the learning task.

Simultaneously, the adversarial perspective can be fruitfully leveraged for
tasks other than simple supervised learning. While the focus of generative
modeling in the past has often been on models that directly optimize like-
lihood, many application domains express a need for realistic synthesis, in-
cluding the generation of speech waveforms, image and video inpainting and
super-resolution, the procedural generation of video game assets, and for-
ward prediction in model-based reinforcement learning. Recent work (Theis
et al., 2015) suggests that these goals may be at odds with this likelihood-
centric paradigm. Generative adversarial networks and their extensions pro-
vide one avenue attack on these difficult synthesis problems with an intu-
itively appealing approach: to learn to generate convincingly, aim to fool a
motivated adversary. An important avenue for future research concerns the
quantitative evaluation of generative models intended for synthesis; particu-
lar desiderata include generic, widely applicable evaluation procedures which
nonetheless can be made to respect domain-specific notions of similarity and
verisimilitude.

Acknowledgements

The authors of this chapter would like to thank Martin Wattenberg and
Christian Szegedy for insightful suggestions that improved the church win-
dow plots, and to thank Martin in particular for the name “church window
plots.” Ilya Sutskever provided the observation that visual stimuli can cause
seizures.

11.6 References

P. J. Burt, Edward, and E. H. Adelson. The laplacian pyramid as a compact image
code. IEEFE Transactions on Communications, 31:532-540, 1983.

340

Adversarial Perturbations of Deep Neural Networks

E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models
using a laplacian pyramid of adversarial networks. NIPS, 2015.

H. Edwards and A. J. Storkey. Censoring representations with an adversary. CoRR,
abs/1511.05897, 2015. URL http://arxiv.org/abs/1511.05897.

J. A. Frederick, D. L. Timmermann, H. L. Russell, and J. F. Lubar. Eeg coherence
effects of audio-visual stimulation (avs) at dominant and twice dominant alpha
frequency. Journal of neurotherapy, 8(4):25-42, 2005.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation.
In ICML’2015, 2015.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.
In JMLR WECP: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS 2011), Apr. 2011.

1. J. Goodfellow. On distinguishability criteria for estimating generative models. In
International Conference on Learning Representations, Workshops Track, 2014.

1. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning (ICML’13), pages 1319-1327.
ACM, 2013a. URL http://icml.cc/2013/.

1. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In ICML’2013, 2013b.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. In NIPS’2014,
2014a.

1. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014b. URL http://arxiv.org/abs/1412.
6572.

S. Gu and L. Rigazio. Towards deep neural network architectures robust to
adversarial examples. In NIPS Workshop on Deep Learning and Representation
Learning, 2014.

M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In AISTATS’ 2010, 2010.

R. Huang, B. Xu, D. Schuurmans, and C. Szepesvari. Learning with a strong
adversary. CoRR, abs/1511.03034, 2015. URL http://arxiv.org/abs/1511.
03034.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. 2015.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In Proc. International Conference on
Computer Vision (ICCV’09), pages 2146-2153. IEEE, 2009.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of
the International Conference on Learning Representations (ICLR), 2014.

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems 25 (NIPS’2012). 2012.

A. B. L. Larsen, S. K. Sgnderby, and O. Winther. Autoencoding beyond pixels
using a learned similarity metric. CoRR, abs/1512.09300, 2015. URL http:
//arxiv.org/abs/1512.09300.

11.6 References

841

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov. 1998.

W. Lotter, G. Kreiman, and D. Cox. Unsupervised learning of visual structure
using predictive generative networks. arXiv preprint arXiv:1511.06380, 2015.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In ICML Workshop on Deep Learning for Audio,
Speech, and Language Processing, 2013.

A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015. URL http://arxiv.org/abs/1511.05644.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In International Conference on Learning Representa-
tions: Workshops Track, 2013.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing
with virtual adversarial training. In ICLR, 2015. Preprint: arXiv:1507.00677.

A. Nguyen, J. Yosinski, and J. Clune. Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images. ArXiv e-prints, Dec.
2014.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiw:1511.04508, 2015.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Prac-
tical black-box attacks against deep learning systems using adversarial examples.
arXiw preprint arXiw:1602.02697, 2016a.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Proceedings of the 1st IEEE
European Symposium on Security and Privacy. IEEE, 2016b.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXw:1511.06434, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML’201/, 2014.

J. O. Robinson. The psychology of visual illusion. Courier Corporation, 2013.

S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial manipulation of deep
representations. CoRR, abs/1511.05122, 2015. URL http://arxiv.org/abs/
1511.05122.

J. T. Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In International Conference on Learning Rep-
resentations, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929-1958, 2014. URL http://jmlr.org/
papers/vli5/srivastaval4a.html.

I. Sutskever, R. Jézefowicz, K. Gregor, D. J. Rezende, T. Lillicrap, and O. Vinyals.
Towards principled unsupervised learning. CoRR, abs/1511.06440, 2015. URL
http://arxiv.org/abs/1511.06440.

342

Adversarial Perturbations of Deep Neural Networks

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. Technical report,
arXiv:1409.4842, 2014a.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. ICLR, abs/1312.6199, 2014b.
URL http://arxiv.org/abs/1312.6199.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
Inception Architecture for Computer Vision. ArXiv e-prints, Dec. 2015.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative
models. arXiv:1511.01844, Nov 2015. URL http://arxiv.org/abs/1511.01844.

R. J. Williams. Simple statistical gradient-following algorithms connectionist
reinforcement learning. Machine Learning, 8:229-256, 1992.

12 Data Augmentation via Lévy Processes

Stefan Wager swager@stanford.edu
Stanford University
Stanford, USA

William Fithian wfithian@berkeley.edu
University of California, Berkeley
Berkeley, USA

Percy Liang pliang@cs.stanford.edu
Stanford University
Stanford, USA

If a document is about travel, we may expect that short snippets of the
document should also be about travel. We introduce a gemeral framework
for incorporating these types of invariances into a discriminative classifier.
The framework imagines data as being drawn from a slice of a Lévy process.
If we slice the Lévy process at an earlier point in time, we obtain additional
pseudo-examples, which can be used to train the classifier. We show that
this scheme has two desirable properties: it preserves the Bayes decision
boundary, and it is equivalent to fitting a generative model in the limit where
we rewind time back to 0. Our construction captures popular schemes such
as Gaussian feature noising and dropout training, as well as admitting new
generalizations.

12.1 Introduction

Black-box discriminative classifiers such as logistic regression, neural net-
works, and SVMs are the go-to solution in machine learning: they are simple
to apply and often perform well. However, an expert may have additional

344

Data Augmentation via Lévy Processes

knowledge to exploit, often taking the form of a certain family of transfor-
mations that should usually leave labels fixed. For example, in object recog-
nition, an image of a cat rotated, translated, and peppered with a small
amount of noise is probably still a cat. Likewise, in document classification,
the first paragraph of an article about travel is most likely still about travel.
In both cases, the “expert knowledge” amounts to a belief that a certain
transform of the features should generally not affect an example’s label.

One popular strategy for encoding such a belief is data augmenta-
tion: generating additional pseudo-examples or “hints” by applying label-
invariant transformations to training examples’ features (Abu-Mostafa,
1990; Scholkopf et al., 1997; Simard et al., 1998). That is, each example
(X®,Y®) is replaced by many pairs ()Nf(i’b),Y(i)) for b=1,..., B, where
each X is a transformed version of X¥. This strategy is simple and
modular: after generating the pseudo-examples, we can simply apply any
supervised learning algorithm to the augmented dataset. Figure 12.1 illus-
trates two examples of this approach, an image transformed to a noisy image
and a text caption, transformed by deleting words.

Dropout training (Srivastava et al., 2014) is an instance of data augmen-
tation that, when applied to an input feature vector, zeros out a subset of
the features randomly. Intuitively, dropout implies a certain amount of sig-
nal redundancy across features—that an input with about half the features
masked should usually be classified the same way as a fully-observed input.
In the setting of document classification, dropout can be seen as creating
pseudo-examples by randomly omitting some information (i.e., words) from
each training example. Building on this interpretation, Wager et al. (2014)
show that learning with such artificially difficult examples can substantially
improve the generalization performance of a classifier.

To study dropout, Wager et al. (2014) assume that documents can be
summarized as Poisson word counts. Specifically, assume that each document
has an underlying topic associated with a word frequency distribution 7 on
the p-dimensional simplex and an expected length T > 0, and that, given
m and T', the word counts X are independently generated as Xj; ‘T LT~
Pois(T'mj). The analysis of Wager et al. (2014) then builds on a duality
between dropout and the above generative model. Consider the example
given in Figure 12.1, where dropout creates pseudo-documents X by deleting
half the words at random from the original document X. As explained
in detail in Section 12.2.1, if X itself is drawn from the above Poisson
model, then the dropout pseudo-examples X are marginally distributed as
X j | T, m ~ Pois(0.5T ;). Thus, in the context of this Poisson generative
model, dropout enables us to create new, shorter pseudo-examples that
preserve the generative structure of the problem.

12.1 Introduction

345

(a) Gaussian noise

The colorful Norwegian city of
Bergen is also a gateway to majes-
tic fjords. Bryggen Hanseatic Wharf
will give you a sense of the local cul-
ture — take some time to snap photos
of the Hanseatic commercial build-
ings, which look like scenery from a
movie set.

The colorful of gateway to fjords.
Hanseatic Wharf will sense the cul-

=P ture — take some to snap photos the
commercial buildings, which look
scenery a

(b) Dropout noise

Figure 12.1: Two examples of transforming an original input X into a noisy, less
informative input X. The new inputs clearly have the same label but contain less
information and thus are harder to classify.

The above interpretation of dropout raises the following question: if
feature deletion is a natural way to create information-poor pseudo-examples
for document classification, are there natural analogous feature noising
schemes that can be applied to other problems? In this chapter, we seek to
address this question, and study a more general family of data augmentation
methods generalizing dropout, based on Lévy processes: We propose an
abstract Lévy thinning scheme that reduces to dropout in the Poisson
generative model considered by Wager et al. (2014). Our framework further
suggests new methods for feature noising such as Gamma noising based on
alternative generative models, all while allowing for a unified theoretical
analysis.

From generative modeling to data augmentation. In the above discus-
sion, we treated the expected document length T as fixed. More generally,
we could imagine the document as growing in length over time, with the
observed document X merely a “snapshot” of what the document looks like

346

Data Augmentation via Lévy Processes

topic

5

original @ @ thinned

Lévy process

Figure 12.2: Graphical model depicting our generative assumptions; note that
we are not fitting this generative model. Given class Y, we draw a topic 6, which
governs the parameters of the Lévy process (A;). We slice at time T' to get the
original input X = A7 and at an earlier time 7" to get the thinned or noised input
X = Ajz. We show that given X, we can sample X without knowledge of 6.

at time 7T'. Formally, we can imagine a latent Poisson process (A):>0, with
fixed-t marginals (A;); | 7 ~ Pois(tm;), and set X = Ap. In this notation,
dropout amounts to “rewinding” the process A; to obtain short pseudo-
examples. By setting X = A,r, we have IF’[)Z' =x ’ X = z] = PlAur =
X ’ Ap = z], for thinning parameter a € (0, 1).

The main result of this chapter is that the analytic tools developed by
Wager et al. (2014) are not restricted to the case where (4;) is a Poisson
process, and in fact hold whenever (4;) is a Lévy process. In other words,
their analysis applies to any classification problem where the features X can
be understood as time-T" snapshots of a process (A;), i.e., X = Ar.

Recall that a Lévy process (A¢)i>0 is a stochastic process with Ag = 0 that
has independent and stationary increments: { Ay, — A, _, } are independent for

0=ty <ty <ty <---,and A;— Aq iAt_S for and s < t. Common examples
of Lévy processes include Brownian motion and Poisson processes.

In any such Lévy setup, we show that it is possible to devise an analogue
to dropout that creates pseudo-examples by rewinding the process back to
some earlier time 7' < T'. Our generative model is depicted in Figure 12.2:
(A¢), the information relevant to classifying Y, is governed by a latent topic
6 € RP. Lévy thinning then seeks to rewind (A4;)—importantly as we shall
see, without having access to 6.

We should think of (A;) as representing an ever-accumulating amount of
information concerning the topic #: In the case of document classification,
(Ay) are the word counts associated with a document that grows longer as
t increases. In other examples that we discuss in Section 12.3, A; will rep-
resent the sum of ¢ independent noisy sensor readings. The independence

12.1 Introduction

847

T T

s 7
AL

Figure 12.3: We model each input X as a slice of a Lévy process at time 7'
We generate noised examples X by “stepping back in time” to 7. Note that the
examples of the two classes are closer together now, thus forcing the classifier to
work harder.

of increments property assures that as we progress in time, we are always
obtaining new information. The stopping time T thus represents the infor-
mation content in input X about topic 6. Lévy thinning seeks to improve
classification accuracy by turning a few information-rich examples X into
many information-poor examples X.

We emphasize that, although our approach uses generative modeling to
motivate a data augmentation scheme, we do not in fact fit a generative
model. This presents a contrast to the prevailing practice: two classical ap-
proaches to multiclass classification are to either directly train a discrimina-
tive model by running, e.g., multiclass logistic regression on the n original
training examples; or, at the other extreme, to specify and fit a simple para-
metric version of the above generative model, e.g., naive Bayes, and then
use Bayes’ rule for classification. It is well known that the latter approach
is usually more efficient if it has access to a correctly specified generative
model, but may be badly biased in case of model misspecification (Efron,
1975; Ng and Jordan, 2002; Liang and Jordan, 2008). Here, we first seek to
devise a noising scheme X — X and then to train a discriminative model
on the pseudo-examples (X, Y) instead of the original examples (X, Y).
Note that even if the generative model is incorrect, this approach will incur

348

Data Augmentation via Lévy Processes

limited bias as long as the noising scheme roughly preserves class bound-
aries — for example, even if the Poisson document model is incorrect, we
may still be justified in classifying a subsampled travel document as a travel
document. As a result, this approach can take advantage of an abstract
generative structure while remaining more robust to model misspecification
than parametric generative modeling.

Overview of results. We consider the multiclass classification setting
where we seek to estimate a mapping from input X to class label Y. We
imagine that each X is generated by a mixture of Lévy process, where we
first draw a random topic 6 given the class Y, and then run a Lévy process
(A;) depending on 6 to time T'. In order to train a classifier, we pick a thin-
ning parameter « € (0, 1), and then create pseudo examples by rewinding
the original X back to time a7, i.e., X ~ Ao ’ Ar.

We show three main results in this chapter. Our first result is that we can
generate such pseudo-examples X without knowledge of the parameters 6
governing the generative Lévy process. In other words, while our method
posits the existence of a generative model, our algorithm does not actually
need to estimate it. Instead, it enables us to give hints about a potentially
complex generative structure to a discriminative model such as logistic
regression.

