
Quality Assurance and Security in
the Age of Machine Learning

Wei Yang

Department of Computer Science
University of Texas at Dallas

CS 4301

Outline

• Application of learning-based techniques

• Quality assurance of learning-based techniques

• Security of learning-based techniques

• Interpretation of learning-based security techniques

Outline

• Application of learning-based techniques
• Mobile Security
• Testing
• Other

• Quality assurance of learning-based techniques
• Security of learning-based techniques
• Interpretation of learning-based security techniques

4

The number of mobile malware keeps increasing

5Source: McAfee Labs

Opportunities and challenges in mobile analysis

6

• Automated techniques have been introduced

Machine Learning Natural Language Processing Program Analysis

Opportunities and challenges in mobile analysis

7

• Automated techniques have been introduced

Machine Learning Natural Language Processing Program Analysis

How can we adapt these techniques to keep up
their effectiveness in adversarial settings?

Opportunities and challenges in mobile analysis

8

• Characteristics of mobile platform
• Devices frequently interact with environment and other devices

• Automated techniques have been introduced

Opportunities and challenges in mobile analysis

9

• Characteristics of mobile platform
• Devices frequently interact with environment and other devices
• The mobile app ecosystem changes the way users install and use apps

• Intelligent techniques have been introduced

Malware Detection

AppContext: Differentiating Malicious and
Benign Mobile App Behavior using Contexts

ICSE

Example - A malicious app

11 11
http://www.which.co.uk/consumer-rights/problem/im-being-charged-for-unwanted-premium-rate-text-messages

Checking security-sensitive behaviors

12

Permission List

SmsManager.sendTextMessage()

API Documents

Sensitive APIs

A benign app —— Greetings

13 13

An adaptive adversary

14

Permissions

Sensitive API methods

A research methodology

• What intrinsic property makes malware and benign apps different?

15

Problem Insights

Program
Characteristics

Analysis
Techniques

• What is the representation of such
difference in the mobile programs?

• How to automatically extract such
representation from mobile programs?

Our Insight

Different inherent goals of benign apps vs. malware as
differentiating factors

• Benign apps
• Meet requirements from users (as delivering utility)

• Malware
• Trigger malicious behaviors frequently (as maximizing

profits)
• Evade detection (as prolonging lifetime)

16

Problem
Insights

Program
Characteristics

Analysis
Techniques

Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
• E.g., many malware families trigger malicious behaviors via background events.

17

Security
Insights

Program
Characteristics

Analysis
Techniques

Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
• E.g., many malware families trigger malicious behaviors via background events.

• Not too frequently for users to notice anomaly: indicative states of external
environments

• E.g., Send premium SMS every 12 hours

18

Balance!!!

Security
Insights

Program
Characteristics

Analysis
Techniques

Differentiating characteristics

Mobile malware (vs. benign apps)
• Frequently enough to meet the need: frequent occurrences of imperceptible

system events;
• E.g., many malware families trigger malicious behaviors via background events.

• Not too frequently for users to notice anomaly: indicative states of external
environments

• E.g., Send premium SMS every 12 hours

19

Security
Insights

Program
Characteristics

Analysis
Techniques

• Activation events, e.g., signal change

• Context factors, e.g., current system time

How to extract contexts automatically?

20

Locate Security-Sensitive Behaviors

Extract Context Factors

Call Graph

Context Factors

Security-Sensitive Methods

Construct & Traverse RICFGs

Conditional Statements
Identify Activation Events

Activation EventsECG

Contexts ECG: Extended Call Graph;
RICFG: Reduced Inter-procedure Control Flow Graph

Security
Insights

Program
Characteristics

Analysis
Techniques

Control Flow Graph

How to extract contexts automatically?

