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The number of mobile malware keeps increasing

5Source: McAfee Labs



Opportunities and challenges in mobile analysis
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• Automated techniques have been introduced

Machine Learning Natural Language Processing Program Analysis

How can we adapt these techniques to keep up 
their effectiveness in adversarial settings? 
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Opportunities and challenges in mobile analysis
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• Characteristics of mobile platform
• Devices frequently interact with environment and other devices
• The mobile app ecosystem changes the way users install and use apps

• Intelligent techniques have been introduced



Malware Detection

AppContext: Differentiating Malicious and 
Benign Mobile App Behavior using Contexts

ICSE



Example - A malicious app

11 11
http://www.which.co.uk/consumer-rights/problem/im-being-charged-for-unwanted-premium-rate-text-messages



Checking security-sensitive behaviors
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Permission List

SmsManager.sendTextMessage()

API Documents

Sensitive APIs



A benign app —— Greetings
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An adaptive adversary
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Permissions

Sensitive API methods



A research methodology

• What intrinsic property makes malware and benign apps different?
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Problem Insights

Program 
Characteristics

Analysis 
Techniques

• What is the representation of such 
difference in the mobile programs?

• How to automatically extract such 
representation from mobile programs?



Our Insight

Different inherent goals of benign apps vs. malware as 
differentiating factors

• Benign apps
• Meet requirements from users (as delivering utility)

• Malware
• Trigger malicious behaviors frequently (as maximizing 

profits)
• Evade detection (as prolonging lifetime)

16
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Program 
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Techniques



Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
• E.g., many malware families trigger malicious behaviors via background events.
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Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
• E.g., many malware families trigger malicious behaviors via background events.

• Not too frequently for users to notice anomaly:  indicative states of external 
environments

• E.g., Send premium SMS every 12 hours
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Balance!!!
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Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
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environments

• E.g., Send premium SMS every 12 hours
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Security 
Insights

Program 
Characteristics

Analysis 
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• Activation events, e.g., signal change

• Context factors, e.g., current system time



How to extract contexts automatically?
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Locate Security-Sensitive Behaviors

Extract Context Factors

Call Graph

Context Factors

Security-Sensitive Methods

Construct & Traverse RICFGs

Conditional Statements
Identify Activation Events

Activation EventsECG

Contexts ECG: Extended Call Graph; 
RICFG: Reduced Inter-procedure Control Flow Graph

Security 
Insights

Program 
Characteristics

Analysis 
Techniques

Control Flow Graph



How to extract contexts automatically?
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Representing triggering 
relationship

Representing controlling 
relationship

OnCreate()

sendTextMessage()

b()

Call Graph

If(date.getHours>23
|| date.getHours< 5 )

sendTextMessage()

Date date = new Date();

Control-flow Graph

Method 
Invocation

Dependency

Security 
Insights

Program 
Characteristics

Analysis 
Techniques



ActionReceiver.OnReceive()
Date date = new Date();
If(data.getHours>23 || date.getHours< 5 ){

ContextWrapper.StartService(MainService);
…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()

SmsManager.sendTextMessage()

SendTextActivity$5.run()
MainService.b()

ContextWrapper.StartService()

Example

Expected 
Context

Unexpected 
Context

Security 
Insights

Program 
Characteristics

Analysis 
Techniques



Expected Context
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DummyMainMethod()

SendTextActivity$4.onClick()

SmsManager.sendTextMessage()

SendTextActivity$5.run()

The app will send an SMS 
when 
• user clicks a button in 

the app
Entry point
- UI Event 
Handler

Call Path

Security 
Insights

Program 
Characteristics

Analysis 
Techniques



Unexpected Context

24

The app will send an SMS when 
• phone signal strength 

changes (frequent)
• current time is within 11PM-

5 AM (not too frequent, User 
not around)

ActionReceiver.OnReceive()

Date date = new Date();
If(date.getHours>23 || date.getHours< 5 ){

ContextWrapper.StartService(MainService);
…

MainService.OnCreate()

DummyMainMethod()

SmsManager.sendTextMessage()

MainService.b()

ContextWrapper.StartService()

Android.intent.action.SIG_STR

Metadata

Entry point
- Service

Entry point
- Receiver

ICC
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Context-based Security-Behavior Classification