Second, under assumptions that our generative model is correct, we show
that feature noising preserves the Bayes decision boundary: P[Y | X = z] =
P[Y | X = z]. This means that feature noising does not introduce any bias
in the infinite data limit.

Third, we consider the limit of rewinding to the beginning of time («a — 0).
Here, we establish conditions given which, even with finite data, the decision
boundary obtained by fitting a linear classifier on the pseudo-examples is
equivalent to that induced by a simplified generative model. When this latter
result holds, we can interpret a-thinning as providing a semi-generative
regularization path for logistic regression, with a simple generative procedure
at one end and unregularized logistic regression at the other.

Related work. The trade-off between generative models and discriminative
models has been explored extensively. Rubinstein and Hastie (1997) empir-
ically compare discriminative and generative classifiers models with respect
to bias and variance, Efron (1975) and Ng and Jordan (2002) provide a more
formal discussion of the bias-variance trade-off between logistic regression
and naive Bayes. Liang and Jordan (2008) perform an asymptotic analysis
for general exponential families.

12.2 Lévy Thinning

349

A number of papers study hybrid loss functions that combine both a joint
and conditional likelihood (Raina et al., 2004; Bouchard and Triggs, 2004;
Lasserre et al., 2006; McCallum et al., 2006; Liang and Jordan, 2008). The
data augmentation approach we advocate in this chapter is fundamentally
different, in that we are merely using the structural assumptions implied by
the generative models to generate more data, and are not explicitly fitting
a full generative model.

The present work was initially motivated by understanding dropout train-
ing (Srivastava et al., 2014), which was introduced in the context of reg-
ularizing deep neural networks, and has had much empirical success (Ba
and Frey, 2013; Goodfellow et al., 2013; Krizhevsky et al., 2012; Wan et al.,
2013). Many of the regularization benefits of dropout can be found in logistic
regression and other single-layer models, where it is also known as “blank-
out noise” (Globerson and Roweis, 2006; van der Maaten et al., 2013) and
has been successful in natural language tasks such as document classification
and named entity recognition (Wager et al., 2013; Wang and Manning, 2013;
Wang et al., 2013). There are a number of theoretical analyses of dropout:
using PAC-Bayes framework (McAllester, 2013), comparing dropout to “al-
titude training” (Wager et al., 2014), and interpreting dropout as a form of
adaptive regularization (Baldi and Sadowski, 2014; Bishop, 1995; Helmbold
and Long, 2015; Josse and Wager, 2014; Wager et al., 2013).

12.2 Lévy Thinning

We begin by briefly reviewing the results of Wager et al. (2014), who study
dropout training for document classification from the perspective of thinning
documents (Section 12.2.1). Then, in Section 12.2.2, we generalize these
results to the setting of generic Lévy generative models.

12.2.1 Motivating Example: Thinning Poisson Documents

Suppose we want to classify documents according to their subject, e.g.,
sports, politics, or travel. As discussed in the introduction, common sense
intuition about the nature of documents suggests that a short snippet of a
sports document should also be classified as a sports document. If so, we can
generate many new training examples by cutting up the original documents
in our dataset into shorter subdocuments and labeling each subdocument
with the same label as the original document it came from. By training a
classifier on all of the pseudo-examples we generate in this way, we should
be able to obtain a better classifier.

350

Data Augmentation via Lévy Processes

In order to formalize this intuition, we can represent a document as a
sequence of words from a dictionary {1, ..., d}, with the word count X;
denoting the number of occurrences of word j in the document. Given
this representation, we can easily create “subdocuments” by binomially
downsampling the word counts X; independently. That is, for some fixed
downsampling fraction o € (0, 1), we draw

X; | X; ~ Binom(Xj,). (12.1)

In other words, we keep each occurrence of word j independently with
probability a.

Wager et al. (2014) study this downsampling scheme in the context of
a Poisson mixture model for the inputs X that obeys the structure of
Figure 12.2: first, we draw a class Y € {1,..., K} (e.g., travel) and a “topic”
6 € R? (e.g., corresponding to travel in Norway). The topic 6 specifies a
distribution over words,

i (0) = ¢, (12.2)

where, without loss of generality, we assume that Z;i:l e’ = 1. We then
draw a Pois(7T") number of words, where T is the expected document length,
and generate each word independently according to 6. Equivalently, each
word count is an independent Poisson random variable, X; ~ Pois(T'1;(6)).
The following is an example draw of a document:

Y = travel

norway fjord the skyscraper

AN AN AN A
0=[705,05,1.2, Z27 ,...]
norway fjord the skyscraper
AN AN AN A
X=["2",1.3, 70 ,..]
norway fjord the skyscraper

= AN AN AN A
X=["1,0.1, 70 ,..]

Let us now try to understand the downsampling scheme X | X in the
context of the Poisson topic model over X. For each word j, recall that
X; | X; ~ Binom(Xj,). If we marginalize over X, then we have:

X, | T, 6 ~ Pois (aT;(0)) . (12.3)

As a result, the distribution of X is exactly the distribution of X if we
replaced T' with T' = oT.

12.2 Lévy Thinning

351

We can understand this thinning by embedding the document X in a
multivariate Poisson process (A¢):>0, where the marginal distribution of
Ay € {0,1,2,...}¢ is defined to be the distribution over counts when the
expected document length is t. Then, we can write

X =Ar, X=Az (12.4)

Thus, under the Poisson topic model, the binomial thinning procedure does
not alter the structure of the problem other than by shifting the expected
document length from 7" to T. Figure 12.4 illustrates one realization of Lévy
thinning in the Poisson case with a three-word dictionary. Note that in this
case we can sample X = Aqr given X = Apr without knowledge of 6.

This perspective lies at the heart of the analysis in Wager et al. (2014),
who show under the Poisson model that, when the overall document length
|| X1 is independent of the topic 6, thinning does not perturb the optimal
decision boundary. Indeed, the conditional distribution over class labels is
identical for the original features and the thinned features:

P[Y | X =2] =P[Y | X = z]. (12.5)

This chapter extends the result to general Lévy processes (see Theorem
12.2).

This last result (12.5) may appear quite counterintuitive: for example, if
Agp is more informative than A4y, how can it be that downsampling does not
perturb the conditional class probabilities? Suppose x is a 40-word document
(lz|l1 = 40). When ¢ = 60, most of the documents will be longer than 40
words, and thus x will be less likely under ¢ = 60 than under t = 40. However,
(12.5) is about the distribution of Y conditioned on a particular realization
x. The claim is that, having observed z, we obtain the same information
about Y regardless of whether ¢, the expected document length, is 40 or 60.

12.2.2 Thinning Lévy Processes

The goal of this section is to extend the Poisson topic model from Sec-
tion 12.2.1 and construct general thinning schemes with the invariance prop-
erty of (12.5). We will see that Lévy processes provide a natural vehicle for
such a generalization: The Poisson process used to generate documents is
a specific Lévy process, and binomial sampling corresponds to “rewinding”
the Lévy process back in time.

Consider the multiclass classification problem of predicting a discrete class
Y € {1,..., K} given an input vector X € R% Let us assume that the joint
distribution over (X,Y) is governed by the following generative model:

352

Data Augmentation via Lévy Processes

1. Choose Y ~ Mult(7), where 7 is on the K-dimensional simplex.
2. Draw a topic 6 | Y, representing a subpopulation of class Y.

3. Construct a Lévy process (A;)i>o | 0, where A; € R? is a potential input
vector at time t.

4. Observe the input vector X = Ap at a fixed time T'.

While the Lévy process imposes a fair amount of structure, we make no as-
sumptions about the number of topics, which could be uncountably infinite,
or about their distribution, which could be arbitrary. Of course, in such an
unconstrained non-parametric setting, it would be extremely difficult to ade-
quately fit the generative model. Therefore, we take a different tack: We will
use the structure endowed by the Lévy process to generate pseudo-examples
for consumption by a discriminative classifier. These pseudo-examples im-
plicitly encode our generative assumptions.

The natural way to generate a pseudo-example ()A(: Y) is to “rewind” the
Lévy process (A;) backwards from time 7' (recall X = Ar) to an earlier time
T = oT for some o € (0,1) and define the thinned input as X = Az. In
practice, (A¢) is unobserved, so we draw X conditioned on the original input
X = Ap and topic 6. In fact, we can draw many realizations of X | X, 0.

Our hope is that a single full example (X,Y") is rich enough to gener-
ate many different pseudo-examples ()~(,Y), thus increasing the effective
sample size. Moreover, Wager et al. (2014) show that training with such
pseudo-examples can also lead to a somewhat surprising “altitude training”
phenomenon whereby thinning yields an improvement in generalization per-
formance because the pseudo-examples are more difficult to classify than
the original examples, and thus force the learning algorithm to work harder
and learn a more robust model.

A technical difficulty is that generating X | X,0 seemingly requires
knowledge of the topic 6 driving the underlying Lévy process (A¢). In order
to get around this issue, we establish the following condition under which
the observed input X = Ay alone is sufficient—that is, P[X | X, 6] does not
actually depend on 6.

Assumption 12.1 (exponential family structure). The Lévy process (A¢) ‘ 0
is drawn according to an exponential family model whose marginal density
at time t is

fg(t) () =exp[f -z — ty (0)] h®) (z) for everyt € R. (12.6)

Here, the topic § € R® is an unknown parameter vector, and h® () is a
family of carrier densities indexed by t € R.

12.2 Lévy Thinning 353

Poisson Document Model

20

Xa |-+

15

Ay
10
|

0 10 T 20 T 30 40

Figure 12.4: Illustration of our Poisson process document model with a three-word
dictionary and p(0) = (0.25,0.3,0.45). The word counts of the original document,
X = (8,7,16), represents the trivariate Poisson process Ay, sliced at T = 28. The
thinned pseudo-document X = (2,4,9) represents A; sliced at T = 14.

The above assumption is a natural extension of a standard exponential
family assumption that holds for a single value of ¢. Specifically, suppose
that A® (x), t > 0, denotes the t-marginal densities of a Lévy process, and
that fe(l)(x) = explf-z— (0)]hVY(z) is an exponential family through
A1) (z) indexed by 6 € R% Then, we can verify that the densities specified
in (12.6) induce a family of Lévy processes indexed by 6. The key observation
in establishing this result is that, because h() () is the t-marginal of a Lévy
process, the Lévy—Khintchine formula implies that

t
/ee'zh(t) (x) dox = (/ e (z) daj) = et ¥,

and so the densities in (12.6) are properly normalized.

We also note that, given this assumption and as T" — oo, we have that
A7 /T converges almost surely to 1(0)) [A1]. Thus, the topic § can be
understood as a description of an infinitely informative input. For finite
values of T', X represents a noisy observation of the topic 6.

Now, given this structure, we show that the distribution of X = Ayt
conditional on X = Ar does not depend on 6. Thus, feature thinning is
possible without knowledge of # using the Lévy thinning procedure defined
below. We note that, in our setting, the carrier distributions h(®)(z) are

354

Data Augmentation via Lévy Processes

always known; in Section 12.3, we discuss how to efficiently sample from the
induced distribution ¢(®?) for some specific cases of interest.

Theorem 12.1 (Lévy thinning). Assume that (A;) satisfies the exponential
family structure in (12.6), and let o € (0, 1) be the thinning parameter.
Then, given an input X = A and conditioned on any 0, the thinned input
X = Aur has the following density:

R(T) (%) H(0-)T) (X — %)
R(T)(X) ’

4T (% X) = (12.7)

which importantly does not depend on 6.

Proof. Because the Lévy process (A;) has independent and stationary in-
crements, we have that A,p ~ fe(aT) and Ar — Agr ~ f(g(l_a)T) are in-
dependent. Therefore, we can write the conditional density of A,r given
Ar as the joint density over (Ayr, A7) (equivalently, the reparametrization
(Aar, AT — Ayr)) divided by the marginal density over Ap:

(aT) oy f(1-0)T) <
9T (%; X) = = (X)fem 23
fo "(X)

- <exp 0% — aT(0)] heT) (5())
X (exp [0 (X —%) — (1 — a)T(0)] =T (X — 5())

(12.8)

x (ol X~ T D))

where the last step expands everything (12.6). Algebraic cancellation, which
removes all dependence on #, completes the proof.]

Note that while Theorem 12.1 guarantees we can carry out feature thin-
ning without knowing the topic 6, it does not guarantee that we can do
it without knowing the information content 7'. For Poisson processes, the
binomial thinning mechanism depends only on « and not on the original T'.
This is a convenient property in the Poisson case but does not carry over
to all Lévy processes — for example, if B; is a standard Brownian motion,
then the distribution of By given By = 0 is N(0, 1), while the distribution of
By given Bygg = 0 is N(0,100). As we will see in Section 12.3, thinning in
the Gaussian and Gamma families does require knowing 7', which will cor-
respond to a “sample size” or “precision.” Likewise, Theorem 12.1 does not
guarantee that sampling from (12.7) can be carried out efficiently; however,
in all the examples we present here, sampling can be carried out easily in
closed form.

12.2 Lévy Thinning

355

Procedure 1. LOGISTIC REGRESSION WITH LEVY REGULARIZATION

Input: n training examples (X“), Y(”), a thinning parameter o € (0, 1), and a feature
map ¢ : R? — RP.

1. For each training example X ¥, generate B thinned versions ()?(i’b))le according
to (12.7).

2. Train logistic regression on the resulting pseudo-examples:

n B
B ef argmin {Z Zf (ﬂ; X, Y(i))}) (12.9)

BERPXE | 577 v—1

where the multi-class logistic loss with feature map ¢ is

K
(B w,y) < log (Z eﬂ“)'“ﬂ) — B g(a). (12.10)
k=1
3. Classify new examples according to
9(z) = argmin {é<k) — 3% qb(x)} , (12.11)
ke{l,..,K}
where the ¢, € R are optional class-specific calibration parameters for k =1,..., K.

12.2.3 Learning with Thinned Features

Having shown how to thin the input X to X without knowledge of 0, we
can proceed to defining our full data augmentation strategy. We are given n
training examples {(X®), Y(i))}?zl. For each original input X, we generate
B thinned versions)A(:(i’l), e ,)?(i’B) by sampling from (12.7). We then pair
these B examples up with Y@ and train any discriminative classifier on
these Bn examples. Algorithm 1 describes the full procedure where we
specialize to logistic regression. If one is implementing this procedure using
stochastic gradient descent, one can also generate a fresh thinned input X
whenever we sample an input X on the fly, which is the usual implementation
of dropout training (Srivastava et al., 2014).

In the final step (12.11) of Algorithm 1, we also allow for class-specific
calibration parameters . After the 3*) have been determined by logistic
regression with Lévy regularization, these parameters ¢*) can be chosen
by optimizing the logistic loss on the original uncorrupted training data.
As discussed in Section 12.2.5, re-calibrating the model is recommended,
especially when « is small.