21

Representing triggering
relationship

Representing controlling
relationship

OnCreate()

sendTextMessage()

b()

Call Graph

If(date.getHours>23
|| date.getHours< 5)

sendTextMessage()

Date date = new Date();

Control-flow Graph

Method
Invocation

Dependency

Security
Insights

Program
Characteristics

Analysis
Techniques

ActionReceiver.OnReceive()
Date date = new Date();
If(data.getHours>23 || date.getHours< 5){

ContextWrapper.StartService(MainService);
…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()

SmsManager.sendTextMessage()

SendTextActivity$5.run()
MainService.b()

ContextWrapper.StartService()

Example

Expected
Context

Unexpected
Context

Security
Insights

Program
Characteristics

Analysis
Techniques

Expected Context

23

DummyMainMethod()

SendTextActivity$4.onClick()

SmsManager.sendTextMessage()

SendTextActivity$5.run()

The app will send an SMS
when
• user clicks a button in

the app
Entry point
- UI Event
Handler

Call Path

Security
Insights

Program
Characteristics

Analysis
Techniques

Unexpected Context

24

The app will send an SMS when
• phone signal strength

changes (frequent)
• current time is within 11PM-

5 AM (not too frequent, User
not around)

ActionReceiver.OnReceive()

Date date = new Date();
If(date.getHours>23 || date.getHours< 5){

ContextWrapper.StartService(MainService);
…

MainService.OnCreate()

DummyMainMethod()

SmsManager.sendTextMessage()

MainService.b()

ContextWrapper.StartService()

Android.intent.action.SIG_STR

Metadata

Entry point
- Service

Entry point
- Receiver

ICC

25

Context-based Security-Behavior Classification

Context1:
(Event: Signal strength changes),
(Factor: Calendar)

Context2:
(Event: Clicking a button)

Permission Method … Hardware System UI F1 F2 F3 F4 F5 …

SEND_SMS SendTextMessage … N/A SIG_STR N/A 0 0 1 0 0 …

SEND_SMS SendTextMessage … N/A N/A Click 0 0 0 0 0 …

Support Vector Machine (SVM)
• Resilient to over-fitting
• Effective for high dimension

data

Existing
Features

F3 = Calendar

Security
Insights

Program
Characteristics

Analysis
Techniques

NLP for Mobile Security

WHYPER: Towards Automating Risk Assessment
of Mobile Applications

Usenix Security

It is NOT that People Don’t Care

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2

WHYPER: Automated Risk Assessment

• User Perceptions: App Description
• App Behaviors: Permission Request
• A framework using NLP techniques to construct traceability between a

sentence in app description  a permission of an app

Links

28

Intermediate Representation Generator

Also you can share yoga exercise to your friends via Email and SMS

Also
you

can

share

exercise

your
friends

Email
SMS

VBRB PRP MD NNDT NN NNSPRP NNP NNP
the

yoga

advmod
nsubj
aux
dobj

det
nn

prep_to
poss
prep_via

conj_and

the

share
to

you
yoga exercise

owned
you
via

friends
and

email
SMS

RB: adverb; PRP: pronoun; MD: verb, modal auxillary; VB: verb, base form; DT: determiner; NN:
noun, singular or mass; NNS: noun, plural; NNP: noun, proper singular
http://www.clips.ua.ac.be/pages/mbsp-tags

Social Network for Mobile Security

MalScan: Fast Market-Wide Mobile Malware Scanning by
Social-Network Centrality Analysis

ASE

Outline

• Application of learning-based techniques
• Mobile Security
• Testing
• Other

• Quality assurance of learning-based techniques
• Security of learning-based techniques
• Interpretation of learning-based security techniques
• Future work

Our Past Work: Android App Testing
• 2 years of collaboration with Tencent Inc. WeChat testing team

• Guided Random Test Generation Tool improved over Google Monkey

• Resulting tool deployed in daily WeChat testing practice
• WeChat = WhatsApp + Facebook + Instagram + PayPal + Uber …
• #monthly active users: 963 millions @2017 2ndQ
• Daily#: dozens of billion messages sent, hundreds of million photos uploaded,

hundreds of million payment transactions executed

• First studies on testing industrial Android apps
[FSE’16IN][ICSE’17SEIP][ASE’18]