Context1: 
(Event: Signal strength changes), 
(Factor: Calendar)

Context2: 
(Event: Clicking a button)

Permission Method … Hardware System UI F1 F2 F3 F4 F5 …

SEND_SMS SendTextMessage … N/A SIG_STR N/A 0 0 1 0 0 …

SEND_SMS SendTextMessage … N/A N/A Click 0 0 0 0 0 …

Support Vector Machine (SVM)
• Resilient to over-fitting
• Effective for high dimension 

data 

Existing 
Features

F3 = Calendar

Security 
Insights

Program 
Characteristics

Analysis 
Techniques



NLP for Mobile Security

WHYPER: Towards Automating Risk Assessment 
of Mobile Applications

Usenix Security



It is NOT that People Don’t Care

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2


WHYPER: Automated Risk Assessment

• User Perceptions: App Description
• App Behaviors: Permission Request
• A framework using NLP techniques to construct traceability between a 

sentence in app description  a permission of an app

Links

28



Intermediate Representation Generator

Also you can share yoga exercise to your friends via Email and SMS

Also
you

can

share

exercise

your
friends

Email
SMS

VBRB PRP MD NNDT NN NNSPRP NNP NNP
the

yoga

advmod
nsubj
aux
dobj

det
nn

prep_to
poss
prep_via

conj_and

the

share
to

you
yoga exercise

owned
you
via

friends
and

email
SMS

RB: adverb; PRP: pronoun; MD: verb, modal auxillary; VB: verb, base form; DT: determiner; NN: 
noun, singular or mass; NNS: noun, plural; NNP: noun, proper singular
http://www.clips.ua.ac.be/pages/mbsp-tags



Social Network for Mobile Security

MalScan: Fast Market-Wide Mobile Malware Scanning by 
Social-Network Centrality Analysis

ASE
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Our Past Work: Android App Testing
• 2 years of collaboration with Tencent Inc. WeChat testing team

• Guided Random Test Generation Tool improved over Google Monkey

• Resulting tool deployed in daily WeChat testing practice
• WeChat = WhatsApp + Facebook + Instagram + PayPal + Uber …
• #monthly active users: 963 millions @2017 2ndQ
• Daily#: dozens of billion messages sent, hundreds of million photos uploaded, 

hundreds of million payment transactions executed

• First studies on testing industrial Android apps 
[FSE’16IN][ICSE’17SEIP][ASE’18]

• Beyond open source Android apps
focused by academia

WeChat



Now—— UI testing agent with reinforcement learning

33

x=0
If (x==8)

x+=1 x+=2

Traditional program
(control flow graph)

Neural 
network

Input

Program Logic

Covered

Output

Not 
Covered

State
𝑆𝑆𝑡𝑡

Action

𝑎𝑎𝑡𝑡

Reward 𝑟𝑟𝑡𝑡



Cooperative Mobile Testing



REINAM: Reinforcement Learning 
for Input-Grammar Inference.

Fuzz Testing

FSE



Motivation

• Many programs take input strings that form a grammar.

• Knowing the grammar helps us understand the input structure.

ESEC/FSE 2019 36

URI = 
scheme:[//authority]path[?query][#fragment]
authority = [userinfo@]host[:port]
……

Grammar

URIdecoder

Program

https://google.com

Valid Input String



Application

• Input grammar could be useful in a wide range of applications:

ESEC/FSE 2019 37

Fuzz Testing

Reverse Engineering



Existing Approach 

ESEC/FSE 2019 38

Target Program Seed Input

Synthesized CFG

Program 
Analysis

Language 
Induction

Machine 
LearningUnanalyzable 

Code

Low-quality
Low-variety
Seed Inputs

Lack of
Seed Inputs



Existing Approach

ESEC/FSE 2019 39

Active Learning Approach[1]

[1] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesizing
program input grammars in PLDI’17

• State-of-the-art approaches 
use active learning to 
iteratively generalize the 
grammar.

• However, they work hard to 
try to avoid any 
overgeneralization which 
could be useful.



Workflow of REINAM

ESEC/FSE 2019 40

• REINAM takes the target program as input.