356

Data Augmentation via Lévy Processes

12.2.4 Thinning Preserves the Bayes Decision Boundary

We can easily implement the thinning procedure, but how will it affect the
accuracy of the classifier? The following result gives us a first promising
piece of the answer by establishing conditions under which thinning does
not affect the Bayes decision boundary.

At a high level, our results rely on the fact that under our generative
model, the “amount of information” contained in the input vector X is
itself uninformative about the class label Y.

Assumption 12.2 (Equal information content across topics). Assume there
exists a constant 1o such that 1(6) = 1o with probability 1, over random 6.

For example, in our Poisson topic model, we imposed the restriction that
»(0) = Z?zl % =1, which ensures that the document length || 4;||; has the
same distribution (which has expectation () in this case) for all possible

6.

Theorem 12.2. Under Assumption 12.2, the posterior class probabilities
are invariant under thinning (12.7):

Py =y|X =] =P[y =y|X =] (12.12)
forallye{l,...,K} and x € X.
Proof. Given Assumption 12.2, the density of A, | € is given by:

fe(t) (z) = e Te~top(0) (), (12.13)

which importantly splits into two factors, one depending on (6, x), and the
other depending on (¢, x). Now, let us compute the posterior distribution:

PY =y|A =2] xP[Y =y] /1@ 6| V] £ ()d6 (12.14)
xP[Y =1y /IP’ 0| Y]e?*ap, (12.15)

which does not depend on t, as e~ h(t)(z) can be folded into the normal-
ization constant. Recall that X = Ar and X = A:F' Substitute ¢ = T and
t =T to conclude (12.12). O

To see the importance of Assumption 12.2, consider the case where we
have two labels (Y € {1,2}), each with a single topic (Y yields topic fy).
Suppose that 1(02) = 2 (0;)—that is, documents in class 2 are on average
twice as long as those in class 1. Then, we would be able to make class 2
documents look like class 1 documents by thinning them with oo = 0.5.

12.2 Lévy Thinning

357

Remark 12.1. If we also condition on the information content T, then an
analogue to Theorem 12.2 holds even without Assumption 12.2:

P{Y:y‘)?:x,f:t}:P[Y:y‘X:x,T:t]. (12.16)

This is because, after conditioning on T, the e) term factors out of the

likelihood.

The upshot of Theorem 12.2 is that thinning will not induce asymptotic
bias whenever an estimator produces P [Y =y ‘ X = x] in the limit of
infinite data (n — o0), i.e., if the logistic regression (Algorithm 1) is
well-specified. Specifically, training either on original examples or thinned
examples will both converge to the true class-conditional distribution. The
following result assumes that the feature space X is discrete; the proof can
easily be generalized to the case of continuous features.

Corollary 12.3. Suppose that Assumption 12.2 holds, and that
the above multi-class logistic regression model is well-specified, i.e.,
P [Y = y‘X = :r] x b 4@ for some B and all y = 1, ..., K. Then, as-
suming that P [A; = x] > 0 for all x € X and t > 0, Algorithm 1 is consis-
tent, i.e., the learned classification rule converges to the Bayes classifier as
n — Q.

Proof. At a fixed x, the population loss E [E (ﬁ ; X, Y ‘ X = x)] is minimized
by any choice of 3 satisfying:
exp [89) - 9()]
Yy exp [B0) - 6 (x)]
for all y = 1, ..., K. Since the model is well-specified and by assumption

P[X =] > 0 for all 2 € X, we conclude that weight vector 3 learned using
Algorithm 1 must satisfy asymptotically (12.17) forallz € X asn — oco. [

=P[Y =y|X =2 (12.17)

12.2.5 The End of the Path

As seen above, if we have a correctly specified logistic regression model,
then Lévy thinning regularizes it without introducing any bias. However, if
the logistic regression model is misspecified, thinning will in general induce
bias, and the amount of thinning presents a bias-variance trade-off. The
reason for this bias is that although thinning preserves the Bayes decision
boundary, it changes the marginal distribution of the covariates X, which
in turn affects logistic regression’s linear approximation to the decision
boundary. Figure 12.5 illustrates this phenomenon in the case where A;

358

Data Augmentation via Lévy Processes

—— Bayes boundary

+ Logistic reg., T =0.1
o - = Logisticreg., T=0.4
- - = Logistic reg., T=1
e
o
o
g N T=1

T T
1.0 15

Figure 12.5: The effect of Lévy thinning with data generated from a Gaussian
model of the form X | 0, T ~ N(T 19,02TI,,X1,)7 as described in Section 12.3.1.
The outer circle depicts the distribution of 6 conditional on the color Y: black
circles all have 6 o (cos(0.757/2), sin(0.757/2)), whereas the grey squares have
0 x (cos(wm/2), sin(wm/2)) where w is uniform between 0 and 2/3. Inside this
circle, we see 3 clusters of points generated with 7" = 0.1, 0.4, and 1, along with
logistic regression decision boundaries obtained from each cluster. The dashed line
shows the Bayes decision boundary separating the black and grey points, which
is the same for all T (Theorem 12.2). Note that the logistic regression boundaries
learned from data with different T are not the same. This issue arises because the
Bayes decision boundary is curved, and the best linear approximation to a curved
Bayes boundary changes with T'.

is a Brownian motion, corresponding to Gaussian feature noising; Wager
et al. (2014) provides a similar example for the Poisson topic model.

Fully characterizing the bias of Lévy thinning is beyond the scope of
this paper. However, we can gain some helpful insights about this bias by
studying “strong thinning”—i.e., Lévy thinning in the limit as the thinning
parameter a — 0:

Bor ¥ lim lim B(a, B), (12.18)
a—0 B—oo

where 3(a, B) is defined as in (12.9) with the explicit dependence on a and
B. For each «, we take B — oo perturbed points for each of the original

12.2 Lévy Thinning

359

n data points. As we show in this section, this limiting classifier is well-
defined under weak conditions; moreover, in some cases of interest, it can
be interpreted as a simple generative classifier. The result below concerns
the existence of B(H, and establishes that it is the empirical minimizer of a
convex loss function.

Theorem 12.4. Assume the setting of Procedure 1, and let the feature map
be p(x) = x. Assume that the generative Lévy process (A;) has finitely many
Jumps in expectation over the interval [0, T]. Then, the limit Bo+ is well-
defined and can be written as

fo+ = argmin {Zn: P (/3; X, Y@) } : (12.19)

L
for some convex function p(-; x, y).

The proof of Theorem 12.4 is provided in the appendix. Here, we begin by
establishing notation that lets us write down an expression for the limiting
loss p. First, note that Assumption 12.1 implicitly requires that the process
(A;) has finite moments. Thus, by the Lévy-Ito decomposition, we can
uniquely write this process as

Ay = bt + Wi + Ny, (12.20)

where b € RP, W; is a Wiener process with covariance X, and N; is a
compound Poisson process which, by hypothesis, has a finite jump intensity.

Now, by an argument analogous to that in the proof of Theorem 12.1, we
see that the joint distribution of W and Np conditional on Ap does not
depend on . Thus, we can define the following quantities without ambiguity:

pr(z) =0T + E [Wr | Ap = 2], (12.21)

Ar(z) = E [number of jumps in (4;) for t € [0, T]| Ar =], (12.22)

vp(z; x) = 1%iI%IP’ [N, =2 ’ N #0, Ap =] . (12.23)
—

More prosaically, vr(+;) can be described as the distribution of the first
jump of N, a thinned version of the jump process V;. In the degenerate
case where P [NT =0 ‘ Ar = x] = 0, we set vp(-;) to be a point mass at
z=0.

360

Data Augmentation via Lévy Processes

Given this notation, we can write the effective loss function p for strong
thinning as

K
p(B; @, y) = —pur(x) - Y + g% > 80T (12.24)
k=1

+r(a) / 0B 2) dor(z),

provided we require without loss of generality that 215:1 B*) = 0. In other
words, the limiting loss can be described entirely in terms of the distribution
of the first jump of]\th, and continuous part Wy of the Lévy process. The
reason for this phenomenon is that, in the strong thinning limit, the pseudo-
examples X ~ At can all be characterized using either 0 or 1 jumps.

Aggregating over all the training examples, we can equivalently write this
strong thinning loss as

i p(5: X0, ¥ 1) = % i Yo v pr (XO) = TEa0)
=1

=1

‘ 2

»-1
+ZAT(X<“)/£(5; z, Y@)) dvp(z; XW), (12.25)
=1

up to HMTHS terms that do not depend on 3. Here, 1 ||UH2E_1 = Lv/S 1y cor-
responds to the Gaussian log-likelihood with covariance ¥ (up to constants),
and v, = K Hz Y® = y}‘ /n measures the over-representation of class y
relative to other classes.

In the case where we have the same number of training examples from
each class (and so 7, = 1 for all y = 1, ..., K), the strong thinning
loss can be understood in terms of a generative model. The first term,

namely 5= > 7 ‘ pr (X0 —72Y?) ‘271
classification in a Gaussian mixture with observations 7 (X®), while the
second term is the logistic loss obtained by classifying single jumps. Thus,

strong thinning is effectively seeking the best linear classifier for a generative
model that is a mixture of Gaussians and single jumps.

, is the loss function for linear

In the pure jump case (X = 0), we also note that strong thinning is closely
related to naive Bayes classification. In fact, if the jump measure of IV; has
a finite number of atoms that are all linearly independent, then we can
verify that the parameters Bo+ learned by strong thinning are equivalent to
those learned via naive Bayes, although the calibration constants ¢*) may
be different.

At a high level, by elucidating the generative model that strong thinning
pushes us towards, these results can help us better understand the behavior

12.3 Ezxamples

361

of Lévy thinning for intermediate value of «, e.g., & = 1/2. They also suggest
caution with respect to calibration: For both the diffusion and jump terms,
we saw above that Lévy thinning gives helpful guidance for the angle of
B*) but does not in general elegantly account for signal strength Hﬁ (k) H2 or
relative class weights. Thus, we recommend re-calibrating the class decision
boundaries obtained by Lévy thinning, as in Algorithm 1.

12.3 Examples

So far, we have developed our theory of Lévy thinning using the Poisson
topic model as a motivating example, which corresponds to dropping out
words from a document. In this section, we present two models based on
other Lévy processes—multivariate Brownian motion (Section 12.3.1) and
Gamma processes (Section 12.3.2)— exploring the consequences of Lévy
thinning.

12.3.1 Multivariate Brownian Motion

Consider a classification problem where the input vector is the aggregation
of multiple noisy, independent measurements of some underlying object. For
example, in a biomedical application, we might want to predict a patient’s
disease status based on a set of biomarkers such as gene expression levels
or brain activity. A measurement is typically obtained through a noisy
experiment involving an microarray or fMRI, so multiple experiments might
be performed and aggregated.

More formally, suppose that patient 7 has disease status Y? and expres-
sion level u; € RY for d genes, with the distribution of y; different for each
disease status. Given u;, suppose the t-th measurement for patient ¢ is dis-
tributed as

Ziy ~ N(pi, 2), (12.26)

where ¥ € R%? is assumed to be a known, fixed matrix. Let the observed
input be X = thl Z;t, the sum of the noisy measurements. If we could
take infinitely many measurements (7; — oo), we would have X @ /T; — p;
almost surely; that is, we would observe gene expression noiselessly. For
finitely many measurements, X @ is a noisy proxy for the unobserved ;.

We can model the process of accumulating measurements with a multi-
variate Brownian motion (A;):

A =tp+ 328, (12.27)

362

Data Augmentation via Lévy Processes

where By is a d-dimensional white Brownian motion.! For integer values of
t, A; represents the sum of the first ¢ measurements, but A; is also defined
for fractional values of t. The distribution of the features X at a given time
T is thus

X | T ~N(Tu, TS), (12.28)

leading to density

exp [1(z — t) T (£2) 7 (z — ty)]

) () — 12.29
w (@) (27)4/2 det (%) (12:29)
=exp |z X7 - %MTE_IM h (),
where
1 Tz—l
h<t>(x):eXp[i 2] (12.30)

(27)/2 det(X)1/2

We can recover the form of (12.6) by setting § = 7!, a one-to-one mapping
provided ¥ is positive-definite.

Thinning. The distribution of X = Aqyr given X = Arp is that of a
Brownian bridge process with the following marginals:

X| X ~N@aX, ol —a)TY). (12.31)

In this case, “thinning” corresponds exactly to adding zero-mean, additive
Gaussian noise to the scaled features aX. Note that in this model, unlike in
the Poisson topic model, sampling X from X does require observing T—for
example, knowing how many observations were taken. The larger T is, the
more noise we need to inject to achieve the same downsampling ratio.

In the Poisson topic model, the features (X;1,..., X; 4) were independent
of each other given the topic 6; and expected length T;. By contrast, in
the Brownian motion model the features are correlated (unless ¥ is the
identity matrix). This serves to illustrate that independence or dependence
of the features is irrelevant to our general framework; what is important is
that the increments Z; = Ay — A;_1 are independent of each other, the key
property of a Lévy process.

Assumption 12.2 requires that ,uTE_l 1 is constant across topics; i.e., that
the true gene expression levels are equally sized in the Mahalanobis norm

1. By definition of Brownian motion, we have marginally that By ~ N(0,¢I).

12.3 Ezxamples

363

defined by X. Clearly, this assumption is overly stringent in real situations.
Fortunately, Assumption 12.2 is not required (see Remark 12.1) as long as
T is observed—as it must be anyway if we want to be able to carry out Lévy
thinning.

Thinning X in this case is very similar to subsampling. Indeed, for integer
values of T , instead of formally carrying out Lévy thinning as detailed above,
we could simply resample T values of Z;+ without replacement, and add
them together to obtain X. If there are relatively few repeats, however, the
resampling scheme can lead to only (%) pseudo-examples (e.g. 6 pseudo-
examples if T = 4 and T = 2), whereas the thinning approach leads
to infinitely many possible pseudo-examples we can use to augment the
regression. Moreover, if 7" = 4 then subsampling leaves us with only four
choices of «; there would be no way to thin using o = 0.1, for instance.

12.3.2 Gamma Process

As another example, suppose again that we are predicting a patient’s
disease status based on repeated measurements of a biomarker such as gene
expression or brain activity. But now, instead of (or in addition to) the
average signal, we want our features to represent the variance or covariance
of the signals across the different measurements.