• Beyond open source Android apps
focused by academia

WeChat

Now—— UI testing agent with reinforcement learning

33

x=0
If (x==8)

x+=1 x+=2

Traditional program
(control flow graph)

Neural
network

Input

Program Logic

Covered

Output

Not
Covered

State
𝑆𝑆𝑡𝑡

Action

𝑎𝑎𝑡𝑡

Reward 𝑟𝑟𝑡𝑡

Cooperative Mobile Testing

REINAM: Reinforcement Learning
for Input-Grammar Inference.

Fuzz Testing

FSE

Motivation

• Many programs take input strings that form a grammar.

• Knowing the grammar helps us understand the input structure.

ESEC/FSE 2019 36

URI =
scheme:[//authority]path[?query][#fragment]
authority = [userinfo@]host[:port]
……

Grammar

URIdecoder

Program

https://google.com

Valid Input String

Application

• Input grammar could be useful in a wide range of applications:

ESEC/FSE 2019 37

Fuzz Testing

Reverse Engineering

Existing Approach

ESEC/FSE 2019 38

Target Program Seed Input

Synthesized CFG

Program
Analysis

Language
Induction

Machine
LearningUnanalyzable

Code

Low-quality
Low-variety
Seed Inputs

Lack of
Seed Inputs

Existing Approach

ESEC/FSE 2019 39

Active Learning Approach[1]

[1] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesizing
program input grammars in PLDI’17

• State-of-the-art approaches
use active learning to
iteratively generalize the
grammar.

• However, they work hard to
try to avoid any
overgeneralization which
could be useful.

Workflow of REINAM

ESEC/FSE 2019 40

• REINAM takes the target program as input.

• Phase 1: REINAM generates seed inputs
using automatic test generation and then
uses a grammar synthesizer to synthesize an
initial CFG.

• Using dynamic symbolic execution engine in
automatic test generation alleviates the
shortcoming of low-quality, low-variety and
insufficient seed inputs.

Workflow of REINAM

ESEC/FSE 2019 41

• Phase 2: REINAM converts the CFG from
Phase 1 to a PCFG, and then uses
reinforcement learning to refine this PCFG.

• To allow Overgeneralization, We present
the grammar of the program as a
Probalistic Context-Free Grammar (PCFG)
rather than a deterministic Context-Free
Grammar (CFG).

• To optimize the PCFG, we formulate the
Input Grammar Synthesis task as a
Reinforcement Learning problem.

Workflow of REINAM

ESEC/FSE 2019 42

Generalizing PCFG via Reinforcement Learning

ESEC/FSE 2019 43

Task Construct valid input string Solve maze

Agent

Environment

State

Action

Reward

Reinforcement Learning for Maze Solving [2]

[2] https://www.samyzaf.com/ML/rl/qmaze.htmlReinforcement Learning for Input Construction

The PCFG
The target program

Current state of the string (a partial derivation)
The choice of production rule to apply
Whether the constructed input is accepted or not

The robot
The maze

(Row, Column, Last action)
The choice of the direction to move
-0.04 for each move, +1 for hitting target

Outline

• Application of learning-based techniques
• Mobile Security
• Testing
• Other

• Quality assurance of learning-based techniques
• Security of learning-based techniques
• Interpretation of learning-based security techniques
• Future work

45

A semantically equivalent program may have various syntactically different forms.