• Phase 1: REINAM generates seed inputs 
using automatic test generation and then 
uses a grammar synthesizer to synthesize an 
initial CFG.

• Using dynamic symbolic execution engine in 
automatic test generation alleviates the 
shortcoming of low-quality, low-variety and 
insufficient seed inputs.



Workflow of REINAM

ESEC/FSE 2019 41

• Phase 2: REINAM converts the CFG from 
Phase 1 to a PCFG, and then uses 
reinforcement learning to refine this PCFG.

• To allow Overgeneralization, We present 
the grammar of the program as a 
Probalistic Context-Free Grammar (PCFG) 
rather than a deterministic Context-Free 
Grammar (CFG).

• To optimize the PCFG, we formulate the 
Input Grammar Synthesis task as a 
Reinforcement Learning problem.



Workflow of REINAM

ESEC/FSE 2019 42



Generalizing PCFG via Reinforcement Learning 

ESEC/FSE 2019 43

Task Construct valid input string Solve maze

Agent

Environment

State

Action

Reward

Reinforcement Learning for Maze Solving [2]

[2] https://www.samyzaf.com/ML/rl/qmaze.htmlReinforcement Learning for Input Construction

The PCFG
The target program

Current state of the string (a partial derivation)
The choice of production rule to apply
Whether the constructed input is accepted or not

The robot
The maze

(Row, Column, Last action)
The choice of the direction to move
-0.04 for each move, +1 for hitting target
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A semantically equivalent program may have various syntactically different forms.

Problem Statement
Generating Regular Expressions from NL

NL: String that begin with at least two digits.
Regex: (([0-9]){2,})(.*)

Challenges
Program Aliasing

SemRegex: A Semantics-Based 
Approach for Generating Regular 
Expressions from Natural 
Language Specifications
Zhong et al.
EMNLP 2018



Cross-language Vulnerability Detection
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Price of Autonomy

• Deployment scale: too large for humans to effectively monitor
• Sculley et al., 2015
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Price of Autonomy

• Deployment scale: too large for humans to effectively monitor
• Sculley et al., 2015

• Time scale: too short to wait for human feedback
• autonomous vehicles: Temizer et al., 2010; Geiger et al., 2012

• Stakes: too high to tolerate errors
• surgery: Taylor et al., 2008



Testing Machine Learning Apps

x=0

If (x==8)

x+=1 x+=2

Traditional program
(control flow graph)

Neural 
network

Input

Program Logic

Covered

Output

Not 
Covered



Automated Generation of Test Oracle for Deep 
Learning Application

https://sites.google.com/view/dloracle/home

compare

Test Subjects

Input

Model 1 Model 2

?

Test 
Generator generate

execute

Output 1 Output 2

https://sites.google.com/view/dloracle/home
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Adversarial Machine Learning
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Adversarial Machine Learning
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Property Inference Attacks on Deep Neural Networks using 
Permutation Invariant Representations

DNN Privacy

CCS



Property Inference Attack

Given a whitebox ML model, can the model consumer (attacker) infer 
some global properties of the training dataset the model producer did 
not intend to share?

58

E.g., the environment in which the data was produced

E.g., the fraction of the data that comes from a certain class



An example: Smile detector

Neural 
Network

59

No!

Is Smiling?

Yes!

Smile
Detector



An example: A simple property of the training 
dataset

60



An example: A simple property of the training 
dataset
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or

: Skewed towards 
attractive people

: Only ordinary people



An example: A simple property of the training 
dataset

62

Neural 
Network

Smile Detector

train

or

: Skewed towards 
attractive people

: Only ordinary people

infer



Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!

63

Meta -
Classifier

Target 
Classifier

Feature
Extraction



Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!
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Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!
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Meta -
Classifier

Target 
Classifier

Shadow 
Classifier 1

.

.

.

Shadow 
Classifier k

Shadow Training 
Set 1

Shadow Training 
Set k

.

.

.

Train

Train

Feature

Extraction

.

.

.

.

.

Train

Feature
Extraction



Case study: Inferring vulnerabilities

66

Hardware performance counters 
values for different applications on 
a desktop

Bitcoin Mining Detector

[Tahir  et al. RAID’17]



Case study: Inferring vulnerabilities
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Hardware performance counters 
values for different applications on a 
desktop

Bitcoin Mining Detector

Property
Inference

Patched or 
Not?