Assume first that the signals at different genes or brain locations are
independent; that is, the ¢t-th measurement for patient ¢ and gene j has
distribution

Ziji ~ N(pig, 07;)- (12.32)
Here, the variances Ui2 = (UZ Lseees 01.2 4) parameterize the “topic.” Suppress-
ing the subscript ¢, after T+ 1 measurements we can compute

T+1 1 T+1
_) _
Xjr = ;(Zm‘,t —Zijrv1)”, where Z;jry = 11 ; Zijt
(12.33)

Then X;r ~ UJZ.X2T, which is a Gamma distribution with shape parameter
T/2 and scale parameter 20? (there is no dependence on p;). Once again,
as we accumulate more and more observations (increasing 7'), we will have
Xr/T = (0%,...,02%) almost surely.
We can embed X 7 in a multivariate Gamma process with d independent
2

coordinates and scale parameters o7

(Ag); ~ Gammal(t/2, 20?). (12.34)

364

Data Augmentation via Lévy Processes

The density of A; given o2 is

d
@ =] - S2/2) (12.35)
J

d d
=exp |— ij/2aj2~ —(t/2) Zlogajz- R (),
j=1 j=1
where
H‘xt‘/271
MO ()= 20— 12.36
(ZE) F(t/2)d2dt/2 ()
We can recover the form of (12.6) by setting 6; = —1/20?, a one-to-one
mapping.

Thinning. Because X j ~ Gamma(aT'/2, 2032) is independent of the incre-
ment X; — X; ~ Gamma((1 — a)7/2, 20]2-), we have

f{j | X; ~ Beta (aT/2, (1 — a)T/2) . (12.37)

J

In other words, we create a noisy X by generating for each coordinate an
independent multiplicative noise factor

mj ~ Beta (a7, (1 — a)T) (12.38)

and setting X ;7 = m;X;. Once again, we can downsample without knowing
032-, but we do need to observe T'. Assumption 12.2 would require that [j 0]2-
is identical for all topics. This is an unrealistic assumption, but once again
it is unnecessary as long as we observe T

General covariance. More generally, the signals at different brain loca-
tions, or expressions for different genes, will typically be correlated with
each other, and these correlations could be important predictors. To model
this, let the measurements be distributed as:

Zip ~ N(pi, %), (12.39)

where ¥ represents the unknown “topic”’—some covariance matrix that is
characteristic of a certain subcategory of a disease status.

12.4 Simulation Fxperiments 365

After observing T + 1 observations we can construct the matrix-valued

features:
T+1
Xr =Y (Ziy— Zir1)(Zis — Ziz1) . (12.40)
t=1

Now X7 has a Wishart distribution: X7 ~ Wishgy(3, 7). When T' > d, the
density of A; given X is

g) (x) = exp {—; tr(X71x) — %log det(E)} h(z), (12.41)
where

-1

h0 () = <2 det(z) "2 Ty (;)) , (12.42)
t d(d—1) d t 1—3

Ty <2> =73 HF <2 + 2) : (12.43)

supported on positive-definite symmetric matrices. If X =Ap and o1 > d
as well, we can sample a “thinned” observation X from density proportional
to

24+d—aT o\ 2+d-(1—)T

ROD(ERT=oTN (X — &) oc det(7) ™ 7 det(X —2) 2, (12.44)

or after the affine change of variables X =XxV2pmxV 2(, we sample M from
24d—aT 24d—(1—a)t

density proportional to det(m) 3 det(ly —m)~ =2, a matrix beta

distribution. Here, M may be interpreted as matrix-valued multiplicative

noise.

12.4 Simulation Experiments

In this section, we perform several simulations to illustrate the utility of
Lévy thinning. In particular, we will highlight the modularity between Lévy
thinning (which provides pseudo-examples) and the discriminative learner
(which ingests these pseudo-examples). We treat the discriminative learner
as a black box, complete with its own internal cross-validation scheme that
optimizes accuracy on pseudo-examples. Nonetheless, we show that accuracy
on the original examples improves when we train on thinned examples.
More specifically, given a set of training examples {(X,Y)}, we first
use Lévy thinning to generate a set of pseudo-examples {()Z' , Y)}. Then
we feed these examples to the R function cv.glmnet to learn a linear
classifier on these pseudo-examples (Friedman et al., 2010). We emphasize

366

Data Augmentation via Lévy Processes

——

n: 30
| —— n:600

classification error
0.00 0.05 0.10 0.15 0.20 0.25 0.30
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
naive Bayes <——- alpha ———> ridge logistic regression

Figure 12.6: Performance of Lévy thinning with cross-validated ridge-regularized
logistic regression, on a random Gaussian design described in (12.45). The curves
depict the relationship between thinning « and classification error as the number of
training examples grows: n = 30, 50, 75, 100, 150, 200, 400, and 600. We see that
naive Bayes improves over ridge logistic regression in very small samples, while in
moderately small samples Lévy thinning does better than either end of the path.

that cv.glmnet seeks to choose its regularization parameter A to maximize
its accuracy on the pseudo-examples ()~(, Y) rather than on the original
data (X, Y'). Thus, we are using cross-validation as a black box instead of
trying to adapt the procedure to the context of Lévy thinning. In principle,
we might be concerned that cross-validating on the pseudo-examples would
yield a highly suboptimal choice of A, but our experiments will show that
the procedure in fact works quite well.

The two extremes of the path correspond to naive Bayes generative model-
ing at one end (a = 0), and plain ridge-regularized logistic regression at the
other (v = 1). All methods were calibrated on the training data as follows:
Given original weight vectors B , we first compute un-calibrated predictions
n=X B for the log-odds of P [Y =1 } X], and then run a second univariate
logistic regression Y ~ i to adjust both the intercept and the magnitude of
the original coefficients. Moreover, when using cross-validation on pseudo-
examples ()~(, Y), we ensure that all pseudo-examples induced by a given

12.4 Simulation Fxperiments 367

n: 30
— n: 1600

n
=
o

L

o

=

(0]

[

S 2

=

@ O

Qo

=

(/2]

(72}

©

o w
C)_,
o
o
O_,
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
naive Bayes <-—- alpha ———> ridge logistic regression

Figure 12.7: Performance of Lévy thinning with cross-validated ridge-regularized
logistic regression, on a random Poisson design described in (12.46). The curves
depict the relationship between thinning « and classification accuracy for n =
30, 50, 100, 150, 200, 400, 800, and 1600. Here, aggressive Lévy thinning with
small but non-zero « does substantially better than naive Bayes (o = 0) as soon as
n is moderately large.

example (X, Y') are in the same cross-validation fold. Code for reproducing
our results is available at https://github.com/swager/levythin.

Gaussian example. We generate data from the following hierarchical

model:

Y ~ Binomial (0.5), u|Y ~ Ly, X|p~N(u, Lixa), (12.45)
where p, X € R? and d = 100. The distribution Ly associated with each
label Y consists of 10 atoms ng)’ ey ,u?o/). These atoms themselves are all

randomly generated such that their first 20 coordinates are independent
draws of 1.17Ty where Ty follows Student’s t-distribution with 4 degrees of
freedom; meanwhile, the last 80 coordinates of p are all 0. The results in
Figure 12.6 are marginalized over the randomness in Ly i.e., different simu-
lation realizations have different conditional laws for p given Y. Figure 12.6
shows the results.

368

Data Augmentation via Lévy Processes

Poisson example. We generate data from the following hierarchical model:

0;
Y ~ Binomial (0.5), 6 ‘ Y ~ Ly, Xj|0 ~ Pois (1000;9) , (12.46)

j=1¢"

where § € R?, X € N¢, and d = 500. This time, however, £y is deterministic:
If Y =0, then 0 is just 7 ones followed by 493 zeros, whereas

0y =1~(0,..,0|7, ...,7|0,..,0|, with 7~ Exp(3).
7 7 486

This generative model was also used in simulations by Wager et al. (2014);
the difference is that they applied thinning to plain logistic regression,
whereas here we verify that Lévy thinning is also helpful when paired with
cross-validated ridge logistic regression. Figure 12.7 shows the results.

These experiments suggest that it is reasonable to pair Lévy thinning
with a well-tuned black box learner on the pseudo-examples ()? , Y), without
worrying about potential interactions between Lévy thinning and the tuning
of the discriminative model.

12.5 Discussion

In this chapter, we have explored a general framework for performing data
augmentation: apply Lévy thinning and train a discriminative classifier on
the resulting pseudo-examples. The exact thinning scheme reflects our gener-
ative modeling assumptions. We emphasize that the generative assumptions
are non-parametric and of a structural nature; in particular, we never fit an
actual generative model, but rather encode the generative hints implicitly
in the pseudo-examples.

A key result is that under the generative assumptions, thinning preserves
the Bayes decision boundary, which suggests that a well-specified classifier
incurs no asymptotic bias. Similarly, we would expect that a misspecified
but powerful classifier should incur little bias. We showed that in limit
of maximum thinning, the resulting procedure corresponds to fitting a
generative model. The exact bias-variance trade-off for moderate levels of
thinning is an interesting subject for further study.

While Lévy processes provide a general framework for thinning examples,
we recognize that there are many other forms of coarsening that could lead
to the same intuitions. For instance, suppose X | 6 is a Markov process over
words in a document. We might expect that short contiguous subsequences
of X could serve as good pseudo-examples. More broadly, there are many

12.6 Appendix: Proof of Theorem 12./ 369

forms of data augmentation that do not have the intuition of coarsening
an input. For example, rotating or shearing an image to generate pseudo-
images appeals to other forms of transformational invariance. It would be
enlightening to establish a generative framework in which data augmentation
with these other forms of invariance arise naturally.

12.6 Appendix: Proof of Theorem 12.4

To establish the desired result, we show that for a single training example
(X, Y), the following limit is well-defined for any 3 € RP*K:

p(B: X,Y) = lim — (IE [z (5; X, Y)} “log (K)) (12.47)

a—0
1 & .
L

where on the second line we wrote down the logistic loss explicitly and

1~
—BY) . X + lim —E
a—0 «

exploited linearity of the term involving Y as in Wager et al. (2013). Here
E denotes expectation with respect to the thinning process and reflects
the B — oo limit. Because ¢ is convex, p must also be convex; and by
equicontinuity B (o) must also converge to its minimizer.

Our argument relies on the decomposition A; = bt + Wy + N; from
(12.20). Without loss of generality, we can generate the pseudo-features X
as X = bt + WQT + NaT, where WQT and NaT have the same marginal
distribution as W, and N,r. Given this notation,

1 1 & () War+N
~ k). (abT+Weaor+Naor
~E |log <Kzeﬂ (abT+War+))]
k=1
i B ~
7E log (Z 8. abT+WaT) ‘NaT = 0] P [NaT = 0}
 [10g (5. (abT+I7i7aT+JVaT)> | Nat # 0] P [NaT # 0} :

We now characterize these terms individually. First, because N; has a finite
jump intensity, we can verify that, almost surely,

Tim }P[QT;AO]_AT(),

a—0 «

370 Data Augmentation via Lévy Processes

where A\r(X) is as defined in (12.22). Next, because Wr concentrates at 0
as a — 0, we can check that

K
.= 1 (k). Wt N ~
B8 abT+War+Nor
Olélg%) E |log (K gle ()> }NaT #* 0]
1 & o
.o ®) N ~
= Oléll)l%] E log (K kg_l eﬁ > | NaT ;é 0]

K
1 o
= /log (K kg_l e > dvp(z; X)

where vp(-; X) (12.23) is the first jump measure conditional on X.
Meanwhile, in order to control the remaining term, we note that we can
write

War = QWT + EaTv

where Et is a Brownian bridge from 0 to 7' that is independent from WT.
Thus, noting that lim,_,g P [NQT = O] =1, we find that

K
1). (a ~aT
lim aIE [log (K Y (0T W, > \NQT_()] P [Nar = 0]

k=1
1 & ®).
_ - ﬁk bT+WT +BaT
= lim aIE 1og< Ze)]
— K — —
=B pur(X < > Bt Tzﬁ“f)—fm),
=1

where pp(X) is as defined in (12.21) and g = K~'3 5 |). The last
equality follows from Taylor expanding the log(} exp) term and noting that
3rd- and higher-order terms vanish in the limit.

12.7 References 371

Bringing back the linear term form (12.47), and assuming without loss of
generality that 5 = 0, we finally conclude that

: Y) . (k)T
P XY) == X+ 5 S 5 %8
1 k
+ A ()/log (KZeﬁ()z> dvr(z; X)
K
T 1 (F)Ty gk
== pr(X) + 5 2> 8OTE s
k=1
K
+ A (X / —B8Y) 2 4 log ™)Z> —log(K) dvp(z; X),
k=1

where for the second equality we used the fact that X = pp(X) +
X) [z dvp(z; X). Finally, this expression only differs from (12.24) by
terms that do not include ; thus, they yield the same minimizer.

12.7 References

Y. S. Abu-Mostafa. Learning from hints in neural networks. Journal of Complezity,
6(2):192-198, 1990.

J. Ba and B. Frey. Adaptive dropout for training deep neural networks. In Advances
in Neural Information Processing Systems (NIPS), pages 3084-3092, 2013.

P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial intelligence,
210:78-122, 2014.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108-116, 1995.

G. Bouchard and B. Triggs. The trade-off between generative and discriminative
classifiers. In International Conference on Computational Statistics, pages 721—
728, 2004.

B. Efron. The efficiency of logistic regression compared to normal discriminant
analysis. Journal of the American Statistical Association (JASA), 70(352):892—
898, 1975.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22,
2010.

A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature
deletion. In International Conference on Machine Learning (ICML), pages 353—
360, 2006.

1. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio. Maxout

networks. In International Conference on Machine Learning (ICML), pages
1319-1327, 2013.

372

Data Augmentation via Lévy Processes

D. P. Helmbold and P. M. Long. On the inductive bias of dropout. Journal of
Machine Learning Research (JMLR), 16:3403-3454, 2015.

J. Josse and S. Wager. Stable autoencoding: A flexible framework for regularized
low-rank matrix estimation. arXiv preprint arXiv:1410.8275, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems (NIPS), pages 1097-1105, 2012.

J. A. Lasserre, C. M. Bishop, and T. P. Minka. Principled hybrids of generative and
discriminative models. In Computer Vision and Pattern Recognition (CVPR),
pages 87-94, 2006.

P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and

pseudolikelihood estimators. In International Conference on Machine Learning
(ICML), pages 584-591, 2008.

D. McAllester. A PAC-Bayesian tutorial with a dropout bound. arXiv preprint
arXw:1307.2118, 2013.

A. McCallum, C. Pal, G. Druck, and X. Wang. Multi-conditional learning: Gener-
ative/discriminative training for clustering and classification. In Association for
the Advancement of Artificial Intelligence (AAAI), 2006.

A.Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A compar-

ison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems (NIPS), 2002.

R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification with hybrid gen-
erative/discriminative models. In Advances in Neural Information Processing
Systems (NIPS), 2004.

Y. D. Rubinstein and T. Hastie. Discriminative vs informative learning. In
International Conference on Knowledge Discovery and Data Mining (KDD),
volume 5, pages 49-53, 1997.

S. P. Scholkopf, P. Simard, V. Vapnik, and A. Smola. Improving the accuracy and
speed of support vector machines. In Advances in Neural Information Processing
Systems (NIPS), pages 375-381, 1997.