Problem Statement
Generating Regular Expressions from NL

NL: String that begin with at least two digits.
Regex: (([0-9]){2,})(.*)

Challenges
Program Aliasing

SemRegex: A Semantics-Based
Approach for Generating Regular
Expressions from Natural
Language Specifications
Zhong et al.
EMNLP 2018

Cross-language Vulnerability Detection

Outline

• Application of learning-based techniques

• Quality assurance of learning-based techniques

• Security of learning-based techniques

• Interpretation of learning-based security techniques

Price of Autonomy

• Deployment scale: too large for humans to effectively monitor
• Sculley et al., 2015

Price of Autonomy

• Deployment scale: too large for humans to effectively monitor
• Sculley et al., 2015

• Time scale: too short to wait for human feedback
• autonomous vehicles: Temizer et al., 2010; Geiger et al., 2012

Price of Autonomy

• Deployment scale: too large for humans to effectively monitor
• Sculley et al., 2015

• Time scale: too short to wait for human feedback
• autonomous vehicles: Temizer et al., 2010; Geiger et al., 2012

• Stakes: too high to tolerate errors
• surgery: Taylor et al., 2008

Testing Machine Learning Apps

x=0

If (x==8)

x+=1 x+=2

Traditional program
(control flow graph)

Neural
network

Input

Program Logic

Covered

Output

Not
Covered

Automated Generation of Test Oracle for Deep
Learning Application

https://sites.google.com/view/dloracle/home

compare

Test Subjects

Input

Model 1 Model 2

?

Test
Generator generate

execute

Output 1 Output 2

https://sites.google.com/view/dloracle/home

Outline

• Application of learning-based techniques

• Quality assurance of learning-based techniques

• Security of learning-based techniques

• Interpretation of learning-based security techniques

• Future work

Adversarial Machine Learning

54

Adversarial Machine Learning

55

Outline

• Application of learning-based techniques
• Quality assurance of learning-based techniques
• Security of learning-based techniques

• Privacy of DNN
• Attacking Malware Detector
• Other

• Interpretation of learning-based security techniques

57

Property Inference Attacks on Deep Neural Networks using
Permutation Invariant Representations

DNN Privacy

CCS

Property Inference Attack

Given a whitebox ML model, can the model consumer (attacker) infer
some global properties of the training dataset the model producer did
not intend to share?

58

E.g., the environment in which the data was produced

E.g., the fraction of the data that comes from a certain class

An example: Smile detector

Neural
Network

59

No!

Is Smiling?

Yes!

Smile
Detector

An example: A simple property of the training
dataset

60

An example: A simple property of the training
dataset

61

or

: Skewed towards
attractive people

: Only ordinary people

An example: A simple property of the training
dataset

62

Neural
Network

Smile Detector

train

or

: Skewed towards
attractive people

: Only ordinary people

infer

Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!

63

Meta -
Classifier

Target
Classifier

Feature
Extraction

Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!

64

Meta - Classifier

Target
Classifier

Shadow
Classifier 1

.

.

.

Shadow
Classifier k

Featur
e
Extraction

.

.

.

.

.

Train

Feature
Extraction

Property Inference Attack Strategy: Meta-training

Models trained on similar datasets using similar training methods should represent similar functions!

65

Meta -
Classifier

Target
Classifier

Shadow
Classifier 1

.

.

.

Shadow
Classifier k

Shadow Training
Set 1

Shadow Training
Set k

.

.

.

Train

Train

Feature

Extraction

.

.

.

.

.

Train

Feature
Extraction

Case study: Inferring vulnerabilities

66

Hardware performance counters
values for different applications on
a desktop

Bitcoin Mining Detector

[Tahir et al. RAID’17]

Case study: Inferring vulnerabilities

67

Hardware performance counters
values for different applications on a
desktop

Bitcoin Mining Detector

Property
Inference

Patched or
Not?

[Tahir et al. RAID’17]

Outline

• Application of learning-based techniques
• Quality assurance of learning-based techniques
• Security of learning-based techniques

• Privacy of DNN
• Attacking Malware Detector
• Other

• Interpretation of learning-based security techniques

69

Malware Detection in Adversarial Settings: Exploiting
Feature Evolutions and Confusions in Android Apps

Attacking Learning-based Malware Detector

ACSAC

Why not using
everything in

malware bytecode
as features?