[Tahir  et al. RAID’17]  
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Malware Detection in Adversarial Settings: Exploiting 
Feature Evolutions and Confusions in Android Apps

Attacking Learning-based Malware Detector

ACSAC



Why not using 
everything in 

malware bytecode 
as features?

• Performance
– Slower and need more labelled data.

• Discriminative features are not resilient in 
adversarial settings

70

M B

Magic happens?

Insight: Malware detectors often include non-
essential features in code clones as discriminative 
features.
for (int i =0; i < n/2; i++){

char temp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = temp;

} //reverse the SMS message
……
for (int i =0; i < n/2; i++){

char temp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = temp;

} //reverse the SMS message again
sendTextMessage(a);

Code clones



Why not using 
everything in 

malware bytecode 
as features?

71

Non-essential

Benign

Malicious

Discriminant Non-essential

Benign

Malicious

Unmatched!

M B

Magic happens?

• Discriminative features are not resilient in 
adversarial settings



Generating 
adversarial 

example 
helps build 

better 
classifiers

72

Figure Credit: GoodFellow 2016



Not all evasive samples are good 
adversarial testing inputs

• Potential side effect
–crash the app
–cause undesirable behaviors 
–disable malicious functionalities. 
–the code cannot even be compiled.

• Automatically generating meaningful 
adversarial malware is challenging!

Figure Credit: GoodFellow 2016



Malware Recomposition 
Variation (MRV)

• Malware Evolution Strategy
– Phylogenetic analysis

• Malware Confusion Strategy
– Similarity metric

• Insight 
– Follow existing patterns!

74

Figure Credit: Trend Micro

Figure Credit: Malware News
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Adversarial Energy Attack



Adversarial NLP

77

Generating malicious messages that can 
avoid bot detection.
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DENAS: Input-independent Interpretation for 
Security-oriented Neural Networks



Concerns of Learning-based Techniques

• Deep Learning give the prediction result without reasons.

• Unlikely to discover the biases in the dataset.
• the uneven distribution of the dataset.

• Difficult to know why the model makes mistakes and fix the error.



Explaining Machine Learning Models

• Human-interpretable Model 
• Domain experts could validate the model through his domain knowledge.

• Rule-Based Inference

If (color == red ) and (shape == round) 
Then this is Apple

How to classify Apple and Banana

Part of speech tagging



Explaining Machine Learning Models
• Definition of Rule-Based Inference 

• A rule is a IF-THEN statement. IF is the condition, THEN is the prediction.

• Condition is a collection of tuples

x[1] = 144 and x[2] = 184 and x[3] = 167

184 is the function start

An input h satisfy the rule condition: 

82

• Prediction is sufficient conditional inference



Existing Techniques to Derive Explanations

• Categorized into two kinds

• Local Explanation: explain the model’s prediction result for one input. 

• LEMNA,  LIME, Grad-CAM

• Global Explanation:  acquire the knowledge learned by the model.

• Tree Regression  

• Both are post-hoc explanations. Explanations are given after prediction.

• Existing interpretation methods are based on input data.



One Example of Model Explanation (LEMNA, 
CCS2018)

Picture from Guo. LEMNA: Explaining Deep Learning based Security Applications

http://www.personal.psu.edu/wzg13/publications/ccs18.pdf


• Some Features are just Symbols with no Numerical Meaning.

• 0x89 0xd1             mov    ecx,edx

• 0x90 nop

• 89 and 90 have completely different meanings.

• Where to give Explanation.

• LEMNA give explanation case by case, It is impossible explain 

every input data. (Cost)

87

Limitation of the Existing Techniques
(LEMNA, CCS2018)



92

• How to model the complex nonlinear decision boundary.
• The decision boundary of a neural network is manifested through the nonlinear function 

mapping the input to the output of the neural network. 

• The nonlinearity results in great complexity to interpret the decision making of the neural 

network in a human comprehensible manner, making it almost impossible to solve the 

function.

• Our Approach
• We propose neuron activation  probability to approximate the nonlinear constraints of the 

decision  boundary.

• Calculating the neural activation probability through Monte Carlo method.