P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation
Invariance in Pattern Recognition— Tangent Distance and Tangent Propagation.
Neural networks: Tricks of the trade Springer, 1998.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15(1):1929-1958, 2014.

L. van der Maaten, M. Chen, S. Tyree, and K. Q. Weinberger. Learning with
marginalized corrupted features. In International Conference on Machine Learn-
ing (ICML), pages 410418, 2013.

S. Wager, S. I. Wang, and P. Liang. Dropout training as adaptive regularization.
In Advances in Neural Information Processing Systems (NIPS), 2013.

S. Wager, W. Fithian, S. I. Wang, and P. Liang. Altitude training: Strong bounds
for single-layer dropout. In Advances in Neural Information Processing Systems
(NIPS), 2014.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural

networks using dropconnect. In International Conference on Machine Learning
(ICML), pages 1058-1066, 2013.

12.7 References 373

S. I. Wang and C. Manning. Fast dropout training. In International Conference
on Machine Learning (ICML), pages 118-126, 2013.

S. I. Wang, M. Wang, S. Wager, P. Liang, and C. Manning. Feature noising
for log-linear structured prediction. In Empirical Methods in Natural Language
Processing (EMNLP), 2013.

13

Bilu-Linial Stability

Konstantin Makarychev komakary@microsoft.com
Microsoft Research
Redmond, WA, USA

Yury Makarychev yury@ttic.edu
Toyota Technological Institute at Chicago
Chicago, IL, USA

This chapter describes recent results on Bilu-Linial stability, also known
as perturbation resilience. It offers an overview of the subject and presents
algorithms for stable and weakly stable instances of graph partitioning and
clustering problems, including Max Cut, Minimum Multiway Cut, k-center,
and clustering problems with separable center-based objectives.

13.1 Introduction

In this chapter, we survey recent research on instance stability and pertur-
bation resilience. Many discrete optimization problems in machine learning,
operations research, and other areas are NP-hard. For many of them, not
only the exact but even a good approximate solution cannot be found ef-
ficiently in the worst case. At the same time, instances appearing in real
life can often be solved exactly or almost exactly. This raises the following
question:

Why are real-life instances often significantly easier than worst-case
instances?

To formally study this question, we must define a model for real-life in-
stances. The two most popular approaches are either to assume that a real-

376

Bilu-Linial Stability

life instance has certain structural properties, or to assume that it is gener-
ated in a random or semi-random process. Both approaches are very natural
and have led to the discovery of many interesting results. In this chapter,
we study the former approach, focusing on stable instances of clustering and
graph partitioning problems. We refer the reader to several papers describ-
ing the latter approach (Blum and Spencer, 1995; Feige and Kilian, 1998;
Mathieu and Schudy, 2010; Makarychev et al., 2012, 2014a, 2013, 2015; Feige
et al., 2015).

Instance stability, or perturbation resilience, was introduced by Bilu and
Linial (2010). Informally, an instance is Bilu-Linial stable if the optimal
solution does not change when we perturb the instance.

Definition 13.1. Consider an instance of a graph partitioning problem,
a graph G = (V, E,w) with a set of edge weights w.. An instance G' =
(V, E,w') is an a-perturbation (o > 1) of G if w(e) < w'(e) < aw(e); that
18, if we can obtain the perturbed instance from the original by multiplying
the weight of each edge by a number from 1 to « (the number may be different
for every edge).

Now, consider an instance 3 = (V,d) of a clustering problem, where V' is a
set of points and d is a metric on V. An instance (V,d') is an a-perturbation
of (V,d) if d(u,v) < d'(u,v) < ad(u,v); here, d does not have to be a metric.
If, in addition, d’ is a metric, then d' is an a-metric perturbation of d.

Definition 13.2. An instance J is a-stable if every a-perturbation of J has
the same optimal solution as J.

Adhering to the literature, we will refer to a-stable instances of graph par-
titioning problems as “Bilu-Linial stable” and to a-stable instances of clus-
tering problems as “a-perturbation resilient”. Additionally, for clustering
problems, we will consider a weaker, and perhaps somewhat more natural,
notion of a-metric perturbation resilience.

Definition 13.3. An instance (V,d) of a clustering problem is a-metric
perturbation resilient if every a-metric perturbation of (V,d) has the same
optimal solution as J.

Why is it reasonable to assume that many real-life instances are stable?
As Bilu and Linial (2010); Balcan et al. (2009); Bilu et al. (2013) argue,
the reason is that often the optimal solution “stands out” among all other
solutions — it is significantly better than all other solutions, and, therefore,
the optimal solution remains the same even if we slightly perturb the
instance. Also, we are often interested not in optimizing the objective
function per se, but rather in finding the “true” clustering or partitioning.

13.1 Introduction

377
Problem Main Results Reference
Max Cut & 2-corre- O(V/lognloglogn) Makarychev et al. (2014b)
lation clustering (incl. weakly stable instances)

SDP gap and hardness result
Min Multiway Cut 4, (incl. weakly stable instances) Makarychev et al. (2014b)
Max k-Cut hardness for co-stable instances ~ Makarychev et al. (2014b)
sym./assym. k-center 2 Balcan et al. (2015)
hardness for (2 — ¢€)-pert. resil.
s.c.b. objective 1++2 Balcan and Liang (2016)
(24 v/3,¢) for k-median
2, assuming cluster verifiability Balcan et al. (2015)
s.c.b., Steiner points 24 /3 Awasthi et al. (2012)
min-sum objective O(p) and (O(p),), where p is Balcan and Liang (2016)
the ratio between the sizes of

the largest and smallest clusters

TSP 1.8 Mihaldk et al. (2011)

Table 13.1: The table summarizes some known results for Bilu-Linial stability.
It shows a number « if there is an algorithm for a-stable/perturbation resilient
instances; it shows (a,e) if there is an algorithm for (o, e)-perturbation resilient
instances. “s.c.b.” is a shortcut for a clustering problem with a separable center-
based objective.

If the optimal solution changes drastically when we slightly perturb the
weights, then by solving the problem exactly, we will likely not find the true
clustering since we often know the values of edge weights or distances only
approximately. Therefore, if the instance is not stable, we are not interested
in solving it in the first place.

Nevertheless, the definition of Bilu-Linial stability is somewhat too strict.
Perhaps, it is more natural to require that the optimal solution to a per-
turbed instance be “e-close” but not necessarily equal to the optimal solution
for the original instance. This notion is captured in the definitions of a-weak
Bilu-Linial stability and (o, €)-perturbation resilience (we present a formal
definition of weak Bilu-Linial stability for Max Cut in Section 13.2.3).

Let us now briefly describe the research on Bilu-Linial stability. We refer
the reader to Table 13.1 for the list of known results. The notion of instance
stability was introduced by Bilu and Linial (2010). They offered the first
evidence that stable instances are much easier than worst-case instances;
specifically, they gave an exact algorithm for O(n)-stable instances of Max
Cut. This result was improved by Bilu et al. (2013), who designed an
algorithm for O(y/n)-stable instances. Makarychev et al. (2014b) developed

378

Bilu-Linial Stability

a general approach to analyzing stable instances of graph partitioning
problems, showing that if there exist a convex relaxation and a rounding
scheme for a problem satisfying certain properties, then

= the convex relaxation for stable instances of the problem is integral;

® there are polynomial-time algorithms for stable and weakly stable in-
stances of the problem;

= the algorithm for stable instances is robust — it either solves the problem
or certifies that the instance is not stable.

In particular, this result applies to O(y/lognloglogn)-stable and weakly
stable instances of Max Cut, and 4-stable and weakly stable instances of
Minimum Multiway Cut. Moreover, the results for Max Cut are essentially
tight; see (Makarychev et al., 2014b) for details.

Awasthi et al. (2012) initiated the study of perturbation resilience of
clustering problems. They defined a wide class of clustering problems with
separable center-based objectives, including such problems as k-center, k-
means, and k-median, and presented an algorithm for solving 3-perturbation
resilient instances of such problems. Additionally, in a more general setting,
where Steiner points are allowed, they gave an algorithm for (2 + v/3)-
perturbation resilient instances, and showed that there is no polynomial-time
algorithm for 3-perturbation resilient instances with Steiner points.

Later, Balcan and Liang (2016) improved the result of Awasthi et al.
(2012) for clustering problems with separable center-based objectives (with-
out Steiner points), by showing that (1-+1+/2)-perturbation resilient instances
can be efficiently solved. In addition, they gave an approximation algorithm
for (2 + /3, ¢)-perturbation resilient (weakly stable) instances. They also
presented an algorithm for clustering with the min-sum objective, as well as
sub-linear algorithms for clustering problems.

Most recently, Balcan et al. (2015) designed algorithms for 2-perturbation
resilient instances of symmetric and asymmetric k-center and obtained a
matching hardness result. They also considered clustering instances with
separable center-based objectives satisfying the cluster verifiability condi-
tion. This condition requires that there be a polynomial-time algorithm that,
given a set S, determines which is of the following statements holds true:

(1) S = C; for some ¢, (2) S C C; for some i, (3) S D C; for some i

(where C1, ..., Cy is the optimal clustering); under the promise that one of
these statements is true. Balcan et al. (2015) showed how to solve 2-stable
instances satisfying this condition.

13.1 Introduction

379

There has also been research on algorithms for stable instances of other
problems. Mihaldk et al. (2011) gave an algorithm for 1.8-stable instances of
the Travelling Salesperson Problem (TSP). Balcan and Braverman (2010)
studied the problem of finding the Nash equilibrium under stability assump-
tions. Also of much interest are the papers by Ostrovsky et al. (2006) and
Balcan et al. (2009), which study notions of stability closely related to Bilu-
Linial stability. Finally, let us mention that Leontev gave a similar definition
of stability for combinatorial optimization problems in 1975. However, his
motivation for studying instance stability was different from the motiva-
tion of Bilu and Linial; and the questions studied in his paper (Leontev,
1975) and a number of subsequent papers are not related to the questions
addressed in this survey.

13.1.1 Organization

We describe several results for stable instances of graph partitioning and
clustering problems. We begin with a general definition of graph partitioning
problems in Section 13.2.1. Then, we prove that convex relaxations for
~-stable instances of graph partitioning problems, which satisfy certain
assumptions, are integral (for the appropriate choice of v), and, therefore,
these instances can be solved in polynomial time. In Section 13.2.2, we apply
this theorem to the Minimum Multiway Cut problem to show that 4-stable
instances of the problem have an integral LP relaxation. In Section 13.2.1, we
also state a general theorem for weakly stable instances of graph partitioning
problems (Theorem 13.1, part II). However, we omit the proof in this
survey. Instead, in Section 13.2.3, we prove a special case of the theorem,
presenting an algorithm for ~-weakly stable instances of Max Cut (for
v > cy/lognloglogn).

Then we proceed to clustering problems. In Section 13.3.1, we give an
algorithm for 2-metric perturbation resilient instances of k-center (due to
Balcan et al., 2015). Then, in Section 13.3.2, we give the definition of
clustering problems with a center-based objective and present an algorithm
for solving (v/2+ 1)-metric perturbation resilient instances of such problems
(due to Balcan and Liang, 2016).

380

Bilu-Linial Stability

13.2 Stable Instances of Graph Partitioning Problems

13.2.1 Relaxations for Stable Instances Are Integral

In this section, we study stable instances of graph partitioning problems.
We show that under certain conditions convex relaxations (e.g., linear pro-
gramming and semidefinite programming relaxations) for stable instances
of graph partitioning problems are integral. In particular, the result of
this section implies that 4-stable instances of Minimum Multiway Cut and
cv/lognloglog n-stable instances of Max Cut have integral convex relax-
ations.

The result applies to a wide class of graph partitioning problems. Let us
start with defining graph partitioning problems — our definition will include
such problems as Min Cut, Max Cut, Minimum Multiway Cut, Minimum
Balanced Cut, Minimum Multicut, and many others.

Definition 13.4. In a graph partitioning problem, we are given a graph
G = (V,E,w) with positive edge weights w(e). Our goal is to remove a
subset of edges FEoyy C E that satisfies certain conditions, which depend on
the specific problem at hand, so as to minimize or mazximize the weight of cut
edges. Specifically, in a minimization problem, we minimize ZeEEcm w(e);
in a mazimization problem, we mazimize) cp w(e).

Consider a few examples that show how our definition captures standard
graph partitioning problems; for each problem, we will state the require-
ments on the set E.,:. The global Min Cut problem is a minimization prob-
lem, in which we require that the set of edges F.,; consist exactly of all the
edges between some set A and its complement A (both sets A and A must
not be empty). Max Cut is a maximization problem, in which we similarly
require that F.,; consist of all the edges between sets A and A. Minimum
Multiway Cut is a minimization problem, in which we require that every two
terminals s; are s; in a given set of terminals {si,...,s;} be disconnected
in G — Ecut-

We show an interesting connection between Bilu-Linial stability and
rounding algorithms or schemes for convex relaxations of graph partition-
ing problems. First, let us briefly discuss how rounding schemes are used in
solving graph partitioning problems. We write a linear programming (LP) or
semidefinite programming (SDP) relaxation for the problem. The relaxation
has two types of feasible solutions. First of all, the relaxation has feasible
integral solutions, which are in one-to-one correspondence with feasible so-
lutions to the graph partitioning problem (we will refer to solutions of the

13.2 Stable Instances of Graph Partitioning Problems 381

graph partitioning problem as combinatorial solutions). Secondly, the relax-
ation has solutions that do not correspond to any combinatorial solutions.
We solve the relaxation and find an optimal fractional solution, which might
not be integral. However, since there is an integral solution corresponding
to the optimal combinatorial solution, the optimal fractional solution value
must be at least the optimal combinatorial value for a maximization problem
and at most the optimal combinatorial value for a minimization problem.
Now we use a (randomized) rounding scheme to transform a fractional solu-
tion to a combinatorial solution.! Most linear and semidefinite programming
relaxations for graph partitioning problems are metric-based. Let us give a
very general definition of a metric-based fractional solution.

Definition 13.5. We say that = is a metric-based fractional solution of
value val(z) for a graph partitioning problem if there is a polynomial-time
algorithm that given x finds a distance function d : E — [0,1] such that

val(x) = Z w(u,v) d(u,v).

(u,v)EE

We say that distance d is defined by solution x.

Assume that there is a polynomial-time (optimization) algorithm A that,
given an instance of the problem, finds a metric-based fractional solution x
of value val(z),

val(xz) > OPT for a mazximization problem,

val(z) < OPT for a minimization problem,

where OPT is the value of the optimal combinatorial solution. Then we say

that x is an optimal fractional solution found by the optimization algorithm
A.

A standard example of an algorithm A is an LP or SDP solver that finds
an optimal solution to an LP or SDP relaxation of a graph partitioning
problem. Then an optimal fractional solution x is just an optimal LP or
SDP solution to the relaxation.