• Performance
– Slower and need more labelled data.

• Discriminative features are not resilient in
adversarial settings

70

M B

Magic happens?

Insight: Malware detectors often include non-
essential features in code clones as discriminative
features.
for (int i =0; i < n/2; i++){

char temp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = temp;

} //reverse the SMS message
……
for (int i =0; i < n/2; i++){

char temp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = temp;

} //reverse the SMS message again
sendTextMessage(a);

Code clones

Why not using
everything in

malware bytecode
as features?

71

Non-essential

Benign

Malicious

Discriminant Non-essential

Benign

Malicious

Unmatched!

M B

Magic happens?

• Discriminative features are not resilient in
adversarial settings

Generating
adversarial

example
helps build

better
classifiers

72

Figure Credit: GoodFellow 2016

Not all evasive samples are good
adversarial testing inputs

• Potential side effect
–crash the app
–cause undesirable behaviors
–disable malicious functionalities.
–the code cannot even be compiled.

• Automatically generating meaningful
adversarial malware is challenging!

Figure Credit: GoodFellow 2016

Malware Recomposition
Variation (MRV)

• Malware Evolution Strategy
– Phylogenetic analysis

• Malware Confusion Strategy
– Similarity metric

• Insight
– Follow existing patterns!

74

Figure Credit: Trend Micro

Figure Credit: Malware News

Outline

• Application of learning-based techniques
• Quality assurance of learning-based techniques
• Security of learning-based techniques

• Privacy of DNN
• Attacking Malware Detector
• Other

• Interpretation of learning-based security techniques

Adversarial Energy Attack

Adversarial NLP

77

Generating malicious messages that can
avoid bot detection.

Outline

• Application of learning-based techniques

• Quality assurance of learning-based techniques

• Security of learning-based techniques

• Interpretation of learning-based security techniques

DENAS: Input-independent Interpretation for
Security-oriented Neural Networks

Concerns of Learning-based Techniques

• Deep Learning give the prediction result without reasons.

• Unlikely to discover the biases in the dataset.
• the uneven distribution of the dataset.

• Difficult to know why the model makes mistakes and fix the error.

Explaining Machine Learning Models

• Human-interpretable Model
• Domain experts could validate the model through his domain knowledge.

• Rule-Based Inference

If (color == red) and (shape == round)
Then this is Apple

How to classify Apple and Banana

Part of speech tagging

Explaining Machine Learning Models
• Definition of Rule-Based Inference

• A rule is a IF-THEN statement. IF is the condition, THEN is the prediction.

• Condition is a collection of tuples

x[1] = 144 and x[2] = 184 and x[3] = 167

184 is the function start

An input h satisfy the rule condition:

82

• Prediction is sufficient conditional inference

Existing Techniques to Derive Explanations

• Categorized into two kinds

• Local Explanation: explain the model’s prediction result for one input.

• LEMNA, LIME, Grad-CAM

• Global Explanation: acquire the knowledge learned by the model.

• Tree Regression

• Both are post-hoc explanations. Explanations are given after prediction.

• Existing interpretation methods are based on input data.

One Example of Model Explanation (LEMNA,
CCS2018)

Picture from Guo. LEMNA: Explaining Deep Learning based Security Applications

http://www.personal.psu.edu/wzg13/publications/ccs18.pdf

• Some Features are just Symbols with no Numerical Meaning.

• 0x89 0xd1 mov ecx,edx

• 0x90 nop

• 89 and 90 have completely different meanings.

• Where to give Explanation.

• LEMNA give explanation case by case, It is impossible explain

every input data. (Cost)

87

Limitation of the Existing Techniques
(LEMNA, CCS2018)

92

• How to model the complex nonlinear decision boundary.
• The decision boundary of a neural network is manifested through the nonlinear function

mapping the input to the output of the neural network.

• The nonlinearity results in great complexity to interpret the decision making of the neural

network in a human comprehensible manner, making it almost impossible to solve the

function.