The Challenge of Input-independent Explanation
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How to decide the activation Matrix A beforehand

Monte Carlo(MC) method

P𝑖𝑖,𝑗𝑗is the probability of 𝑗𝑗th neuron in the 𝑖𝑖th layer being activated

Conditional Activation Probability



Sensitivity

In our experiments, we set N as 
1000 in the MC method, and we test 
whether it would affect the result.

Results showed when N > 1000, the 
activation probability is converged. 

Experiment results of sensitivity



The Challenge of Input-independent Explanation

• How to extract the general rules to represent the model’s behavior.
• One of the key attribute for an input-independent explanation approach is the ability to present 

saliency (e.g., bias, preference) in the decision making of neural networks.

• Extracting most representative rules is challenging because there are a large (if not infinite) 
number of rule candidates given high-dimension input data with many possible values for each 
feature.

• Our approach
• With the help of  neural activation probability, we could linearize the decision boundary then select 

the feature value contribution most to the prediction result.

• We propose an iterative approach inspired by Newton-Raphson method to approximate the 
activation probability step by step.
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With the help of Matrix, we could Linearize the decision boundary. 
compute the contribution toward final output separately for each 
feature value.

General Rule Generation

(1) Initialize an empty rule 𝑟𝑟
(2) Estimating the activation probability of neurons under current
rule 𝑟𝑟 using Monte Carlo method
(3) Select the feature value 𝑝𝑝 make the most contribution to the
objective function.
(4) Update the rule 𝑟𝑟 = 𝑟𝑟 ∪ 𝑝𝑝
(5) Identify the rule, if the rule do not have enough confidence
to predict the behavior of the model, go to step2.



Main Insight

• The main insight enabling input-independent explanation of DENAS is that 
unlike image recognition, security applications feed large amount of discrete 
data to neural networks. 

• DENAS thus leverages the fact that discrete data is enumerable to reduce the 
complexity of computing the decision boundary of neural networks.

(3) Select the feature value 𝑝𝑝 make the most contribution to the objective function.



The Challenge of Input-independent Explanation

• How to use the model to extract rules under a given data distribution.
• The input space of a neural network used in security domain is usually non-continuous and 

irregular. As an input-independent approach, DENAS can provide explanation for all 
behaviors of a neural network, including the behaviors on invalid or unrealistic inputs (i.e., 
data outside valid input space).

• Security analysts may not be interested in explanation of behaviors on invalid inputs.
• For example, security analysts may not care how a malware classifier makes decisions on a program sample 

that cannot be compiled or executed.

• Our approach
• We introduce two kinds of domain specific knowledge as constraints to reject illegal rules.
• Static knowledge
• Extensible knowledge
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Static Domain Knowledge Constraints
(Bayesian Statistics)

Extensible Domain Knowledge Constraints
（Markov Chain）

Domain-Specific Rule Generation
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Why DENAS is useful…



110

1.Summarize the most general rules with the help of DNN.

2.Discovering new knowledge not existing in the visible data.

3.Find the Bias of the model, the uneven distribution.

4.Troubleshooting beforehand and patching model errors.

Demonstration of DENAS in Identifying Binary Function Start
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• Discovering new knowledge not existing in the visible data
• Start of utility function and preparations at the function start 

• Summarize the most general rules 

ByteWeight summarize 1208767 assembly signatures as 
the function start, We use 1000 binary signatures and could 
cover more than 80% of the dataset.

Demonstration of DENAS in Identifying Binary Function Start
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• Find areas Bias of the model

Top-5 coverage rules in the data set

Demonstration of DENAS in Identifying Binary Function Start
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• Troubleshooting beforehand and patching model errors
• Indicators for function start appear in the middle of a function.

“[0x55, 0x83, 0xec]” according to the instruction “[push ebp; sub esp,0x7c;]”, ebp register is for a 
stack frame and “push ebp” is often located at the start of the function, and “[0x83, 0xec]” represents
the “sub esp” instruction are used to space allocated on the stack for the local variables. Which are 
typical appear at the function start.

Demonstration of DENAS in Identifying Binary Function Start
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Demonstration of DENAS in Identifying Binary Function Start



Future Work

RNN in Learn&Fuzz PCFG in REINAM

The target program



Questions?
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