Definition 13.6. Consider a graph partitioning problem and an optimiza-
tion algorithm A as in Definition 13.5. We say that a randomized algorithm
R is a rounding scheme (w.r.t. A) if, given an optimal fractional solution x
for an instance of the problem, it returns a feasible solution to the instance.

1. We note that “rounding algorithms” are often very non-trivial; they do not merely
round real numbers to integers as their name might suggest.

382

Bilu-Linial Stability

Now note that, by combining an optimization procedure A and
(polynomial-time) rounding scheme R, we get a randomized approximation
algorithm (see Algorithm 13.1). The mere existence of a rounding scheme,

Algorithm 13.1 Approximation algorithm based on optimization procedure A and
rounding scheme R

1: Run A on the input instance J and get an optimal fractional solution z.
2: Run R on z and get a feasible solution to J.

however, does not guarantee that the approximation algorithm based on
it performs well. Let us say that we have a minimization problem. One of
the most common ways to ensure that the approximation algorithm has an
approximation factor of « is to use a rounding scheme R satisfying the fol-
lowing condition: given an optimal fractional solution x, R returns a random
solution E’,, such that

Pr ((u,v) € E;

&

ut) é ad(u, U)v (13.1)

where d is the distance defined by x. Observe that, then, the expected cost
of the solution E.,, is

E [w(E.,)] = Z w(u,v) Pr ((u,v) € El,;)
(u,v)EE
<a Z w(u,v) d(u,v) = aval(z) < aOPT.
(u,v)EE

That is, in expectation, the algorithm finds a solution of cost at most c«OPT,
and thus has an approximation factor of a. Now consider the complementary
optimization problem of maximizing the weight of uncut edges, w(E\ E, ;).
Note that an optimal solution to the original problem is also an optimal
solution to the complementary problem, since the sum of their objectives,
w(E,,) +w(E\ E.,,) = w(E), depends only on the instance and not on
the solution E’, ,. However, the problems might be very different in terms of

cut®
multiplicative approximability — a good approximation algorithm for one
of them is not necessarily good for the other. It is not hard to see that in
order to get a 3 approximation algorithm for the complementary problem,
we can use a rounding procedure R satisfying the following condition,

Pr ((u,v) ¢ E.

cut

) = 8711~ d(u,v)). (13.2)

We stress that conditions (13.1) and (13.2) are completely independent, and
a rounding procedure may satisfy one of them and not the other.

13.2 Stable Instances of Graph Partitioning Problems 383

Makarychev et al. (2014b) showed that if there is a rounding scheme
R satisfying both conditions (13.1) and (13.2), then the relaxation for
(afB)-stable instances is integral, and, consequently, there is a robust exact
algorithm for («f3)-stable instances.

Theorem 13.1 (Makarychev et al. (2014b)). I. Consider a graph partition-
ing problem. Suppose that there is a rounding scheme that, given a graph
G = (V,E,w) and an optimal fractional solution x, returns a feasible so-
lution E.,, such that for some o > 1 and 8 > 1 (a and B may depend on

n),

For a cut minimization problem,
1. Pr((u,v) € EL,;) < ad(u,v),
2. Pr(u¢ Bl > B (1 —d(u,v)).
For a cut maximization problem,
1. Pr((u,v) € E) > a td(u,v)

2. Pr((u,v) ¢ EL,;) <B(1—d(u,v))

cut
where distance d is defined by the fractional solution x.

Then distance d is integral for (af3)-stable instances of the problem; specifi-
cally, for every edge (u,v) € E

d(u U) — 07 @f (u,v) ¢ E:uta
’ 17 Zf (uv U) € E:ut’

where E,, is the optimal combinatorial solution.? Consequently, there is a
robust polynomial-time algorithm for (a3)-stable instances.

II. Furthermore, there is an algorithm for (af + e, N)-weakly stable in-
stances of the problem that finds a feasible solution E.,, € N (for every
e>0).

The theorem also holds for graph partitioning problems with positive and
negative weights if we require that all four properties 1, 1', 2 and 2’ hold.

In this survey, we are going to prove only part I of Theorem 13.1. Since
the proofs of Theorem 13.1 for minimization and maximization problems are
completely analogous, let us only consider a minimization problem. Before
we proceed with the proof itself, we prove the following auxiliary lemmas.

Lemma 13.2 (Bilu and Linial (2010)). Consider a vy-stable instance of

a minimization graph partitioning problem. Suppose EY,, is the optimal

2. In particular, given d, we can find EZ,;: Er = {(u,v) : d(u,v) = 1}.

384

Bilu-Linial Stability

combinatorial solution. Then, for any combinatorial solution E. ., we have

cut»
Ww(Ecut \ cut) (cut \ Ecut)

Proof. Consider the following ~-perturbation of w: w'(u,v) = yw(u,v) for
(u,v) € EX,; \ Bl and w'(u,v) = w(u,v) otherwise. Since the instance is
is y-stable, we have w'(E},) < w'(E.,;). Write,

(cut \ cut) (E:ut N Eéut) < w/(Eéut \ Ecut) (E:ut N Eéut)

’w/(E:ut) (Eéut)
Thus, w'(E},; \ EL,) < W' (EL, \ EX:). Using the definition of w’, we get
the desired inequality: yw'(Ek,; \ Ely) < W (ElLy \ Erg)- O

Lemma 13.3. If the distance d defined by a fractional solution x is not
integral, then the rounding algorithm returns a solution E!,,, different from
the optimal combinatorial solution EY,, with non-zero probability.

Proof. Note that if d(u, v) < 1 for some edge (u,v) € E,,, then (u,v) ¢ E/ ,
with probability at least 371(1 — d(u,v)) > 0, and hence E%, # E,, with
non-zero probability. So let us assume that d(u,v) = 1 for every (u,v) € EX,;.
Since the cost of the optimal combinatorial solution is at least the cost of
the optimal fractional solution x, we have

Z w(u,v) > val(z) = Z w(u,v) d(u,v)
(u,v)EEL,, (u,w)eE

= Z w(u,v) + Z w(u,v) d(u,v).

(uv)E€E ., (wv)EE\EL,,

Therefore,

Z w(u,v) d(u,v) <0,

(u,v)EE\E}

cut

and d(u,v) = 0 for every (u,v) € E\ E, O

cut

Proof of Theorem 13.1. Consider an («af3)-stable instance of the problem.
Let d be the distance defined by an optimal solution. We are going to prove
that d is integral. Assume to the contrary that it is not. Let Ecut be a random
combinatorial solution obtained by rounding d, and let E7,, be the optimal
combinatorial solution. Since d is not integral, E/ , # E, with non-zero
probability.

From (af)-stability of the instance (see Lemma 13.2), we get that

() cut \ cut) < w(Eéut \ cut) unless Ecut - Eéut?

cut

13.2 Stable Instances of Graph Partitioning Problems 385

and therefore (here we use that Pr(E},, # E.,) > 0),

Let

LP, = z w(u,v)(1 —d(u,v)),

(u,v)EE}

cut

LP_ = Z w(u,v) d(u,v).

(u,w)EE\E}

cut

From conditions 1 and 2 in the statement of the theorem, we get

E [w(E:ut \ Eéut)] = Z w(u, U) Pl"((u, U) ¢ Eéut)
(uw)EEL,
> > w(w,v)8H (1 —d(u,v) = 8P,
(u,v)EE?,,
E [w(El \ E*)cut] = Z U)(U,U) PI‘((U, U) € Eéut)
(u,v)EE\E:,,
< Z w(u,v) ad(u,v) =aLP_.
(u,v)EE?,,

Using inequality (13.3), we conclude that LP4y < LP_. On the other hand,
from the formulas for LP and LP_, we get

LP, —LP_ =w(E},,) — Z w(u,v)d(u,v) >0,
(u,v)EE

since the value of the fractional solution is at most the value of the integral
solution. We get a contradiction, which concludes the proof. O

13.2.2 An LP Relaxation and Rounding Scheme for Minimum
Multiway Cut

In this section, we show that the linear programming relaxation for 4-stable
instances of Minimum Multiway Cut is integral. To this end, we present an
LP relaxation for Minimum Multiway Cut and a rounding scheme satisfying
the conditions of Theorem 13.1. Recall the definition of the Multiway Cut
problem.

Definition 13.7. An instance of Minimum Multiway Cut consists of a
graph G = (V, E,w) with positive edge weights w. and a set of terminals
T = {s1,...,8x} C V. The goal is to partition the graph into k pieces

386

Bilu-Linial Stability

S1,...,Sk with s; € S; so as to minimize the total weight of cut edges
Eew = {(u,v) € E:u e S;,veS; fori#j}.

The problem has been actively studied since it was introduced by Dahlhaus
et al. (1994). There has been a series of approximation algorithms for
it (Cualinescu et al., 1998; Karger et al., 2004; Buchbinder et al., 2013); the
current state-of-the-art approximation algorithm by Sharma and Vondrak
(2014) gives a 1.30217 approximation.

We use the LP relaxation of Cualinescu et al. (1998). In this relaxation, we
have a variable 4 = (u1,...,ug) € RX for every vertex u € V. Let eq, ..., e
be the standard basis in R¥ and A = {z : ||z|; = 1,21 > 0,...,2; > 0} be
the simplex with vertices ey, ..., eg.

minimize 1 w(u,v) ||t —v 13.4
ILCDIELT (13.4)
subject to:
S; =€ for every 1,
€A for every uw € V.

Every feasible LP solution defines a metric on V: d(u,v) = || — 9|1 /2. Note
that the objective function equals) . pw(u,v) d(u,v). Let us now present
a randomized rounding scheme for this LP relaxation.

Theorem 13.4 (Makarychev et al. (2014b)). Consider a feasible LP solu-
tion {u : u € V} and metric d(u,v) = ||u — v||1/2. There is a randomized
algorithm that finds a partition S1,...,Sk of V and a set E.y such that
"5, €8; foreveryi € {1,...,k} (always),

" Pr((u,v) € Eequt) < lidé?fg) for every (u,v) € E. In particular,

1 —d(u,v)
—

The rounding procedure satisfies the conditions of Theorem 13.1 with

Pr((u,v) € Eeyt) < 2d(u,v) and Pr((u,v) ¢ Ecut) >

parameters a = [= 2, and, therefore, the LP relaxation for 4-stable
instances of Multiway Cut is integral.

Proof. We use the rounding algorithm by Kleinberg and Tardos (2002). The
algorithm starts with empty sets S, ..., Sk and then iteratively adds vertices
to sets S1,...,Sk. It stops when each vertex is assigned to some set 5.
In each iteration, the algorithm chooses independently and uniformly at
random r € (0,1) and 7 € {1,...,k}. It adds each vertex u to S; if r < u;
and u has not yet been added to any set S;.

13.2 Stable Instances of Graph Partitioning Problems 387

Algorithm 13.2 Rounding Algorithm for Minimum Multiway Cut
S1=9,...,5:, =2
R=V > R is the set of unpartitioned vertices
while R # @ do
reu (0,1);i€v {1,...,k}
Si:SZ'U{UERIﬂizT'}
R=R\{ueR:u; >r}
end while
return Si,..., Sk and Feut = {(u,v) € E:u € S;,v € S; for i # j}.

First, note that we add every vertex w to some S; with probability
Zle ui/k = 1/k in each iteration (unless u already lies in some Sj). So
eventually we will add every vertex to some set S;. Also note that we cannot
add s; to S if j # i. Therefore, s; € S;.

Now consider an edge (u,v). Consider one iteration of the algorithm.
Suppose that neither u nor v is assigned to any set S; in the beginning
of the iteration. The probability that at least one of them is assigned to
some S; in this iteration is

1 k
Eg r(a; >rorv;, >r)= Zmaxuz,vl
i=1

k
1 ul—l—v, lu; — v\ 1 la—ol1\ 14 d(u,v)
k?(2 >_k<1+ 2 B ko

The probability that exactly one of them is assigned to some S; is

k k
1 — 2d
Z r(u; <r <v;orv; <r <) _kZﬂ_Ul|_’u ’UHIZ (UHU)‘

w\»—t

We get that in one iteration, the conditional probability that u and v
are separated given that at least one of them is assigned to some set is
2d(u,v)/(1+d(u,v)). Therefore, the probability that v and v are separated
in some iteration is 2d(u,v)/(1+d(u,v)). Thus the probability that (u,v) is
cut is at most 2d(u,v)/(1 + d(u,v)). O

13.2.3 Weakly Stable Instances of Max Cut

Bilu-Linial stability imposes rather strong constraints on an instance of
a graph partitioning problem. Can these constraints be relaxed? In this
section, we give a definition of a more robust notion — a notion of weak
stability. Then we present an algorithm for weakly stable instances of the
Max Cut problem. Note that using Theorem 13.1 from the previous section,

388

Bilu-Linial Stability

one can show that a certain SDP relaxation for Max Cut is integral for ~-
stable instances of Max Cut with v > cy/lognloglogn. However, the SDP
does not have to be integral for weakly stable instances of Max Cut. Let us
now recall the definition of Max Cut.

Definition 13.8 (Max Cut). In the Max Cut Problem, we are given a
weighted graph G = (V, E,w). Our goal is to partition the set of vertices
into two sets S and S so as to mazimize w(E(S,S)).

Max Cut is an NP-hard problem (Karp, 1972). The approximation factor
of the best known algorithm due to Goemans and Williamson (1995) is 0.878.
It cannot be improved if the Unique Games Conjecture holds true (Khot
et al., 2007). We now give the definition of weak stability for Max Cut.

Definition 13.9. Consider a weighted graph G = (V, E,w). Let (S,S) be
a mazimum cut in G, N be a set of cuts that contains (S,S), and v > 1.
We say that G is a (v, N)-weakly stable instance of Max Cut if for every
y-perturbation G' = (V, E,w') of G, and every cut (T,T) ¢ N, we have

w'(E(S,S)) > w' (E(T,T)).

The notion of weak stability generalizes the notion of stability: an instance
is y-stable if and only if it is (v, {(S, S)})-weakly stable. We think of the set
N in the definition of weak stability as a neighborhood of the maximum
cut (9, 5); it contains cuts that are “close enough” to (.S, S). Intuitively, the
definition requires that every cut that is sufficiently different from (S, S) be
much smaller than (S, S), but does not impose any restrictions on cuts that
are close to (S, S). One natural way to define the neighborhood of (S, S) is
captured in the following definition.

Definition 13.10. Consider a weighted graph G. Let (S, S) be a mazimum
cut in G, § > 0, and v > 1. We say that G is a (7, d)-weakly stable instance
of Max Cut if G is (v,{(5",5") : |SAS'| < én})-weakly stable. In other
words, G is (v, §)-weakly stable if for every cut (T, T) such that |SAT| > dn
and |SAT| > on, we have w'(E(S,S)) > w'(E(T,T)).