• Our Approach
• We propose neuron activation probability to approximate the nonlinear constraints of the

decision boundary.

• Calculating the neural activation probability through Monte Carlo method.

The Challenge of Input-independent Explanation

96

How to decide the activation Matrix A beforehand

Monte Carlo(MC) method

P𝑖𝑖,𝑗𝑗is the probability of 𝑗𝑗th neuron in the 𝑖𝑖th layer being activated

Conditional Activation Probability

Sensitivity

In our experiments, we set N as
1000 in the MC method, and we test
whether it would affect the result.

Results showed when N > 1000, the
activation probability is converged.

Experiment results of sensitivity

The Challenge of Input-independent Explanation

• How to extract the general rules to represent the model’s behavior.
• One of the key attribute for an input-independent explanation approach is the ability to present

saliency (e.g., bias, preference) in the decision making of neural networks.

• Extracting most representative rules is challenging because there are a large (if not infinite)
number of rule candidates given high-dimension input data with many possible values for each
feature.

• Our approach
• With the help of neural activation probability, we could linearize the decision boundary then select

the feature value contribution most to the prediction result.

• We propose an iterative approach inspired by Newton-Raphson method to approximate the
activation probability step by step.

99

With the help of Matrix, we could Linearize the decision boundary.
compute the contribution toward final output separately for each
feature value.

General Rule Generation

(1) Initialize an empty rule 𝑟𝑟
(2) Estimating the activation probability of neurons under current
rule 𝑟𝑟 using Monte Carlo method
(3) Select the feature value 𝑝𝑝 make the most contribution to the
objective function.
(4) Update the rule 𝑟𝑟 = 𝑟𝑟 ∪ 𝑝𝑝
(5) Identify the rule, if the rule do not have enough confidence
to predict the behavior of the model, go to step2.

Main Insight

• The main insight enabling input-independent explanation of DENAS is that
unlike image recognition, security applications feed large amount of discrete
data to neural networks.

• DENAS thus leverages the fact that discrete data is enumerable to reduce the
complexity of computing the decision boundary of neural networks.

(3) Select the feature value 𝑝𝑝 make the most contribution to the objective function.

The Challenge of Input-independent Explanation

• How to use the model to extract rules under a given data distribution.
• The input space of a neural network used in security domain is usually non-continuous and

irregular. As an input-independent approach, DENAS can provide explanation for all
behaviors of a neural network, including the behaviors on invalid or unrealistic inputs (i.e.,
data outside valid input space).

• Security analysts may not be interested in explanation of behaviors on invalid inputs.
• For example, security analysts may not care how a malware classifier makes decisions on a program sample

that cannot be compiled or executed.

• Our approach
• We introduce two kinds of domain specific knowledge as constraints to reject illegal rules.
• Static knowledge
• Extensible knowledge

102

Static Domain Knowledge Constraints
(Bayesian Statistics)

Extensible Domain Knowledge Constraints
（Markov Chain）

Domain-Specific Rule Generation

109

Why DENAS is useful…

110

1.Summarize the most general rules with the help of DNN.

2.Discovering new knowledge not existing in the visible data.

3.Find the Bias of the model, the uneven distribution.

4.Troubleshooting beforehand and patching model errors.

Demonstration of DENAS in Identifying Binary Function Start

111

• Discovering new knowledge not existing in the visible data
• Start of utility function and preparations at the function start

• Summarize the most general rules

ByteWeight summarize 1208767 assembly signatures as
the function start, We use 1000 binary signatures and could
cover more than 80% of the dataset.

Demonstration of DENAS in Identifying Binary Function Start

112

• Find areas Bias of the model

Top-5 coverage rules in the data set

Demonstration of DENAS in Identifying Binary Function Start

113

• Troubleshooting beforehand and patching model errors
• Indicators for function start appear in the middle of a function.