We prove the following analog of Lemma 13.2.

Lemma 13.5. Consider a (v, N)-weakly stable instance of Maz Cut G =
(V,E,w). Let (S, 8) be a mazimum cut in G. Then, for every cut (T, T) ¢ N:

w(EB(S,S)\ E(T,T)) >~-w(E(T,T)\ E(S,S)). (13.5)

Proof. Fix a cut (T,T) ¢ N. Consider the following ~y-perturbation of w:
w'(u,v) = yw(u,v) for (u,v) € E(T,T)\ E(S,S); and w'(u,v) = w(u,v)

13.2 Stable Instances of Graph Partitioning Problems 389

otherwise. Since G is a y-weakly stable instance, and (T, T) ¢ N, we have
w' (E(S,S)) > o' (E(T,T)).
Write,

w'(E(S,S)) = w
W' (E(T,T)) = w'(E

w', we get inequality (13.5). O
We are now ready to state the main result.

Theorem 13.6 (Makarychev et al. (2014b)). There is a polynomial-time
algorithm that, given a (v, N)-stable instance of Max Cut, returns a cut
from N if v > c\/lognloglogn (for some absolute constant c). The set N
18 not part of the input and is not known to the algorithm.

Overview of the algorithm. The algorithm starts with an arbitrary cut
(So, So) and then iteratively improves it: first, it finds a cut (Sp,S1) that is
better than (Sp, Sp), then a cut (Sa, S2) that is better than (S7,.51), etc.

(So,go) — (51,51) — (52,5'2) — s — (St,gt);

finally, it gets a cut (S;, S;) that it cannot improve. This cut necessarily
belongs to the set N, and the algorithm outputs it. The key component of
the algorithm is a procedure Improve that, given a cut (S;,5;) ¢ N, finds
a better cut (Si+1,Si+1) (if (Si,S;) € N, the procedure may either find an
improved cut or output that (S;,S;) € N).

Now, we are going to present Improve. We note that we also must show
that the improvement process finishes in polynomially many steps, and, thus,
the running time is polynomial. In this survey, we assume for simplicity
that all edge weights are polynomially bounded integers. Then the weight of
every cut is a polynomially bounded integer; therefore, the weight of the cut
increases by at least 1 in each iteration, and the algorithm terminate after
polynomially many iterations. In the paper (Makarychev et al., 2014b), the
theorem is proved without this simplifying assumption.

Before we describe the procedure Improve, we recall the definition of
Sparsest Cut with non-uniform demands.

Definition 13.11 (Sparsest Cut with non-uniform demands). We are given
a graph H = (V, E,, cap) with non-negative edge capacities cap(u,v), a set
of demand pairs Eq, and non-negative demands dem : Eg5 — R>q. Our goal
is to find a cut (A, A) so as to minimize the ratio between the capacity of

390

Bilu-Linial Stability

the cut edges and the amount of separated demands

minimize Z cap(u,v)/ Z dem(u,v).

(u,v)€E: (u,w)ELs
uEA,vEA ucA,veEA

We call this ratio the sparsity of the cut (A, A).

We use the approximation algorithm for Sparsest Cut by Arora et al.
(2008) that gives a (Cgscv/lognloglogn)-approximation (where Cy is an
absolute constant).

Theorem 13.7. Let v = Cgv/lognloglogn. There is a polynomial-time
algorithm Improve that, given a (v, N)-weakly stable instance of Max Cut
and a cut (T,T) ¢ N, finds a cut (T',T') of greater value,

w(E(T',T") > w(E(T,T)).
Proof. Define an auxiliary Sparsest Cut instance Ggyy = (V, E¢, cap) on V:

E.=E(T,T) cap(u,v) = w(u,v)

E;=FE\ E(T,T) dem(u,v) = w(u,v).
Now run the approximation algorithm for Sparsest Cut by Arora et al.
(2008) and find an approximate cut (A, A). Let T/ = (T'N A) U (T N A).
If w(T',T") > w(T,T), return the cut (T',7"); otherwise, output that
(T,T) € N.

We need to show that if (T, T) ¢ N then w(T"',T") > w(T,T). Let (S, S) be
the maximum cut. First, we prove that there is a sparsest cut with sparsity
at most 1/ in the auxiliary graph. Let A* = (SN T) U (S NT). Since
(T,T) ¢ N, we have by Lemma 13.5:

Note that E(A*, A*) = E(SNT,SNT)UE(SNT,SNT)UESNT,SnN
TYUE(SNT,SNT) (see Figure 13.1), and
E(S,S)\ E(T,T) = EqN E(A*, A*)
E(T,T)\ E(S,S) = E.N E(A*, A%).
The sparsity of the cut (A*, A*) is therefore at most
cap(E.N E(A*, A*)) w(E(T,T)\ E(S,

] !) 1
dem(Ey N E(A*, A%)) — w(E(S,S)\ E(T,T)) ~~

13.83 Stable Instances of Clustering Problems 391

T T
SIIiIIIIiiiiiiiiiii-gnT
S - A
o NN o
By I HiE,

Figure 13.1: The figure shows sets S, S, T, T, and their pairwise intersections.
Set E. consists of horizontal and diagonal edges; set E4 consists of vertical edges, as
well as edges within SNT, SNT, SNT, SNT; set E(A*, A*) consists of horizontal
and vertical edges.

Hence, the sparsity of the cut (A, A) returned by the approximation al-
gorithm is less than (Csev/lognloglogn) x (1/v) < 1. That is, dem(Ey4 N
E(A, A)) > cap(E. N E(A, A)). We get

w(E(T',T")\ E(T,T)) = dem(E; N E(A, A)) >
> cap(E.N E(A,A)) = w(E(T,T)\ E(T',T")).
and, consequently,
w(T', T") = w(BE(T', T\ E(T,T)) + w(E(T',T") N E(T,T)) >
>w(BE(T, T)\ E(T',T") +w(E(T', TN E(T,T)) = w(T,T).

Thus, the weight of the cut (7", T") obtained by the improvement algorithm
Improve is greater than the weight of the cut (7,T). This finishes the
proof. O

13.3 Stable Instances of Clustering Problems
13.3.1 Metric Perturbation Resilient Instances of k-Center

In this section, we present an algorithm by Balcan et al. (2015) that
solves 2-metric perturbation resilient instances of k-center. In fact, we prove
that any a-approximation algorithm for k-center finds the optimal solution
of an a-metric perturbation resilient instance of k-center. Therefore, we
can use known 2-approximation algorithms for k-center to solve 2-metric
perturbation resilient instances of the problem (see Hochbaum and Shmoys

392

Bilu-Linial Stability

(1985), and Dyer and Frieze (1985)). Recall the definition of the k-center
problem.

Definition 13.12. Consider a set of vertices V, a metric d on V, and

a parameter k. Given a set of points (“centers”) ci,...,c in 'V, define a
clustering C1, . .., Cy by assigning each vertex u to the closest center among
Cly...,Ck’

Ci = {u:d(u,c;) < d(u,c;) for every i # j}

(we break the ties arbitrarily). We say that c; is the center of cluster C;.
The cost of the clustering is the mazimum distance between a point and the
center of the cluster it belongs to.

cost = max maxd(u,c).
In the k-center problem, our goal is to find a clustering of minimum cost
given V, d, and k.

Note that given a set of centers we can efficiently find the corresponding
clustering, and given a clustering we can efficiently find an optimal set of
centers for it. In this section, however, it will be more convenient for us to
view a solution for k-center as a clustering rather than a set of centers. The
reason for that is that in the definition of the perturbation resilience, we
do not want to require that the set of centers not change when we perturb
the distances — that would be a very strong requirement (indeed, it might
not be even satisfied by instances with k = 1; furthermore, there would be
no 2-perturbation resilient instances). Instead, we require that the optimal
clustering C1, ..., Ck not change when we perturb the distances.

Remark 13.1. In this section, we consider perturbations d' of the metric d
satisfying d(u,v) /vy < d'(u,v) < d(u,v) for all u,v instead of perturbations
satisfying d(u,v) < d'(u,v) < vd(u,v) as in Definition 13.3. We can do so
as long as the clustering problem is invariant under rescaling of all distances
by the same positive factor, i.e. the clustering for d is the same as the
clustering for ad for every a > 0. All clustering problems we consider in
this section satisfy this property.

Balcan et al. (2015) obtained their result for 2-perturbation resilient in-
stances of k-center. Most recently, Makarychev and Makarychev (2016)
strengthened this result, by showing that it also holds for a-metric per-
turbation resilient instances.

13.83 Stable Instances of Clustering Problems 393

Theorem 13.8 (Balcan et al. (2015); see also Makarychev and Makarychev
(2016)). An a-approximation algorithm for k-center finds the optimal clus-
tering of an a-metric perturbation resilient instance of k-center.

Proof. Consider the optimal clustering C4,...,C; and the -clustering

Ci,...,C}, found by the approximation algorithm. We are going to show

that they are identical. Let r* be the value of the clustering C1, ..., Ck. Let

{c},..., ¢} be an optimal set of centers for the clustering C1, ..., C}. Since

the algorithm gives an a-approximation, d(u,c;) < ar* for every u € CI.
Define a new distance d’ as follows

d(u,v)/a, if d(u,v) > ar*,
d (u,v) = ¢ r*, if d(u,v) € [r*, ar*],
d(u,v), if d(u,v) <r*.

We first prove that d’ satisfies the triangle inequality. Define a function f(z)
as follows: f(z) = 1/a for x > ar*; f(z) = r*/x for x € [r*, ar*], and f(x) =
1 for & < r*. Observe, that d'(u,v) = f(d(u,v))d(u,v); f(x) is a nonincreas-
ing function; = f(z) is a nondecreasing function. Consider three points u, v, w
and assume without loss of generality that d'(u, w) > max(d'(u,v),d (v, w)).
We need to prove that d'(u, w) < d'(u,v)+d (v, w). Note that since = f(x) is
a nondecreasing function, d(u,w) > max(d(u,v),d(v,w)) and f(d(u,w)) <
min(f(d(u,v)), f(d(v,w))). Thus,

d (u,v) + d' (v, w) = f(d(u,v))d(u,v) + f(d(v,w))d(v,w) >
> f(d(u,w))(d(u,v) + d(v,w)) > f(d(u,w))d(u,w) = d(u,w).

The last inequality follows from the triangle inequality d(u,v) + d(v,w) >
d(u,w) for the metric d.

Next, we check that d'(u,v) is an a-perturbation, i.e. d(u,v)/a <
d'(u,v) < d(u,v) (see Remark 13.1). We have, f(z) € [1/«,1], and, thus,
d' (u,v)/d(u,v) = f(d(u,v)) € [1/a, 1].

By the definition of a-metric perturbation resilience, C,...,C} is the
unique optimal clustering for d’. However, the optimal set of centers for d’
may be different from ¢i, ..., c;. Denote it by ¢/, ..., /. We prove that the
cost of the clustering C1, ..., C} is the same for metrics d and d’. Let

Ci) = mi d :
i) = g

3. Note that the algorithm finds the optimal clustering Ci,...,C; but not necessarily
an optimal set of centers {ci,...,cx}; however, an optimal set of centers can be easily
deduced from Ci,...,Ck.

394

Bilu-Linial Stability

Since the cost of the clustering Ci,...,C% equals r* w.r.t. d, we have
r(C;) = r* for some i. Fix this 7. By the definition of (C;), for every ¢ € C;
there exists u € C; such that d(u,c) > r(C;) = r*. Particularly, for ¢ = ¢/,
there exists u such that d(u, ¢!') > r*. Then d'(u, ¢) > r* as well. Hence, the

cost of the clustering C1,...,Cj for the metric d’ is at least r*. (It cannot
be larger than r*, since d’'(u,v) < d(u,v) for all u and v.)

To conclude the proof, we observe that the cost of the clustering C1, ..., C},
with centers ¢}, ..., ¢} also equals r* w.r.t. the metric d'. Indeed, for v € C},
we have d(u,c;) < ar*, and, therefore, d'(u,c}) < r*. Thus, Cf,...,C}, is
an optimal clustering for d’. Therefore, it must be equal to the clustering
Ci,y...,Ck. O

13.3.2 Clustering Problems with Separable Center-based Objectives

In this section, we present an algorithm by Balcan and Liang (2016) that
solves (v/2+1)-metric perturbation resilient instances of clustering problems

with separable center-based objectives.*

Definition 13.13. In a clustering problem, we are given a set of vertices
(points) V' and a distance function d on V. Our goal is to partition the
vertices into clusters so as to minimize a cost function, which depends on
the clustering problem.

Following Awasthi et al. (2012), we define the notion of a clustering prob-
lem with a center-based objective. (We note that the definition in Awasthi
et al. (2012) makes several implicit assumptions that we make explicit here.)

Definition 13.14. Consider a clustering problem. We say that it has a
center-based objective if the following three properties hold.

1. Given a subset S C V and distance dg on S, we can find the optimal
center c € S for S, or, if there is more than one choice of an optimal center,
a set of optimal centers center(S,dgs). (In the former case, center(S,ds) =
{c}).

2. The set of centers does not change if we multiply all distances between
points in S by a. That is,

center (S, adg) = center(S, dg).

4. The original result by Balcan and Liang (2016) applies to (v/2+1)-perturbation resilient
instances; recently, Makarychev and Makarychev (2016) showed that their algorithm also
works for (/2 + 1)-metric perturbation resilient instances.

13.83 Stable Instances of Clustering Problems 395

Also, the optimal clustering does not change if we multiply all distances
between points in V' by «.

3. Let C1,...,Cy be an optimal clustering of V' (the clustering of minimum
cost). For every i, let ¢; € center(Cj,d|c,) be an optimal center for C; (here,
d|c, is the restriction of d to C;). Then each point p € C; is closer to ¢; than
to any other center c;, d(p,c;) < d(p, c;).

A clustering-objective is separable if we can define individual cluster scores
so that the following holds.

1. The cost of the clustering is either the maximum or sum of the cluster
scores.

2. The score score(S,d|g) of each cluster S depends only on S and d|g, and
can be computed in polynomial time.

Many standard clustering problems, including k-center, k-means, and k-
median, have separable center-based objectives.

We will assume below that the instance is a-metric perturbation resilient
with o = 14++/2. Denote the optimal clustering by C1, . . ., Cj. Fix an optimal
set of centers ci,...,c; for the clustering (¢; € center(S,dg)). Define the
radius of cluster C; as r; = maxyec, d(c;,u). For every point u, denote the
ball of radius r around u by B(u,r): B(u,r) = {v : d(u,v) < r}.

We start with proving some basic structural properties of the optimal
clustering C1,...,Cy.