“[0x55, 0x83, 0xec]” according to the instruction “[push ebp; sub esp,0x7c;]”, ebp register is for a
stack frame and “push ebp” is often located at the start of the function, and “[0x83, 0xec]” represents
the “sub esp” instruction are used to space allocated on the stack for the local variables. Which are
typical appear at the function start.

Demonstration of DENAS in Identifying Binary Function Start

114

Demonstration of DENAS in Identifying Binary Function Start

Future Work

RNN in Learn&Fuzz PCFG in REINAM

The target program

Questions?

	Quality Assurance and Security in �the Age of Machine Learning
	Outline
	Outline
	Slide Number 4
	The number of mobile malware keeps increasing
	Opportunities and challenges in mobile analysis
	Opportunities and challenges in mobile analysis
	Opportunities and challenges in mobile analysis
	Opportunities and challenges in mobile analysis
	Malware Detection
	Example - A malicious app
	Checking security-sensitive behaviors
	A benign app —— Greetings
	An adaptive adversary
	A research methodology
	Our Insight
	Differentiating characteristics
	Differentiating characteristics
	Differentiating characteristics
	How to extract contexts automatically?
	How to extract contexts automatically?
	Example
	Expected Context
	Unexpected Context
	Slide Number 25
	NLP for Mobile Security
	It is NOT that People Don’t Care
	WHYPER: Automated Risk Assessment
	Intermediate Representation Generator
	Social Network for Mobile Security
	Outline
	Our Past Work: Android App Testing
	Now—— UI testing agent with reinforcement learning
	Cooperative Mobile Testing
	REINAM: Reinforcement Learning for Input-Grammar Inference.
	Motivation
	Application
	Existing Approach
	Existing Approach
	Workflow of REINAM
	Workflow of REINAM
	Workflow of REINAM
	Generalizing PCFG via Reinforcement Learning
	Outline
	Slide Number 45
	Cross-language Vulnerability Detection
	Outline
	Price of Autonomy
	Price of Autonomy
	Price of Autonomy
	Testing Machine Learning Apps
	Automated Generation of Test Oracle for Deep Learning Application
	Outline
	Adversarial Machine Learning
	Adversarial Machine Learning
	Outline
	DNN Privacy
	Property Inference Attack
	An example: Smile detector
	An example: A simple property of the training dataset
	An example: A simple property of the training dataset
	An example: A simple property of the training dataset
	Property Inference Attack Strategy: Meta-training
	Property Inference Attack Strategy: Meta-training
	Property Inference Attack Strategy: Meta-training
	Case study: Inferring vulnerabilities
	Case study: Inferring vulnerabilities
	Outline
	Attacking Learning-based Malware Detector
	Why not using everything in malware bytecode as features?
	Why not using everything in malware bytecode as features?
	Generating adversarial example helps build better classifiers
	Not all evasive samples are good adversarial testing inputs
	Malware Recomposition Variation (MRV)
	Outline
	Adversarial Energy Attack
	Adversarial NLP
	Outline
	Slide Number 79
	Concerns of Learning-based Techniques
	Explaining Machine Learning Models
	Explaining Machine Learning Models
	Existing Techniques to Derive Explanations
	One Example of Model Explanation (LEMNA, CCS2018)
	Limitation of the Existing Techniques�(LEMNA, CCS2018)
	The Challenge of Input-independent Explanation
	Conditional Activation Probability
	Sensitivity
	The Challenge of Input-independent Explanation
	General Rule Generation
	Main Insight
	The Challenge of Input-independent Explanation
	Domain-Specific Rule Generation
	Slide Number 109
	Demonstration of DENAS in Identifying Binary Function Start
	Demonstration of DENAS in Identifying Binary Function Start
	Demonstration of DENAS in Identifying Binary Function Start
	Demonstration of DENAS in Identifying Binary Function Start
	Demonstration of DENAS in Identifying Binary Function Start
	Future Work
	Slide Number 124