Lemma 13.9 (Awasthi et al. (2012); Makarychev and Makarychev (2016)).
Clusters satisfy the following a-center proximity property: for all i # j and
p € (i,

d(p7 C]) > Oéd(p’ Ci)'

Proof. Suppose that d(p,c;) < ad(p,c;). Let r* = d(p,¢;). Define a new
metric d’ as follows: for all v and v,

d'(u,v) = min(d(u,v),d(u,p) +r* + d(cj,v),d(v,p) +r* + d(cj,u)).

The metric d’'(u,v) is the shortest path metric on the complete graph on V/
with edge lengths len(u,v) = d(u,v) for all edges (u,v) but the edge (p, ¢;).
The length of the edge (p, c;) equals len(p, ¢j) = r*. Observe that since the
ratio d(u,v)/len(u,v) is at most d(p,c;)/r* < «a for all edges (u,v), we have
d(u,v)/d (u,v) < « for all u and v. Hence, d’ is an a-metric perturbation
of d (see Remark 13.1).

Let us now show that d’ is equal to d within the cluster C; and within the
cluster Cj.

396

Bilu-Linial Stability

Lemma 13.10. For all u,v € C;, we have d(u,v) = d'(u,v), and for all
u,v € Cj, we have d(u,v) = d'(u,v).

Proof. 1. Consider two points u, v in C;. We need to show that d(u,v) =
d'(u,v). It suffices to prove that

d(u,v) < min(d(u, p) + r* + d(cj,v),d(v,p) + r* + d(cj, u)).
Assume without loss of generality that d(u, p) +7* +d(cj,v) < d(v,p)+r*+
d(cj,u). We have

d(u,p) +r* +d(cj,v) = d(u,p) + d(p, ¢;) + d(cj,v) > d(u, ¢;) + d(cj,v).
Since v € Cj, we have d(v,¢;) < d(v,¢;), and thus
d(u,p) +r* +d(cj,v) > d(u, ¢;) + d(c;,v) > d(u,v).

I1. Consider two points u, v in . Similarly to the previous case, we need
to show that d(u,v) < d(u,p) + 7* + d(cj,v). Since now u € Cj, we have
d(u, cj) < d(u,c;). Thus,

d(u,p) +r* +d(cj,v) = (d(u,p) + d(p, cl)) +d(cj,v)
> d(u,c;) + d(cj,v) > d(u,cj) + d(cj,v) > d(u,v).

O]

By the definition of a-metric perturbation stability, the optimal clusterings
for metrics d and d’ are the same. By Lemma 13.10, the distance functions d
and d’' are equal within the clusters C; and C;. Hence, the centers of C; and
Cj w.r.t. metric d’ are also points ¢; and ¢;, respectively (see Definition 13.14,
item 1). Thus, d'(¢;, p) < d'(¢;j,p), and, consequently,

d(ciap) = d,(c’iap) < d/(C]’,p) =7 = d(clap)
We get a contradiction, which finishes the proof. O
Lemma 13.11 (Awasthi et al. (2012); Balcan and Liang (2016)).

1. All points outside of C; lie at distance greater than r; from c;. Thus,
Ci = B(Ci,’l“i).

2. Fach point p in C; s closer to ¢; than to any point q outside of C;.
Furthermore, for every p € C; and q ¢ C;, we have v2d(p, ¢;) < d(p,q).

3. For every two distinct clusters C; and Cj,
d(c;,cj) > \/imax(ri,rj).

Proof. We will prove items in the following order: 3, 1, and finally 2.

13.83 Stable Instances of Clustering Problems 397

3. Let p be the farthest from ¢; point in C;. Then r; = d(¢,p). By
Lemma 13.9, d(p, ¢;) > ad(p, ¢;) = ar;. By the triangle inequality,

d(ci, ¢j) = d(p, ¢j) — d(p, i) > ari —ry = V2.
Similarly, d(c;,cj) > v/2r;.
1. Consider a point g ¢ C;. Assume that ¢ € C;. Then

by Lemma 13.9
d(ci7 C]) S d(c’iv q) + d(Q7 C]) S d(Ci, Q) + d(cia q)/Oé - \/id(civ q)

Combining this inequality with the inequality d(c;,c;) > V/2r; from item 3,
we get that d(c;, q) > r;.

2. Assume that q € Cj. If d(c;,q) > d(c;, p), we have

by Lemma 13.9
d(p7 q) Z d(Ci, q) - d(C”L:p) > Oéd(Cj, q) - d(cl7p) Z \/id(clap)

If d(cj,q) < d(c;,p), we similarly have

by Lemma 13.9
d(p7 Q) > d(C],p) - d(cj7 q) > ad(civp) - d(Cj, Q) > ﬂd(clap)

O]

Now we sketch the algorithm of Balcan and Liang (2016). The algorithm
consists of two stages. During the first stage, the algorithm employs a greedy
approach: it starts with a trivial clustering of V', in which each vertex belongs
to its own cluster. Then it repeatedly finds and links two “closest” clusters.
The algorithm runs until it gets one cluster that contains all of the vertices.
(Importantly, the algorithm does not stop when it gets k clusters — these
k clusters are not necessarily optimal!) The result of the first stage of the
algorithm is a binary decomposition tree T of V: the leaves of the tree are
singleton clusters; internal nodes of T are intermediate clusters, obtained
during the execution of the first stage; the root of T is V. We will show that
each cluster Cj; in the optimal clustering appears in the decomposition tree
T. During the second stage, the algorithm uses a simple bottom-up dynamic
program to identify all clusters C; in 7.

For the algorithm to succeed, it is important to use the right distance
between clusters. We shall now define the closure distance to be used.

Definition 13.15. We say that a point x € A is an r-central point for a
set A C 'V if it satisfies

» Coverage condition: A C B(z,r).

398

Bilu-Linial Stability

» Padding condition: Every point p in B(x,r) is closer to x than to any
point outside of B(x,r); that is, if d(p,q) < d(p,x) <, then d(q,z) <.

Definition 13.16. The closure distance Dg(A1, Az) between two sets Aj C
V and As CV is equal to the minimal r such that A1 U Ay has an r-central
point.

Note that the closure distance is well-defined since every point in A1 U As
is r-central for r = diam(V') = max,, yev d(u, v).
Now we formally present Algorithm 13.3 (see the figure). It is clear that

Algorithm 13.3 Clustering Algorithm

1: Create n singleton clusters — one for each vertex in V. Add them to C. > Stage 1
2: Initialize a tree T. Add all singletons from € to 7.

3: while |C| #1 do

4: Find two closest clusters A and B in € w.r.t. the closure distance.

5: Merge A and B:
6

7

8

Replace A and B with AU B in C.
Add node AU B to T and make it the parent of A and B.
end while
> Stage 2
9: Using bottom-up dynamic programming, find among all clusterings (C1,...,C}) of V,
in which all C} appear in the decomposition tree T, the clustering of minimum cost.
10: return clustering (C1,...,C}).

the algorithm runs in polynomial time. To prove the correctness of the
algorithm, we need to show that every cluster C; from the optimal clustering
appears in the decomposition tree.

Lemma 13.12. Consider two subsets A1 and As of C;. Assume that ¢; €
A1 U As. Then ds(A1, AQ) <.

Proof. We show that ¢; is an r;-central point for A; U As. Indeed, by
Lemma 13.11, item 1, C; = B(c¢;, ;). Thus A; U Ay C C; = B(¢;, 7). Now
consider p € B(xz;,r;) and q ¢ B(x;,r;). We have p € C; and ¢ ¢ C;, and
from Lemma 13.11, item 2, we get that d(p,q) < d(c;, p). O

Lemma 13.13. Assume that a set A contains points from both C; and the
complement of C;. If a point x is A-central for A then A > r;.

In particular, the closure distance between non-empty sets Ay C C; and
Ao C V' \ C; is at least ;.

Proof. Consider two cases. First, assume that x € C;. Consider an arbitrary
point ¢ € A\ C;. Let C; be the cluster ¢ lies in (then, j #). Since x is
A-central for A and ¢ € A, we have d(z,q) < A. By Lemma 13.11, item

13.83 Stable Instances of Clustering Problems 399

2, d(q,cj) < d(g,z). From the definition of a central point, we get that
d(cj,z) < A. By Lemma 13.9, d(c;,) < A/a. Therefore,

d(ciyc;) < d(ci,x) +d(z,¢) < AJa+ A =V2A.

On the other hand, d(c;, ¢j) > V2 7; by Lemma 13.11, item 3. We conclude
that A > r;.

Now assume that x ¢ C;. Consider a point p € ANC;. Since x is a A-central
point for A, we have d(z,p) < A. By Lemma 13.11, item 2, point p is closer
to ¢; than to x. Thus by the definition of a central point, ¢; € B(z,A).
On the other hand, by our assumption, x ¢ C; = B(c;, 7). We get that
r; < d(c;,x) < A. This concludes the proof.

Now consider A; C C; and A2 C V' \ C;. Applying the lemma to the set
A U Ay, we get that Ds(Al, AQ) > Ty,]

Lemma 13.14. Consider a cluster C; in the optimal clustering.
1. Let C be a cluster/node in the decomposition tree T. Then

ccg;, C;cC, or CNC;=w. (13.6)
2. C; appears in the decomposition tree T.

Proof. 1. We prove that the statement holds for all sets C' in € by induc-
tion. Initially, all clusters C' in C are singletons, and therefore, satisfy con-
dition (13.6). Now suppose that we proved that condition (13.6) holds until
some iteration, in which we merge clusters A and B, and obtain a cluster
C = AU B. We need to prove that C also satisfies the condition. Note that
C satisfies condition (13.6) in the following 3 cases:

» Neither A nor B intersects C;. Then CNC; = @.
= Both sets A and B are subsets of C;. Then C C C;.
= One of the sets A and B contains C;. Then C; C C.

The only remaining case is that one of the sets is a proper subset of C; and
the other does not intersect C;; let us say A C C; and B C C;. We will show
now that this case actually cannot happen.

Since A is a proper subset of C;, there is another cluster A C C; in
C. Furthermore, if ¢; ¢ A, then there is A’ in € that contains ¢;. By
Lemma 13.12, point ¢; is r;-central for AU A’ and therefore dg(A, A”) < r;.
On the other hand, by Lemma 13.13, dg(A, B) > r; > dg(A, A’). Therefore,
A and B are not two closest clusters in € w.r.t. the closure distance. We get
a contradiction.

400

Bilu-Linial Stability

2. Consider the smallest cluster C' in T that contains C;. If C' is a singleton,
then C = ;. Otherwise, C' is the union of its child clusters A and B.
By item 1, both A and B are subsets of C;, and so C' C C;. Therefore,
C=C;. O

13.4 References

S. Arora, J. Lee, and A. Naor. Euclidean distortion and the sparsest cut. Journal
of the American Mathematical Society, 21(1):1-21, 2008.

P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49-54, 2012.

M.-F. Balcan and M. Braverman. Approximate Nash equilibria under stability
conditions. Technical report, 2010.

M.-F. Balcan and Y. Liang. Clustering under perturbation resilience. 2016. To
appear.

M.-F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the
approximation. In Proceedings of the Symposium on Discrete Algorithms, pages
1068-1077. Society for Industrial and Applied Mathematics, 2009.

M.-F. Balcan, N. Haghtalab, and C. White. Symmetric and asymmetric k-center
clustering under stability. arXiv preprint arXiv:1505.03924, 2015.

Y. Bilu and N. Linial. Are stable instances easy? In Innovations in Computer
Science, pages 332-341, 2010.

Y. Bilu, A. Daniely, N. Linial, and M. Saks. On the practically interesting instances
of maxcut. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, pages 526537, 2013.

A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2):204-234, 1995.

N. Buchbinder, J. S. Naor, and R. Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the Symposium on Theory
of Computing, pages 535-544, 2013.

G. Cualinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm
for multiway cut. In Proceedings of the Symposium on Theory of Computing,
pages 48-52, 1998.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864-894, 1994.

M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations
Research Letters, 3(6):285-288, 1985.

U. Feige and J. Kilian. Heuristics for finding large independent sets, with appli-
cations to coloring semi-random graphs. In Proceedings of the Symposium on
Foundations of Computer Science, pages 674—683, 1998.

U. Feige, Y. Mansour, and R. Schapire. Learning and inference in the presence of
corrupted inputs. In Proceedings of the Conference on Learning Theory, pages
637657, 2015.

13.4 References

401

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. vol-
ume 42, pages 1115-1145, 1995.

D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of operations research, 10(2):180-184, 1985.

D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436-461, 2004.

R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable CSPs? SIAM Journal on Computing, 37
(1):319-357, 2007.

J. Kleinberg and E. Tardos. Approximation algorithms for classification problems

with pairwise relationships: Metric labeling and Markov random fields. Journal
of the ACM (JACM), 49(5):616-639, 2002.

V. Leontev. Stability of the traveling salesman problem (in Russian). volume 15,
pages 1293-1309, 1975.

K. Makarychev and Y. Makarychev. Metric perturbation resilience. 2016.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Approximation algorithms
for semi-random partitioning problems. In Proceedings of the ACM symposium
on Theory of computing, pages 367-384, 2012.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Sorting noisy data
with partial information. In Proceedings of the Conference on Innovations in
Theoretical Computer Science, pages 515-528, 2013.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Constant factor approx-
imation for balanced cut in the pie model. In Proceedings of the Symposium on
Theory of Computing, pages 41-49, 2014a.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu—Linial stable
instances of Max Cut and Minimum Multiway Cut. In Proceedings of the
Symposium on Discrete Algorithms, pages 890-906, 2014b.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering
with noisy partial information. In Proceedings of the Conference on Learning
Theory, pages 1321-1342, 2015.

C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings
of the Symposium on Discrete Algorithms, pages 712-728, 2010.

M. Mihaldk, M. Schéngens, R. Sramek, and P. Widmayer. On the complexity of the
metric tsp under stability considerations. In SOFSEM 2011: Theory and Practice
of Computer Science, pages 382-393. Springer, 2011.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of
lloyd-type methods for the k-means problem. In Proceeding of the Symposium on
Foundations of Computer Science, pages 165-176, 2006.

A. Sharma and J. Vondrdk. Multiway cut, pairwise realizable distributions, and

descending thresholds. In Proceedings of the Symposium on Theory of Computing,
pages 724-733, 2014.

	Perturbations- Optimization- and Statistics
	Introduction
	Perturb-and-MAP Random Fields
	Factorizing Shortest Paths with Randomized Optimum Models
	Herding as a Learning System with Edge-of-Chaos Dynamics
	Learning Maximum A-Posteriori Perturbation Models
	On the Expected Value of Random Maximum A-Posteriori Perturbations
	A Poisson Process Model for Monte Carlo
	Perturbation Techniques in Online Learning and Optimization
	Probabilistic Inference by Hashing and Optimization
	Perturbation Models and PAC-Bayesian Generalization Bounds
	Adversarial Perturbations of Deep Neural Networks
	Data Augmentation via L-vy Processes
	Bilu-Linial Stability

